151
|
Maron BA, Zhang YY, White K, Chan SY, Handy DE, Mahoney CE, Loscalzo J, Leopold JA. Aldosterone inactivates the endothelin-B receptor via a cysteinyl thiol redox switch to decrease pulmonary endothelial nitric oxide levels and modulate pulmonary arterial hypertension. Circulation 2012; 126:963-74. [PMID: 22787113 DOI: 10.1161/circulationaha.112.094722] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is characterized, in part, by decreased endothelial nitric oxide (NO(·)) production and elevated levels of endothelin-1. Endothelin-1 is known to stimulate endothelial nitric oxide synthase (eNOS) via the endothelin-B receptor (ET(B)), suggesting that this signaling pathway is perturbed in PAH. Endothelin-1 also stimulates adrenal aldosterone synthesis; in systemic blood vessels, hyperaldosteronism induces vascular dysfunction by increasing endothelial reactive oxygen species generation and decreasing NO(·) levels. We hypothesized that aldosterone modulates PAH by disrupting ET(B)-eNOS signaling through a mechanism involving increased pulmonary endothelial oxidant stress. METHODS AND RESULTS In rats with PAH, elevated endothelin-1 levels were associated with elevated aldosterone levels in plasma and lung tissue and decreased lung NO(·) metabolites in the absence of left-sided heart failure. In human pulmonary artery endothelial cells, endothelin-1 increased aldosterone levels via peroxisome proliferator-activated receptor gamma coactivator-1α/steroidogenesis factor-1-dependent upregulation of aldosterone synthase. Aldosterone also increased reactive oxygen species production, which oxidatively modified cysteinyl thiols in the eNOS-activating region of ET(B) to decrease endothelin-1-stimulated eNOS activity. Substitution of ET(B)-Cys405 with alanine improved ET(B)-dependent NO(·) synthesis under conditions of oxidant stress, confirming that Cys405 is a redox-sensitive thiol that is necessary for ET(B)-eNOS signaling. In human pulmonary artery endothelial cells, mineralocorticoid receptor antagonism with spironolactone decreased aldosterone-mediated reactive oxygen species generation and restored ET(B)-dependent NO(·) production. Spironolactone or eplerenone prevented or reversed pulmonary vascular remodeling and improved cardiopulmonary hemodynamics in 2 animal models of PAH in vivo. CONCLUSIONS Our findings demonstrate that aldosterone modulates an ET(B) cysteinyl thiol redox switch to decrease pulmonary endothelium-derived NO(·) and promote PAH.
Collapse
Affiliation(s)
- Bradley A Maron
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital & Harvard Medical School, 75 Francis St, PBB-1, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Li DD, Han RM, Liang R, Chen CH, Lai W, Zhang JP, Skibsted LH. Hydroxyl radical reaction with trans-resveratrol: initial carbon radical adduct formation followed by rearrangement to phenoxyl radical. J Phys Chem B 2012; 116:7154-61. [PMID: 22650146 DOI: 10.1021/jp3033337] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the reaction between trans-resveratrol (resveratrol) and the hydroxyl radical, kinetic product control leads to a short-lived hydroxyl radical adduct with an absorption maximum at 420 nm and a lifetime of 0.21 ± 0.01 μs (anaerobic acetonitrile at 25 °C) as shown by laser flash photolysis using N-hydroxypyridine-2(1H)-thione (N-HPT) as a "photo-Fenton" reagent. The transient spectra of the radical adduct are in agreement with density functional theory (DFT) calculations showing an absorption maximum at 442 or 422 nm for C2 and C6 hydroxyl adducts, respectively, and showing the lowest energy for the transition state leading to the C2 adduct compared to other radical products. From this initial product, the relative long-lived 4'-phenoxyl radical of resveratrol (τ = 9.9 ± 0.9 μs) with an absorption maximum at 390 nm is formed in a process with a time constant (τ = 0.21 ± 0.01 μs) similar to the decay constant for the C2 hydroxyl adduct (or a C2/C6 hydroxyl adduct mixture) and in agreement with thermodynamics identifying this product as the most stable resveratrol radical. The hydroxyl radical adduct to phenoxyl radical conversion with concomitant water dissociation has a rate constant of 5 × 10(6) s(-1) and may occur by intramolecular hydrogen atom transfer or by stepwise proton-assisted electron transfer. Photolysis of N-HPT also leads to a thiyl radical which adds to resveratrol in a parallel reaction forming a sulfur radical adduct with a lifetime of 0.28 ± 0.04 μs and an absorption maximum at 483 nm.
Collapse
Affiliation(s)
- Dan-Dan Li
- Department of Chemistry, Renmin University of China, Beijing 100872, PR China
| | | | | | | | | | | | | |
Collapse
|
153
|
Chen KE, Richards AA, Ariffin JK, Ross IL, Sweet MJ, Kellie S, Kobe B, Martin JL. The mammalian DUF59 protein Fam96a forms two distinct types of domain-swapped dimer. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:637-48. [DOI: 10.1107/s0907444912006592] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/14/2012] [Indexed: 11/10/2022]
|
154
|
Foley TD, Clark AR, Stredny ES, Wierbowski BM. SNAP-25 contains non-acylated thiol pairs that can form intrachain disulfide bonds: possible sites for redox modulation of neurotransmission. Cell Mol Neurobiol 2012; 32:201-8. [PMID: 21850520 DOI: 10.1007/s10571-011-9748-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/30/2011] [Indexed: 10/17/2022]
Abstract
Intrachain disulfide bond formation among the cysteine thiols of SNAP-25, a component of the SNARE protein complex required for neurotransmitter release, has been hypothesized to link oxidative stress and inhibition of synaptic transmission. However, neither the availability in vivo of SNAP-25 thiols, which are known targets of S-palmitoylation, nor the tendency of these thiols to form intrachain disulfide bonds is known. We have examined, in rat brain extracts, both the availability of closely spaced, or vicinal, thiol pairs in SNAP-25 and the propensity of these dithiols toward disulfide bond formation using a method improved by us recently that exploits the high chemoselectivity of phenylarsine oxide (PAO) for vicinal thiols. The results show for the first time that a substantial fraction of soluble and, to a lesser extent, particulate SNAP-25 contain non-acylated PAO-binding thiol pairs and that these thiols in soluble SNAP-25 in particular have a high propensity toward disulfide bond formation. Indeed, disulfide bonds were detected in a small fraction of soluble SNAP-25 even under conditions designed to prevent or greatly limit protein thiol oxidation during experimental procedures. These results provide direct experimental support for the availability, in a subpopulation of SNAP-25, of vicinal thiols that may confer on one or more isoforms of this family of proteins a sensitivity to oxidative stress.
Collapse
Affiliation(s)
- Timothy D Foley
- Departments of Chemistry and Program in Biochemistry, Cell, and Molecular Biology, University of Scranton, Scranton, PA 18510, USA.
| | | | | | | |
Collapse
|
155
|
Mor-Cohen R, Rosenberg N, Einav Y, Zelzion E, Landau M, Mansour W, Averbukh Y, Seligsohn U. Unique disulfide bonds in epidermal growth factor (EGF) domains of β3 affect structure and function of αIIbβ3 and αvβ3 integrins in different manner. J Biol Chem 2012; 287:8879-91. [PMID: 22308022 DOI: 10.1074/jbc.m111.311043] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The β3 subunit of αIIbβ3 and αvβ3 integrins contains four epidermal growth factor (EGF)-like domains. Each domain harbors four disulfide bonds of which one is unique for integrins. We previously discerned a regulatory role of the EGF-4 Cys-560-Cys-583 unique bond for αIIbβ3 activation. In this study we further investigated the role of all four integrin unique bonds in both αIIbβ3 and αvβ3. We created β3 mutants harboring serine substitutions of each or both cysteines that disrupt the four unique bonds (Cys-437-Cys-457 in EGF-1, Cys-473-Cys-503 in EGF-2, Cys-523-Cys-544 in EGF-3, and Cys-560-Cys-583 in EGF-4) and transfected them into baby hamster kidney cells together with normal αv or αIIb. Flow cytometry was used to measure surface expression of αIIbβ3 and αvβ3 and their activity state by soluble fibrinogen binding. Most cysteine substitutions caused similarly reduced surface expression of both receptors. Disrupting all four unique disulfide bonds by single cysteine substitutions resulted in variable constitutive activation of αIIbβ3 and αvβ3. In contrast, whereas double C437S/C457S and C473S/C503S mutations yielded constitutively active αIIbβ3 and αvβ3, the C560S/C583S mutation did not, and the C523S/C544S mutation only yielded constitutively active αIIbβ3. Activation of C523S/C544S αvβ3 mutant by activating antibody and dithiothreitol was also impaired. Molecular dynamics of C523S/C544S β3 in αIIbβ3 but not in αvβ3 displayed an altered stable conformation. Our findings indicate that unique disulfide bonds in β3 differently affect the function of αIIbβ3 and αvβ3 and suggest a free sulfhydryl-dependent regulatory role for Cys-560-Cys-583 in both αIIbβ3 and αvβ3 and for Cys-523-Cys-544 only in αvβ3.
Collapse
Affiliation(s)
- Ronit Mor-Cohen
- the Amalia Biron Research Institute of Thrombosis and Hemostasis, Chaim Sheba Medical Center, Tel-Hashomer, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Tomaselli S, Assfalg M, Pagano K, Cogliati C, Zanzoni S, Molinari H, Ragona L. A Disulfide Bridge Allows for Site-Selective Binding in Liver Bile Acid Binding Protein Thereby Stabilising the Orientation of Key Amino Acid Side Chains. Chemistry 2012; 18:2857-66. [DOI: 10.1002/chem.201102203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 12/05/2011] [Indexed: 11/08/2022]
|
157
|
Scheibe R, Dietz KJ. Reduction-oxidation network for flexible adjustment of cellular metabolism in photoautotrophic cells. PLANT, CELL & ENVIRONMENT 2012; 35:202-16. [PMID: 21410714 DOI: 10.1111/j.1365-3040.2011.02319.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Photosynthesis generates the energy carriers NADPH and ATP to be consumed in assimilatory processes. Continuous energy conversion and optimal use of the available light energy are only guaranteed when all reduction-oxidation (redox) processes are tightly controlled. A robust network links metabolism with regulation and signalling. Information on the redox situation is generated and transferred by various redox components that are parts of this network. Any imbalance in the network is sensed, and the information is transmitted in order to elicit a response at the various levels of regulation and in the different cellular compartments. Redox information within the chloroplast is derived from intersystem electron transport, the ferredoxin-NADP oxidoreductase (FNR)/NADPH branch of the redox network, the thioredoxin branch and from reactive oxygen species (ROS), resulting in a high diversity of responses that are able to adjust photosynthesis, as well as poising and antioxidant systems accordingly in each specific situation. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) represents a central step in CO(2) reduction and in carbohydrate oxidation involving both forms of energy, namely NAD(P)H and ATP, with its various isoforms that are located in plastids, cytosol and nucleus. GAPDH is used as an example to demonstrate complexity, flexibility and robustness of the regulatory redox network in plants.
Collapse
Affiliation(s)
- Renate Scheibe
- Plant Physiology, University of Osnabrueck, 49069 Osnabrueck, Germany
| | | |
Collapse
|
158
|
Wang Y, Liu T, Yang Q, Li Z, Qian X. A Modeling Study for Structure Features of β-N-acetyl-D-hexosaminidase from Ostrinia furnacalis and its Novel Inhibitor Allosamidin: Species Selectivity and Multi-Target Characteristics. Chem Biol Drug Des 2012; 79:572-82. [DOI: 10.1111/j.1747-0285.2011.01301.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
159
|
Sitthisak S, Kitti T, Boonyonying K, Wozniak D, Mongkolsuk S, Jayaswal RK. McsA and the roles of metal-binding motif in Staphylococcus aureus. FEMS Microbiol Lett 2011; 327:126-33. [PMID: 22126623 DOI: 10.1111/j.1574-6968.2011.02468.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 11/29/2022] Open
Abstract
McsA is a key modulator of stress response in Staphylococcus aureus that contains four CXXC potential metal-binding motifs at the N-terminal. Staphylococcus aureus ctsR operon encodes ctsR, clpC, and putative mcsA and mcsB genes. The expression of the ctsR operon in S. aureus was shown to be induced in response to various types of heavy metals such as copper and cadmium. McsA was cloned and overexpressed, and purified product was tested for metal-binding activity. The protein bound to Cu(II), Zn(II), Co(II), and Cd(II). No binding with any heavy metal except copper was found when we performed site-directed mutagenesis of Cys residues of three CXXC motifs of McsA. These data suggest that two conserved cysteine ligands provided by one CXXC motif are required to bind copper ions. In addition, using a bacterial two-hybrid system, McsA was found to be able to bind to McsB and CtsR of S. aureus and the CXXC motif was needed for the binding. This indicates that the Cys residues in the CXXC motif are involved in metal binding and protein interaction.
Collapse
|
160
|
Widespread disulfide bonding in proteins from thermophilic archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2011; 2011:409156. [PMID: 21941460 PMCID: PMC3177088 DOI: 10.1155/2011/409156] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/16/2011] [Indexed: 11/17/2022]
Abstract
Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaeal branch, which are essentially all hyperthermophilic, are universally rich in disulfide bonding while lesser degrees of disulfide bonding are found among the thermophilic Euryarchaea, excluding those that are methanogenic. The results help clarify which parts of the archaeal lineage are likely to yield more examples and additional specific data on protein disulfide bonding, as increasing genomic sequencing efforts are brought to bear.
Collapse
|
161
|
Banerjee M, Gupta K, Balaram H, Balaram P. Mass spectrometric identification of an intramolecular disulfide bond in thermally inactivated triosephosphate isomerase from a thermophilic organism Methanocaldococcus jannaschii. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:1915-1923. [PMID: 21698673 DOI: 10.1002/rcm.5058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The triosephosphate isomerase from the hyperthermophilic organism Methanocaldococcus jannaschii (MjTIM) is a tetrameric enzyme, with a monomer molecular mass of 23245 Da. The kinetic parameters, the k(cat) and the K(m) values, of the enzyme, examined at 25 °C and 50 °C, are 4.18 × 10(4) min(-1) and 3.26 × 10(5) min(-1) , and 0.33 and 0.86 mM(-1) min(-1) , respectively. Although the circular dichroism and fluorescence emission spectra of the protein remain unchanged up to 95 °C, suggesting that the secondary and tertiary structures are not lost even at this extreme temperature, surprisingly, incubation of this thermophilic enzyme at elevated temperature (65-85 °C) results in time-dependent inactivation, with almost complete loss of activity after 3 h at 75 °C. High-resolution electrospray ionization mass spectrometry (ESI-MS) reveals the monomeric mass of the heated sample to be 23243 Da. The 2 Da difference between native and heated samples suggests a probable formation of a disulfide bridge between proximal cysteine thiol groups. Liquid chromatography (LC)/ESI-MS/MS analysis of tryptic digests in the heated samples permits identification of a pentapeptide (DCGCK, residues 80-84) in which a disulfide bond formation between Cys81 and Cys83 was established through the collision-induced dissociation (CID) fragmentation of the intact disulfide-bonded molecule, yielding characteristic fragmentation patterns with key neutral losses. Neither residue is directly involved in the catalytic activity. Inspection of the three-dimensional structure suggests that subtle conformation effects transmitted through a network of hydrogen bonds to the active site residue Lys8 may be responsible for the loss of catalytic activity.
Collapse
Affiliation(s)
- Mousumi Banerjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
162
|
Abstract
Bacillithiol (BSH), the α-anomeric glycoside of l-cysteinyl-d-glucosamine with l-malic acid, plays a dominant role in the cytosolic thiol redox chemistry of the low guanine and cytosine (GC) Gram-positive bacteria (phylum Firmicutes). BSH is functionally analogous to glutathione (GSH) but differs sufficiently in chemical structure that cells have evolved a distinct set of enzymes that use BSH as cofactor. BSH was discovered in Bacillus subtilis as a mixed disulfide with the redox-sensing repressor OhrR and in B. anthracis by biochemical analysis of pools of labeled thiols. The structure of BSH was determined after purification from Deinococcus radiodurans. Similarities in structure between BSH and mycothiol (MSH) facilitated the identification of biosynthetic genes for BSH in the model organism B. subtilis. Phylogenomic analyses have identified several candidate BSH-using or associated proteins, including a BSH reductase, glutaredoxin-like thiol-dependent oxidoreductases (bacilliredoxins), and a BSH-S-transferase (FosB) involved in resistance to the epoxide antibiotic fosfomycin. Preliminary results implicate BSH in cellular processes to maintain cytosolic redox balance and for adaptation to reactive oxygen, nitrogen, and electrophilic species. BSH also is predicted to chelate metals avidly, in part due to the appended malate moiety, although the implications of BSH for metal ion homeostasis have yet to be explored in detail.
Collapse
Affiliation(s)
- John D Helmann
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA.
| |
Collapse
|
163
|
Bykova NV, Hoehn B, Rampitsch C, Hu J, Stebbing JA, Knox R. Thiol redox-sensitive seed proteome in dormant and non-dormant hybrid genotypes of wheat. PHYTOCHEMISTRY 2011; 72:1162-1172. [PMID: 21295800 DOI: 10.1016/j.phytochem.2010.12.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/06/2010] [Accepted: 12/28/2010] [Indexed: 05/27/2023]
Abstract
The thiol redox-sensitive and the total proteome in harvest-ripe grains of closely related genotypes of wheat (Triticum aestivum L.), with either a dormant or a non-dormant phenotype, were investigated using hybrid lines of spring wheat double haploid population segregating transgressively, to gain further insight into seed dormancy controlling events. Redox signalling by reactive oxygen species has been shown to play a role in seed dormancy alleviation. Thiol-disulfide proteins are of particular importance in the context of redox-dependent regulation as a central and flexible mechanism to control metabolic and developmental activities of the cells. Here we describe functional proteomic profiling of reversible oxidoreductive changes and characterize in vivo intrinsic reactivity of cysteine residues using thiol-specific fluorescent labelling, solubility-based protein fractionation, two-dimensional electrophoresis, and mass spectrometry analysis in conjunction with wheat EST sequence libraries. Quantitative differences between genotypes were found for 106 spots containing 64 unique proteins. Forty seven unique proteins displayed distinctive abundance pattern, and among them 31 proteins contained 78 unique redox active cysteines. Seventeen unique proteins with 19 reactive modified cysteines were found to have differential post-translational thiol redox modification. The results provide an insight into the alteration of thiol-redox profiles in proteins that function in major processes in seeds and include groups of redox- and stress-responsive, genetic information processing and cell cycle control, transport and storage proteins, enzymes of carbohydrate metabolism, proteases and their inhibitors.
Collapse
Affiliation(s)
- Natalia V Bykova
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X9.
| | | | | | | | | | | |
Collapse
|
164
|
Xiong Y, Uys JD, Tew KD, Townsend DM. S-glutathionylation: from molecular mechanisms to health outcomes. Antioxid Redox Signal 2011; 15:233-70. [PMID: 21235352 PMCID: PMC3110090 DOI: 10.1089/ars.2010.3540] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox homeostasis governs a number of critical cellular processes. In turn, imbalances in pathways that control oxidative and reductive conditions have been linked to a number of human disease pathologies, particularly those associated with aging. Reduced glutathione is the most prevalent biological thiol and plays a crucial role in maintaining a reduced intracellular environment. Exposure to reactive oxygen or nitrogen species is causatively linked to the disease pathologies associated with redox imbalance. In particular, reactive oxygen species can differentially oxidize certain cysteine residues in target proteins and the reversible process of S-glutathionylation may mitigate or mediate the damage. This post-translational modification adds a tripeptide and a net negative charge that can lead to distinct structural and functional changes in the target protein. Because it is reversible, S-glutathionylation has the potential to act as a biological switch and to be integral in a number of critical oxidative signaling events. The present review provides a comprehensive account of how the S-glutathionylation cycle influences protein structure/function and cellular regulatory events, and how these may impact on human diseases. By understanding the components of this cycle, there should be opportunities to intervene in stress- and aging-related pathologies, perhaps through prevention and diagnostic and therapeutic platforms.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, 29425, USA
| | | | | | | |
Collapse
|
165
|
Jung YG, Cho YB, Kim MS, Yoo JS, Hong SH, Roe JH. Determinants of redox sensitivity in RsrA, a zinc-containing anti-sigma factor for regulating thiol oxidative stress response. Nucleic Acids Res 2011; 39:7586-97. [PMID: 21685450 PMCID: PMC3177212 DOI: 10.1093/nar/gkr477] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Various environmental oxidative stresses are sensed by redox-sensitive regulators through cysteine thiol oxidation or modification. A few zinc-containing anti-sigma (ZAS) factors in actinomycetes have been reported to respond sensitively to thiol oxidation, among which RsrA from Streptomyces coelicolor is best characterized. It forms disulfide bonds upon oxidation and releases bound SigR to activate thiol oxidative stress response genes. Even though numerous ZAS proteins exist in bacteria, features that confer redox sensitivity to a subset of these have been uncharacterized. In this study, we identified seven additional redox-sensitive ZAS factors from actinomycetes. Comparison with redox-insensitive ZAS revealed characteristic sequence patterns. Domain swapping demonstrated the significance of the region K33FEHH37FEEC41SPC44LEK47 that encompass the conserved HX3CX2C (HCC) motif. Mutational effect of each residue on diamide responsive induction of SigR target genes in vivo demonstrated that several residues, especially those that flank two cysteines (E39, E40, L45, E46), contribute to redox sensitivity. These residues are well conserved among redox-sensitive ZAS factors, and hence are proposed as redox-determinants in sensitive ZAS. H37A, C41A, C44A and F38A mutations, in contrast, compromised SigR-binding activity significantly, apparently affecting structural integrity of RsrA. The residue pattern around HCC motif could therefore serve as an indicator to predict redox-sensitive ZAS factors from sequence information.
Collapse
Affiliation(s)
- Yong-Gyun Jung
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
166
|
Lindahl M, Mata-Cabana A, Kieselbach T. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance. Antioxid Redox Signal 2011; 14:2581-642. [PMID: 21275844 DOI: 10.1089/ars.2010.3551] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ten years ago, proteomics techniques designed for large-scale investigations of redox-sensitive proteins started to emerge. The proteomes, defined as sets of proteins containing reactive cysteines that undergo oxidative post-translational modifications, have had a particular impact on research concerning the redox regulation of cellular processes. These proteomes, which are hereafter termed "disulfide proteomes," have been studied in nearly all kingdoms of life, including animals, plants, fungi, and bacteria. Disulfide proteomics has been applied to the identification of proteins modified by reactive oxygen and nitrogen species under stress conditions. Other studies involving disulfide proteomics have addressed the functions of thioredoxins and glutaredoxins. Hence, there is a steadily growing number of proteins containing reactive cysteines, which are probable targets for redox regulation. The disulfide proteomes have provided evidence that entire pathways, such as glycolysis, the tricarboxylic acid cycle, and the Calvin-Benson cycle, are controlled by mechanisms involving changes in the cysteine redox state of each enzyme implicated. Synthesis and degradation of proteins are processes highly represented in disulfide proteomes and additional biochemical data have established some mechanisms for their redox regulation. Thus, combined with biochemistry and genetics, disulfide proteomics has a significant potential to contribute to new discoveries on redox regulation and signaling.
Collapse
Affiliation(s)
- Marika Lindahl
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Centro de Investigaciones Científicas Isla de la Cartuja, Seville, Spain
| | | | | |
Collapse
|
167
|
Maret W. Redox biochemistry of mammalian metallothioneins. J Biol Inorg Chem 2011; 16:1079-86. [PMID: 21647775 DOI: 10.1007/s00775-011-0800-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/25/2011] [Indexed: 11/24/2022]
Abstract
Metallothionein (MT) is a generic name for certain families of structurally rather variable metal-binding proteins. While purely chemical or biological approaches failed to establish a single physiologic function for MTs in any species, a combination of chemical and biological approaches and recent progress in defining the low but significant concentrations of cytosolic free zinc(II) ions have demonstrated that mammalian MTs function in cellular zinc metabolism in specific ways that differ from conventional knowledge about any other metalloprotein. Their thiolate coordination environments make MTs redox-active zinc proteins that exist in different molecular states depending on the availability of cellular zinc and the redox poise. The zinc affinities of MTs cover a range of physiologic zinc(II) ion concentrations and are modulated. Oxidative conditions make more zinc available, while reductive conditions make less zinc available. MTs move from the cytosol to cellular compartments, are secreted from cells, and are taken up by cells. They provide cellular zinc ions in a chemically available form and participate in cellular metal muffling: the combination of physiologic buffering in the steady state and the cellular redistribution and compartmentalization of transiently elevated zinc(II) ion concentrations in the pre-steady state. Cumulative evidence indicates that MTs primarily have a redox-dependent function in zinc metabolism, rather than a zinc-dependent function in redox metabolism.
Collapse
Affiliation(s)
- Wolfgang Maret
- King's College London, Metal Metabolism Group, Diabetes and Nutritional Sciences Division, School of Medicine, London UK.
| |
Collapse
|
168
|
Leverrier P, Declercq JP, Denoncin K, Vertommen D, Hiniker A, Cho SH, Collet JF. Crystal structure of the outer membrane protein RcsF, a new substrate for the periplasmic protein-disulfide isomerase DsbC. J Biol Chem 2011; 286:16734-42. [PMID: 21454485 PMCID: PMC3089515 DOI: 10.1074/jbc.m111.224865] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/07/2011] [Indexed: 11/06/2022] Open
Abstract
The bacterial Rcs phosphorelay is a stress-induced defense mechanism that controls the expression of numerous genes, including those for capsular polysaccharides, motility, and virulence factors. It is a complex multicomponent system that includes the histidine kinase (RcsC) and the response regulator (RcsB) and also auxiliary proteins such as RcsF. RcsF is an outer membrane lipoprotein that transmits signals from the cell surface to RcsC. The physiological signals that activate RcsF and how RcsF interacts with RcsC remain unknown. Here, we report the three-dimensional structure of RcsF. The fold of the protein is characterized by the presence of a central 4-stranded β sheet, which is conserved in several other proteins, including the copper-binding domain of the amyloid precursor protein. RcsF, which contains four conserved cysteine residues, presents two nonconsecutive disulfides between Cys(74) and Cys(118) and between Cys(109) and Cys(124), respectively. These two disulfides are not functionally equivalent; the Cys(109)-Cys(124) disulfide is particularly important for the assembly of an active RcsF. Moreover, we show that formation of the nonconsecutive disulfides of RcsF depends on the periplasmic disulfide isomerase DsbC. We trapped RcsF in a mixed disulfide complex with DsbC, and we show that deletion of dsbC prevents the activation of the Rcs phosphorelay by signals that function through RcsF. The three-dimensional structure of RcsF provides the structural basis to understand how this protein triggers the Rcs signaling cascade.
Collapse
Affiliation(s)
- Pauline Leverrier
- From Welbio (Walloon Excellence in Life Sciences and Biotechnology)
- de Duve Institute, Université Catholique de Louvain, B-1200 Brussels, Belgium
- Brussels Center for Redox Biology, B-1200 Brussels, Belgium
| | - Jean-Paul Declercq
- the Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium, and
| | - Katleen Denoncin
- From Welbio (Walloon Excellence in Life Sciences and Biotechnology)
- de Duve Institute, Université Catholique de Louvain, B-1200 Brussels, Belgium
- Brussels Center for Redox Biology, B-1200 Brussels, Belgium
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Annie Hiniker
- the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Seung-Hyun Cho
- From Welbio (Walloon Excellence in Life Sciences and Biotechnology)
- de Duve Institute, Université Catholique de Louvain, B-1200 Brussels, Belgium
- Brussels Center for Redox Biology, B-1200 Brussels, Belgium
| | - Jean-François Collet
- From Welbio (Walloon Excellence in Life Sciences and Biotechnology)
- de Duve Institute, Université Catholique de Louvain, B-1200 Brussels, Belgium
- Brussels Center for Redox Biology, B-1200 Brussels, Belgium
| |
Collapse
|
169
|
Tocchetti CG, Stanley BA, Murray CI, Sivakumaran V, Donzelli S, Mancardi D, Pagliaro P, Gao WD, van Eyk J, Kass DA, Wink DA, Paolocci N. Playing with cardiac "redox switches": the "HNO way" to modulate cardiac function. Antioxid Redox Signal 2011; 14:1687-98. [PMID: 21235349 PMCID: PMC3066693 DOI: 10.1089/ars.2010.3859] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nitric oxide (NO(•)) sibling, nitroxyl or nitrosyl hydride (HNO), is emerging as a molecule whose pharmacological properties include providing functional support to failing hearts. HNO also preconditions myocardial tissue, protecting it against ischemia-reperfusion injury while exerting vascular antiproliferative actions. In this review, HNO's peculiar cardiovascular assets are discussed in light of its unique chemistry that distinguish HNO from NO(•) as well as from reactive oxygen and nitrogen species such as the hydroxyl radical and peroxynitrite. Included here is a discussion of the possible routes of HNO formation in the myocardium and its chemical targets in the heart. HNO has been shown to have positive inotropic/lusitropic effects under normal and congestive heart failure conditions in animal models. The mechanistic intricacies of the beneficial cardiac effects of HNO are examined in cellular models. In contrast to β-receptor/cyclic adenosine monophosphate/protein kinase A-dependent enhancers of myocardial performance, HNO uses its "thiophylic" nature as a vehicle to interact with redox switches such as cysteines, which are located in key components of the cardiac electromechanical machinery ruling myocardial function. Here, we will briefly review new features of HNO's cardiovascular effects that when combined with its positive inotropic/lusitropic action may render HNO donors an attractive addition to the current therapeutic armamentarium for treating patients with acutely decompensated congestive heart failure.
Collapse
Affiliation(s)
- Carlo G Tocchetti
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Wouters MA, Iismaa S, Fan SW, Haworth NL. Thiol-based redox signalling: rust never sleeps. Int J Biochem Cell Biol 2011; 43:1079-85. [PMID: 21513814 DOI: 10.1016/j.biocel.2011.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 03/23/2011] [Accepted: 04/05/2011] [Indexed: 11/30/2022]
Abstract
Cysteine residues in proteins are covalently modified under conditions of oxidative and nitrosative stress by oxidation, nitrosation, glutathionylation and disulfide formation. Modifications induce conformational changes in substrate proteins, effecting signal cascades that evoke a biological response. A growing number of structures with modified cysteines are allowing a piecemeal understanding of the mechanistic aspects of these signalling pathways to emerge. Conformational changes upon conjugation of nitric oxide and glutathione are generally small and often accompanied by a local increase in protein disorder. Burial of nitric oxide is also apparent, which may increase the timeframe of signalling. Conformational changes upon disulfide formation/reduction range from the small to the spectacular. They include order/disorder transitions; oxidation of disulfides following expulsion of metals such as Zn; major reorganisation or "morphing" of portions of the polypeptide backbone; and changes in quaternary structure including domain swapping.
Collapse
|
171
|
Shen M, Siu S, Byrd S, Edelmann KH, Patel N, Ketchem RR, Mehlin C, Arnett HA, Hasegawa H. Diverse functions of reactive cysteines facilitate unique biosynthetic processes of aggregate-prone interleukin-31. Exp Cell Res 2011; 317:976-93. [DOI: 10.1016/j.yexcr.2010.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/10/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
|
172
|
Tan J, Kang H, Liu R, Wang D, Jin X, Li Q, Huang Y. Dual-stimuli sensitive nanogels fabricated by self-association of thiolated hydroxypropyl cellulose. Polym Chem 2011. [DOI: 10.1039/c0py00348d] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
173
|
Brzezinski K, Tomkiel AM, Lotowski Z, Morzycki J, Dauter Z. Bis[3α,7α,12α-tris-(4-nitro-benzo-yloxy)-5β-cholan-24-yl] disulfide-ethyl acetate-n-hexane (4/4/1). Acta Crystallogr Sect E Struct Rep Online 2010; 67:o74-5. [PMID: 21522786 PMCID: PMC3050291 DOI: 10.1107/s1600536810050385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/01/2010] [Indexed: 11/10/2022]
Abstract
The crystal structure of the title compound, C(90)H(100)N(6)O(24)S(2)·C(4)H(8)O(2)·0.25C(6)H(14), solved and refined against synchrotron diffraction data, contains two formula units in the asymmetric unit with the all-trans n-hexane mol-ecule having half-occupancy and one of the ethyl acetate mol-ecules disordered over two positions. The two symmetry-independent disulfide mol-ecules are assembled by approximate face-to-face and face-to-edge inter-actions between their 4-nitro-benzo-yloxy groups into an inter-twined dimer having a double-helix-type structure. The centrally placed disulfide bridges in the two symmetry-independent mol-ecules exhibit different helicity as shown by the C-S-S-C torsion angles of 71.0 (1) and -92.5 (1)°.
Collapse
|
174
|
Matteucci E, Giampietro O. Thiol signalling network with an eye to diabetes. Molecules 2010; 15:8890-903. [PMID: 21135801 PMCID: PMC6259199 DOI: 10.3390/molecules15128890] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 11/29/2010] [Accepted: 12/06/2010] [Indexed: 02/06/2023] Open
Abstract
Redox regulatory system controls normal cellular functions. Controlled changes in redox couples potential serve as components for signal transduction, similarly to the phosphorylation cascade. Cellular redox biology requires both compartimentalisation and communication of redox systems: the thermodynamic disequilibrium of the major redox switches allows rapid and sensitive responses to perturbations in redox environments. The many oxidation states of sulphur are found in numerous sulphur species with distinct functional groups (thiols, disulphides, polysulphides, sulphenic, sulphinic and sulphonic acids, etc.), which participate in a complicated network of sulphur-based redox events. Human diseases such as diabetes mellitus and its cardiovascular complications have been associated with increased production of reactive oxygen species and perturbations of thiol redox homeostasis. The review surveys literature related to some etiopathogenic aspects and therapeutic perspectives. The dual toxic-protective property of sulphydryl-donor molecules in experimental settings proposes the general problem of designing antioxidants for therapeutic use.
Collapse
Affiliation(s)
- Elena Matteucci
- Department of Internal Medicine, University of Pisa, Pisa, Italy.
| | | |
Collapse
|
175
|
Scharf DH, Remme N, Heinekamp T, Hortschansky P, Brakhage AA, Hertweck C. Transannular disulfide formation in gliotoxin biosynthesis and its role in self-resistance of the human pathogen Aspergillus fumigatus. J Am Chem Soc 2010; 132:10136-41. [PMID: 20593880 DOI: 10.1021/ja103262m] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gliotoxin (1), the infamous representative of the group of epipolythiodioxopiperazines (ETPs), is a virulence factor of the human pathogenic fungus Aspergillus fumigatus. The unique redox-sensitive transannular disulfide bridge is critical for deleterious effects caused by redox cycling and protein conjugation in the host. Through a combination of genetic, biochemical, and chemical analyses, we found that 1 results from GliT-mediated oxidation of the corresponding dithiol. In vitro studies using purified GliT demonstrate that the FAD-dependent, homodimeric enzyme utilizes molecular oxygen as terminal electron acceptor with concomitant formation of H(2)O(2). In analogy to the thiol-disulfide oxidoreductase superfamily, a model for dithiol-disulfide exchange involving the conserved CxxC motif is proposed. Notably, while all studied disulfide oxidases invariably form intra- or interchenar disulfide bonds in peptides, GliT is the first studied enzyme producing an epidithio bond. Furthermore, through sensitivity assays using wild type, Delta gliT mutant, and complemented strain, we found that GliT confers resistance to the producing organism. A phylogenetic study revealed that GliT falls into a clade of yet fully uncharacterized fungal gene products deduced from putative ETP biosynthesis gene loci. GliT thus not only represents the prototype of ETP-forming enzymes in eukaryotes but also delineates a novel mechanism for self-resistance.
Collapse
Affiliation(s)
- Daniel H Scharf
- Leibniz Institute for Natural Product Research and Infection Biology, Beutenbergstrasse 11a, 07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
176
|
Foley TD, Melideo SL, Healey AE, Lucas EJ, Koval JA. Phenylarsine oxide binding reveals redox-active and potential regulatory vicinal thiols on the catalytic subunit of protein phosphatase 2A. Neurochem Res 2010; 36:232-40. [PMID: 21080067 DOI: 10.1007/s11064-010-0310-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2010] [Indexed: 11/24/2022]
Abstract
Our earlier finding that the activity of protein phosphatase 2A from rat brain is inhibited by micromolar concentrations of the dithiol cross-linking reagent phenylarsine oxide (PAO) has encouraged the hypothesis that the catalytic subunit (PP2Ac) of PP2A contains one or more pairs of closely-spaced (vicinal) thiol pairs that may contribute to regulation of the enzyme. The results of the present study demonstrate using immobilized PAO-affinity chromatography that PP2Ac from rat brain formed stable DTT-sensitive adducts with PAO with or without associated regulatory subunits. In addition, a subset of the PAO-binding vicinal thiols of PP2Ac was readily oxidized to disulfide bonds in vitro. Importantly, a small fraction of PP2Ac was still found to contain disulfide bonds after applying stringent conditions designed to prevent protein disulfide bond formation during homogenization and fractionation of the brains. These findings establish the presence of potentially regulatory and redox-active PAO-binding vicinal thiols on the catalytic subunit of PP2A and suggest that a population of PP2Ac may contain disulfide bonds in vivo.
Collapse
Affiliation(s)
- Timothy D Foley
- Department of Chemistry, University of Scranton, Scranton, PA 18510, USA.
| | | | | | | | | |
Collapse
|
177
|
Joseph SK. Role of thiols in the structure and function of inositol trisphosphate receptors. CURRENT TOPICS IN MEMBRANES 2010; 66:299-322. [PMID: 22353485 DOI: 10.1016/s1063-5823(10)66013-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
178
|
Baculovirus GP64 disulfide bonds: the intermolecular disulfide bond of Autographa californica multicapsid nucleopolyhedrovirus GP64 is not essential for membrane fusion and virion budding. J Virol 2010; 84:8584-95. [PMID: 20573818 DOI: 10.1128/jvi.00264-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The GP64 envelope glycoprotein of the Autographa californica nucleopolyhedrovirus (AcMNPV) is a class III viral membrane fusion protein that is triggered by low pH during entry. Unlike most other viral fusion protein trimers, the monomers of GP64 are covalently linked to each other within the trimer by a single intermolecular disulfide bond (Cys24 Cys372). Single or paired alanine substitutions for Cys24 and Cys372 resulted in lower-efficiency transport of GP64 to the cell surface. Surprisingly, these mutated GP64s induced syncytium formation, and normalized fusion activities were approximately 30% of that from wild-type (WT) GP64. Heat treatment (37 degrees C) did not further reduce fusion activity of GP64 constructs with a disrupted intermolecular disulfide bond, suggesting that the GP64 trimers were relatively thermostable in the absence of the intermolecular disulfide bond. In addition, analysis of binding by a conformation-specific monoclonal antibody (MAb) suggested that the low-pH-induced refolding of those GP64 constructs was generally similar to that of WT GP64. In addition to its critical role in membrane fusion, GP64 is also necessary for efficient budding. When GP64 constructs containing a disrupted intermolecular disulfide bond (Cys24 Cys372) were displayed at the cell surface at levels comparable to those of WT GP64, virion budding efficiency ranged from approximately 39 to 88%, indicating that the intermolecular disulfide bond is not required for virion budding. However, GP64 proteins with a disrupted intermolecular disulfide could not rescue a GP64-null bacmid. We also examined the 6 conserved intramolecular disulfide bonds using single and paired alanine substitution mutations. None of the GP64 constructs with disrupted intramolecular disulfide bonds were capable of mediating pH-triggered membrane fusion, indicating that the intramolecular disulfide bonds are all necessary for membrane fusion. Thus, while the intramolecular disulfide bonds of GP64 appear to serve critical roles in membrane fusion, the unusual intermolecular disulfide bond was not critical for membrane fusion or virion budding yet appears to play an unknown role in viral infectivity.
Collapse
|
179
|
Abstract
The unique chemistry of oxygen has been both a resource and threat for life on Earth for at least the last 2.4 billion years. Reduction of oxygen to water allows extraction of more metabolic energy from organic fuels than is possible through anaerobic glycolysis. On the other hand, partially reduced oxygen can react indiscriminately with biomolecules to cause genetic damage, disease, and even death. Organisms in all three superkingdoms of life have developed elaborate mechanisms to protect against such oxidative damage and to exploit reactive oxygen species as sensors and signals in myriad processes. The sulfur amino acids, cysteine and methionine, are the main targets of reactive oxygen species in proteins. Oxidative modifications to cysteine and methionine can have profound effects on a protein's activity, structure, stability, and subcellular localization. Non-reversible oxidative modifications (oxidative damage) may contribute to molecular, cellular, and organismal aging and serve as signals for repair, removal, or programmed cell death. Reversible oxidation events can function as transient signals of physiological status, extracellular environment, nutrient availability, metabolic state, cell cycle phase, immune function, or sensory stimuli. Because of its chemical similarity to sulfur and stronger nucleophilicity and acidity, selenium is an extremely efficient catalyst of reactions between sulfur and oxygen. Most of the biological activity of selenium is due to selenoproteins containing selenocysteine, the 21st genetically encoded protein amino acid. The most abundant selenoproteins in mammals are the glutathione peroxidases (five to six genes) that reduce hydrogen peroxide and lipid hydroperoxides at the expense of glutathione and serve to limit the strength and duration of reactive oxygen signals. Thioredoxin reductases (three genes) use nicotinamide adenine dinucleotide phosphate to reduce oxidized thioredoxin and its homologs, which regulate a plethora of redox signaling events. Methionine sulfoxide reductase B1 reduces methionine sulfoxide back to methionine using thioredoxin as a reductant. Several selenoproteins in the endoplasmic reticulum are involved in the regulation of protein disulfide formation and unfolded protein response signaling, although their precise biological activities have not been determined. The most widely distributed selenoprotein family in Nature is represented by the highly conserved thioredoxin-like selenoprotein W and its homologs that have not yet been assigned specific biological functions. Recent evidence suggests selenoprotein W and the six other small thioredoxin-like mammalian selenoproteins may serve to transduce hydrogen peroxide signals into regulatory disulfide bonds in specific target proteins.
Collapse
Affiliation(s)
- Wayne Chris Hawkes
- USDA Agricultural Research Service, Western Human Nutrition Research Center, University of California at Davis, Davis, USA
| | - Zeynep Alkan
- USDA Agricultural Research Service, Western Human Nutrition Research Center, University of California at Davis, Davis, USA
| |
Collapse
|
180
|
Haworth NL, Liu JY, Fan SW, Gready JE, Wouters MA. Estimating Relative Disulfide Energies: An Accurate Ab Initio Potential Energy Surface. Aust J Chem 2010. [DOI: 10.1071/ch09456] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Disulfide torsional energy, a good predictor of disulfide redox potential in proteins, may be estimated by interpolation on a potential energy surface (PES) describing the twisting of diethyl disulfide through its three central dihedral angles. Here we update PES calculations at the M05-2X level of theory with the 6-31G(d) basis set. Although the surface shows no qualitative differences from an earlier MP2(full) PES, energy differences greater than 1 kJ mol–1 were seen for conformations with χ2 between –60° and 30°, or with χ3 below 60° or above 130°. This is particularly significant for highly strained disulfides that are likely to be spontaneously reduced by mechanical means. In benchmarking against the high-level G3X method, M05-2X showed significantly reduced root mean squared deviation compared with MP2(full) (1.0 versus 2.0 kJ mol–1 respectively). Results are incorporated into a web application that calculates relative torsional energies from disulfide dihedral angles (http://www.sbinf.org/applications/pes.html).
Collapse
|
181
|
Mauri P, Toppo S, De Palma A, Benazzi L, Maiorino M, Ursini F. Identification by MS/MS of disulfides produced by a functional redox transition. Methods Enzymol 2010; 473:217-25. [PMID: 20513480 DOI: 10.1016/s0076-6879(10)73011-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Among posttranslational modifications of proteins entailed with signal transduction, the redox transition is today brought to the focus as a major biochemical event accounting for the signaling functions of reactive oxygen species. Thermodynamic and kinetic criteria highlight hydroperoxides and protein disulfides as signaling and transducer elements, respectively, and growing biochemical evidence supports this notion. The protein Cys residue involved in this function must react fast and specifically with the oxidant and then with a second accessible Cys yielding the disulfide. These kinetic and structural constraints are shared with peroxidases and peroxiredoxins, which are competitors for the signaling hydroperoxide. In this chapter, a procedure based on MS/MS analysis for inter- and intrachain disulfide assignment in proteins undergoing redox-switch is presented. While the sensitivity of the modern MS/MS instruments permits the sequencing of double peptides linked by a disulfide bond, the major pitfall of the proteomic procedure is the thiol-disulfide scrambling taking place at the alkaline pH needed for the proteolytic reaction of trypsin. Instead, the use of pepsin at acidic pH prevents the disulfide scrambling, but the specificity of the proteolytic reaction is low and thus the complexity of fragmentation increases. We succeeded to limit this problem by heuristically assuming a conserved pepsin cleavage pattern of the protein both in the oxidized and the reduced form. Asymmetric cleavage of the disulfide by collisional fragmentation further corroborated the identification. In conclusion, the use of pepsin, integrated by a minimal computation, appears suitable for positively assigning inter- and intrachain disulfides generated by a functional redox-switch.
Collapse
Affiliation(s)
- Pierluigi Mauri
- Institute for Biomedical Technologies, National Research Council, Viale Fratelli Cervi, Segrate-Milano, Italy
| | | | | | | | | | | |
Collapse
|