151
|
Manufacturing of Human Extracellular Vesicle-Based Therapeutics for Clinical Use. Int J Mol Sci 2017; 18:ijms18061190. [PMID: 28587212 PMCID: PMC5486013 DOI: 10.3390/ijms18061190] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) derived from stem and progenitor cells may have therapeutic effects comparable to their parental cells and are considered promising agents for the treatment of a variety of diseases. To this end, strategies must be designed to successfully translate EV research and to develop safe and efficacious therapies, whilst taking into account the applicable regulations. Here, we discuss the requirements for manufacturing, safety, and efficacy testing of EVs along their path from the laboratory to the patient. Development of EV-therapeutics is influenced by the source cell types and the target diseases. In this article, we express our view based on our experience in manufacturing biological therapeutics for routine use or clinical testing, and focus on strategies for advancing mesenchymal stromal cell (MSC)-derived EV-based therapies. We also discuss the rationale for testing MSC-EVs in selected diseases with an unmet clinical need such as critical size bone defects, epidermolysis bullosa and spinal cord injury. While the scientific community, pharmaceutical companies and clinicians are at the point of entering into clinical trials for testing the therapeutic potential of various EV-based products, the identification of the mode of action underlying the suggested potency in each therapeutic approach remains a major challenge to the translational path.
Collapse
|
152
|
Caivano A, La Rocca F, Laurenzana I, Trino S, De Luca L, Lamorte D, Del Vecchio L, Musto P. Extracellular Vesicles in Hematological Malignancies: From Biology to Therapy. Int J Mol Sci 2017; 18:E1183. [PMID: 28574430 PMCID: PMC5486006 DOI: 10.3390/ijms18061183] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of particles, between 15 nanometers and 10 microns in diameter, released by almost all cell types in physiological and pathological conditions, including tumors. EVs have recently emerged as particularly interesting informative vehicles, so that they could be considered a true "cell biopsy". Indeed, EV cargo, including proteins, lipids, and nucleic acids, generally reflects the nature and status of the origin cells. In some cases, EVs are enriched of peculiar molecular cargo, thus suggesting at least a degree of specific cellular packaging. EVs are identified as important and critical players in intercellular communications in short and long distance interplays. Here, we examine the physiological role of EVs and their activity in cross-talk between bone marrow microenvironment and neoplastic cells in hematological malignancies (HMs). In these diseases, HM EVs can modify tumor and bone marrow microenvironment, making the latter "stronger" in supporting malignancy, inducing drug resistance, and suppressing the immune system. Moreover, EVs are abundant in biologic fluids and protect their molecular cargo against degradation. For these and other "natural" characteristics, EVs could be potential biomarkers in a context of HM liquid biopsy and therapeutic tools. These aspects will be also analyzed in this review.
Collapse
Affiliation(s)
- Antonella Caivano
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 858028 Rionero in Vulture, Italy.
| | - Francesco La Rocca
- Laboratory of Clinical Research and Advanced Diagnostics, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| | - Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 858028 Rionero in Vulture, Italy.
| | - Stefania Trino
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 858028 Rionero in Vulture, Italy.
| | - Luciana De Luca
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 858028 Rionero in Vulture, Italy.
| | - Daniela Lamorte
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 858028 Rionero in Vulture, Italy.
| | - Luigi Del Vecchio
- CEINGE-Biotecnologie Avanzate scarl, Federico II University, 80138 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, 80138 Naples, Italy.
| | - Pellegrino Musto
- Scientific Direction, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| |
Collapse
|
153
|
Xu LQ, Lin MJ, Li YP, Li S, Chen SJ, Wei CJ. Preparation of Plasma Membrane Vesicles from Bone Marrow Mesenchymal Stem Cells for Potential Cytoplasm Replacement Therapy. J Vis Exp 2017. [PMID: 28570530 DOI: 10.3791/55741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have previously reported on the generation of plasma membrane vesicles (PMVs) through the mechanical extrusion of mammalian cells. The fusion of PMVs with mitochondrial deficient Rho0 cells restored mitotic activity under normal culture conditions. Atherosclerosis, type 2 diabetes, Alzheimer's disease, and cancer are age-related diseases that have been reported to be associated with multiple mechanical and functional defects in the cytosol and organelles of a variety of cell types. Bone marrow mesenchymal stem cells (BMSCs) represent a unique cell population from the bone marrow that possess self-renewal capabilities while maintaining their multipotency. The supplementation of senescence cells with young cytoplasm from autologous BMSCs via the fusion of PMVs provides a promising approach to ameliorate or even reverse age-associated phenotypes. This protocol describes how to prepare PMVs from BMSCs via extrusion through a polycarbonate membrane with 3 µm pores, determine the existence of mitochondria and examine the maintenance of membrane potential within PMVs using a confocal microscope, concentrate PMVs by centrifugation, and carry out the in vivo injection of PMVs into the gastrocnemius muscle of mice.
Collapse
Affiliation(s)
- Li-Qun Xu
- Multidisciplinary Research Center, Shantou University
| | - Mei-Jia Lin
- Multidisciplinary Research Center, Shantou University
| | - Yun-Pan Li
- Multidisciplinary Research Center, Shantou University
| | - Shuang Li
- Multidisciplinary Research Center, Shantou University
| | - Shao-Jun Chen
- Multidisciplinary Research Center, Shantou University
| | - Chi-Ju Wei
- Multidisciplinary Research Center, Shantou University;
| |
Collapse
|
154
|
Friedrich R, Block S, Alizadehheidari M, Heider S, Fritzsche J, Esbjörner EK, Westerlund F, Bally M. A nano flow cytometer for single lipid vesicle analysis. LAB ON A CHIP 2017; 17:830-841. [PMID: 28128381 DOI: 10.1039/c6lc01302c] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a nanofluidic device for fluorescence-based detection and characterization of small lipid vesicles on a single particle basis. The device works like a nano flow cytometer where individual vesicles are visualized by fluorescence microscopy while passing through parallel nanochannels in a pressure-driven flow. An experiment requires less than 20 μl sample volume to quantify both the vesicle content and the fluorescence signals emitted by individual vesicles. We show that the device can be used to accurately count the number of fluorescent synthetic lipid vesicles down to a vesicle concentration of 170 fM. We also show that the size-distribution of the vesicles can be resolved from their fluorescence intensity distribution after calibration. We demonstrate the applicability of the assay in two different examples. In the first, we use the nanofluidic device to determine the particle concentration in a sample containing cell-derived extracellular vesicles labelled with a lipophilic dye. In the second, we demonstrate that dual-color detection can be used to probe peptide binding to synthetic lipid vesicles; we identify a positive membrane-curvature sensing behavior of an arginine enriched version of the Antennapedia homeodomain peptide penetratin. Altogether, these results illustrate the potential of this nanofluidic-based methodology for characterization and quantification of small biological vesicles and their interactors without ensemble averaging. The device is therefore likely to find use as a quantitative analytical tool in a variety of fields ranging from diagnostics to fundamental biology research. Moreover, our results have potential to facilitate further development of automated lab-on-a-chip devices for vesicle analysis.
Collapse
Affiliation(s)
- Remo Friedrich
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
| | - Stephan Block
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
| | | | - Susanne Heider
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden. and Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Joachim Fritzsche
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
| | - Elin K Esbjörner
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Marta Bally
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden. and Institut Curie, Centre de Recherche, CNRS, UMR168, Physico-Chimie Curie, Paris, France
| |
Collapse
|
155
|
Yang Y, Ye Y, Su X, He J, Bai W, He X. MSCs-Derived Exosomes and Neuroinflammation, Neurogenesis and Therapy of Traumatic Brain Injury. Front Cell Neurosci 2017; 11:55. [PMID: 28293177 PMCID: PMC5329010 DOI: 10.3389/fncel.2017.00055] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/14/2017] [Indexed: 12/19/2022] Open
Abstract
Exosomes are endosomal origin membrane-enclosed small vesicles (30-100 nm) that contain various molecular constituents including proteins, lipids, mRNAs and microRNAs. Accumulating studies demonstrated that exosomes initiated and regulated neuroinflammation, modified neurogenic niches and neurogenesis, and were even of potential significance in treating some neurological diseases. These tiny extracellular vesicles (EVs) can derive from some kinds of multipotent cells such as mesenchymal stem cells (MSCs) that have been confirmed to be a potentially promising therapy for traumatic brain injury (TBI) in experimental models and in preclinical studies. Nevertheless, subsequent studies demonstrated that the predominant mechanisms of MSCs's contributions to brain tissue repairment and functional recovery after TBI were not the cell replacement effects but likely the secretion-based paracrine effects produced by EVs such as MSCs-derived exosomes. These nanosized exosomes derived from MSCs cannot proliferate, are easier to preserve and transfer and have lower immunogenicity, compared with transplanted exogenous MSCs. These reports revealed that MSCs-derived exosomes might promise to be a new and valuable therapeutic strategy for TBI than MSCs themselves. However, the concrete mechanisms involved in the positive effects induced by MSCs-derived exosomes in TBI are still ambiguous. In this review, we intend to explore the potential effects of MSCs-derived exosomes on neuroinflammation and neurogenesis in TBI and, especially, on therapy.
Collapse
Affiliation(s)
- Yongxiang Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical UniversityXi'an, China; Department of Neurosurgery, PLA 422nd HospitalZhanjiang, China
| | - Yuqin Ye
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical UniversityXi'an, China; Department of Neurosurgery, PLA 163rd Hospital (Second Affiliated Hospital of Hunan Normal University)Changsha, China
| | - Xinhong Su
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University Xi'an, China
| | - Jun He
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University Xi'an, China
| | - Wei Bai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University Xi'an, China
| | - Xiaosheng He
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University Xi'an, China
| |
Collapse
|
156
|
Sarko DK, McKinney CE. Exosomes: Origins and Therapeutic Potential for Neurodegenerative Disease. Front Neurosci 2017; 11:82. [PMID: 28289371 PMCID: PMC5326777 DOI: 10.3389/fnins.2017.00082] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/06/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes, small lipid bilayer vesicles, are part of the transportable cell secretome that can be taken up by nearby recipient cells or can travel through the bloodstream to cells in distant organs. Selected cellular cytoplasm containing proteins, RNAs, and other macromolecules is packaged into secreted exosomes. This cargo has the potential to affect cellular function in either healthy or pathological ways. Exosomal content has been increasingly shown to assist in promoting pathways of neurodegeneration such as β-amyloid peptide (Aβ) accumulation forming amyloid plaques in the brains of patients with Alzheimer's disease, and pathological aggregates of proteins containing α-synuclein in Parkinson's disease transferred to the central nervous system via exosomes. In attempting to address such debilitating neuropathologies, one promising utility of exosomes lies in the development of methodology to use exosomes as natural delivery vehicles for therapeutics. Because exosomes are capable of penetrating the blood-brain barrier, they can be strategically engineered to carry drugs or other treatments, and possess a suitable half-life and stability for this purpose. Overall, analyses of the roles that exosomes play between diverse cellular sites will refine our understanding of how cells communicate. This mini-review introduces the origin and biogenesis of exosomes, their roles in neurodegenerative processes in the central nervous system, and their potential utility to deliver therapeutic drugs to cellular sites.
Collapse
Affiliation(s)
- Diana K. Sarko
- Department of Anatomy, Southern Illinois University School of MedicineCarbondale, IL, USA
| | - Cindy E. McKinney
- Department of Genetics and iPSC Stem Cell Lab, Edward Via College of Osteopathic MedicineSpartanburg, SC, USA
| |
Collapse
|
157
|
Harisa GI, Badran MM, Alanazi FK. Erythrocyte nanovesicles: Biogenesis, biological roles and therapeutic approach: Erythrocyte nanovesicles. Saudi Pharm J 2017; 25:8-17. [PMID: 28223857 PMCID: PMC5310160 DOI: 10.1016/j.jsps.2015.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/23/2015] [Indexed: 12/19/2022] Open
Abstract
Nanovesicles (NVs) represent a novel transporter for cell signals to modify functions of target cells. Therefore, NVs play many roles in both physiological and pathological processes. This report highlights biogenesis, composition and biological roles of erythrocytes derived nanovesicles (EDNVs). Furthermore, we address utilization of EDNVs as novel drug delivery cargo as well as therapeutic target. EDNVs are lipid bilayer vesicles rich in phospholipids, proteins, lipid raft, and hemoglobin. In vivo EDNVs biogenesis is triggered by an increase of intracellular calcium levels, ATP depletion and under effect of oxidative stress conditions. However, in vitro production of EDNVs can be achieved via hypotonic treatment and extrusion of erythrocyte. NVs can be used as biomarkers for diagnosis, monitoring of therapy and drug delivery system. Many therapeutic agents are suggested to decrease NVs biogenesis.
Collapse
Affiliation(s)
- Gamaleldin I. Harisa
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Department of Biochemistry, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed M. Badran
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Fars K. Alanazi
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
158
|
Moeinzadeh S, Jabbari E. Nanoparticles and Their Applications. SPRINGER HANDBOOK OF NANOTECHNOLOGY 2017. [DOI: 10.1007/978-3-662-54357-3_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
159
|
Sapp RM, Shill DD, Roth SM, Hagberg JM. Circulating microRNAs in acute and chronic exercise: more than mere biomarkers. J Appl Physiol (1985) 2016; 122:702-717. [PMID: 28035018 DOI: 10.1152/japplphysiol.00982.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/14/2016] [Accepted: 12/27/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs that influence biological processes by regulating gene expression after transcription. It was recently discovered that miRNAs are released into the circulation (ci-miRNAs) where they are highly stable and can act as intercellular messengers to affect physiological processes. This review provides a comprehensive summary of the studies to date that have investigated the effects of acute exercise and exercise training on ci-miRNAs in humans. Findings indicate that specific ci-miRNAs are altered in response to different protocols of acute and chronic exercise in both healthy and diseased populations. In some cases, altered ci-miRNAs correlate with fitness and health parameters, suggesting causal mechanisms by which ci-miRNAs may facilitate adaptations to exercise training. However, strong data supporting such mechanisms are lacking. Thus, a purpose of this review is to guide future studies by discussing current and novel proposed roles for ci-miRNAs in adaptations to exercise training. In addition, substantial, fundamental gaps in the field need to be addressed. The ultimate goal of this research is that an understanding of the roles of ci-miRNAs in physiological adaptations to exercise training will one day translate to therapeutic interventions.
Collapse
Affiliation(s)
- Ryan M Sapp
- Department of Kinesiology, University of Maryland, College Park, Maryland
| | - Daniel D Shill
- Department of Kinesiology, University of Maryland, College Park, Maryland
| | - Stephen M Roth
- Department of Kinesiology, University of Maryland, College Park, Maryland
| | - James M Hagberg
- Department of Kinesiology, University of Maryland, College Park, Maryland
| |
Collapse
|
160
|
Ingato D, Lee JU, Sim SJ, Kwon YJ. Good things come in small packages: Overcoming challenges to harness extracellular vesicles for therapeutic delivery. J Control Release 2016; 241:174-185. [DOI: 10.1016/j.jconrel.2016.09.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 12/15/2022]
|
161
|
Abstract
Stem cells are critical to maintaining steady-state organ homeostasis and regenerating injured tissues. Recent intriguing reports implicate extracellular vesicles (EVs) as carriers for the distribution of morphogens and growth and differentiation factors from tissue parenchymal cells to stem cells, and conversely, stem cell-derived EVs carrying certain proteins and nucleic acids can support healing of injured tissues. We describe approaches to make use of engineered EVs as technology platforms in therapeutics and diagnostics in the context of stem cells. For some regenerative therapies, natural and engineered EVs from stem cells may be superior to single-molecule drugs, biologics, whole cells, and synthetic liposome or nanoparticle formulations because of the ease of bioengineering with multiple factors while retaining superior biocompatibility and biostability and posing fewer risks for abnormal differentiation or neoplastic transformation. Finally, we provide an overview of current challenges and future directions of EVs as potential therapeutic alternatives to cells for clinical applications.
Collapse
Affiliation(s)
- Milad Riazifar
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California 92697.,Department of Biomedical Engineering, University of California, Irvine, California 92697.,Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Egest J Pone
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California 92697.,Department of Biomedical Engineering, University of California, Irvine, California 92697.,Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, The Sahlgrenska Academy, Göteborg University, SE-405 30 Göteborg, Sweden.,Codiak BioSciences Inc., Woburn, Massachusetts 01801
| | - Weian Zhao
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California 92697.,Department of Biomedical Engineering, University of California, Irvine, California 92697.,Department of Biological Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
162
|
Panagiotou N, Wayne Davies R, Selman C, Shiels PG. Microvesicles as Vehicles for Tissue Regeneration: Changing of the Guards. CURRENT PATHOBIOLOGY REPORTS 2016; 4:181-187. [PMID: 27882267 PMCID: PMC5101251 DOI: 10.1007/s40139-016-0115-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Microvesicles (MVs) have been recognised as mediators of stem cell function, enabling and guiding their regenerative effects. RECENT FINDINGS MVs constitute one unique size class of extracellular vesicles (EVs) directly shed from the cell plasma membrane. They facilitate cell-to-cell communication via intercellular transfer of proteins, mRNA and microRNA (miRNA). MVs derived from stem cells, or stem cell regulatory cell types, have proven roles in tissue regeneration and repair processes. Their role in the maintenance of healthy tissue function throughout the life course and thus in age related health span remains to be elucidated. SUMMARY Understanding the biogenesis and mechanisms of action of MVs may enable the development of cell-free therapeutics capable of assisting in tissue maintenance and repair for a variety of age-related degenerative diseases. This review critically evaluates recent work published in this area and highlights important new findings demonstrating the use of MVs in tissue regeneration.
Collapse
Affiliation(s)
- Nikolaos Panagiotou
- Wolfson Wohl, Translational Research Centre, Institute of Cancer Sciences, MVLS, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH UK
| | - R. Wayne Davies
- School of Informatics, Institute of Neural and Adaptive Computation, Informatics Forum, University of Edinburgh, 10 Crichton Street, Edinburgh, EH8 9AB UK
| | - Colin Selman
- Graham Kerr, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ UK
| | - Paul G. Shiels
- Wolfson Wohl, Translational Research Centre, Institute of Cancer Sciences, MVLS, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH UK
| |
Collapse
|
163
|
Malda J, Boere J, van de Lest CHA, van Weeren PR, Wauben MHM. Extracellular vesicles — new tool for joint repair and regeneration. Nat Rev Rheumatol 2016; 12:243-9. [PMID: 26729461 DOI: 10.1038/nrrheum.2015.170] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell-derived extracellular vesicles (EVs), present in synovial fluid and cartilage extracellular matrix (ECM), are involved in joint development and in the regulation of joint homeostasis. Although the exact function of EVs in these processes remains incompletely defined, the knowledge already acquired in this field suggests a role for these EVs as biomarkers of joint disease, and as a new tool to restore joint homeostasis and enhance articular tissue regeneration. In addition to direct injection of therapeutic EVs into the target site, surface coating of scaffolds and embedding of EVs in hydrogels might also lead to novel therapeutic possibilities. Based on the existing literature of EVs in synovial fluid and articular tissues, and investigation of the molecular factors (including microRNAs) active in joint homeostasis (or during its disturbance), we postulate novel perspectives for the implementation of EVs as a regenerative medicine approach in joint repair.
Collapse
|
164
|
Rupert DLM, Claudio V, Lässer C, Bally M. Methods for the physical characterization and quantification of extracellular vesicles in biological samples. Biochim Biophys Acta Gen Subj 2016; 1861:3164-3179. [PMID: 27495390 DOI: 10.1016/j.bbagen.2016.07.028] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/06/2016] [Accepted: 07/27/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Our body fluids contain a multitude of cell-derived vesicles, secreted by most cell types, commonly referred to as extracellular vesicles. They have attracted considerable attention for their function as intercellular communication vehicles in a broad range of physiological processes and pathological conditions. Extracellular vesicles and especially the smallest type, exosomes, have also generated a lot of excitement in view of their potential as disease biomarkers or as carriers for drug delivery. In this context, state-of-the-art techniques capable of comprehensively characterizing vesicles in biological fluids are urgently needed. SCOPE OF REVIEW This review presents the arsenal of techniques available for quantification and characterization of physical properties of extracellular vesicles, summarizes their working principles, discusses their advantages and limitations and further illustrates their implementation in extracellular vesicle research. MAJOR CONCLUSIONS The small size and physicochemical heterogeneity of extracellular vesicles make their physical characterization and quantification an extremely challenging task. Currently, structure, size, buoyant density, optical properties and zeta potential have most commonly been studied. The concentration of vesicles in suspension can be expressed in terms of biomolecular or particle content depending on the method at hand. In addition, common quantification methods may either provide a direct quantitative measurement of vesicle concentration or solely allow for relative comparison between samples. GENERAL SIGNIFICANCE The combination of complementary methods capable of detecting, characterizing and quantifying extracellular vesicles at a single particle level promises to provide new exciting insights into their modes of action and to reveal the existence of vesicle subpopulations fulfilling key biological tasks.
Collapse
Affiliation(s)
- Déborah L M Rupert
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Virginia Claudio
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden; Center for Brain Repair and Rehabilitation, Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, Sweden
| | - Marta Bally
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden; Institut Curie, Centre de Recherche, CNRS, UMR168, Physico-Chimie Curie, Paris, France.
| |
Collapse
|
165
|
Marote A, Teixeira FG, Mendes-Pinheiro B, Salgado AJ. MSCs-Derived Exosomes: Cell-Secreted Nanovesicles with Regenerative Potential. Front Pharmacol 2016; 7:231. [PMID: 27536241 PMCID: PMC4971062 DOI: 10.3389/fphar.2016.00231] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/15/2016] [Indexed: 12/12/2022] Open
Abstract
Exosomes are membrane-enclosed nanovesicles (30–150 nm) that shuttle active cargoes between different cells. These tiny extracellular vesicles have been recently isolated from mesenchymal stem cells (MSCs) conditioned medium, a population of multipotent cells identified in several adult tissues. MSCs paracrine activity has been already shown to be the key mediator of their elicited regenerative effects. On the other hand, the individual contribution of MSCs-derived exosomes for these effects is only now being unraveled. The administration of MSCs-derived exosomes has been demonstrated to restore tissue function in multiple diseases/injury models and to induce beneficial in vitro effects, mainly mediated by exosomal-enclosed miRNAs. Additionally, the source and the culture conditions of MSCs have been shown to influence the regenerative responses induced by exosomes. Therefore, these studies reveal that MSCs-derived exosomes hold a great potential for cell-free therapies that are safer and easier to manipulate than cell-based products. Nevertheless, this is an emerging research field and hence, further studies are required to understand the full dimension of this complex intercellular communication system and how it can be optimized to take full advantage of its therapeutic effects. In this mini-review, we summarize the most significant new advances in the regenerative properties of MSCs-derived exosomes and discuss the molecular mechanisms underlying these effects.
Collapse
Affiliation(s)
- Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, BragaPortugal; ICVS/3B's, PT Government Associate Laboratory, Braga/GuimarãesPortugal
| | - Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, BragaPortugal; ICVS/3B's, PT Government Associate Laboratory, Braga/GuimarãesPortugal
| | - Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, BragaPortugal; ICVS/3B's, PT Government Associate Laboratory, Braga/GuimarãesPortugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, BragaPortugal; ICVS/3B's, PT Government Associate Laboratory, Braga/GuimarãesPortugal
| |
Collapse
|
166
|
Lamichhane TN, Jeyaram A, Patel DB, Parajuli B, Livingston NK, Arumugasaamy N, Schardt JS, Jay SM. Oncogene Knockdown via Active Loading of Small RNAs into Extracellular Vesicles by Sonication. Cell Mol Bioeng 2016; 9:315-324. [PMID: 27800035 DOI: 10.1007/s12195-016-0457-4] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as promising drug delivery vehicles for small RNAs (siRNA and miRNA) due to their natural role in intercellular RNA transport. However, the application of EVs for therapeutic RNA delivery may be limited by loading approaches that can induce cargo aggregation or degradation. Here, we report the use of sonication as a means to actively load functional small RNAs into EVs. Conditions under which EVs could be loaded with small RNAs with minimal detectable aggregation were identified, and EVs loaded with therapeutic siRNA via sonication were observed to be taken up by recipient cells and capable of target mRNA knockdown leading to reduced protein expression. This system was ultimately applied to reduce expression of HER2, an oncogenic receptor tyrosine kinase that critically mediates breast cancer development and progression, and could be extended to other therapeutic targets. These results define important parameters informing the application of sonication as a small RNA loading method for EVs and demonstrate the potential utility of this approach for versatile cancer therapy.
Collapse
Affiliation(s)
- Tek N Lamichhane
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Anjana Jeyaram
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Divya B Patel
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Babita Parajuli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Natalie K Livingston
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Navein Arumugasaamy
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - John S Schardt
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA; Program in Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland, College Park, MD 20742 USA; Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
167
|
Stickney Z, Losacco J, McDevitt S, Zhang Z, Lu B. Development of exosome surface display technology in living human cells. Biochem Biophys Res Commun 2016; 472:53-9. [PMID: 26902116 DOI: 10.1016/j.bbrc.2016.02.058] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 12/20/2022]
Abstract
Surface display technology is an emerging key player in presenting functional proteins for targeted drug delivery and therapy. Although a number of technologies exist, a desirable mammalian surface display system is lacking. Exosomes are extracellular vesicles that facilitate cell-cell communication and can be engineered as nano-shuttles for cell-specific delivery. In this study, we report the development of a novel exosome surface display technology by exploiting mammalian cell secreted nano-vesicles and their trans-membrane protein tetraspanins. By constructing a set of fluorescent reporters for both the inner and outer surface display on exosomes at two selected sites of tetraspanins, we demonstrated the successful exosomal display via gene transfection and monitoring fluorescence in vivo. We subsequently validated our system by demonstrating the expected intracellular partitioning of reporter protein into sub-cellular compartments and secretion of exosomes from human HEK293 cells. Lastly, we established the stable engineered cells to harness the ability of this robust system for continuous production, secretion, and uptake of displayed exosomes with minimal impact on human cell biology. In sum, our work paved the way for potential applications of exosome, including exosome tracking and imaging, targeted drug delivery, as well as exosome-mediated vaccine and therapy.
Collapse
Affiliation(s)
- Zachary Stickney
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA CA95053, USA.
| | - Joseph Losacco
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA CA95053, USA.
| | - Sophie McDevitt
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA CA95053, USA.
| | - Zhiwen Zhang
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA CA95053, USA.
| | - Biao Lu
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA CA95053, USA.
| |
Collapse
|
168
|
Mesenchymal Stem Cell-Derived Microvesicles Support Ex Vivo Expansion of Cord Blood-Derived CD34(+) Cells. Stem Cells Int 2016; 2016:6493241. [PMID: 27042183 PMCID: PMC4799819 DOI: 10.1155/2016/6493241] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/17/2016] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are known to support the characteristic properties of hematopoietic stem and progenitor cells (HSPCs) in the bone marrow hematopoietic microenvironment. MSCs are used in coculture systems as a feeder layer for the ex vivo expansion of umbilical cord blood (CB) to increase the relatively low number of HSPCs in CB. Findings increasingly suggest that MSC-derived microvesicles (MSC-MVs) play an important role in the biological functions of their parent cells. We speculate that MSC-MVs may recapitulate the hematopoiesis-supporting effects of their parent cells. In the current study, we found MSC-MVs containing microRNAs that are involved in the regulation of hematopoiesis. We also demonstrated that MSC-MVs could improve the expansion of CB-derived mononuclear cells and CD34+ cells and generate a greater number of primitive progenitor cells in vitro. Additionally, when MSC-MVs were added to the CB-MSC coculture system, they could improve the hematopoiesis-supporting effects of MSCs. These findings highlight the role of MSC-MVs in the ex vivo expansion of CB, which may offer a promising therapeutic approach in CB transplantation.
Collapse
|
169
|
Iraci N, Leonardi T, Gessler F, Vega B, Pluchino S. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles. Int J Mol Sci 2016; 17:171. [PMID: 26861302 PMCID: PMC4783905 DOI: 10.3390/ijms17020171] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in) EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.
Collapse
Affiliation(s)
- Nunzio Iraci
- Wellcome Trust-Medical Research Council Stem Cell Institute, Clifford Allbutt Building-Cambridge Biosciences Campus, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, Hills Road CB2 0PY, UK.
| | - Tommaso Leonardi
- Wellcome Trust-Medical Research Council Stem Cell Institute, Clifford Allbutt Building-Cambridge Biosciences Campus, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, Hills Road CB2 0PY, UK.
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK.
| | - Florian Gessler
- Wellcome Trust-Medical Research Council Stem Cell Institute, Clifford Allbutt Building-Cambridge Biosciences Campus, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, Hills Road CB2 0PY, UK.
| | - Beatriz Vega
- Wellcome Trust-Medical Research Council Stem Cell Institute, Clifford Allbutt Building-Cambridge Biosciences Campus, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, Hills Road CB2 0PY, UK.
| | - Stefano Pluchino
- Wellcome Trust-Medical Research Council Stem Cell Institute, Clifford Allbutt Building-Cambridge Biosciences Campus, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, Hills Road CB2 0PY, UK.
| |
Collapse
|
170
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|
171
|
Abstract
INTRODUCTION Application of regenerative medicine strategies for repair of organs/tissue impacted by chronic disease is an active subject for product development. Such methodologies emphasize the role of stem cells as the active biological ingredient. However, recent developments in elucidating mechanisms of action of these therapies have focused on the role of paracrine, 'action-at-a-distance' modus operandi in mediating the ability to catalyze regenerative outcomes without significant site-specific engraftment. A salient component of this secreted regenerative milieu are exosomes: 40-100 nm intraluminal vesicles that mediate transfer of proteins and nucleic acids across cellular boundaries. AREAS COVERED Here, we synthesize recent studies from PubMed and Google Scholar highlighting how cell-based therapeutics and cosmeceutics are transitioning towards the secretome generally and exosomes specifically as a principal modulator of regenerative outcomes. EXPERT OPINION Exosomes contribute to organ development and mediate regenerative outcomes in injury and disease that recapitulate observed bioactivity of stem cell populations. Encapsulation of the active biological ingredients of regeneration within non-living exosome carriers may offer process, manufacturing and regulatory advantages over stem cell-based therapies.
Collapse
|
172
|
Antibody-Based Assays for Phenotyping of Extracellular Vesicles. BIOMED RESEARCH INTERNATIONAL 2015; 2015:524817. [PMID: 26770974 PMCID: PMC4681819 DOI: 10.1155/2015/524817] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/22/2015] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of membrane-enclosed vesicles. EVs are recognized as important players in cell-to-cell communication and are described to be involved in numerous biological and pathological processes. The fact that EVs are involved in the development and progression of several diseases has formed the basis for the use of EV analysis in a clinical setting. As the interest in EVs has increased immensely, multiple techniques have been developed aiming at characterizing these vesicles. These techniques characterize different features of EVs, like the size distribution, enumeration, protein composition, and the intravesicular cargo (e.g., RNA). This review focuses on techniques that exploit the specificity and sensitivity associated with antibody-based assays to characterize the protein phenotype of EVs. The protein phenotype of EVs can provide information on the functionality of the vesicles and may be used for identification of disease-related biomarkers. Thus, protein profiling of EVs holds great diagnostic and prognostic potential.
Collapse
|
173
|
Lamichhane TN, Raiker RS, Jay SM. Exogenous DNA Loading into Extracellular Vesicles via Electroporation is Size-Dependent and Enables Limited Gene Delivery. Mol Pharm 2015; 12:3650-7. [PMID: 26376343 DOI: 10.1021/acs.molpharmaceut.5b00364] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) hold immense promise for utilization as biotherapeutics and drug delivery vehicles due to their nature as biological nanoparticles that facilitate intercellular molecular transport. Specifically, EVs have been identified as natural carriers of nucleic acids, sparking interest in their use for gene therapy and RNA interference applications. So far, small RNAs (siRNA and miRNA) have been successfully loaded into EVs for a variety of delivery applications, but the potential use of EVs for DNA delivery has scarcely been explored. Here, we report that exogenous linear DNA can be associated with EVs via electroporation in quantities sufficient to yield an average of hundreds of DNA molecules per vesicle. We determined that loading efficiency and capacity of DNA in EVs is dependent on DNA size, with linear DNA molecules less than 1000 bp in length being more efficiently associated with EVs compared to larger linear DNAs and plasmid DNAs using this approach. We further showed that EV size is also determinant with regard to DNA loading, as larger microvesicles encapsulated more linear and plasmid DNA than smaller, exosome-like EVs. Additionally, we confirmed the ability of EVs to transfer foreign DNA loaded via electroporation into recipient cells, although functional gene delivery was not observed. These results establish critical parameters that inform the potential use of EVs for gene therapy and, in agreement with other recent results, suggest that substantial barriers must be overcome to establish EVs as broadly applicable DNA delivery vehicles.
Collapse
Affiliation(s)
- Tek N Lamichhane
- Fischell Department of Bioengineering, ‡Program in Oncology, Marlene and Stewart Greenebaum Cancer Center, and §Program in Molecular and Cell Biology, University of Maryland , College Park, Maryland 20742, United States
| | - Rahul S Raiker
- Fischell Department of Bioengineering, ‡Program in Oncology, Marlene and Stewart Greenebaum Cancer Center, and §Program in Molecular and Cell Biology, University of Maryland , College Park, Maryland 20742, United States
| | - Steven M Jay
- Fischell Department of Bioengineering, ‡Program in Oncology, Marlene and Stewart Greenebaum Cancer Center, and §Program in Molecular and Cell Biology, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
174
|
de Windt TS, Saris DBF, Slaper-Cortenbach ICM, van Rijen MHP, Gawlitta D, Creemers LB, de Weger RA, Dhert WJA, Vonk LA. Direct Cell-Cell Contact with Chondrocytes Is a Key Mechanism in Multipotent Mesenchymal Stromal Cell-Mediated Chondrogenesis. Tissue Eng Part A 2015; 21:2536-47. [PMID: 26166387 DOI: 10.1089/ten.tea.2014.0673] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Using a combination of articular chondrocytes (ACs) and mesenchymal stromal cells (MSCs) has shown to be a viable option for a single-stage cell-based treatment of focal cartilage defects. However, there is still considerable debate whether MSCs differentiate or have a chondroinductive role through trophic factors. In addition, it remains unclear whether direct cell-cell contact is necessary for chondrogenesis. Therefore, the aim of this study was to investigate whether direct or indirect cell-cell contact between ACs and MSCs is essential for increased cartilage production in different cellular environments and elucidate the mechanisms behind these cellular interactions. Human ACs and MSCs were cultured in a 10:90 ratio in alginate beads, fibrin scaffolds, and pellets. Cells were mixed in direct cocultures, separated by a Transwell filter (indirect cocultures), or cultured with conditioned medium. Short tandem repeat analysis revealed that the percentages of ACs increased during culture, while those of MSCs decreased, with the biggest change in fibrin glue scaffolds. For alginate, where the lack of cell-cell contact could be confirmed by histological analysis, no difference was found in matrix production between direct and indirect cocultures. For fibrin scaffolds and pellet cultures, an increased glycosaminoglycan production and type II collagen deposition were found in direct cocultures compared with indirect cocultures and conditioned medium. Positive connexin 43 staining and transfer of cytosolic calcein indicated communication through gap junctions in direct cocultures. Taken together, these results suggest that MSCs stimulate cartilage formation when placed in close proximity to chondrocytes and that direct cell-cell contact and communication through gap junctions are essential in this chondroinductive interplay.
Collapse
Affiliation(s)
- Tommy S de Windt
- 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Daniel B F Saris
- 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands .,2 MIRA Institute for Biotechnology and Technical Medicine, University Twente , Enschede, The Netherlands
| | - Ineke C M Slaper-Cortenbach
- 3 Cell Therapy Facility, Department of Clinical Pharmacy, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Mattie H P van Rijen
- 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Debby Gawlitta
- 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Laura B Creemers
- 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Roel A de Weger
- 4 Department of Pathology, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Wouter J A Dhert
- 5 Faculty of Veterinary Medicine, University of Utrecht , Utrecht, The Netherlands
| | - Lucienne A Vonk
- 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| |
Collapse
|
175
|
Abstract
Peripheral nerve injuries remain problematic to treat, with poor functional recovery commonly observed. Injuries resulting in a nerve gap create specific difficulties for axonal regeneration. Approaches to address these difficulties include autologous nerve grafts (which are currently the gold standard treatment) and synthetic conduits, with the latter option being able to be impregnated with Schwann cells or stem cells which provide an appropriate micro-environment for neuronal regeneration to occur. Transplanting stem cells, however, infers additional risk of malignant transformation as well as manufacturing difficulties and ethical concerns, and the use of autologous nerve grafts and Schwann cells requires the sacrifice of a functioning nerve. A new approach utilizing exosomes, secreted extracellular vesicles, could avoid these complications. In this review, we summarize the current literature on exosomes, and suggest how they could help to improve axonal regeneration following peripheral nerve injury.
Collapse
Affiliation(s)
- Rosanna C Ching
- Department of Integrative Medical Biology, Umeå University, Umeå, SE-901 87, Sweden ; Department of Surgical & Perioperative Sciences, Umeå University, Umeå, SE-901 87, Sweden
| | - Paul J Kingham
- Department of Integrative Medical Biology, Umeå University, Umeå, SE-901 87, Sweden
| |
Collapse
|
176
|
Emanueli C, Shearn AIU, Angelini GD, Sahoo S. Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vascul Pharmacol 2015; 71:24-30. [PMID: 25869502 DOI: 10.1016/j.vph.2015.02.008] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/21/2015] [Accepted: 02/15/2015] [Indexed: 01/12/2023]
Abstract
Cell-cell communication between cardiac and vascular cells and from stem and progenitor cells to differentiated cardiovascular cells is both an important and complex process, achieved through a diversity of mechanisms that have an impact on cardiovascular biology, disease and therapeutics. In recent years, evidence has accumulated suggesting that extracellular vesicles (EVs) are a new system of intercellular communication. EVs of different sizes are produced via different biogenesis pathways and have been shown to be released and taken up by most of known cell types, including heart and vascular cells, and stem and progenitor cells. This review will focus on exosomes, the smallest EVs (up to 100nm in diameter) identified so far. Cells can package cargoes consisting of selective lipids, proteins and RNA in exosomes and such cargoes can be shipped to recipient cells, inducing expressional and functional changes. This review focuses on exosomes and microRNAs in the context of cardiovascular disease and repair. We will describe exosome biogenesis and cargo formation and discuss the available information on in vitro and in vivo exosomes-based cell-to-cell communication relevant to cardiovascular science. The methods used in exosome research will be also described. Finally, we will address the promise of exosomes as clinical biomarkers and their impact as a biomedical tool in stem cell-based cardiovascular therapeutics.
Collapse
Affiliation(s)
- Costanza Emanueli
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, England, UK; National Heart and Lung Institute, Imperial College of London, London, England, UK.
| | - Andrew I U Shearn
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, England, UK
| | - Gianni D Angelini
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, England, UK; National Heart and Lung Institute, Imperial College of London, London, England, UK
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine, Mount Sinai, NY, USA
| |
Collapse
|
177
|
De Jong OG, Van Balkom BWM, Schiffelers RM, Bouten CVC, Verhaar MC. Extracellular vesicles: potential roles in regenerative medicine. Front Immunol 2014; 5:608. [PMID: 25520717 PMCID: PMC4253973 DOI: 10.3389/fimmu.2014.00608] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/12/2014] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EV) consist of exosomes, which are released upon fusion of the multivesicular body with the cell membrane, and microvesicles, which are released directly from the cell membrane. EV can mediate cell–cell communication and are involved in many processes, including immune signaling, angiogenesis, stress response, senescence, proliferation, and cell differentiation. The vast amount of processes that EV are involved in and the versatility of manner in which they can influence the behavior of recipient cells make EV an interesting source for both therapeutic and diagnostic applications. Successes in the fields of tumor biology and immunology sparked the exploration of the potential of EV in the field of regenerative medicine. Indeed, EV are involved in restoring tissue and organ damage, and may partially explain the paracrine effects observed in stem cell-based therapeutic approaches. The function and content of EV may also harbor information that can be used in tissue engineering, in which paracrine signaling is employed to modulate cell recruitment, differentiation, and proliferation. In this review, we discuss the function and role of EV in regenerative medicine and elaborate on potential applications in tissue engineering.
Collapse
Affiliation(s)
- Olivier G De Jong
- Department of Nephrology and Hypertension, University Medical Center Utrecht , Utrecht , Netherlands
| | - Bas W M Van Balkom
- Department of Nephrology and Hypertension, University Medical Center Utrecht , Utrecht , Netherlands ; Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven , Netherlands
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht , Utrecht , Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven , Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht , Utrecht , Netherlands
| |
Collapse
|
178
|
Andreu Z, Yáñez-Mó M. Tetraspanins in extracellular vesicle formation and function. Front Immunol 2014; 5:442. [PMID: 25278937 PMCID: PMC4165315 DOI: 10.3389/fimmu.2014.00442] [Citation(s) in RCA: 967] [Impact Index Per Article: 87.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/31/2014] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) represent a novel mechanism of intercellular communication as vehicles for intercellular transfer of functional membrane and cytosolic proteins, lipids, and RNAs. Microvesicles, ectosomes, shedding vesicles, microparticles, and exosomes are the most common terms to refer to the different kinds of EVs based on their origin, composition, size, and density. Exosomes have an endosomal origin and are released by many different cell types, participating in different physiological and/or pathological processes. Depending on their origin, they can alter the fate of recipient cells according to the information transferred. In the last two decades, EVs have become the focus of many studies because of their putative use as non-invasive biomarkers and their potential in bioengineering and clinical applications. In order to exploit this ability of EVs many aspects of their biology should be deciphered. Here, we review the mechanisms involved in EV biogenesis, assembly, recruitment of selected proteins, and genetic material as well as the uptake mechanisms by target cells in an effort to understand EV functions and their utility in clinical applications. In these contexts, the role of proteins from the tetraspanin superfamily, which are among the most abundant membrane proteins of EVs, will be highlighted.
Collapse
Affiliation(s)
- Zoraida Andreu
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa , Madrid , Spain
| | - María Yáñez-Mó
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa , Madrid , Spain
| |
Collapse
|