151
|
Controlled Non-Viral Gene Delivery in Cartilage and Bone Repair: Current Strategies and Future Directions. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
152
|
Martineau C, Naja RP, Husseini A, Hamade B, Kaufmann M, Akhouayri O, Arabian A, Jones G, St-Arnaud R. Optimal bone fracture repair requires 24R,25-dihydroxyvitamin D3 and its effector molecule FAM57B2. J Clin Invest 2018; 128:3546-3557. [PMID: 30010626 DOI: 10.1172/jci98093] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/08/2018] [Indexed: 12/18/2022] Open
Abstract
The biological activity of 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] remains controversial, but it has been suggested that it contributes to fracture healing. Cyp24a1-/- mice, synthesizing no 24R,25(OH)2D3, show suboptimal endochondral ossification during fracture repair, with smaller callus and reduced stiffness. These defects were corrected by 24R,25(OH)2D3 treatment, but not by 1,25-dihydroxyvitamin D3. Microarrays with Cyp24a1-/- callus mRNA identified FAM57B2 as a mediator of the 24R,25(OH)2D3 effect. FAM57B2 produced lactosylceramide (LacCer) upon specific binding of 24R,25(OH)2D3. Fam57b inactivation in chondrocytes (Col2-Cre Fam57bfl/fl) phenocopied the callus formation defect of Cyp24a1-/- mice. LacCer or 24R,25(OH)2D3 injections restored callus volume, stiffness, and mineralized cartilage area in Cyp24a1-null mice, but only LacCer rescued Col2-Cre Fam57bfl/fl mice. Gene expression in callus tissue suggested that the 24R,25(OH)2D3/FAM57B2 cascade affects cartilage maturation. We describe a previously unrecognized pathway influencing endochondral ossification during bone repair through LacCer production upon binding of 24R,25(OH)2D3 to FAM57B2. Our results identify potential new approaches to ameliorate fracture healing.
Collapse
Affiliation(s)
- Corine Martineau
- Research Centre, Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada
| | - Roy Pascal Naja
- Research Centre, Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada.,Department of Human Genetics, and
| | - Abdallah Husseini
- Research Centre, Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada.,Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Bachar Hamade
- Research Centre, Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada.,Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Martin Kaufmann
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Omar Akhouayri
- Research Centre, Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada
| | - Alice Arabian
- Research Centre, Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada
| | - Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - René St-Arnaud
- Research Centre, Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada.,Department of Human Genetics, and.,Department of Surgery, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
153
|
Current Status of Canine Umbilical Cord Blood-Derived Mesenchymal Stem Cells in Veterinary Medicine. Stem Cells Int 2018; 2018:8329174. [PMID: 30123294 PMCID: PMC6079340 DOI: 10.1155/2018/8329174] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/19/2018] [Indexed: 12/26/2022] Open
Abstract
Stem cell therapy has prompted the expansion of veterinary medicine both experimentally and clinically, with the potential to contribute to contemporary treatment strategies for various diseases and conditions for which limited or no therapeutic options are presently available. Although the application of various types of stem cells, such as bone marrow-derived mesenchymal stem cells (BM-MSCs), adipose tissue-derived mesenchymal stem cells (AT-MSCs), and umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), has promising potential to improve the health of different species, it is crucial that the benefits and drawbacks are completely evaluated before use. Umbilical cord blood (UCB) is a rich source of stem cells; nonetheless, isolation of mesenchymal stem cells (MSCs) from UCB presents technical challenges. Although MSCs have been isolated from UCB of diverse species such as human, equine, sheep, goat, and canine, there are inherent limitations of using UCB from these species for the expansion of MSCs. In this review, we investigated canine UCB (cUCB) and compared it with UCB from other species by reviewing recent articles published from February 2003 to June 2017 to gain an understanding of the limitations of cUCB in the acquisition of MSCs and to determine other suitable sources for the isolation of MSCs from canine. Our review indicates that cUCB is not an ideal source of MSCs because of insufficient volume and ethical issues. However, canine reproductive organs discarded during neutering may help broaden our understanding of effective isolation of MSCs. We recommend exploring canine reproductive and adipose tissue rather than UCB to fulfill the current need in veterinary medicine for the well-designed and ethically approved source of MSCs.
Collapse
|
154
|
Huynh NPT, Brunger JM, Gloss CC, Moutos FT, Gersbach CA, Guilak F. Genetic Engineering of Mesenchymal Stem Cells for Differential Matrix Deposition on 3D Woven Scaffolds. Tissue Eng Part A 2018; 24:1531-1544. [PMID: 29756533 DOI: 10.1089/ten.tea.2017.0510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Tissue engineering approaches for the repair of osteochondral defects using biomaterial scaffolds and stem cells have remained challenging due to the inherent complexities of inducing cartilage-like matrix and bone-like matrix within the same local environment. Members of the transforming growth factor β (TGFβ) family have been extensively utilized in the engineering of skeletal tissues, but have distinct effects on chondrogenic and osteogenic differentiation of progenitor cells. The goal of this study was to develop a method to direct human bone marrow-derived mesenchymal stem cells (MSCs) to deposit either mineralized matrix or a cartilaginous matrix rich in glycosaminoglycan and type II collagen within the same biochemical environment. This differential induction was performed by culturing cells on engineered three-dimensionally woven poly(ɛ-caprolactone) (PCL) scaffolds in a chondrogenic environment for cartilage-like matrix production while inhibiting TGFβ3 signaling through Mothers against DPP homolog 3 (SMAD3) knockdown, in combination with overexpressing RUNX2, to achieve mineralization. The highest levels of mineral deposition and alkaline phosphatase activity were observed on scaffolds with genetically engineered MSCs and exhibited a synergistic effect in response to SMAD3 knockdown and RUNX2 expression. Meanwhile, unmodified MSCs on PCL scaffolds exhibited accumulation of an extracellular matrix rich in glycosaminoglycan and type II collagen in the same biochemical environment. This ability to derive differential matrix deposition in a single culture condition opens new avenues for developing complex tissue replacements for chondral or osteochondral defects.
Collapse
Affiliation(s)
- Nguyen P T Huynh
- 1 Department of Orthopaedic Surgery, Washington University in Saint Louis , Saint Louis, Missouri.,2 Shriners Hospitals for Children-St. Louis , St. Louis, Missouri.,3 Department of Cell Biology, Duke University , Durham, North Carolina
| | | | - Catherine C Gloss
- 1 Department of Orthopaedic Surgery, Washington University in Saint Louis , Saint Louis, Missouri.,2 Shriners Hospitals for Children-St. Louis , St. Louis, Missouri
| | | | - Charles A Gersbach
- 6 Department of Biomedical Engineering, Duke University , Durham, North Carolina
| | - Farshid Guilak
- 1 Department of Orthopaedic Surgery, Washington University in Saint Louis , Saint Louis, Missouri.,2 Shriners Hospitals for Children-St. Louis , St. Louis, Missouri.,5 Cytex Therapeutics, Inc. , Durham, North Carolina
| |
Collapse
|
155
|
Huynh NPT, Zhang B, Guilak F. High-depth transcriptomic profiling reveals the temporal gene signature of human mesenchymal stem cells during chondrogenesis. FASEB J 2018; 33:358-372. [PMID: 29985644 DOI: 10.1096/fj.201800534r] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) provide an attractive cell source for cartilage repair and cell therapy; however, the underlying molecular pathways that drive chondrogenesis of these populations of adult stem cells remain poorly understood. We generated a rich data set of high-throughput RNA sequencing of human MSCs throughout chondrogenesis at 6 different time points. Our data consisted of 18 libraries with 3 individual donors as biologic replicates, with each library possessing a sequencing depth of 100 million reads. Computational analyses with differential gene expression, gene ontology, and weighted gene correlation network analysis identified dynamic changes in multiple biologic pathways and, most importantly, a chondrogenic gene subset, whose functional characterization promises to further harness the potential of MSCs for cartilage tissue engineering. Furthermore, we created a graphic user interface encyclopedia built with the goal of producing an open resource of transcriptomic regulation for additional data mining and pathway analysis of the process of MSC chondrogenesis.-Huynh, N. P. T., Zhang, B., Guilak, F. High-depth transcriptomic profiling reveals the temporal gene signature of human mesenchymal stem cells during chondrogenesis.
Collapse
Affiliation(s)
- Nguyen P T Huynh
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA.,Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; and.,Department of Cell Biology, Duke University, Durham, North Carolina, USA
| | - Bo Zhang
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; and
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA.,Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; and
| |
Collapse
|
156
|
Cucchiarini M, Asen AK, Goebel L, Venkatesan JK, Schmitt G, Zurakowski D, Menger MD, Laschke MW, Madry H. Effects of TGF-β Overexpression via rAAV Gene Transfer on the Early Repair Processes in an Osteochondral Defect Model in Minipigs. Am J Sports Med 2018; 46:1987-1996. [PMID: 29792508 DOI: 10.1177/0363546518773709] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Application of the chondrogenic transforming growth factor beta (TGF-β) is an attractive approach to enhance the intrinsic biological activities in damaged articular cartilage, especially when using direct gene transfer strategies based on the clinically relevant recombinant adeno-associated viral (rAAV) vectors. PURPOSE To evaluate the ability of an rAAV-TGF-β construct to modulate the early repair processes in sites of focal cartilage injury in minipigs in vivo relative to control (reporter lacZ gene) vector treatment. STUDY DESIGN Controlled laboratory study. METHODS Direct administration of the candidate rAAV-human TGF-β (hTGF-β) vector was performed in osteochondral defects created in the knee joint of adult minipigs for macroscopic, histological, immunohistochemical, histomorphometric, and micro-computed tomography analyses after 4 weeks relative to control (rAAV- lacZ) gene transfer. RESULTS Successful overexpression of TGF-β via rAAV at this time point and in the conditions applied here triggered the cellular and metabolic activities within the lesions relative to lacZ gene transfer but, at the same time, led to a noticeable production of type I and X collagen without further buildup on the subchondral bone. CONCLUSION Gene therapy via direct, local rAAV-hTGF-β injection stimulates the early reparative activities in focal cartilage lesions in vivo. CLINICAL RELEVANCE Local delivery of therapeutic (TGF-β) rAAV vectors in focal defects may provide new, off-the-shelf treatments for cartilage repair in patients in the near future.
Collapse
Affiliation(s)
- Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Ann-Kathrin Asen
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Lars Goebel
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - David Zurakowski
- Department of Anesthesia, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
157
|
Sun Y, Yan L, Chen S, Pei M. Functionality of decellularized matrix in cartilage regeneration: A comparison of tissue versus cell sources. Acta Biomater 2018; 74:56-73. [PMID: 29702288 PMCID: PMC7307012 DOI: 10.1016/j.actbio.2018.04.048] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 01/12/2023]
Abstract
Increasing evidence indicates that decellularized extracellular matrices (dECMs) derived from cartilage tissues (T-dECMs) or chondrocytes/stem cells (C-dECMs) can support proliferation and chondrogenic differentiation of cartilage-forming cells. However, few review papers compare the differences between these dECMs when they serve as substrates for cartilage regeneration. In this review, after an introduction of cartilage immunogenicity and decellularization methods to prepare T-dECMs and C-dECMs, a comprehensive comparison focuses on the effects of T-dECMs and C-dECMs on proliferation and chondrogenic differentiation of chondrocytes/stem cells in vitro and in vivo. Key factors within dECMs, consisting of microarchitecture characteristics and micromechanical properties as well as retained insoluble and soluble matrix components, are discussed in-depth for potential mechanisms underlying the functionality of these dECMs in regulating chondrogenesis. With this information, we hope to benefit dECM based cartilage engineering and tissue regeneration for future clinical application. STATEMENT OF SIGNIFICANCE The use of decellularized extracellular matrix (dECM) is becoming a promising approach for tissue engineering and regeneration. Compared to dECM derived from cartilage tissue, recently reported dECM from cell sources exhibits a distinct role in cell based cartilage regeneration. In this review paper, for the first time, tissue and cell based dECMs are comprehensively compared for their functionality in cartilage regeneration. This information is expected to provide an update for dECM based cartilage regeneration.
Collapse
Affiliation(s)
- Yu Sun
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Department of Orthopaedics, Orthopaedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China
| | - Lianqi Yan
- Department of Orthopaedics, Orthopaedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China
| | - Song Chen
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, Sichuan 610083, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA; WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
158
|
Enhanced chondrogenic differentiation of dental pulp-derived mesenchymal stem cells in 3D pellet culture system: effect of mimicking hypoxia. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0080-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
159
|
Venkatesan JK, Moutos FT, Rey-Rico A, Estes BT, Frisch J, Schmitt G, Madry H, Guilak F, Cucchiarini M. Chondrogenic Differentiation Processes in Human Bone-Marrow Aspirates Seeded in Three-Dimensional-Woven Poly(ɛ-Caprolactone) Scaffolds Enhanced by Recombinant Adeno-Associated Virus-Mediated SOX9 Gene Transfer. Hum Gene Ther 2018; 29:1277-1286. [PMID: 29717624 DOI: 10.1089/hum.2017.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Combining gene therapy approaches with tissue engineering procedures is an active area of translational research for the effective treatment of articular cartilage lesions, especially to target chondrogenic progenitor cells such as those derived from the bone marrow. This study evaluated the effect of genetically modifying concentrated human mesenchymal stem cells from bone marrow to induce chondrogenesis by recombinant adeno-associated virus (rAAV) vector gene transfer of the sex-determining region Y-type high-mobility group box 9 (SOX9) factor upon seeding in three-dimensional-woven poly(ɛ-caprolactone; PCL) scaffolds that provide mechanical properties mimicking those of native articular cartilage. Prolonged, effective SOX9 expression was reported in the constructs for at least 21 days, the longest time point evaluated, leading to enhanced metabolic and chondrogenic activities relative to the control conditions (reporter lacZ gene transfer or absence of vector treatment) but without affecting the proliferative activities in the samples. The application of the rAAV SOX9 vector also prevented undesirable hypertrophic and terminal differentiation in the seeded concentrates. As bone marrow is readily accessible during surgery, such findings reveal the therapeutic potential of providing rAAV-modified marrow concentrates within three-dimensional-woven PCL scaffolds for repair of focal cartilage lesions.
Collapse
Affiliation(s)
- Jagadeesh K Venkatesan
- 1 Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University , Homburg/Saar, Germany
| | | | - Ana Rey-Rico
- 1 Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University , Homburg/Saar, Germany
| | | | - Janina Frisch
- 1 Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University , Homburg/Saar, Germany
| | - Gertrud Schmitt
- 1 Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University , Homburg/Saar, Germany
| | - Henning Madry
- 1 Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University , Homburg/Saar, Germany
| | - Farshid Guilak
- 2 Cytex Therapeutics, Inc. , Durham, North Carolina.,3 Departments of Orthopedic Surgery, Developmental Biology, and Biomedical Engineering, Washington University and Shriners Hospitals for Children-St. Louis , St. Louis, Missouri
| | - Magali Cucchiarini
- 1 Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University , Homburg/Saar, Germany
| |
Collapse
|
160
|
Kim M, Garrity ST, Steinberg DR, Dodge GR, Mauck RL. Role of dexamethasone in the long-term functional maturation of MSC-laden hyaluronic acid hydrogels for cartilage tissue engineering. J Orthop Res 2018; 36:1717-1727. [PMID: 29178462 PMCID: PMC6948196 DOI: 10.1002/jor.23815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/23/2017] [Indexed: 02/04/2023]
Abstract
The purpose of study was to investigate the maturation of mesenchymal stem cells (MSC) laden in HA constructs with various combinations of chemically defined medium (CM) components and determine the impact of dexamethasone and serum on construct properties. Constructs were cultured in CM with the addition or withdrawal of media components or were transferred to serum containing media that partially represents an in vivo-like condition where pro-inflammatory signals are present. Constructs cultured in CM+ (CM with TGF-β3) and DEX- (CM+ without dexamethasone) conditions produced robust matrix, while those in ITS/BSA/LA- (CM+ without ITS/BSA/LA) and Serum+ (10% FBS with TGF-β3) produced little matrix. While construct properties in DEX- were greater than those in CM+ at 4 weeks, properties in CM+ and DEX- reversed by 8 weeks. While construct properties in DEX- were greater than those in CM+ at 4 weeks, the continued absence or removal of dexamethasone resulted in marked GAG loss by 8 weeks. Conversely, the continued presence or new addition of dexamethasone at 4 weeks further improved or maintained construct properties through 8 weeks. Finally, when constructs were converted to Serum (in the continued presence of TGF-β3 with or without dexamethasone) after pre-culture in CM+ for 4 weeks, GAG loss was attenuated with addition of dexamethasone. Interestingly, however, collagen content and type was not impacted. In conclusion, dexamethasone influences the functional maturation of MSC-laden HA constructs, and may help to maintain properties during long-term culture or with in vivo translation by repressing pro-inflammatory signals. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1717-1727, 2018.
Collapse
Affiliation(s)
- Minwook Kim
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104,Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, U.S.A
| | - Sean T. Garrity
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - David R. Steinberg
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, U.S.A
| | - George R. Dodge
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, U.S.A
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104,Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, U.S.A,Address for Correspondence: Robert L. Mauck, Ph.D., Mary Black Ralston Professor of Orthopaedic Surgery, Professor of Bioengineering, McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 36 Street and Hamilton Walk, Philadelphia, PA 19104, Phone: (215) 898-3294, Fax: (215) 573-2133,
| |
Collapse
|
161
|
Whitehead AK, Barnett HH, Caldorera-Moore ME, Newman JJ. Poly (ethylene glycol) hydrogel elasticity influences human mesenchymal stem cell behavior. Regen Biomater 2018; 5:167-175. [PMID: 29942649 PMCID: PMC6007362 DOI: 10.1093/rb/rby008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/17/2022] Open
Abstract
Coordinated investigations into the interactions between biologically mimicking (biomimetic) material constructs and stem cells advance the potential for the regeneration and possible direct replacement of diseased cells and tissues. Any clinically relevant therapies will require the development and optimization of methods that mass produce fully functional cells and tissues. Despite advances in the design and synthesis of biomaterial scaffolds, one of the biggest obstacles facing tissue engineering is understanding how specific extracellular cues produced by biomaterial scaffolds influence the proliferation and differentiation of various cell sources. Matrix elasticity is one such tailorable property of synthetic scaffolds that is known to differ between tissues. Here, we investigate the interactions between an elastically tailorable polyethylene glycol (PEG)-based hydrogel platform and human bone marrow-derived mesenchymal stem cells (hMSCs). For these studies, two different hydrogel compositions with elastic moduli in the ranges of 50-60 kPa and 8-10 kPa were implemented. Our findings demonstrate that the different elasticities in this platform can produce changes in hMSC morphology and proliferation, indicating that the platform can be implemented to produce changes in hMSC behavior and cell state for a broad range of tissue engineering and regenerative applications. Furthermore, we show that the platform's different elasticities influence stem cell differentiation potential, particularly when promoting stem cell differentiation toward cell types from tissues with stiffer elasticity. These findings add to the evolving and expanding library of information on stem cell-biomaterial interactions and opens the door for continued exploration into PEG-based hydrogel scaffolds for tissue engineering and regenerative medicine applications.
Collapse
|
162
|
Lecarpentier Y, Schussler O, Sakic A, Rincon-Garriz JM, Soulie P, Bochaton-Piallat ML, Kindler V. Human Bone Marrow Contains Mesenchymal Stromal Stem Cells That Differentiate In Vitro into Contractile Myofibroblasts Controlling T Lymphocyte Proliferation. Stem Cells Int 2018; 2018:6134787. [PMID: 29853916 PMCID: PMC5949154 DOI: 10.1155/2018/6134787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/20/2018] [Accepted: 03/08/2018] [Indexed: 01/22/2023] Open
Abstract
Mesenchymal stromal stem cells (MSC) that reside in the bone marrow (BM) can be amplified in vitro. In 2-dimension (D) cultures, MSC exhibit a morphology similar to fibroblasts, are able to inhibit T lymphocyte and natural killer cell proliferation, and can be differentiated into adipocytes, chondrocytes, or osteoblasts if exposed to specific media. Here we show that medullar MSC cultured in 2D formed an adherent stroma of cells expressing well-organized microfilaments containing α-smooth muscle actin and nonmuscle myosin heavy chain IIA. MSC could be grown in 3D in collagen membranes generating a structure which, upon exposition to 50 mM KCl or to an alternating electric current, developed a contractile strength that averaged 34 and 45 μN/mm2, respectively. Such mechanical tension was similar in intensity and in duration to that of human placenta and was annihilated by isosorbide dinitrate or 2,3-butanedione monoxime. Membranes devoid of MSC did not exhibit a significant contractility. Moreover, MSC nested in collagen membranes were able to control T lymphocyte proliferation, and differentiated into adipocytes, chondrocytes, or osteoblasts. Our observations show that BM-derived MSC cultured in collagen membranes spontaneously differentiate into contractile myofibroblasts exhibiting unexpected properties in terms of cell differentiation potential and of immunomodulatory function.
Collapse
Affiliation(s)
- Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francillien, 77104 Meaux, France
| | - Olivier Schussler
- Department of Cardiovascular Surgery, Research Laboratory, University Hospitals, Faculty of Medicine, Geneva, Switzerland
| | - Antonija Sakic
- Department of Pathology and Immunology, Centre Médical Universitaire Geneva Faculty of Medicine, Geneva, Switzerland
| | - José Maria Rincon-Garriz
- Department of Specialties in Medicine, Hematology Service, Geneva University Hospitals, Faculty of Medicine, Geneva, Switzerland
| | - Priscilla Soulie
- Department of Histology, Centre Médical Universitaire Geneva Faculty of Medicine, Geneva, Switzerland
| | - Marie-Luce Bochaton-Piallat
- Department of Pathology and Immunology, Centre Médical Universitaire Geneva Faculty of Medicine, Geneva, Switzerland
| | - Vincent Kindler
- Department of Specialties in Medicine, Hematology Service, Geneva University Hospitals, Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
163
|
McMillan A, Nguyen MK, Gonzalez-Fernandez T, Ge P, Yu X, Murphy WL, Kelly DJ, Alsberg E. Dual non-viral gene delivery from microparticles within 3D high-density stem cell constructs for enhanced bone tissue engineering. Biomaterials 2018; 161:240-255. [PMID: 29421560 PMCID: PMC5826638 DOI: 10.1016/j.biomaterials.2018.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/24/2017] [Accepted: 01/02/2018] [Indexed: 01/03/2023]
Abstract
High-density mesenchymal stem cell (MSC) aggregates can be guided to form bone-like tissue via endochondral ossification in vitro when culture media is supplemented with proteins, such as growth factors (GFs), to first guide the formation of a cartilage template, followed by culture with hypertrophic factors. Recent reports have recapitulated these results through the controlled spatiotemporal delivery of chondrogenic transforming growth factor-β1 (TGF-β1) and chondrogenic and osteogenic bone morphogenetic protein-2 (BMP-2) from microparticles embedded within human MSC aggregates to avoid diffusion limitations and the lengthy, costly in vitro culture necessary with repeat exogenous supplementation. However, since GFs have limited stability, localized gene delivery is a promising alternative to the use of proteins. Here, mineral-coated hydroxyapatite microparticles (MCM) capable of localized delivery of Lipofectamine-plasmid DNA (pDNA) nanocomplexes encoding for TGF-β1 (pTGF-β1) and BMP-2 (pBMP-2) were incorporated, alone or in combination, within MSC aggregates from three healthy porcine donors to induce sustained production of these transgenes. Three donor populations were investigated in this work due to the noted MSC donor-to-donor variability in differentiation capacity documented in the literature. Delivery of pBMP-2 within Donor 1 aggregates promoted chondrogenesis at week 2, followed by an enhanced osteogenic phenotype at week 4. Donor 2 and 3 aggregates did not promote robust glycosaminoglycan (GAG) production at week 2, but by week 4, Donor 2 aggregates with pTGF-β1/pBMP-2 and Donor 3 aggregates with both unloaded MCM and pBMP-2 enhanced osteogenesis compared to controls. These results demonstrate the ability to promote osteogenesis in stem cell aggregates through controlled, non-viral gene delivery within the cell masses. These findings also indicate the need to screen donor MSC regenerative potential in response to gene transfer prior to clinical application. Taken together, this work demonstrates a promising gene therapy approach to control stem cell fate in biomimetic 3D condensations for treatment of bone defects.
Collapse
Affiliation(s)
- Alexandra McMillan
- Department of Pathology Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Minh Khanh Nguyen
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Tomas Gonzalez-Fernandez
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBERG), Trinity College Dublin and Royal College of Surgeons in Dublin, Ireland; Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Dublin, Ireland
| | - Peilin Ge
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Xiaohua Yu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA; Materials Science Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBERG), Trinity College Dublin and Royal College of Surgeons in Dublin, Ireland; Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Dublin, Ireland
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA; Department of Orthopaedic Surgery, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA; The National Center for Regenerative Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA; School of Dentistry, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
164
|
Biology and Potential Use of Chicken Bone Marrow-derived Cells. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.1.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
165
|
Current Therapeutic Strategies for Stem Cell-Based Cartilage Regeneration. Stem Cells Int 2018; 2018:8490489. [PMID: 29765426 PMCID: PMC5889878 DOI: 10.1155/2018/8490489] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/14/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
The process of cartilage destruction in the diarthrodial joint is progressive and irreversible. This destruction is extremely difficult to manage and frustrates researchers, clinicians, and patients. Patients often take medication to control their pain. Surgery is usually performed when pain becomes uncontrollable or joint function completely fails. There is an unmet clinical need for a regenerative strategy to treat cartilage defect without surgery due to the lack of a suitable regenerative strategy. Clinicians and scientists have tried to address this using stem cells, which have a regenerative potential in various tissues. Cartilage may be an ideal target for stem cell treatment because it has a notoriously poor regenerative potential. In this review, we describe past, present, and future strategies to regenerate cartilage in patients. Specifically, this review compares a surgical regenerative technique (microfracture) and cell therapy, cell therapy with and without a scaffold, and therapy with nonaggregated and aggregated cells. We also review the chondrogenic potential of cells according to their origin, including autologous chondrocytes, mesenchymal stem cells, and induced pluripotent stem cells.
Collapse
|
166
|
Hassan G, Bahjat M, Kasem I, Soukkarieh C, Aljamali M. Platelet lysate induces chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells. Cell Mol Biol Lett 2018; 23:11. [PMID: 29568314 PMCID: PMC5859745 DOI: 10.1186/s11658-018-0080-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/12/2018] [Indexed: 12/17/2022] Open
Abstract
Purpose Articular cartilage has a poor capacity for self-repair, and thus still presents a major challenge in orthopedics. Mesenchymal stem cells (MSCs) are multipotent stem cells with the potential to differentiate into chondrocytes in the presence of transforming growth factor beta (TGF-β). Platelet lysate (PL) contains a relatively large number of growth factors, including TGF-β, and has been shown to ameliorate cartilage repair. Here, we investigated the ability of PL to direct chondrogenic differentiation of MSCs along with other standard differentiation components in a pellet culture system. Methods We isolated and expanded MSCs from human umbilical cords using a PL-supplemented medium and characterized the cells based on immunophenotype and potential for differentiation to adipocytes and osteocytes. We further cultured MSCs as pellets in a chondrogenic-differentiation medium supplemented with PL. After 21 days, the pellets were processed for histological analysis and stained with alician blue and acridine orange. The expression of SOX9 was investigated using RT-PCR. Results MSCs maintained their stemness characteristics in the PL-supplemented medium. However, the distribution of cells in the pellets cultured in the PL-supplemented chondrogenic differentiation medium had a greater similarity to cartilage tissue-derived chondrocytes than to the negative control. The intense alician blue staining indicated an increased production of mucopolysaccharides in the differentiated pellets, which also showed elevated expression of SOX9. Conclusions Our data suggest that MSCs could be differentiated to chondrocytes in the presence of PL and absence of exogenous TGF-β. Further research needs to be conducted to understand the exact role and potential of PL in chondrogenic differentiation and chondrocyte regeneration.
Collapse
Affiliation(s)
- Ghmkin Hassan
- 1Faculty of Pharmacy, Damascus University, Damascus, Syria
| | | | - Issam Kasem
- 2Faculty of Sciences, Damascus University, Damascus, Syria.,National Commission for Biotechnology (NCBT), Damascus, Syria
| | - Chadi Soukkarieh
- 2Faculty of Sciences, Damascus University, Damascus, Syria.,National Commission for Biotechnology (NCBT), Damascus, Syria
| | - Majd Aljamali
- 1Faculty of Pharmacy, Damascus University, Damascus, Syria.,2Faculty of Sciences, Damascus University, Damascus, Syria.,National Commission for Biotechnology (NCBT), Damascus, Syria
| |
Collapse
|
167
|
Jevons LA, Houghton FD, Tare RS. Augmentation of musculoskeletal regeneration: role for pluripotent stem cells. Regen Med 2018; 13:189-206. [PMID: 29557248 DOI: 10.2217/rme-2017-0113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rise in the incidence of musculoskeletal diseases is attributed to an increasing ageing population. The debilitating effects of musculoskeletal diseases, coupled with a lack of effective therapies, contribute to huge financial strains on healthcare systems. The focus of regenerative medicine has shifted to pluripotent stem cells (PSCs), namely, human embryonic stem cells and human-induced PSCs, due to the limited success of adult stem cell-based interventions. PSCs constitute a valuable cell source for musculoskeletal regeneration due to their capacity for unlimited self-renewal, ability to differentiate into all cell lineages of the three germ layers and perceived immunoprivileged characteristics. This review summarizes methods for chondrogenic, osteogenic, myogenic and adipogenic differentiation of PSCs and their potential for therapeutic applications.
Collapse
Affiliation(s)
- Lauren A Jevons
- Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Franchesca D Houghton
- Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Rahul S Tare
- Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.,Department of Mechanical Engineering, Faculty of Engineering & the Environment, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
168
|
Abstract
Background: Collagens of marine origin are applied increasingly as alternatives to mammalian collagens in tissue engineering. The aim of the present study was to develop a biphasic scaffold from exclusively marine collagens supporting both osteogenic and chondrogenic differentiation and to find a suitable setup for in vitro chondrogenic and osteogenic differentiation of human mesenchymal stroma cells (hMSC). Methods: Biphasic scaffolds from biomimetically mineralized salmon collagen and fibrillized jellyfish collagen were fabricated by joint freeze-drying and crosslinking. Different experiments were performed to analyze the influence of cell density and TGF-β on osteogenic differentiation of the cells in the scaffolds. Gene expression analysis and analysis of cartilage extracellular matrix components were performed and activity of alkaline phosphatase was determined. Furthermore, histological sections of differentiated cells in the biphasic scaffolds were analyzed. Results: Stable biphasic scaffolds from two different marine collagens were prepared. An in vitro setup for osteochondral differentiation was developed involving (1) different seeding densities in the phases; (2) additional application of alginate hydrogel in the chondral part; (3) pre-differentiation and sequential seeding of the scaffolds and (4) osteochondral medium. Spatially separated osteogenic and chondrogenic differentiation of hMSC was achieved in this setup, while osteochondral medium in combination with the biphasic scaffolds alone was not sufficient to reach this ambition. Conclusions: Biphasic, but monolithic scaffolds from exclusively marine collagens are suitable for the development of osteochondral constructs.
Collapse
Affiliation(s)
- Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Birgit Paul
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| |
Collapse
|
169
|
In vivo therapeutic applications of cell spheroids. Biotechnol Adv 2018; 36:494-505. [DOI: 10.1016/j.biotechadv.2018.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 01/08/2023]
|
170
|
Three-Dimensional Graphene-RGD Peptide Nanoisland Composites That Enhance the Osteogenesis of Human Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2018; 19:ijms19030669. [PMID: 29495519 PMCID: PMC5877530 DOI: 10.3390/ijms19030669] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/03/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Graphene derivatives have immense potential in stem cell research. Here, we report a three-dimensional graphene/arginine-glycine-aspartic acid (RGD) peptide nanoisland composite effective in guiding the osteogenesis of human adipose-derived mesenchymal stem cells (ADSCs). Amine-modified silica nanoparticles (SiNPs) were uniformly coated onto an indium tin oxide electrode (ITO), followed by graphene oxide (GO) encapsulation and electrochemical deposition of gold nanoparticles. A RGD–MAP–C peptide, with a triple-branched repeating RGD sequence and a terminal cysteine, was self-assembled onto the gold nanoparticles, generating the final three-dimensional graphene–RGD peptide nanoisland composite. We generated substrates with various gold nanoparticle–RGD peptide cluster densities, and found that the platform with the maximal number of clusters was most suitable for ADSC adhesion and spreading. Remarkably, the same platform was also highly efficient at guiding ADSC osteogenesis compared with other substrates, based on gene expression (alkaline phosphatase (ALP), runt-related transcription factor 2), enzyme activity (ALP), and calcium deposition. ADSCs induced to differentiate into osteoblasts showed higher calcium accumulations after 14–21 days than when grown on typical GO-SiNP complexes, suggesting that the platform can accelerate ADSC osteoblastic differentiation. The results demonstrate that a three-dimensional graphene–RGD peptide nanoisland composite can efficiently derive osteoblasts from mesenchymal stem cells.
Collapse
|
171
|
Stem Cells for Cartilage Repair: Preclinical Studies and Insights in Translational Animal Models and Outcome Measures. Stem Cells Int 2018. [PMID: 29535784 PMCID: PMC5832141 DOI: 10.1155/2018/9079538] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Due to the restricted intrinsic capacity of resident chondrocytes to regenerate the lost cartilage postinjury, stem cell-based therapies have been proposed as a novel therapeutic approach for cartilage repair. Moreover, stem cell-based therapies using mesenchymal stem cells (MSCs) or induced pluripotent stem cells (iPSCs) have been used successfully in preclinical and clinical settings. Despite these promising reports, the exact mechanisms underlying stem cell-mediated cartilage repair remain uncertain. Stem cells can contribute to cartilage repair via chondrogenic differentiation, via immunomodulation, or by the production of paracrine factors and extracellular vesicles. But before novel cell-based therapies for cartilage repair can be introduced into the clinic, rigorous testing in preclinical animal models is required. Preclinical models used in regenerative cartilage studies include murine, lapine, caprine, ovine, porcine, canine, and equine models, each associated with its specific advantages and limitations. This review presents a summary of recent in vitro data and from in vivo preclinical studies justifying the use of MSCs and iPSCs in cartilage tissue engineering. Moreover, the advantages and disadvantages of utilizing small and large animals will be discussed, while also describing suitable outcome measures for evaluating cartilage repair.
Collapse
|
172
|
Gao L, Orth P, Cucchiarini M, Madry H. Effects of solid acellular type-I/III collagen biomaterials on in vitro and in vivo chondrogenesis of mesenchymal stem cells. Expert Rev Med Devices 2018; 14:717-732. [PMID: 28817971 DOI: 10.1080/17434440.2017.1368386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Type-I/III collagen membranes are advocated for clinical use in articular cartilage repair as being able of inducing chondrogenesis, a technique termed autologous matrix-induced chondrogenesis (AMIC). Area covered: The current in vitro and translational in vivo evidence for chondrogenic effects of solid acellular type-I/III collagen biomaterials. Expert commentary: In vitro, mesenchymal stem cells (MSCs) adhere to the fibers of the type-I/III collagen membrane. No in vitro study provides evidence that a type-I/III collagen matrix alone may induce chondrogenesis. Few in vitro studies compare the effects of type-I and type-II collagen scaffolds on chondrogenesis. Recent investigations suggest better chondrogenesis with type-II collagen scaffolds. A systematic review of the translational in vivo data identified one long-term study showing that covering of cartilage defects treated by microfracture with a type-I/III collagen membrane significantly enhanced the repair tissue volume compared with microfracture alone. Other in vivo evidence is lacking to suggest either improved histological structure or biomechanical function of the repair tissue. Taken together, there is a paucity of in vitro and preclinical in vivo evidence supporting the concept that solid acellular type-I/III collagen scaffolds may be superior to classical approaches to induce in vitro or in vivo chondrogenesis of MSCs.
Collapse
Affiliation(s)
- Liang Gao
- a Lehrstuhl für Experimentelle Orthopädie und Arthroseforschung , Saarland University , Homburg/Saar , Germany
| | - Patrick Orth
- a Lehrstuhl für Experimentelle Orthopädie und Arthroseforschung , Saarland University , Homburg/Saar , Germany
| | - Magali Cucchiarini
- a Lehrstuhl für Experimentelle Orthopädie und Arthroseforschung , Saarland University , Homburg/Saar , Germany
| | - Henning Madry
- a Lehrstuhl für Experimentelle Orthopädie und Arthroseforschung , Saarland University , Homburg/Saar , Germany
| |
Collapse
|
173
|
Daly AC, Sathy BN, Kelly DJ. Engineering large cartilage tissues using dynamic bioreactor culture at defined oxygen conditions. J Tissue Eng 2018; 9:2041731417753718. [PMID: 29399319 PMCID: PMC5788092 DOI: 10.1177/2041731417753718] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/22/2017] [Indexed: 11/23/2022] Open
Abstract
Mesenchymal stem cells maintained in appropriate culture conditions are capable of producing robust cartilage tissue. However, gradients in nutrient availability that arise during three-dimensional culture can result in the development of spatially inhomogeneous cartilage tissues with core regions devoid of matrix. Previous attempts at developing dynamic culture systems to overcome these limitations have reported suppression of mesenchymal stem cell chondrogenesis compared to static conditions. We hypothesize that by modulating oxygen availability during bioreactor culture, it is possible to engineer cartilage tissues of scale. The objective of this study was to determine whether dynamic bioreactor culture, at defined oxygen conditions, could facilitate the development of large, spatially homogeneous cartilage tissues using mesenchymal stem cell laden hydrogels. A dynamic culture regime was directly compared to static conditions for its capacity to support chondrogenesis of mesenchymal stem cells in both small and large alginate hydrogels. The influence of external oxygen tension on the response to the dynamic culture conditions was explored by performing the experiment at 20% O2 and 3% O2. At 20% O2, dynamic culture significantly suppressed chondrogenesis in engineered tissues of all sizes. In contrast, at 3% O2 dynamic culture significantly enhanced the distribution and amount of cartilage matrix components (sulphated glycosaminoglycan and collagen II) in larger constructs compared to static conditions. Taken together, these results demonstrate that dynamic culture regimes that provide adequate nutrient availability and a low oxygen environment can be employed to engineer large homogeneous cartilage tissues. Such culture systems could facilitate the scaling up of cartilage tissue engineering strategies towards clinically relevant dimensions.
Collapse
Affiliation(s)
- Andrew C Daly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Binulal N Sathy
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
174
|
Chen M, Guo W, Gao S, Hao C, Shen S, Zhang Z, Wang Z, Wang Z, Li X, Jing X, Zhang X, Yuan Z, Wang M, Zhang Y, Peng J, Wang A, Wang Y, Sui X, Liu S, Guo Q. Biochemical Stimulus-Based Strategies for Meniscus Tissue Engineering and Regeneration. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8472309. [PMID: 29581987 PMCID: PMC5822894 DOI: 10.1155/2018/8472309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022]
Abstract
Meniscus injuries are very common and still pose a challenge for the orthopedic surgeon. Meniscus injuries in the inner two-thirds of the meniscus remain incurable. Tissue-engineered meniscus strategies seem to offer a new approach for treating meniscus injuries with a combination of seed cells, scaffolds, and biochemical or biomechanical stimulation. Cell- or scaffold-based strategies play a pivotal role in meniscus regeneration. Similarly, biochemical and biomechanical stimulation are also important. Seed cells and scaffolds can be used to construct a tissue-engineered tissue; however, stimulation to enhance tissue maturation and remodeling is still needed. Such stimulation can be biomechanical or biochemical, but this review focuses only on biochemical stimulation. Growth factors (GFs) are one of the most important forms of biochemical stimulation. Frequently used GFs always play a critical role in normal limb development and growth. Further understanding of the functional mechanism of GFs will help scientists to design the best therapy strategies. In this review, we summarize some of the most important GFs in tissue-engineered menisci, as well as other types of biological stimulation.
Collapse
Affiliation(s)
- Mingxue Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Weimin Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shunag Gao
- Center for Biomaterial and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, No. 5 Yiheyuan Road, Haidian District, Peking University, Beijing 100871, China
| | - Chunxiang Hao
- Institute of Anesthesiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shi Shen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Luzhou 646000, China
| | - Zengzeng Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, No. 348 Dexiang Road, Xiangyang District, Jiamusi 154002, China
| | - Zhenyong Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, No. 348 Dexiang Road, Xiangyang District, Jiamusi 154002, China
| | - Zehao Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xu Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoguang Jing
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, No. 348 Dexiang Road, Xiangyang District, Jiamusi 154002, China
| | - Xueliang Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- Shanxi Traditional Chinese Hospital, No. 46 Binzhou West Street, Yingze District, Taiyuan 030001, China
| | - Zhiguo Yuan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Mingjie Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yu Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Aiyuan Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xiang Sui
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
175
|
Correa D, Somoza RA, Caplan AI. Nondestructive/Noninvasive Imaging Evaluation of Cellular Differentiation Progression During In Vitro Mesenchymal Stem Cell-Derived Chondrogenesis. Tissue Eng Part A 2018; 24:662-671. [PMID: 28825369 DOI: 10.1089/ten.tea.2017.0125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chondrogenic cell differentiation constitutes a multistep program that is spatially and temporally modulated by combinations of bioactive factors that drives the establishment of specific cellular phenotypes. This sequence of events results in the fabrication of a distinctive structural and functional extracellular matrix which determines the quality of the cartilaginous tissue and, thus, its potential in vivo implantability as a tissue-engineered implant. Current assessments of engineered cartilage rely on destructive methodologies typically applied at the end of the fabrication period that make it difficult to predict failures early in the process. The high inherent variability of engineered tissues raises questions regarding reproducibility and the validity of using such end-stage representative samples to characterize an entire batch of engineered tissues. Therefore, the development of dynamic, multimodal, nondestructive, and noninvasive technology toolsets to monitor cell differentiation (and secondarily tissue phenotypes) in real time is of paramount importance. In this study, we report the creation of cell-based probes to directly interrogate cell differentiation events during in vitro chondrogenesis and in vivo osteogenesis. For that, native promoters of well-established chondrogenic (Sex Determining Region Y-Box 9 [Sox9] and Aggrecan [AGG]) and osteogenic (Osteocalcin [OC]) differentiation biomarkers were used to create independent probes incorporating a traceable signal (Luciferase) and transduced into human bone marrow-derived mesenchymal stem cells. The probes were used to monitor the progression throughout in vitro chondrogenic differentiation program in aggregate (pellet) cultures and in vivo osteogenic differentiation in heterotopic ossicles. These tissue differentiation constructs were positively tested in conditions known to modulate the differentiation program at various phases that confirmed their sensitivity and reproducibility. This technology toolset allows a nondestructive and noninvasive, imaging-based longitudinal reconstruction of the in vitro chondrogenic differentiation program, while providing an analytical assessment of phenotypic changes of engineered cartilage in real time.
Collapse
Affiliation(s)
- Diego Correa
- 1 Department of Biology, Skeletal Research Center, and Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio.,2 Division of Sports Medicine, Department of Orthopaedics, Miller School of Medicine, University of Miami , Miami, Florida.,3 Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami , Miami, Florida
| | - Rodrigo A Somoza
- 1 Department of Biology, Skeletal Research Center, and Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio
| | - Arnold I Caplan
- 1 Department of Biology, Skeletal Research Center, and Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
176
|
Critchley SE, Eswaramoorthy R, Kelly DJ. Low‐oxygen conditions promote synergistic increases in chondrogenesis during co‐culture of human osteoarthritic stem cells and chondrocytes. J Tissue Eng Regen Med 2018; 12:1074-1084. [DOI: 10.1002/term.2608] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Susan E. Critchley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College Dublin Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College Dublin Dublin Ireland
| | - Rajalakshmanan Eswaramoorthy
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College Dublin Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College Dublin Dublin Ireland
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College Dublin Dublin Ireland
- Department of AnatomyRoyal College of Surgeons in Ireland Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College Dublin Dublin Ireland
| |
Collapse
|
177
|
Fahy N, Gardner OFW, Alini M, Stoddart MJ. Parathyroid Hormone-Related Protein Gradients Affect the Progression of Mesenchymal Stem Cell Chondrogenesis and Hypertrophy. Tissue Eng Part A 2018; 24:849-859. [PMID: 29073831 DOI: 10.1089/ten.tea.2017.0337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) are considered a promising cell source for cartilage repair strategies due to their chondrogenic differentiation potential. However, their in vitro tendency to progress toward hypertrophy limits their clinical use. This unfavorable result may be due to the fact that MSCs used in tissue engineering approaches are all at the same developmental stage, and have lost crucial spatial and temporal signaling cues. In this study, we sought to investigate the effect of a spatial parathyroid hormone-related protein (PTHrP) signaling gradient on the chondrogenic differentiation of MSCs and progression to hypertrophy. METHODS Human bone marrow-derived MSCs were transduced with adenoviral vectors overexpressing PTHrP and seeded into fibrin-poly(ester-urethane) scaffolds. To investigate the effect of a spatial PTHrP signaling gradient, scaffolds were seeded with PTHrP-overexpressing MSCs positioned on top of the scaffold, with untransduced MSCs seeded evenly within. Scaffolds were cultured with or without 2 ng/mL transforming growth factor (TGF)-β1 for 28 days. RESULTS PTHrP overexpression increased glycosaminoglycan (GAG) production by MSCs irrespective of TGF-β1 treatment, and exerted differential effects on chondrogenic and hypertrophic gene expression when MSCs were cultured in the presence of a PTHrP signaling gradient. Furthermore, PTHrP-overexpressing MSCs were associated with an increase of endogenous TGF-β1 production and reduced total MMP-13 secretion compared to controls. CONCLUSION The presence of a spatial PTHrP signaling gradient may support chondrogenic differentiation of MSCs and promote the formation of a more stable cartilage phenotype in tissue engineering applications.
Collapse
Affiliation(s)
- Niamh Fahy
- 1 AO Research Institute Davos , Davos Platz, Switzerland
| | | | - Mauro Alini
- 1 AO Research Institute Davos , Davos Platz, Switzerland
| | - Martin J Stoddart
- 1 AO Research Institute Davos , Davos Platz, Switzerland .,2 Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, UK
| |
Collapse
|
178
|
Kalamegam G, Memic A, Budd E, Abbas M, Mobasheri A. A Comprehensive Review of Stem Cells for Cartilage Regeneration in Osteoarthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1089:23-36. [PMID: 29725971 DOI: 10.1007/5584_2018_205] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Osteoarthritis (OA) is an age related joint disease associated with degeneration and loss of articular cartilage. Consequently, OA patients suffer from chronic joint pain and disability. Weight bearing joints and joints that undergo repetitive stress and excessive 'wear and tear' are particularly prone to developing OA. Cartilage has a poor regenerative capacity and current pharmacological agents only provide symptomatic pain relief. OA patients that respond poorly to conventional therapies are ultimately treated with surgical procedures to promote cartilage repair by implantation of artificial joint structures (arthroplasty) or total joint replacement (TJR). In the last two decades, stem cells derived from various tissues with varying differentiation and tissue regeneration potential have been used for the treatment of OA either alone or in combination with natural or synthetic scaffolds to aid cartilage repair. Although stem cells can be differentiated into chondrocytes in vitro or aid cartilage regeneration in vivo, their potential for OA management remains limited as cartilage regenerated by stem cells fails to fully recapitulate the structural and biomechanical properties of the native tissue. Efficient tissue regeneration remains elusive despite the simple design of cartilage, which unlike most other tissues is avascular and aneural, consisting of a single cell type. In this article, we have comprehensively reviewed the types of stem cells that have been proposed or tested for the management of OA, their potential efficacy as well as their limitations. We also touch on the role of biomaterials in cartilage tissue engineering and examine the prospects for their use in cell-based therapies.
Collapse
Affiliation(s)
- Gauthaman Kalamegam
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis with Stem Cells, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adnan Memic
- Center of Nanotechnology, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Emma Budd
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Mohammed Abbas
- Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis with Stem Cells, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Orthopaedic Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali Mobasheri
- Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis with Stem Cells, King Abdulaziz University, Jeddah, Saudi Arabia. .,Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK. .,Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Queen's Medical Centre, Nottingham, UK. .,Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
179
|
Nguyen HG, Metavarayuth K, Wang Q. Upregulation of osteogenesis of mesenchymal stem cells with virus-based thin films. Nanotheranostics 2018; 2:42-58. [PMID: 29291162 PMCID: PMC5743837 DOI: 10.7150/ntno.19974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 10/15/2017] [Indexed: 01/16/2023] Open
Abstract
A major aim of tissue engineering is to develop biomimetic scaffolding materials that can guide the proliferation, self-renewal and differentiation of multipotent stem cells into specific lineages. Cellular functions can be controlled by the interactions between cells and biomaterials. Therefore, the surface chemistry and topography of support materials play a pivotal role in modulating cell behaviors at many stages of cell growth and development. Due to their highly ordered structure and programmable surface chemistries, which provide unique topography as biomaterials, viral nanoparticles have been utilized as building blocks for targeted cell growth and differentiation. This review article discusses the fabrication of two-dimensional virus-based thin film on substrates and highlights the study of the effect of chemical and physical cues introduced by plant virus nanoparticle thin films on the promotion of osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Huong Giang Nguyen
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Kamolrat Metavarayuth
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| |
Collapse
|
180
|
Cassano JM, Kennedy JG, Ross KA, Fraser EJ, Goodale MB, Fortier LA. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg Sports Traumatol Arthrosc 2018; 26:333-342. [PMID: 26831858 DOI: 10.1007/s00167-016-3981-9] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE Bone marrow concentrate (BMC) and platelet-rich plasma (PRP) are used extensively in regenerative medicine. The aim of this study was to determine differences in the cellular composition and cytokine concentrations of BMC and PRP and to compare two commercial BMC systems in the same patient cohort. METHODS Patients (29) undergoing orthopaedic surgery were enrolled. Bone marrow aspirate (BMA) was processed to generate BMC from two commercial systems (BMC-A and BMC-B). Blood was obtained to make PRP utilizing the same system as BMC-A. Bone marrow-derived samples were cultured to measure colony-forming units, and flow cytometry was performed to assess mesenchymal stem cell (MSC) markers. Cellular concentrations were assessed for all samples. Catabolic cytokines and growth factors important for cartilage repair were measured using multiplex ELISA. RESULTS Colony-forming units were increased in both BMCs compared to BMA (p < 0.0001). Surface markers were consistent with MSCs. Platelet counts were not significantly different between BMC-A and PRP, but there were differences in leucocyte concentrations. TGF-β1 and PDGF were not different between BMC-A and PRP. IL-1ra concentrations were greater (p = 0.0018) in BMC-A samples (13,432 pg/mL) than in PRP (588 pg/mL). The IL-1ra/IL-1β ratio in all BMC samples was above the value reported to inhibit IL-1β. CONCLUSIONS The bioactive factors examined in this study have differing clinical effects on musculoskeletal tissue. Differences in the cellular and cytokine composition between PRP and BMC and between BMC systems should be taken into consideration by the clinician when choosing a biologic for therapeutic application. LEVEL OF EVIDENCE Clinical, Level II.
Collapse
Affiliation(s)
- Jennifer M Cassano
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, VMC C3-181, Ithaca, NY, 14853, USA
| | - John G Kennedy
- Department of Foot and Ankle Surgery, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Keir A Ross
- Department of Foot and Ankle Surgery, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Ethan J Fraser
- Department of Foot and Ankle Surgery, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Margaret B Goodale
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, VMC C3-181, Ithaca, NY, 14853, USA
| | - Lisa A Fortier
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, VMC C3-181, Ithaca, NY, 14853, USA.
| |
Collapse
|
181
|
Fahy N, Alini M, Stoddart MJ. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering. J Orthop Res 2018; 36:52-63. [PMID: 28763118 DOI: 10.1002/jor.23670] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/24/2017] [Indexed: 02/04/2023]
Abstract
Articular cartilage is a load-bearing tissue playing a crucial mechanical role in diarthrodial joints, facilitating joint articulation, and minimizing wear. The significance of biomechanical stimuli in the development of cartilage and maintenance of chondrocyte phenotype in adult tissues has been well documented. Furthermore, dysregulated loading is associated with cartilage pathology highlighting the importance of mechanical cues in cartilage homeostasis. The repair of damaged articular cartilage resulting from trauma or degenerative joint disease poses a major challenge due to a low intrinsic capacity of cartilage for self-renewal, attributable to its avascular nature. Bone marrow-derived mesenchymal stem cells (MSCs) are considered a promising cell type for cartilage replacement strategies due to their chondrogenic differentiation potential. Chondrogenesis of MSCs is influenced not only by biological factors but also by the environment itself, and various efforts to date have focused on harnessing biomechanics to enhance chondrogenic differentiation of MSCs. Furthermore, recapitulating mechanical cues associated with cartilage development and homeostasis in vivo, may facilitate the development of a cellular phenotype resembling native articular cartilage. The goal of this review is to summarize current literature examining the effect of mechanical cues on cartilage homeostasis, disease, and MSC chondrogenesis. The role of biological factors produced by MSCs in response to mechanical loading will also be examined. An in-depth understanding of the impact of mechanical stimulation on the chondrogenic differentiation of MSCs in terms of endogenous bioactive factor production and signaling pathways involved, may identify therapeutic targets and facilitate the development of more robust strategies for cartilage replacement using MSCs. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:52-63, 2018.
Collapse
Affiliation(s)
- Niamh Fahy
- AO Research Institute Davos, Davos, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | |
Collapse
|
182
|
Confalonieri D, Schwab A, Walles H, Ehlicke F. Advanced Therapy Medicinal Products: A Guide for Bone Marrow-derived MSC Application in Bone and Cartilage Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:155-169. [PMID: 28990462 DOI: 10.1089/ten.teb.2017.0305] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Millions of people worldwide suffer from trauma- or age-related orthopedic diseases such as osteoarthritis, osteoporosis, or cancer. Tissue Engineering (TE) and Regenerative Medicine are multidisciplinary fields focusing on the development of artificial organs, biomimetic engineered tissues, and cells to restore or maintain tissue and organ function. While allogenic and future autologous transplantations are nowadays the gold standards for both cartilage and bone defect repair, they are both subject to important limitations such as availability of healthy tissue, donor site morbidity, and graft rejection. Tissue engineered bone and cartilage products represent a promising and alternative approach with the potential to overcome these limitations. Since the development of Advanced Therapy Medicinal Products (ATMPs) such as TE products requires the knowledge of diverse regulation and an extensive communication with the national/international authorities, the aim of this review is therefore to summarize the state of the art on the clinical applications of human bone marrow-derived stromal cells for cartilage and bone TE. In addition, this review provides an overview of the European legislation to facilitate the development and commercialization of new ATMPs.
Collapse
Affiliation(s)
- Davide Confalonieri
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany
| | - Andrea Schwab
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany
| | - Heike Walles
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany .,2 Translational Center Wuerzburg "Regenerative Therapies in Oncology and Musculoskeletal Disease," Wuerzburg, Germany
| | - Franziska Ehlicke
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany
| |
Collapse
|
183
|
Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Cells Transl Med 2017; 6:2173-2185. [PMID: 29076267 PMCID: PMC5702523 DOI: 10.1002/sctm.17-0129] [Citation(s) in RCA: 511] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSC) hold great potential for regenerative medicine because of their ability for self-renewal and differentiation into tissue-specific cells such as osteoblasts, chondrocytes, and adipocytes. MSCs orchestrate tissue development, maintenance and repair, and are useful for musculoskeletal regenerative therapies to treat age-related orthopedic degenerative diseases and other clinical conditions. Importantly, MSCs produce secretory factors that play critical roles in tissue repair that support both engraftment and trophic functions (autocrine and paracrine). The development of uniform protocols for both preparation and characterization of MSCs, including standardized functional assays for evaluation of their biological potential, are critical factors contributing to their clinical utility. Quality control and release criteria for MSCs should include cell surface markers, differentiation potential, and other essential cell parameters. For example, cell surface marker profiles (surfactome), bone-forming capacities in ectopic and orthotopic models, as well as cell size and granularity, telomere length, senescence status, trophic factor secretion (secretome), and immunomodulation, should be thoroughly assessed to predict MSC utility for regenerative medicine. We propose that these and other functionalities of MSCs should be characterized prior to use in clinical applications as part of comprehensive and uniform guidelines and release criteria for their clinical-grade production to achieve predictably favorable treatment outcomes for stem cell therapy. Stem Cells Translational Medicine 2017;6:2173-2185.
Collapse
Affiliation(s)
- Rebekah M. Samsonraj
- Glycotherapeutics GroupInstitute of Medical Biology, Agency for Science, Technology and Research (A*STAR)Singapore
- Department of Biomedical EngineeringNational University of SingaporeSingapore
- Department of Orthopaedic SurgeryMayo ClinicRochesterMinnesotaUSA
| | - Michael Raghunath
- Department of Biomedical EngineeringNational University of SingaporeSingapore
- Center for Cell Biology and Tissue Engineering, Competence Center for Tissue Engineering and Substance Testing (TEDD)Institute for Chemistry and Biotechnology, ZHAW School of Life Sciences and Facility Management, Zurich University of Applied SciencesSwitzerland
| | - Victor Nurcombe
- Glycotherapeutics GroupInstitute of Medical Biology, Agency for Science, Technology and Research (A*STAR)Singapore
| | - James H. Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | | | - Simon M. Cool
- Glycotherapeutics GroupInstitute of Medical Biology, Agency for Science, Technology and Research (A*STAR)Singapore
- Department of Orthopaedic Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| |
Collapse
|
184
|
Bornes TD, Adesida AB, Jomha NM. Articular Cartilage Repair with Mesenchymal Stem Cells After Chondrogenic Priming: A Pilot Study. Tissue Eng Part A 2017; 24:761-774. [PMID: 28982297 DOI: 10.1089/ten.tea.2017.0235] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal stem cells (BMSCs) are a promising cell source for treating articular cartilage defects. The objective of this study was to assess a protocol that involved autologous transplantation of BMSCs into full-thickness cartilage defects in sheep following isolation, expansion, and a short period (4 days) of chondrogenic priming. The impact of oxygen tension during preimplantation culture was investigated. It was hypothesized that chondrogenically primed BMSCs would produce superior cartilaginous repair tissue relative to control defects, and that culture under hypoxia would yield improved repair tissue in comparison to normoxia. Ovine BMSCs were isolated, expanded to passage 2, seeded within a hyaluronic acid (HYAFF) scaffold, and primed ex vivo in chondrogenic medium for 4 days under normoxia (21% oxygen) or hypoxia (3% oxygen). Full-thickness, 7-mm-diameter articular cartilage defects were created in the femoral condyles of five sheep. Twenty defects were treated with normoxia-cultured, autologous BMSC-seeded scaffolds (eight); hypoxia-cultured, autologous BMSC-seeded scaffolds (eight); cell-free scaffolds (two); or no implants (two). Preimplantation priming was evaluated through gene expression analysis using reverse transcription quantitative polymerase chain reaction. After 6 months, histological assessment was performed on repair tissues with a modified O'Driscoll scoring system and tissue dimension analysis. Priming of preimplantation BMSC-seeded scaffolds in chondrogenic medium for 4 days resulted in significantly increased gene expression of hyaline cartilage-related collagen II and aggrecan relative to unprimed BMSCs (p < 0.05). Defects implanted with chondrogenically primed BMSC-seeded scaffolds developed cartilaginous repair tissues that contained safranin O-positive proteoglycans, and had significantly larger repair tissue areas, higher percentages of defect fill, and improved histological scores than cell-free controls (p < 0.05). Although hypoxic culture improved the preimplantation gene expression profile, a consistent difference in histological scores was not found between normoxia- and hypoxia-seeded BMSC-seeded scaffolds after 6 months (p = 0.90). This study demonstrates in a sheep model that (1) chondrogenic priming ex vivo improves the gene expression profile of BMSCs; (2) chondrogenically primed BMSCs are associated with the development of superior cartilaginous tissue to cell-free controls within cartilage defects; and (3) oxygen tension during preimplantation ex vivo culture does not consistently modulate cartilaginous repair tissue formation following BMSC transplantation into cartilage defects.
Collapse
Affiliation(s)
- Troy D Bornes
- Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, University of Alberta , Edmonton, Alberta, Canada
| | - Adetola B Adesida
- Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, University of Alberta , Edmonton, Alberta, Canada
| | - Nadr M Jomha
- Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, University of Alberta , Edmonton, Alberta, Canada
| |
Collapse
|
185
|
Affiliation(s)
- H T Hassan
- Institute of Medical Sciences, University of Lincoln, UK.
| | | |
Collapse
|
186
|
Gupta P, Geris L, Luyten FP, Papantoniou I. An Integrated Bioprocess for the Expansion and Chondrogenic Priming of Human Periosteum-Derived Progenitor Cells in Suspension Bioreactors. Biotechnol J 2017; 13. [PMID: 28987025 DOI: 10.1002/biot.201700087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/01/2017] [Indexed: 12/12/2022]
Abstract
The increasing use of microcarrier-based suspension bioreactors for scalable expansion of adult progenitor cells in recent years reveals the necessity of such approaches to address bio manufacturing challenges of advanced therapeutic medicinal products. However, the differentiation of progenitor cells within suspension bioreactors for the production of tissue modules is of equal importance but not well investigated. This study reports on the development of a bioreactor-based integrated process for expansion and chondrogenic priming of human periosteum-derived stem cells (hPDCs) using Cultispher S microcarriers. Spinner flask-based expansion and priming of hPDCs were carried out over 12 days for expansion and 14 days for priming. Characterization of the cells were carried out every 3rd day. Our study showed that hPDCs were able to expand till confluency with fold increase of 3.2±0.64 and to be subsequently primed toward a chondrogenic state within spinner flasks. During expansion, the cells maintained their phenotypic markers, trilineage differentiation capabilities and viability. Upon switching to TGF-β containing media the cells were able to differentiate toward chondrogenic lineage by clustering into mm-sized macrotissues containing hundreds of microcarriers. Chondrogenic priming was further evidenced by the expression of relevant markers at the mRNA level while maintaining their viability. Ectopic implantation of macrotissues highlighted that they were able to sustain their chondrogenic properties for 8 weeks in vivo. The method indicated here, suggests that expansion and relevant priming of progenitor cells can be carried out in an integrated bioprocess using spinner flasks and as such could be potentially extrapolated to other stem and progenitor cell populations.
Collapse
Affiliation(s)
- Priyanka Gupta
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium
| | - Liesbet Geris
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium.,Biomechanics Research Unit GIGA-R In Silico Medicine, Université de Liege, Quartier Polytechnique 1, Allée de la découverte 13A, Liège, Belgium.,Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), Leuven, Belgium
| | - Frank P Luyten
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium
| |
Collapse
|
187
|
Lee YH, Wu HC, Yeh CW, Kuan CH, Liao HT, Hsu HC, Tsai JC, Sun JS, Wang TW. Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration. Acta Biomater 2017; 63:210-226. [PMID: 28899816 DOI: 10.1016/j.actbio.2017.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/26/2017] [Accepted: 09/02/2017] [Indexed: 11/18/2022]
Abstract
The development of osteochondral tissue engineering is an important issue for the treatment of traumatic injury or aging associated joint disease. However, the different compositions and mechanical properties of cartilage and subchondral bone show the complexity of this tissue interface, making it challenging for the design and fabrication of osteochondral graft substitute. In this study, a bilayer scaffold is developed to promote the regeneration of osteochondral tissue within a single integrated construct. It has the capacity to serve as a gene delivery platform to promote transfection of human mesenchymal stem cells (hMSCs) and the functional osteochondral tissues formation. For the subchondral bone layer, the bone matrix with organic (type I collagen, Col) and inorganic (hydroxyapatite, Hap) composite scaffold has been developed through mineralization of hydroxyapatite nanocrystals oriented growth on collagen fibrils. We also prepare multi-shell nanoparticles in different layers with a calcium phosphate core and DNA/calcium phosphate shells conjugated with polyethyleneimine to act as non-viral vectors for delivery of plasmid DNA encoding BMP2 and TGF-β3, respectively. Microbial transglutaminase is used as a cross-linking agent to crosslink the bilayer scaffold. The ability of this scaffold to act as a gene-activated matrix is demonstrated with successful transfection efficiency. The results show that the sustained release of plasmids from gene-activated matrix can promote prolonged transgene expression and stimulate hMSCs differentiation into osteogenic and chondrogenic lineages by spatial and temporal control within the bilayer composite scaffold. This improved delivery method may enhance the functionalized composite graft to accelerate healing process for osteochondral tissue regeneration. STATEMENT OF SIGNIFICANCE In this study, a gene-activated matrix (GAM) to promote the growth of both cartilage and subchondral bone within a single integrated construct is developed. It has the capacity to promote transfection of human mesenchymal stem cells (hMSCs) and the functional osteochondral tissues formation. The results show that the sustained release of plasmids including TGF-beta and BMP-2 from GAM could promote prolonged transgene expression and stimulate hMSCs differentiation into the osteogenic and chondrogenic lineages by spatial control manner. This improved delivery method should enhance the functionalized composite graft to accelerate healing process in vitro and in vivo for osteochondral tissue regeneration.
Collapse
Affiliation(s)
- Yi-Hsuan Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Taiwan
| | - Hsi-Chin Wu
- Department of Materials Engineering, Tatung University, Taiwan
| | - Chia-Wei Yeh
- Department of Materials Science and Engineering, National Tsing Hua University, Taiwan
| | - Chen-Hsiang Kuan
- Department of Plastic and Reconstructive Surgery, National Taiwan University Hospital, Taiwan
| | - Han-Tsung Liao
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taiwan
| | - Horng-Chaung Hsu
- Department of Orthopedics, China Medical University Hospital, Taiwan
| | - Jui-Che Tsai
- Department of Materials Engineering, Tatung University, Taiwan
| | - Jui-Sheng Sun
- Institute of Biomedical Engineering, National Tsing Hua University, Taiwan; Department of Orthopedic Surgery, National Taiwan University Hospital, Taiwan.
| | - Tzu-Wei Wang
- Institute of Biomedical Engineering, National Tsing Hua University, Taiwan; Department of Materials Science and Engineering, National Tsing Hua University, Taiwan.
| |
Collapse
|
188
|
MacFarlane EG, Haupt J, Dietz HC, Shore EM. TGF-β Family Signaling in Connective Tissue and Skeletal Diseases. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022269. [PMID: 28246187 DOI: 10.1101/cshperspect.a022269] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transforming growth factor β (TGF-β) family of signaling molecules, which includes TGF-βs, activins, inhibins, and numerous bone morphogenetic proteins (BMPs) and growth and differentiation factors (GDFs), has important functions in all cells and tissues, including soft connective tissues and the skeleton. Specific TGF-β family members play different roles in these tissues, and their activities are often balanced with those of other TGF-β family members and by interactions with other signaling pathways. Perturbations in TGF-β family pathways are associated with numerous human diseases with prominent involvement of the skeletal and cardiovascular systems. This review focuses on the role of this family of signaling molecules in the pathologies of connective tissues that manifest in rare genetic syndromes (e.g., syndromic presentations of thoracic aortic aneurysm), as well as in more common disorders (e.g., osteoarthritis and osteoporosis). Many of these diseases are caused by or result in pathological alterations of the complex relationship between the TGF-β family of signaling mediators and the extracellular matrix in connective tissues.
Collapse
Affiliation(s)
- Elena Gallo MacFarlane
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Julia Haupt
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,Howard Hughes Medical Institute, Bethesda, Maryland 21205
| | - Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
189
|
Mayer U, Benditz A, Grässel S. miR-29b regulates expression of collagens I and III in chondrogenically differentiating BMSC in an osteoarthritic environment. Sci Rep 2017; 7:13297. [PMID: 29038440 PMCID: PMC5643533 DOI: 10.1038/s41598-017-13567-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is characterized by a slowly progressing, irreversible loss of articular cartilage. Tissue engineering approaches for cartilage regeneration include stem cell-based strategies but not much is known about their repair capacity in an OA microenvironment. The aim of the present study was to identify factors regulating collagen expression during chondrogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSC) in an OA microenvironment. Coculture with OA cartilage induced miR-29b expression in BMSC which inhibited collagen I and III expression. Elevated miR-29b expression resulted in higher caspase 3/7 activity and promoted apoptosis of BMSC in part by directly inhibiting the anti-apoptotic proteins Bcl-2 and Mcl-1. Stimulation with IFN-γ induced miR-29b expression in BMSC. Our results suggest that miR-29b affects BMSC-based OA cartilage regeneration because expression of collagen III, mainly produced by undifferentiated BMSC, and collagen I, a marker for dedifferentiated chondrocytes, are inhibited by miR-29b thus influencing composition of the newly formed ECM. This might be critical to avoid formation of inferior fibrocartilage instead of hyaline cartilage. Furthermore, higher miR-29b expression promotes apoptosis either preventing excessive cell growth or reducing the number of BMSC undergoing chondrogenesis. Thus, miR-29b has both supportive but possibly also unfavourable effects on BMSC-based OA cartilage regeneration.
Collapse
Affiliation(s)
- Ute Mayer
- Department Orthopaedic Surgery, Exp. Orthopaedics, ZMB/Biopark 1, University of Regensburg, Regensburg, Germany.,Department Orthopaedic Surgery, Asklepiosklinikum, Bad Abbach, Germany
| | - Achim Benditz
- Department Orthopaedic Surgery, Asklepiosklinikum, Bad Abbach, Germany
| | - Susanne Grässel
- Department Orthopaedic Surgery, Exp. Orthopaedics, ZMB/Biopark 1, University of Regensburg, Regensburg, Germany. .,Department Orthopaedic Surgery, Asklepiosklinikum, Bad Abbach, Germany.
| |
Collapse
|
190
|
Jacamo R, Davis RE, Ling X, Sonnylal S, Wang Z, Ma W, Zhang M, Ruvolo P, Ruvolo V, Wang RY, McQueen T, Lowe S, Zuber J, Kornblau SM, Konopleva M, Andreeff M. Tumor Trp53 status and genotype affect the bone marrow microenvironment in acute myeloid leukemia. Oncotarget 2017; 8:83354-83369. [PMID: 29137349 PMCID: PMC5663521 DOI: 10.18632/oncotarget.19042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 06/03/2017] [Indexed: 02/06/2023] Open
Abstract
The genetic heterogeneity of acute myeloid leukemia (AML) and the variable responses of individual patients to therapy suggest that different AML genotypes may influence the bone marrow (BM) microenvironment in different ways. We performed gene expression profiling of bone marrow mesenchymal stromal cells (BM-MSC) isolated from normal C57BL/6 mice or mice inoculated with syngeneic murine leukemia cells carrying different human AML genotypes, developed in mice with Trp53 wild-type or nullgenetic backgrounds. We identified a set of genes whose expression in BM-MSC was modulated by all four AML genotypes tested. In addition, there were sets of differentially-expressed genes in AML-exposed BM-MSC that were unique to the particular AML genotype or Trp53 status. Our findings support the hypothesis that leukemia cells alter the transcriptome of surrounding BM stromal cells, in both common and genotype-specific ways. These changes are likely to be advantageous to AML cells, affecting disease progression and response to chemotherapy, and suggest opportunities for stroma-targeting therapy, including those based on AML genotype.
Collapse
Affiliation(s)
- Rodrigo Jacamo
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R. Eric Davis
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoyang Ling
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sonali Sonnylal
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhiqiang Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wencai Ma
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Zhang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Ruvolo
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivian Ruvolo
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rui-Yu Wang
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Teresa McQueen
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Steven M. Kornblau
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
191
|
Hu Q, Ding B, Yan X, Peng L, Duan J, Yang S, Cheng L, Chen D. Polyethylene glycol modified PAMAM dendrimer delivery of kartogenin to induce chondrogenic differentiation of mesenchymal stem cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2189-2198. [DOI: 10.1016/j.nano.2017.05.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/19/2017] [Accepted: 05/19/2017] [Indexed: 12/31/2022]
|
192
|
Ercal P, Pekozer GG, Gumru OZ, Kose GT, Ramazanoglu M. Influence of STRO-1 selection on osteogenic potential of human tooth germ derived mesenchymal stem cells. Arch Oral Biol 2017; 82:293-301. [DOI: 10.1016/j.archoralbio.2017.06.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 01/03/2023]
|
193
|
Kudva AK, Luyten FP, Patterson J. RGD-functionalized polyethylene glycol hydrogels support proliferation and in vitro chondrogenesis of human periosteum-derived cells. J Biomed Mater Res A 2017; 106:33-42. [PMID: 28875574 DOI: 10.1002/jbm.a.36208] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/11/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022]
Abstract
The combination of progenitor cells with appropriate scaffolds and in vitro culture regimes is a promising area of research in bone and cartilage tissue engineering. Mesenchymal stem cells (MSCs), when encapsulated within hydrogels composed of the necessary cues and/or preconditioned using suitable culture conditions, have been shown to differentiate into bone or cartilage. Here, we utilized human periosteum-derived cells (hPDCs), a progenitor cell population with MSC characteristics, paired with protease-degradable, functionalized polyethylene glycol (PEG) hydrogels to create tissue-engineered constructs. The objective of this study was to investigate the effects of scaffold composition, exploring the addition of the cell-binding motif Arginine-Glycine-Aspartic Acid (RGD), in combination with various in vitro culture conditions on the proliferation, chondrogenic gene expression, and matrix production of encapsulated hPDCs. In growth medium, the hPDCs in the RGD-functionalized hydrogels maintained high levels of viability and demonstrated an enhanced proliferation when compared with hPDCs in non-functionalized hydrogels. Additionally, the RGD-containing hydrogels promoted higher glycosaminoglycan (GAG) synthesis and chondrogenic gene expression of the encapsulated hPDCs, as opposed to the non-functionalized constructs, when cultured in two different chondrogenic media. These results demonstrate the potential of hPDCs in combination with enzymatically degradable PEG hydrogels functionalized with adhesion ligands for cartilage regenerative applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 33-42, 2018.
Collapse
Affiliation(s)
- Abhijith K Kudva
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Box 2450, Leuven, 3001, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Box 813, Leuven, 3000, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Box 813, Leuven, 3000, Belgium
| | - Frank P Luyten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Box 813, Leuven, 3000, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Box 813, Leuven, 3000, Belgium
| | - Jennifer Patterson
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Box 2450, Leuven, 3001, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Box 813, Leuven, 3000, Belgium
| |
Collapse
|
194
|
Topoluk N, Hawkins R, Tokish J, Mercuri J. Amniotic Mesenchymal Stromal Cells Exhibit Preferential Osteogenic and Chondrogenic Differentiation and Enhanced Matrix Production Compared With Adipose Mesenchymal Stromal Cells. Am J Sports Med 2017; 45:2637-2646. [PMID: 28541092 PMCID: PMC5832055 DOI: 10.1177/0363546517706138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Therapeutic efficacy of various mesenchymal stromal cell (MSC) types for orthopaedic applications is currently being investigated. While the concept of MSC therapy is well grounded in the basic science of healing and regeneration, little is known about individual MSC populations in terms of their propensity to promote the repair and/or regeneration of specific musculoskeletal tissues. Two promising MSC sources, adipose and amnion, have each demonstrated differentiation and extracellular matrix (ECM) production in the setting of musculoskeletal tissue regeneration. However, no study to date has directly compared the differentiation potential of these 2 MSC populations. PURPOSE To compare the ability of human adipose- and amnion-derived MSCs to undergo osteogenic and chondrogenic differentiation. STUDY DESIGN Controlled laboratory study. METHODS MSC populations from the human term amnion were quantified and characterized via cell counting, histologic assessment, and flow cytometry. Differentiation of these cells in comparison to commercially purchased human adipose-derived mesenchymal stromal cells (hADSCs) in the presence and absence of differentiation media was evaluated via reverse transcription polymerase chain reaction (PCR) for bone and cartilage gene transcript markers and histology/immunohistochemistry to examine ECM production. Analysis of variance and paired t tests were performed to compare results across all cell groups investigated. RESULTS The authors confirmed that the human term amnion contains 2 primary cell types demonstrating MSC characteristics-(1) human amniotic epithelial cells (hAECs) and (2) human amniotic mesenchymal stromal cells (hAMSCs)-and each exhibited more than 90% staining for MSC surface markers (CD90, CD105, CD73). Average viable hAEC and hAMSC yields at harvest were 2.3 × 106 ± 3.7 × 105 and 1.6 × 106 ± 4.7 × 105 per milliliter of amnion, respectively. As well, hAECs and hAMSCs demonstrated significantly greater osteocalcin ( P = .025), aggrecan ( P < .0001), and collagen type 2 ( P = .044) gene expression compared with hADSCs, respectively, after culture in differentiation medium. Moreover, both hAECs and hAMSCs produced significantly greater quantities of mineralized ( P < .0001) and cartilaginous ( P = .0004) matrix at earlier time points compared with hADSCs when cultured under identical osteogenic and chondrogenic differentiation conditions, respectively. CONCLUSION Amnion-derived MSCs demonstrate a greater differentiation potential toward bone and cartilage compared with hADSCs. CLINICAL RELEVANCE Amniotic MSCs may be the source of choice in the regenerative treatment of bone or osteochondral musculoskeletal disease. They show significantly higher yields and better differentiation toward these tissues than MSCs derived from adipose.
Collapse
Affiliation(s)
| | | | | | - Jeremy Mercuri
- Address correspondence to Jeremy J. Mercuri, PhD, Clemson University, 313 Rhodes Engineering Research Center, Clemson, SC 29634, USA ()
| |
Collapse
|
195
|
Gelatin Scaffolds Containing Partially Sulfated Cellulose Promote Mesenchymal Stem Cell Chondrogenesis. Tissue Eng Part A 2017; 23:1011-1021. [DOI: 10.1089/ten.tea.2016.0461] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
196
|
Boys AJ, McCorry MC, Rodeo S, Bonassar LJ, Estroff LA. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces. MRS COMMUNICATIONS 2017; 7:289-308. [PMID: 29333332 PMCID: PMC5761353 DOI: 10.1557/mrc.2017.91] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/28/2017] [Indexed: 05/17/2023]
Abstract
Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors.
Collapse
Affiliation(s)
- Alexander J Boys
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | | | - Scott Rodeo
- Orthopedic Surgery, Hospital for Special Surgery, New York, NY
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, NY
- Tissue Engineering, Regeneration, and Repair Program, Hospital for Special Surgery, New York, NY
- Orthopedic Surgery, Weill Medical College of Cornell University, Cornell University, New York, NY
- New York Giants, East Rutherford, NJ
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
- Kavli Institute at Cornell, Cornell University, Ithaca, NY
| |
Collapse
|
197
|
Lee MK, Lin SP, HuangFu WC, Yang DS, Liu IH. Endothelial-derived extracellular matrix ameliorate the stemness deprivation during ex vivo expansion of mouse bone marrow-derived mesenchymal stem cells. PLoS One 2017; 12:e0184111. [PMID: 28854282 PMCID: PMC5576725 DOI: 10.1371/journal.pone.0184111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) hold great potential in cell therapies by virtue of the regenerative effects and immunomodulatory properties, but the scarce nature of MSCs makes ex vivo expansion indispensable prior to transplantation purposes. However, potential loss of stemness ensuing culture expansion has hindered the advancements in MSCs-based treatments. In principle, stemness could be preserved by reconstructing the stem cell niche. To test whether the endothelial cells (ECs) participate in the constitution of the stem cell niche for mesenchymal stem cells (MSCs), ECs derivatives including extracellular matrix (ECM) and conditioned medium (CM) prepared from aortic endothelial cells (AECs) and Mile Sven 1 endothelial cell line (MS1) were investigated for the potential to maintain MSCs stemness. MSCs expanded on endothelial ECMs, especially on MS1-ECM, possessed a more juvenile morphology and showed delayed proliferation, when compared with untreated MSCs and MSCs on MSC-ECM and in CMs. Once induced, MS1-ECM group showed better tri-lineage differentiations indicating that MS1-ECM could better preserve MSC stemness. MSCs on MS1-ECM showed stronger immune-modulatory potential and had significantly higher H3K27me3 with lower Kdm6b expression. Taken together, MS1-ECM shapes an inhibitory chromatin signature and retains MSCs stemness. Our work provided supportive evidence that MSCs can reside in a perivascular niche, and a feasible novel approach for MSCs expansion.
Collapse
Affiliation(s)
- Ming-Kang Lee
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Chun HuangFu
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Dee-Shiuh Yang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- School of Veterinary Medicine, National Taiwan University, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
198
|
Narayanan G, Bhattacharjee M, Nair LS, Laurencin CT. Musculoskeletal Tissue Regeneration: the Role of the Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0036-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
199
|
Kim M, Farrell MJ, Steinberg DR, Burdick JA, Mauck RL. Enhanced nutrient transport improves the depth-dependent properties of tri-layered engineered cartilage constructs with zonal co-culture of chondrocytes and MSCs. Acta Biomater 2017. [PMID: 28629894 DOI: 10.1016/j.actbio.2017.06.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biomimetic design in cartilage tissue engineering is a challenge given the complexity of the native tissue. While numerous studies have generated constructs with near-native bulk properties, recapitulating the depth-dependent features of native tissue remains a challenge. Furthermore, limitations in nutrient transport and matrix accumulation in engineered constructs hinders maturation within the central core of large constructs. To overcome these limitations, we fabricated tri-layered constructs that recapitulate the depth-dependent cellular organization and functional properties of native tissue using zonally derived chondrocytes co-cultured with MSCs. We also introduced porous hollow fibers (HFs) and HFs/cotton threads to enhance nutrient transport. Our results showed that tri-layered constructs with depth-dependent organization and properties could be fabricated. The addition of HFs or HFs/threads improved matrix accumulation in the central core region. With HF/threads, the local modulus in the deep region of tri-layered constructs nearly matched that of native tissue, though the properties in the central regions remained lower. These constructs reproduced the zonal organization and depth-dependent properties of native tissue, and demonstrate that a layer-by-layer fabrication scheme holds promise for the biomimetic repair of focal cartilage defects. STATEMENT OF SIGNIFICANCE Articular cartilage is a highly organized tissue driven by zonal heterogeneity of cells, extracellular matrix proteins and fibril orientations, resulting in depth-dependent mechanical properties. Therefore, the recapitulation of the functional properties of native cartilage in a tissue engineered construct requires such a biomimetic design of the morphological organization, and this has remained a challenge in cartilage tissue engineering. This study demonstrates that a layer-by-layer fabrication scheme, including co-cultures of zone-specific articular CHs and MSCs, can reproduce the depth-dependent characteristics and mechanical properties of native cartilage while minimizing the need for large numbers of chondrocytes. In addition, introduction of a porous hollow fiber (combined with a cotton thread) enhanced nutrient transport and depth-dependent properties of the tri-layered construct. Such a tri-layered construct may provide critical advantages for focal cartilage repair. These constructs hold promise for restoring native tissue structure and function, and may be beneficial in terms of zone-to-zone integration with adjacent host tissue and providing more appropriate strain transfer after implantation.
Collapse
Affiliation(s)
- Minwook Kim
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Megan J Farrell
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - David R Steinberg
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA.
| |
Collapse
|
200
|
Long noncoding RNA DANCR regulates miR-1305-Smad 4 axis to promote chondrogenic differentiation of human synovium-derived mesenchymal stem cells. Biosci Rep 2017; 37:BSR20170347. [PMID: 28674107 PMCID: PMC5520215 DOI: 10.1042/bsr20170347] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/14/2017] [Accepted: 06/30/2017] [Indexed: 02/08/2023] Open
Abstract
miRNAs have been reported to regulate cellular differentiation by modulating multiple signaling pathways. Long noncoding RNA (lnc RNA) DANCR was previously identified to be critical for the chondrogenesis of human synovium-derived mesenchymal stem cells (SMSC), however, the underlying molecular mechanism requires better understanding. Here, miRNA expression profiling in DANCR overexpressed in SMSCs identified significant down-regulation of miR-1305, which serves as a downstream target of DANCR. Notably, miR-1305 overexpression reversed DANCR-induced cell proliferation and chondrogenic differentiation of SMSCs, which suggested that miR-1305 antagonized the function of DANCR. Mechanistically, highly expressed miR-1305 resulted in the decreased expression of the TGF-β pathway member Smad4, and inhibition of miR-1305 enhanced the expression level of Smad4. Depletion of Smad4 suppressed the promotion of DANCR in cell proliferation and chondrogenesis of SMSCs. Collectively, our results characterized miR-1305-Smad4 axis as a major downstream functional mechanism of lncRNA DANCR in promoting the chondrogenesis in SMSCs.
Collapse
|