151
|
Sanchez-Guajardo V, Tentillier N, Romero-Ramos M. The relation between α-synuclein and microglia in Parkinson's disease: Recent developments. Neuroscience 2015; 302:47-58. [PMID: 25684748 DOI: 10.1016/j.neuroscience.2015.02.008] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/13/2015] [Accepted: 02/04/2015] [Indexed: 12/14/2022]
Abstract
Recent research suggests a complex role for microglia not only in Parkinson's disease but in other disorders involving alpha-synuclein aggregation, such as multiple system atrophy. In these neurodegenerative processes, the activation of microglia is a common pathological finding, which disturbs the homeostasis of the neuronal environment otherwise maintained, among others, by microglia. The term activation comprises any deviation from what otherwise is considered normal microglia status, including cellular abundance, morphology or protein expression. The microglial response during disease will sustain survival or otherwise promote cell degeneration. The novel concepts of alpha-synuclein being released and uptaken by neighboring cells, and their importance in disease progression, positions microglia as the main cell that can clear and handle alpha-synuclein efficiently. Microglia's behavior will therefore be a determinant on the disease's progression. For this reason we believe that the better understanding of microglia's response to alpha-synuclein pathological accumulation across brain areas and disease stages is essential to develop novel therapeutic tools for Parkinson's disease and other alpha-synucleinopathies. In this review we will revise the most recent findings and developments with regard to alpha-synuclein and microglia in Parkinson's disease.
Collapse
Affiliation(s)
- V Sanchez-Guajardo
- AU IDEAS center NEURODIN, Aarhus University, DK-8000 Aarhus C, Denmark; Neuroimmunology of Degenerative Disease, Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - N Tentillier
- AU IDEAS center NEURODIN, Aarhus University, DK-8000 Aarhus C, Denmark; CNS Disease Modeling Group, Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - M Romero-Ramos
- AU IDEAS center NEURODIN, Aarhus University, DK-8000 Aarhus C, Denmark; CNS Disease Modeling Group, Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
152
|
Viceconte N, Burguillos MA, Herrera AJ, De Pablos RM, Joseph B, Venero JL. Neuromelanin activates proinflammatory microglia through a caspase-8-dependent mechanism. J Neuroinflammation 2015; 12:5. [PMID: 25586882 PMCID: PMC4302615 DOI: 10.1186/s12974-014-0228-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/21/2014] [Indexed: 12/27/2022] Open
Abstract
Background We have uncovered a caspase-dependent (caspase-8/caspase-3/7) signaling governing microglia activation and associated neurotoxicity. Importantly, a profuse non-nuclear activation of cleaved caspases 8 and 3 was found in reactive microglia in the ventral mesencephalon from subjects with Parkinson’s disease, thus supporting the existence of endogenous factors activating microglia through a caspase-dependent mechanism. One obvious candidate is neuromelanin, which is an efficient proinflammogen in vivo and in vitro and has been shown to have a role in the pathogenesis of Parkinson’s disease. Consequently, the goal of this study is to test whether synthetic neuromelanin activates microglia in a caspase-dependent manner. Results We found an in-vivo upregulation of CD16/32 (M1 marker) in Iba1-immunolabeled microglia in the ventral mesencephalon after neuromelanin injection. In vitro experiments using BV2 cells, a microglia-derived cell line, demonstrated that synthetic neuromelanin induced a significant chemotactic response to BV2 microglial cells, along with typical morphological features of microglia activation, increased oxidative stress and induction of pattern-recognition receptors including Toll-like receptor 2, NOD2, and CD14. Analysis of IETDase (caspase-8) and DEVDase (caspase-3/7) activities in BV2 cells demonstrated a modest but significant increase of both activities in response to neuromelanin treatment, in the absence of cell death. Conclusions Caspase-8 inhibition prevented typical features of microglia activation, including morphological changes, a high rate of oxidative stress and expression of key proinflammatory cytokines and iNOS.
Collapse
Affiliation(s)
- Nikenza Viceconte
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012, Sevilla, Spain. .,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain. .,Present address: Department of Biosciences and Nutrition, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Miguel A Burguillos
- Centre for Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, E1 2AT, London, United Kingdom.
| | - Antonio J Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012, Sevilla, Spain. .,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain.
| | - Rocío M De Pablos
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012, Sevilla, Spain. .,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain.
| | - Bertrand Joseph
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Centrum Karolinska, 17176, Stockholm, Sweden.
| | - José L Venero
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012, Sevilla, Spain. .,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain.
| |
Collapse
|
153
|
Clinical Implication of High Sensitivity C-Reactive Protein for the Development of Dementia in Parkinson's Disease. Dement Neurocogn Disord 2015. [DOI: 10.12779/dnd.2015.14.3.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
154
|
Allen Reish HE, Standaert DG. Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease. JOURNAL OF PARKINSON'S DISEASE 2015; 5:1-19. [PMID: 25588354 PMCID: PMC4405142 DOI: 10.3233/jpd-140491] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alpha-synuclein (α-syn) is central to the pathogenesis of Parkinson disease (PD). Gene duplications, triplications and point mutations in SNCA1, the gene encoding α-syn, cause autosomal dominant forms of PD. Aggregated and post-translationally modified forms of α-syn are present in Lewy bodies and Lewy neurites in both sporadic and familial PD, and recent work has emphasized the prion-like ability of aggregated α-syn to produce spreading pathology. Accumulation of abnormal forms of α-syn is a trigger for PD, but recent evidence suggests that much of the downstream neurodegeneration may result from inflammatory responses. Components of both the innate and adaptive immune systems are activated in PD, and influencing interactions between innate and adaptive immune components has been shown to modify the pathological process in animal models of PD. Understanding the relationship between α-syn and subsequent inflammation may reveal novel targets for neuroprotective interventions. In this review, we examine the role of α-syn and modified forms of this protein in the initiation of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Heather E Allen Reish
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Alabama, USA
| | - David G Standaert
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
155
|
Song IU, Cho HJ, Kim JS, Park IS, Lee KS. Serum hs-CRP levels are increased in de Novo Parkinson's disease independently from age of onset. Eur Neurol 2014; 72:285-9. [PMID: 25323302 DOI: 10.1159/000363570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/11/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Microglia in the brain are the counterpart of macrophages and it functions as a first defense in the brain. The double-edged feature of microglia has explained that the inflammatory state of microglia in aged brains induces them to over-respond to small stimuli that are otherwise well controlled in young brains. The clinical effect of microglia in patients with Parkinson's disease (PD) is poorly defined. This prospective study assessed the peripheral concentrations of hs-CRP, a protein able to reflect neuroinflammation in the CNS, in de novo PD patients with varying ages of onset. METHODS We examined 435 patients with de novo PD and 221 healthy subjects and the differences in hs-CRP between these groups were investigated. The PD group was classified into 4 subgroups according to the age of de novo PD to investigate the relationship between hs-CRP and the aging process in de novo PD. RESULTS There were significantly higher serum hs-CRP levels in patients with PD compared with healthy subjects. A post-hoc analysis of the 4 PD subgroups showed no significant differences in serum hs-CRP level. CONCLUSION We assumed that neuroinflammatory reactions play a role in the pathogenesis of PD, but found no clinical evidence of a neuroprotective effect against PD in young brains. To clarify the role of microglia and aging in the pathogenesis of PD, future longitudinal studies involving a large cohort are required.
Collapse
Affiliation(s)
- In-Uk Song
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | |
Collapse
|
156
|
Doty KR, Guillot-Sestier MV, Town T. The role of the immune system in neurodegenerative disorders: Adaptive or maladaptive? Brain Res 2014; 1617:155-73. [PMID: 25218556 DOI: 10.1016/j.brainres.2014.09.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/31/2014] [Accepted: 09/02/2014] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases share common features, including catastrophic neuronal loss that leads to cognitive or motor dysfunction. Neuronal injury occurs in an inflammatory milieu that is populated by resident and sometimes, infiltrating, immune cells - all of which participate in a complex interplay between secreted inflammatory modulators and activated immune cell surface receptors. The importance of these immunomodulators is highlighted by the number of immune factors that have been associated with increased risk of neurodegeneration in recent genome-wide association studies. One of the more difficult tasks for designing therapeutic strategies for immune modulation against neurodegenerative diseases is teasing apart beneficial from harmful signals. In this regard, learning more about the immune components of these diseases has yielded common themes. These unifying concepts should eventually enable immune-based therapeutics for treatment of Alzheimer׳s and Parkinson׳s diseases and amyotrophic lateral sclerosis. Targeted immune modulation should be possible to temper maladaptive factors, enabling beneficial immune responses in the context of neurodegenerative diseases. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease.
Collapse
Affiliation(s)
- Kevin R Doty
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | | | - Terrence Town
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
157
|
Fuller JP, Stavenhagen JB, Teeling JL. New roles for Fc receptors in neurodegeneration-the impact on Immunotherapy for Alzheimer's Disease. Front Neurosci 2014; 8:235. [PMID: 25191216 PMCID: PMC4139653 DOI: 10.3389/fnins.2014.00235] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/17/2014] [Indexed: 12/11/2022] Open
Abstract
There are an estimated 18 million Alzheimer's disease (AD) sufferers worldwide and with no disease modifying treatment currently available, development of new therapies represents an enormous unmet clinical need. AD is characterized by episodic memory loss followed by severe cognitive decline and is associated with many neuropathological changes. AD is characterized by deposits of amyloid beta (Aβ), neurofibrillary tangles, and neuroinflammation. Active immunization or passive immunization against Aβ leads to the clearance of deposits in transgenic mice expressing human Aβ. This clearance is associated with reversal of associated cognitive deficits, but these results have not translated to humans, with both active and passive immunotherapy failing to improve memory loss. One explanation for these observations is that certain anti-Aβ antibodies mediate damage to the cerebral vasculature limiting the top dose and potentially reducing efficacy. Fc gamma receptors (FcγR) are a family of immunoglobulin-like receptors which bind to the Fc portion of IgG, and mediate the response of effector cells to immune complexes. Data from both mouse and human studies suggest that cross-linking FcγR by therapeutic antibodies and the subsequent pro-inflammatory response mediates the vascular side effects seen following immunotherapy. Increasing evidence is emerging that FcγR expression on CNS resident cells, including microglia and neurons, is increased during aging and functionally involved in the pathogenesis of age-related neurodegenerative diseases. Therefore, we propose that increased expression and ligation of FcγR in the CNS, either by endogenous IgG or therapeutic antibodies, has the potential to induce vascular damage and exacerbate neurodegeneration. To produce safe and effective immunotherapies for AD and other neurodegenerative diseases it will be vital to understand the role of FcγR in the healthy and diseased brain. Here we review the literature on FcγR expression, function and proposed roles in multiple age-related neurological diseases. Lessons can be learnt from therapeutic antibodies used for the treatment of cancer where antibodies have been engineered for optimal efficacy.
Collapse
Affiliation(s)
- James P. Fuller
- CNS Inflammation Group, Centre for Biological Sciences, University of SouthamptonSouthampton, UK
| | | | - Jessica L. Teeling
- CNS Inflammation Group, Centre for Biological Sciences, University of SouthamptonSouthampton, UK
| |
Collapse
|
158
|
Rodriguez M, Morales I, Rodriguez-Sabate C, Sanchez A, Castro R, Brito JM, Sabate M. The degeneration and replacement of dopamine cells in Parkinson's disease: the role of aging. Front Neuroanat 2014; 8:80. [PMID: 25147507 PMCID: PMC4124707 DOI: 10.3389/fnana.2014.00080] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/22/2014] [Indexed: 01/06/2023] Open
Abstract
Available data show marked similarities for the degeneration of dopamine cells in Parkinson’s disease (PD) and aging. The etio-pathogenic agents involved are very similar in both cases, and include free radicals, different mitochondrial disturbances, alterations of the mitophagy and the ubiquitin-proteasome system. Proteins involved in PD such as α-synuclein, UCH-L1, PINK1 or DJ-1, are also involved in aging. The anomalous behavior of astrocytes, microglia and stem cells of the subventricular zone (SVZ) also changes similarly in aging brains and PD. Present data suggest that PD could be the expression of aging on a cell population with high vulnerability to aging. The future knowledge of mechanisms involved in aging could be critical for both understanding the etiology of PD and developing etiologic treatments to prevent the onset of this neurodegenerative illness and to control its progression.
Collapse
Affiliation(s)
- Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna La Laguna, Tenerife, Canary Islands, Spain ; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| | - Ingrid Morales
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna La Laguna, Tenerife, Canary Islands, Spain ; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| | - Clara Rodriguez-Sabate
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| | - Alberto Sanchez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna La Laguna, Tenerife, Canary Islands, Spain
| | - Rafael Castro
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna La Laguna, Tenerife, Canary Islands, Spain
| | - Jose Miguel Brito
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna La Laguna, Tenerife, Canary Islands, Spain
| | - Magdalena Sabate
- Rehabilitation Service, Department of Physical Medicine and Pharmacology, Faculty of Medicine, University of La Laguna La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
159
|
Abstract
Parkinson's disease (PD) displays a greater prevalence and earlier age at onset in men. This review addresses the concept that sex differences in PD are determined, largely, by biological sex differences in the NSDA system which, in turn, arise from hormonal, genetic and environmental influences. Current therapies for PD rely on dopamine replacement strategies to treat symptoms, and there is an urgent, unmet need for disease modifying agents. As a significant degree of neuroprotection against the early stages of clinical or experimental PD is seen, respectively, in human and rodent females compared with males, a better understanding of brain sex dimorphisms in the intact and injured NSDA system will shed light on mechanisms which have the potential to delay, or even halt, the progression of PD. Available evidence suggests that sex-specific, hormone-based therapeutic agents hold particular promise for developing treatments with optimal efficacy in men and women.
Collapse
|
160
|
González H, Elgueta D, Montoya A, Pacheco R. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol 2014; 274:1-13. [PMID: 25091432 DOI: 10.1016/j.jneuroim.2014.07.012] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/27/2014] [Accepted: 07/16/2014] [Indexed: 11/18/2022]
Abstract
Neuroinflammation constitutes a fundamental process involved in the progression of several neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis and multiple sclerosis. Microglial cells play a central role in neuroinflammation, promoting neuroprotective or neurotoxic microenvironments, thus controlling neuronal fate. Acquisition of different microglial functions is regulated by intercellular interactions with neurons, astrocytes, the blood-brain barrier, and T-cells infiltrating the central nervous system. In this study, an overview of the regulation of microglial function mediated by different intercellular communications is summarised and discussed. Afterward, we focus in T-cell-mediated regulation of neuroinflammation involved in neurodegenerative disorders.
Collapse
Affiliation(s)
- Hugo González
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Ñuñoa 7780272, Santiago, Chile
| | - Daniela Elgueta
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Ñuñoa 7780272, Santiago, Chile; Facultad de Ciencias Biológicas, Universidad Andrés Bello, 8370146 Santiago, Chile
| | - Andro Montoya
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Ñuñoa 7780272, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Ñuñoa 7780272, Santiago, Chile; Programa de Biomedicina, Universidad San Sebastián, Ñuñoa 7780272, Santiago, Chile.
| |
Collapse
|
161
|
Xiao W, Shameli A, Harding CV, Meyerson HJ, Maitta RW. Late stages of hematopoiesis and B cell lymphopoiesis are regulated by α-synuclein, a key player in Parkinson's disease. Immunobiology 2014; 219:836-44. [PMID: 25092570 DOI: 10.1016/j.imbio.2014.07.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/26/2014] [Accepted: 07/15/2014] [Indexed: 11/16/2022]
Abstract
α-Synuclein plays a crucial role in Parkinson's disease and dementias defined as synucleinopathies. α-Synuclein is expressed in hematopoietic and immune cells, but its functions in hematopoiesis and immune responses are unknown. We utilized α-synuclein(-/-) (KO) mice to investigate its role in hematopoiesis and B cell lymphopoiesis. We demonstrated hematologic abnormalities including mild anemia, smaller platelets, lymphopenia but relatively normal early hematopoiesis in KO mice compared to wild-type (WT) as measured in hematopoietic stem cells and progenitors of the different cell lineages. However, the absolute number of B220(+)IgM(+) B cells in bone marrow was reduced by 4-fold in KO mice (WT: 104±23×10(5) vs. KO: 27±5×10(5)). B cells were also reduced in KO spleens associated with effacement of splenic and lymph node architecture. KO mice showed reduced total serum IgG but no abnormality in serum IgM was noted. When KO mice were challenged with a T cell-dependent antigen, production of antigen specific IgG1 and IgG2b was abolished, but antigen specific IgM was not different from WT mice. Our study shows hematologic abnormalities including anemia and smaller platelets, reduced B cell lymphopoiesis and defects in IgG production in the absence of α-synuclein. This is the first report to show an important role of α-synuclein late in hematopoiesis, B cell lymphopoiesis and adaptive immune response.
Collapse
Affiliation(s)
- Wenbin Xiao
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH, United States; Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Afshin Shameli
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH, United States; Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Clifford V Harding
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH, United States; Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Howard J Meyerson
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH, United States; Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Robert W Maitta
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH, United States; Case Western Reserve University School of Medicine, Cleveland, OH, United States.
| |
Collapse
|
162
|
Biochemical and immunological aspects of protein aggregation in neurodegenerative diseases. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2014. [DOI: 10.1007/s13738-014-0491-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
163
|
Hypothesis: A role for EBV-induced molecular mimicry in Parkinson's disease. Parkinsonism Relat Disord 2014; 20:685-94. [DOI: 10.1016/j.parkreldis.2014.02.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/18/2014] [Accepted: 02/22/2014] [Indexed: 12/12/2022]
|
164
|
Papuć E, Kurzepa J, Kurys-Denis E, Grabarska A, Krupski W, Rejdak K. Humoral response against glial derived antigens in Parkinson's disease. Neurosci Lett 2014; 566:77-81. [DOI: 10.1016/j.neulet.2014.02.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
|
165
|
Romero-Ramos M, von Euler Chelpin M, Sanchez-Guajardo V. Vaccination strategies for Parkinson disease: induction of a swift attack or raising tolerance? Hum Vaccin Immunother 2014; 10:852-67. [PMID: 24670306 DOI: 10.4161/hv.28578] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Parkinson disease is the second most common neurodegenerative disease in the world, but there is currently no available cure for it. Current treatments only alleviate some of the symptoms for a few years, but they become ineffective in the long run and do not stop the disease. Therefore it is of outmost importance to develop therapeutic strategies that can prevent, stop, or cure Parkinson disease. A very promising target for these therapies is the peripheral immune system due to its probable involvement in the disease and its potential as a tool to modulate neuroinflammation. But for such strategies to be successful, we need to understand the particular state of the peripheral immune system during Parkinson disease in order to avoid its weaknesses. In this review we examine the available data regarding how dopamine regulates the peripheral immune system and how this regulation is affected in Parkinson disease; the specific cytokine profiles observed during disease progression and the alterations documented to date in patients' peripheral blood mononuclear cells. We also review the different strategies used in Parkinson disease animal models to modulate the adaptive immune response to salvage dopaminergic neurons from cell death. After analyzing the evidence, we hypothesize the need to prime the immune system to restore natural tolerance against α-synuclein in Parkinson disease, including at the same time B and T cells, so that T cells can reprogram microglia activation to a beneficial pattern and B cell/IgG can help neurons cope with the pathological forms of α-synuclein.
Collapse
Affiliation(s)
- Marina Romero-Ramos
- CNS disease modeling group; Department of Biomedicine; Aarhus University; Aarhus, Denmark; NEURODIN; Department of Biomedicine; Aarhus University; Aarhus, Denmark
| | - Marianne von Euler Chelpin
- CNS disease modeling group; Department of Biomedicine; Aarhus University; Aarhus, Denmark; NEURODIN; Department of Biomedicine; Aarhus University; Aarhus, Denmark; Neuroimmunology of Degenerative Diseases group; Department of Biomedicine; Aarhus University; Aarhus, Denmark
| | - Vanesa Sanchez-Guajardo
- NEURODIN; Department of Biomedicine; Aarhus University; Aarhus, Denmark; Neuroimmunology of Degenerative Diseases group; Department of Biomedicine; Aarhus University; Aarhus, Denmark
| |
Collapse
|
166
|
Abstract
Proper development and function of the mammalian central nervous system (CNS) depend critically on the activity of parenchymal sentinels referred to as microglia. Although microglia were first described as ramified brain-resident phagocytes, research conducted over the past century has expanded considerably upon this narrow view and ascribed many functions to these dynamic CNS inhabitants. Microglia are now considered among the most versatile cells in the body, possessing the capacity to morphologically and functionally adapt to their ever-changing surroundings. Even in a resting state, the processes of microglia are highly dynamic and perpetually scan the CNS. Microglia are in fact vital participants in CNS homeostasis, and dysregulation of these sentinels can give rise to neurological disease. In this review, we discuss the exciting developments in our understanding of microglial biology, from their developmental origin to their participation in CNS homeostasis and pathophysiological states such as neuropsychiatric disorders, neurodegeneration, sterile injury responses, and infectious diseases. We also delve into the world of microglial dynamics recently uncovered using real-time imaging techniques.
Collapse
Affiliation(s)
- Debasis Nayak
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892;
| | | | | |
Collapse
|
167
|
Ren X, Guo X, Chen L, Guo M, Peng N, Li R. Attenuated migration by green tea extract (−)-epigallocatechin gallate (EGCG): involvement of 67 kDa laminin receptor internalization in macrophagic cells. Food Funct 2014; 5:1915-9. [PMID: 24953562 DOI: 10.1039/c4fo00143e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inhibition of macrophagic cell migration induced by green tea polyphenol EGCG may be linked to the internalization of 67 kDa laminin receptor.
Collapse
Affiliation(s)
- Xuezhi Ren
- Department of Neurology
- Shaanxi Provincial People's Hospital
- Xi'an 710068, China
- The Third Affiliated Hospital
- Xi'an Jiaotong University School of Medicine
| | - Xingzhi Guo
- Department of Neurology
- Shaanxi Provincial People's Hospital
- Xi'an 710068, China
- The Third Affiliated Hospital
- Xi'an Jiaotong University School of Medicine
| | - Li Chen
- Department of Neurology
- Shaanxi Provincial People's Hospital
- Xi'an 710068, China
| | - Minxia Guo
- Department of Neurology
- Shaanxi Provincial People's Hospital
- Xi'an 710068, China
| | - Ning Peng
- Department of Neurology
- Shaanxi Provincial People's Hospital
- Xi'an 710068, China
| | - Rui Li
- Department of Neurology
- Shaanxi Provincial People's Hospital
- Xi'an 710068, China
| |
Collapse
|
168
|
Pessoa Rocha N, Reis HJ, Vanden Berghe P, Cirillo C. Depression and cognitive impairment in Parkinson's disease: a role for inflammation and immunomodulation? Neuroimmunomodulation 2014; 21:88-94. [PMID: 24557040 DOI: 10.1159/000356531] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The etiology of Parkinson's disease (PD) is complex and not fully understood, most probably because of the multiplicity of factors involved. Inflammatory and abnormal immune responses have been hypothesized to play a crucial role in PD. Not only in the brain, but also peripherally, inflammation is believed to contribute to the onset and progression of the neurodegenerative process seen in PD. Furthermore, increased inflammatory responses have been described both in the brain and peripheral blood of PD subjects. Although PD is considered a motor disorder, nonmotor symptoms are extremely frequent and disabling. Cognitive impairment and mood alterations are such symptoms that deserve increased attention since on the one hand they can appear even before typical motor disturbances are recognized, and on the other hand they are associated with high morbidity and mortality. A growing body of evidence suggests the existence of a link between inflammatory-immune responses and the occurrence of depression and cognitive impairment in PD patients. However, not all data are equally conclusive and are sometimes even conflicting. The aim of this brief review is to give an overview of the possible role that inflammation and immunomodulation may play in PD together with their putative impact on mood and cognitive alterations. What clearly emerges from this work is the fact that studies performed until now lack standardized and comparable methods to analyze both clinical and biological parameters. It is thus difficult to conclusively link mood and cognitive changes to underlying pathological mechanisms. Additional studies in this direction are warranted to convincingly establish or refute any causative relation.
Collapse
Affiliation(s)
- Natália Pessoa Rocha
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
169
|
Abstract
The immune system evolved to launch effective and specific responses against pathogens. A key feature of this defense mechanism is its ability to differentiate between self and nonself. However, in autoimmune diseases, the host's immune system fails to discriminate self versus foreign. The CNS is further protected by the blood-brain barrier. In spite of its 'immune privilege,' the brain is not protected from autoimmunity; perhaps paradoxically xenoantibodies can be used to treat neurological diseases. We describe patents covering treatment methods for CNS diseases with suspected or demonstrated autoimmune etiology. These include multiple sclerosis and, Alzheimer's and Parkinson's disease. The goal is to less invasively, yet efficiently, treat neurological diseases. Although autoimmune responses are often detrimental, recent studies have begun to harness, boost and induce immune responses as a mechanism of treatment. The patents discussed herein highlight new treatments for Alzheimer's and Parkinson's disease, multiple sclerosis, and seizure disorders.
Collapse
|
170
|
Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Christoffersson J, Chaabane W, Moghadam AR, Kashani HH, Hashemi M, Owji AA, Łos MJ. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 2013; 112:24-49. [PMID: 24211851 DOI: 10.1016/j.pneurobio.2013.10.004] [Citation(s) in RCA: 767] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 10/08/2013] [Accepted: 10/15/2013] [Indexed: 12/12/2022]
Abstract
Autophagy and apoptosis are basic physiologic processes contributing to the maintenance of cellular homeostasis. Autophagy encompasses pathways that target long-lived cytosolic proteins and damaged organelles. It involves a sequential set of events including double membrane formation, elongation, vesicle maturation and finally delivery of the targeted materials to the lysosome. Apoptotic cell death is best described through its morphology. It is characterized by cell rounding, membrane blebbing, cytoskeletal collapse, cytoplasmic condensation, and fragmentation, nuclear pyknosis, chromatin condensation/fragmentation, and formation of membrane-enveloped apoptotic bodies, that are rapidly phagocytosed by macrophages or neighboring cells. Neurodegenerative disorders are becoming increasingly prevalent, especially in the Western societies, with larger percentage of members living to an older age. They have to be seen not only as a health problem, but since they are care-intensive, they also carry a significant economic burden. Deregulation of autophagy plays a pivotal role in the etiology and/or progress of many of these diseases. Herein, we briefly review the latest findings that indicate the involvement of autophagy in neurodegenerative diseases. We provide a brief introduction to autophagy and apoptosis pathways focusing on the role of mitochondria and lysosomes. We then briefly highlight pathophysiology of common neurodegenerative disorders like Alzheimer's diseases, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Then, we describe functions of autophagy and apoptosis in brain homeostasis, especially in the context of the aforementioned disorders. Finally, we discuss different ways that autophagy and apoptosis modulation may be employed for therapeutic intervention during the maintenance of neurodegenerative disorders.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada; Manitoba Institute of Child Health, Department of Physiology, University of Manitoba, Winnipeg, Canada; St. Boniface Research Centre, University of Manitoba, Winnipeg, Canada
| | - Shahla Shojaei
- Department of Biochemistry, Recombinant Protein Laboratory, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behzad Yeganeh
- Manitoba Institute of Child Health, Department of Physiology, University of Manitoba, Winnipeg, Canada; Hospital for Sick Children Research Institute, Department of Physiology and Experimental Medicine, University of Toronto, Canada
| | - Sudharsana R Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Jaganmohan R Jangamreddy
- Department of Clinical and Experimental Medicine (IKE), Integrative Regenerative Medicine Center (IGEN), Division of Cell Biology, Linkoping University, Linkoping, Sweden
| | - Maryam Mehrpour
- INSERM U845, Research Center "Growth & Signaling" Paris Descartes University Medical School, France
| | - Jonas Christoffersson
- Department of Clinical and Experimental Medicine (IKE), Integrative Regenerative Medicine Center (IGEN), Division of Cell Biology, Linkoping University, Linkoping, Sweden
| | - Wiem Chaabane
- Department of Clinical and Experimental Medicine (IKE), Integrative Regenerative Medicine Center (IGEN), Division of Cell Biology, Linkoping University, Linkoping, Sweden; Department of Biology, Faculty of Sciences, Tunis University, Tunis, Tunisia
| | | | - Hessam H Kashani
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada; Manitoba Institute of Child Health, Department of Physiology, University of Manitoba, Winnipeg, Canada
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Cellular and Molecular Biology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali A Owji
- Department of Biochemistry, Recombinant Protein Laboratory, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Marek J Łos
- Department of Clinical and Experimental Medicine (IKE), Integrative Regenerative Medicine Center (IGEN), Division of Cell Biology, Linkoping University, Linkoping, Sweden.
| |
Collapse
|
171
|
Deleidi M, Gasser T. The role of inflammation in sporadic and familial Parkinson's disease. Cell Mol Life Sci 2013; 70:4259-73. [PMID: 23665870 PMCID: PMC11113951 DOI: 10.1007/s00018-013-1352-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/29/2013] [Accepted: 04/24/2013] [Indexed: 01/18/2023]
Abstract
The etiology of Parkinson's disease (PD) is complex and most likely involves numerous environmental and heritable risk factors. Interestingly, many genetic variants, which have been linked to familial forms of PD or identified as strong risk factors, also play a critical role in modulating inflammatory responses. There has been considerable debate in the field as to whether inflammation is a driving force in neurodegeneration or simply represents a response to neuronal death. One emerging hypothesis is that inflammation plays a critical role in the early phases of neurodegeneration. In this review, we will discuss emerging aspects of both innate and adaptive immunity in the context of the pathogenesis of PD. We will highlight recent data from genetic and functional studies that strongly support the theory that genetic susceptibility plays an important role in modulating immune pathways and inflammatory reactions, which may precede and initiate neuronal dysfunction and subsequent neurodegeneration. A detailed understanding of such cellular and molecular inflammatory pathways is crucial to uncover pathogenic mechanisms linking sporadic and hereditary PD and devise tailored neuroprotective interventions.
Collapse
Affiliation(s)
- Michela Deleidi
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller. Str 27, 72076, Tübingen, Germany,
| | | |
Collapse
|
172
|
Congdon EE, Gu J, Sait HBR, Sigurdsson EM. Antibody uptake into neurons occurs primarily via clathrin-dependent Fcγ receptor endocytosis and is a prerequisite for acute tau protein clearance. J Biol Chem 2013; 288:35452-65. [PMID: 24163366 DOI: 10.1074/jbc.m113.491001] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tau immunotherapy is effective in transgenic mice, but the mechanisms of Tau clearance are not well known. To this end, Tau antibody uptake was analyzed in brain slice cultures and primary neurons. Internalization was rapid (<1 h), saturable, and substantial compared with control mouse IgG. Furthermore, temperature reduction to 4 °C, an excess of unlabeled mouse IgG, or an excess of Tau antibodies reduced uptake in slices by 63, 41, and 62%, respectively (p = 0.002, 0.04, and 0.005). Uptake strongly correlated with total and insoluble Tau levels (r(2) = 0.77 and 0.87 and p = 0.002 and 0.0002), suggesting that Tau aggregates influence antibody internalization and/or retention within neurons. Inhibiting phagocytosis did not reduce uptake in slices or neuronal cultures, indicating limited microglial involvement. In contrast, clathrin-specific inhibitors reduced uptake in neurons (≤ 78%, p < 0.0001) and slices (≤ 35%, p = 0.03), demonstrating receptor-mediated endocytosis as the primary uptake pathway. Fluid phase endocytosis accounted for the remainder of antibody uptake in primary neurons, based on co-staining with internalized dextran. The receptor-mediated uptake is to a large extent via low affinity FcγII/III receptors and can be blocked in slices (43%, p = 0.04) and neurons (53%, p = 0.008) with an antibody against these receptors. Importantly, antibody internalization appears to be necessary for Tau reduction in primary neurons. Overall, these findings clarify that Tau antibody uptake is primarily receptor-mediated, that these antibodies are mainly found in neurons with Tau aggregates, and that their intracellular interaction leads to clearance of Tau pathology, all of which have major implications for therapeutic development of this approach.
Collapse
|
173
|
α-Synuclein vaccination prevents the accumulation of parkinson disease-like pathologic inclusions in striatum in association with regulatory T cell recruitment in a rat model. J Neuropathol Exp Neurol 2013; 72:624-45. [PMID: 23771222 DOI: 10.1097/nen.0b013e31829768d2] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human leukocyte antigen-DR induction and lymphocyte infiltrates in the brains of patients with Parkinson disease (PD) and the presence in serum of α-synuclein (α-syn)-specific antibodies suggest that the peripheral immune system may have an active role in the progression of PD. We designed a vaccination strategy to attempt to control these processes and mediate protection against disease progression in a rat PD model. Using a recombinant adeno-associated viral vector, we unilaterally overexpressed human α-syn in the rat substantia nigra to induce a progressive neuropathologic process. Prior to stereotactic delivery of the viral vector, animals were vaccinated with recombinant α-syn (asyn). This resulted in a high-titer anti-α-syn antibody response on α-syn overexpression; the accumulation of CD4-positive, MHC II-positive ramified microglia in the substantia nigra; long-lasting infiltration of CD4-positive, Foxp3-positive cells throughout the nigrostriatal system; and fewer pathologic aggregates in the striatum versus control animals that had received a mock vaccine. A long-term increase in GDNF levels in the striatum and IgG deposition in α-syn-overexpressing cells and neurites in the substantia nigra were also observed. Together, these results suggest that a protective vaccination strategy results in induction of regulatory T cells and distinctly activated microglia, and that this can induce immune tolerance against α-syn.
Collapse
|
174
|
MHCII is required for α-synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J Neurosci 2013; 33:9592-600. [PMID: 23739956 DOI: 10.1523/jneurosci.5610-12.2013] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Accumulation of α-synuclein (α-syn) in the brain is a core feature of Parkinson disease (PD) and leads to microglial activation, production of inflammatory cytokines and chemokines, T-cell infiltration, and neurodegeneration. Here, we have used both an in vivo mouse model induced by viral overexpression of α-syn as well as in vitro systems to study the role of the MHCII complex in α-syn-induced neuroinflammation and neurodegeneration. We find that in vivo, expression of full-length human α-syn causes striking induction of MHCII expression by microglia, while knock-out of MHCII prevents α-syn-induced microglial activation, antigen presentation, IgG deposition, and the degeneration of dopaminergic neurons. In vitro, treatment of microglia with aggregated α-syn leads to activation of antigen processing and presentation of antigen sufficient to drive CD4 T-cell proliferation and to trigger cytokine release. These results indicate a central role for microglial MHCII in the activation of both the innate and adaptive immune responses to α-syn in PD and suggest that the MHCII signaling complex may be a target of neuroprotective therapies for the disease.
Collapse
|
175
|
Phosphodiesterases: Regulators of cyclic nucleotide signals and novel molecular target for movement disorders. Eur J Pharmacol 2013; 714:486-97. [PMID: 23850946 DOI: 10.1016/j.ejphar.2013.06.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 06/16/2013] [Accepted: 06/21/2013] [Indexed: 12/21/2022]
Abstract
Movement disorders rank among the most common neurological disorders. During the last two decades substantial progress has been made in understanding of the pathological basis of these disorders. Although, several mechanisms have been proposed, downregulation of cyclic nucleotide mediated signaling cascade has consistently been shown to contribute to the striatal dysfunctioning as seen in movement disorders. Thus, counteracting dysregulated cyclic nucleotide signaling has been considered to be beneficial in movement disorders. Cyclic nucleotide phosphodiesterases (PDEs) are the enzymes responsible for the breakdown of cyclic nucleotides and upregulation in PDE activity has been reported in various movement disorders. Thus, PDE inhibition is considered to be a novel strategy to restore cerebral cyclic nucleotide levels and their downstream signalling cascade. Indeed, various PDE inhibitors have been tested pre-clinically and were reported to be neuroprotective in various neurodegenerative disorders associated with movement disabilities. In this review, we have discussed a putative role of PDE inhibitors in movement disorders and associated abnormalities.
Collapse
|
176
|
Mosley RL, Hutter-Saunders JA, Stone DK, Gendelman HE. Inflammation and adaptive immunity in Parkinson's disease. Cold Spring Harb Perspect Med 2013; 2:a009381. [PMID: 22315722 DOI: 10.1101/cshperspect.a009381] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The immune system is designed to protect the host from infection and injury. However, when an adaptive immune response continues unchecked in the brain, the proinflammatory innate microglial response leads to the accumulation of neurotoxins and eventual neurodegeneration. What drives such responses are misfolded and nitrated proteins. Indeed, the antigen in Parkinson's disease (PD) is an aberrant self-protein, although the adaptive immune responses are remarkably similar in a range of diseases. Ingress of lymphocytes and chronic activation of glial cells directly affect neurodegeneration. With this understanding, new therapies aimed at modulating the immune system's response during PD could lead to decreased neuronal loss and improved clinical outcomes for disease.
Collapse
Affiliation(s)
- R Lee Mosley
- Movement Disorders Program, Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | |
Collapse
|
177
|
Chang C, Lang H, Geng N, Wang J, Li N, Wang X. Exosomes of BV-2 cells induced by alpha-synuclein: important mediator of neurodegeneration in PD. Neurosci Lett 2013; 548:190-5. [PMID: 23792198 DOI: 10.1016/j.neulet.2013.06.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 01/12/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease. Alpha-synuclein aggregation, which can activate microglia to enhance its dopaminergic neurotoxicity, plays a central role in the progression of PD. However the mechanism is still unclear. To investigate how alpha-synuclein affects the neuron, exosomes were derived from alpha-synuclein treated mouse microglia cell line BV-2 cells by differential centrifugation and ultracentrifugation. We found that alpha-synuclein can induce an increase of exosomal secretion by microglia. These activated exosomes expressed a high level of MHC class II molecules and membrane TNF-α. In addition, the activated exosomes cause increased apoptosis. Exosomes secreted from activated microglias might be important mediator of alpha-synuclein-induced neurodegeneration in PD.
Collapse
Affiliation(s)
- Chongwang Chang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, PR China
| | | | | | | | | | | |
Collapse
|
178
|
Targeting microglial K(ATP) channels to treat neurodegenerative diseases: a mitochondrial issue. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:194546. [PMID: 23844272 PMCID: PMC3697773 DOI: 10.1155/2013/194546] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/26/2013] [Accepted: 05/08/2013] [Indexed: 12/11/2022]
Abstract
Neurodegeneration is a complex process involving different cell types and neurotransmitters. A common characteristic of neurodegenerative disorders is the occurrence of a neuroinflammatory reaction in which cellular processes involving glial cells, mainly microglia and astrocytes, are activated in response to neuronal death. Microglia do not constitute a unique cell population but rather present a range of phenotypes closely related to the evolution of neurodegeneration. In a dynamic equilibrium with the lesion microenvironment, microglia phenotypes cover from a proinflammatory activation state to a neurotrophic one directly involved in cell repair and extracellular matrix remodeling. At each moment, the microglial phenotype is likely to depend on the diversity of signals from the environment and of its response capacity. As a consequence, microglia present a high energy demand, for which the mitochondria activity determines the microglia participation in the neurodegenerative process. As such, modulation of microglia activity by controlling microglia mitochondrial activity constitutes an innovative approach to interfere in the neurodegenerative process. In this review, we discuss the mitochondrial KATP channel as a new target to control microglia activity, avoid its toxic phenotype, and facilitate a positive disease outcome.
Collapse
|
179
|
Chung JY, Park HR, Lee SJ, Lee SH, Kim JS, Jung YS, Hwang SH, Ha NC, Seol WG, Lee J, Park BJ. Elevated TRAF2/6 expression in Parkinson's disease is caused by the loss of Parkin E3 ligase activity. J Transl Med 2013; 93:663-76. [PMID: 23608757 DOI: 10.1038/labinvest.2013.60] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Parkinson's disease (PD) is the second leading neurodegenerative disease, and is known to be induced by environmental factors or genetic mutations. Among the verified genetic mutations of PD, Parkin, isolated from the PARK2 locus, shows an autosomal recessive inheritance pattern and is known to be an E3 ligase. However, the physiological target of Parkin and the molecular mechanism of Parkin-deficiency-induced PD have not been clearly demonstrated until now. It has recently been proposed that inflammation, suggesting as a causal factor for PD, is enhanced by Parkin deficiency. Thus, we examined the relationship between inflammation-related factors and Parkin. Here, we provide the evidence that Parkin suppresses inflammation and cytokine-induced cell death by promoting the proteasomal degradation of TRAF2/6 (TNF-α receptor-associated factor 2/6). Overexpression of Parkin can reduce the half-lives of TRAF2 and TRAF6, whereas si-Parkin can extend them. However, mutant Parkins did not alter the expression of TRAF2/6. Thus, loss of Parkin enhances sensitivity to TNF-α- or IL-1β-induced JNK activation and NF-κB activation. Indeed, si-Parkin-induced apoptosis is suppressed by the knockdown of TRAF6 or TRAF2. We also observed elevated expression levels of TRAF6 and a reduction of IκB in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced PD mouse model. Moreover, elevated expression levels or aggregation of TRAF6 were detected in approximately half of the human PD tissues (7/15 cases) and 2 cases, respectively. In addition, TRAF6 and Parkin expression levels show a reverse relationship in human PD tissues. Our results strongly suggest that the reduction of Parkin or overexpression of TRAF2/6 by chronic inflammation would be the reason for occurrence of PD.
Collapse
Affiliation(s)
- Ji-Yun Chung
- Department of Molecular Biology, College of Natural Science, Pusan National University, Pusan, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Sanchez-Guajardo V, Barnum C, Tansey M, Romero-Ramos M. Neuroimmunological processes in Parkinson's disease and their relation to α-synuclein: microglia as the referee between neuronal processes and peripheral immunity. ASN Neuro 2013; 5:113-39. [PMID: 23506036 PMCID: PMC3639751 DOI: 10.1042/an20120066] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 03/15/2013] [Accepted: 03/19/2013] [Indexed: 12/15/2022] Open
Abstract
The role of neuroinflammation and the adaptive immune system in PD (Parkinson's disease) has been the subject of intense investigation in recent years, both in animal models of parkinsonism and in post-mortem PD brains. However, how these processes relate to and modulate α-syn (α-synuclein) pathology and microglia activation is still poorly understood. Specifically, how the peripheral immune system interacts, regulates and/or is induced by neuroinflammatory processes taking place during PD is still undetermined. We present herein a comprehensive review of the features and impact that neuroinflamation has on neurodegeneration in different animal models of nigral cell death, how this neuroinflammation relates to microglia activation and the way microglia respond to α-syn in vivo. We also discuss a possible role for the peripheral immune system in animal models of parkinsonism, how these findings relate to the state of microglia activation observed in these animal models and how these findings compare with what has been observed in humans with PD. Together, the available data points to the need for development of dual therapeutic strategies that modulate microglia activation to change not only the way microglia interact with the peripheral immune system, but also to modulate the manner in which microglia respond to encounters with α-syn. Lastly, we discuss the immune-modulatory strategies currently under investigation in animal models of parkinsonism and the degree to which one might expect their outcomes to translate faithfully to a clinical setting.
Collapse
Key Words
- lymphocytes
- m1/m2 phenotype
- microglia
- neuroinflammation
- parkinson’s disease
- α-synuclein
- 6-ohda, 6-hydroxydopamine
- ad, alzheimer’s disease
- apc, antigen-presenting cell
- α-syn, α-synuclein
- bbb, brain–blood barrier
- bcg, bacille calmette–guérin
- bm, bone marrow
- cfa, complete freund’s adjuvant
- cm, conditioned media
- cns, central nervous system
- cox, cyclooxygenase
- cr, complement receptor
- csf, cerebrospinal fluid
- da, dopamine
- eae, experimental autoimmune encephalomyelitis
- ga, galatiramer acetate
- gdnf, glial-derived neurotrophic factor
- gfp, green fluorescent protein
- hla-dr, human leucocyte antigen type dr
- ifnγ, interferon γ
- igg, immunoglobulin g
- il, interleukin
- inos, inducible nitric oxide synthase
- lamp, lysosome-associated membrane protein
- lb, lewy body
- lps, lipopolysaccharide
- mhc, major histocompatibility complex
- mptp, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- nfκb, nuclear factor κb
- nk, natural killer
- no, nitric oxide
- pd, parkinson’s disease
- pet, positron-emission tomography
- prp, prion protein
- raav, recombinant adeno-associated virus
- rns, reactive nitrogen species
- ros, reactive oxygen species
- sn, substantia nigra
- snp, single nucleotide polymorphism
- tcr, t-cell receptor
- tgfβ, tumour growth factor β
- th, tyrosine hydroxylase
- th1, t helper 1
- tlr, toll-like receptor
- tnf, tumour necrosis factor
- treg, regulatory t-cell
- vip, vasoactive intestinal peptide
- wt, wild-type
Collapse
Affiliation(s)
- Vanesa Sanchez-Guajardo
- *CNS Disease Modeling Group, Department of Biomedicine, Ole Worms Allé 3,
Aarhus University, DK-8000 Aarhus C, Denmark
| | - Christopher J. Barnum
- †Department of Physiology, Emory University, School of Medicine, Atlanta, GA
30233, U.S.A
| | - Malú G. Tansey
- †Department of Physiology, Emory University, School of Medicine, Atlanta, GA
30233, U.S.A
| | - Marina Romero-Ramos
- *CNS Disease Modeling Group, Department of Biomedicine, Ole Worms Allé 3,
Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
181
|
Nasal inoculation with α-synuclein aggregates evokes rigidity, locomotor deficits and immunity to such misfolded species as well as dopamine. Behav Brain Res 2013; 243:205-12. [DOI: 10.1016/j.bbr.2013.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/06/2013] [Accepted: 01/10/2013] [Indexed: 12/26/2022]
|
182
|
Abstract
α-Synuclein (AS)-positive inclusions are the pathological hallmark of Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), all belonging to the category of α-synucleinopathies. α-Synucleinopathies represent progressive neurodegenerative disorders characterised by increasing incidences in the population over the age of 65. The relevance of glial reactivity and dysfunction in α-synucleinopathies is highlighted by numerous experimental evidences. Glial AS inclusion pathology is prominent in oligodendroglia of MSA (glial cytoplasmic inclusions) and is a common finding in astroglial cells of PD and DLB, resulting in specific dysfunctional responses. Involvement of AS-dependent astroglial and microglial activation in neurodegenerative mechanisms, and therefore in disease initiation and progression, has been suggested. The aim of this review is to summarise and discuss the multifaceted responses of glial cells in α-synucleinopathies. The beneficial, as well as detrimental, effects of glial cells on neuronal viability are taken into consideration to draw an integrated picture of glial roles in α-synucleinopathies. Furthermore, an overview on therapeutic approaches outlines the difficulties of translating promising experimental studies into successful clinical trials targeting candidate glial pathomechanisms.
Collapse
Affiliation(s)
- Lisa Fellner
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| |
Collapse
|
183
|
Lu M, Hu G. Targeting metabolic inflammation in Parkinson's disease: implications for prospective therapeutic strategies. Clin Exp Pharmacol Physiol 2013; 39:577-85. [PMID: 22126374 DOI: 10.1111/j.1440-1681.2011.05650.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Parkinson's disease (PD) is one of the most common neurodegenerative disorders and is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although the aetiology of PD has not been clarified as yet, it is believed that ageing, diet, diabetes and adiposity are associated with PD. 2. Type 2 diabetes and lipid abnormalities share multiple common pathophysiological mechanisms with PD. In particular, inflammation plays a critical role in the destruction of both pancreatic islet β-cells and dopaminergic neurons in the substantia nigra. Emerging evidence indicates that dysfunctions of energy metabolism evoke metabolic inflammation, which differs to the narrow concept of inflammation, participating in systemic pathological processes such as neurodegenerative disease and diabetes. 3. The brain is considered an immunologically privileged organ, free from immune reactions, because it is protected by the blood-brain barrier (BBB). However, studies have shown that there is gradual impairment of neurovascular function with ageing and in neurodegenerative disorders, resulting in abnormal states, including increased BBB permeability. Consequently, harmful elements that would not normally be able to cross the BBB, such as pro-inflammatory factors, reactive oxygen species and neurotoxins, infiltrate into the brain, triggering neural injury. 4. Currently, the drugs available for the treatment of PD only ameliorate the symptoms of the disease. Therapeutic strategies aimed at stopping or modifying disease progression are still being sought. Most recent studies suggest that both central and peripheral inflammation may be dysregulated in PD. Therefore, therapeutic strategies aimed at modulating systemic inflammatory reactions or energy metabolism may represent a goal in neuroprotection in PD.
Collapse
Affiliation(s)
- Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | | |
Collapse
|
184
|
Pradhan S, Andreasson K. Commentary: Progressive inflammation as a contributing factor to early development of Parkinson's disease. Exp Neurol 2013; 241:148-55. [DOI: 10.1016/j.expneurol.2012.12.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/08/2012] [Accepted: 12/13/2012] [Indexed: 11/29/2022]
|
185
|
Wang V, Chuang TC, Kao MC, Shan DE, Soong BW, Shieh TM. Polymorphic Ala-allele carriers at residue 1170 of HER2 associated with Parkinson's disease. J Neurol Sci 2013; 325:115-9. [DOI: 10.1016/j.jns.2012.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 12/16/2012] [Accepted: 12/18/2012] [Indexed: 02/06/2023]
|
186
|
Kannarkat GT, Boss JM, Tansey MG. The role of innate and adaptive immunity in Parkinson's disease. JOURNAL OF PARKINSON'S DISEASE 2013; 3:493-514. [PMID: 24275605 PMCID: PMC4102262 DOI: 10.3233/jpd-130250] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, inflammation has become implicated as a major pathogenic factor in the onset and progression of Parkinson's disease. Understanding the precise role for inflammation in PD will likely lead to understanding of how sporadic disease arises. In vivo evidence for inflammation in PD includes microglial activation, increased expression of inflammatory genes in the periphery and in the central nervous system (CNS), infiltration of peripheral immune cells into the CNS, and altered composition and phenotype of peripheral immune cells. These findings are recapitulated in various animal models of PD and are reviewed herein. Furthermore, we examine the potential relevance of PD-linked genetic mutations to altered immune function and the extent to which environmental exposures that recapitulate these phenotypes, which may lead to sporadic PD through similar mechanisms. Given the implications of immune system involvement on disease progression, we conclude by reviewing the evidence supporting the potential efficacy of immunomodulatory therapies in PD prevention or treatment. There is a clear need for additional research to clarify the role of immunity and inflammation in this chronic, neurodegenerative disease.
Collapse
Affiliation(s)
- George T Kannarkat
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
187
|
Song IU, Kim YD, Cho HJ, Chung SW. Is neuroinflammation involved in the development of dementia in patients with Parkinson's disease? Intern Med 2013; 52:1787-92. [PMID: 23955613 DOI: 10.2169/internalmedicine.52.0474] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE High-sensitivity C-reactive protein (hs-CRP) is an extremely sensitive systemic marker of inflammation and tissue damage, and increased levels of hs-CRP are strongly associated with inflammatory reactions. Microglia-mediated neuroinflammation has been hypothesized to play an important role in the pathogenesis of idiopathic Parkinson's disease (PD). However, the clinical value of the hs-CRP level in patients with PD is poorly defined. Therefore, we conducted this study to analyze the differences in the hs-CRP levels in PD patients with and without dementia. METHODS We examined 72 PD patients without dementia (PDwoD) and 45 PD patients with dementia (PDD), as well as 84 control subjects. We investigated the differences in the hs-CRP and fibrinogen levels between these three groups. RESULTS The mean hs-CRP and fibrinogen values were not significantly different between the PDwoD and PDD groups; however, these two groups had significantly higher mean hs-CRP and fibrinogen values than the control group. CONCLUSION It is known that inflammation plays a role in the pathogenesis of PD and dementia. However, based on the results of this study, we cautiously speculate that although neuroinflammation plays a role in the development of neurodegenerative diseases, including PD and dementia, it may be unrelated to the pathogenesis of dementia in patients with PD.
Collapse
Affiliation(s)
- In-Uk Song
- Department of Neurology, College of Medicine, The Catholic University of Korea, Korea
| | | | | | | |
Collapse
|
188
|
Protein clearance mechanisms of alpha-synuclein and amyloid-Beta in lewy body disorders. Int J Alzheimers Dis 2012; 2012:391438. [PMID: 23133788 PMCID: PMC3485523 DOI: 10.1155/2012/391438] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/30/2012] [Indexed: 12/30/2022] Open
Abstract
Protein clearance is critical for the maintenance of the integrity of neuronal cells, and there is accumulating evidence that in most-if not all-neurodegenerative disorders, impaired protein clearance fundamentally contributes to functional and structural alterations eventually leading to clinical symptoms. Dysfunction of protein clearance leads to intra- and extraneuronal accumulation of misfolded proteins and aggregates. The pathological hallmark of Lewy body disorders (LBDs) is the abnormal accumulation of misfolded proteins such as alpha-synuclein (Asyn) and amyloid-beta (Abeta) in a specific subset of neurons, which in turn has been related to deficits in protein clearance. In this paper we will highlight common intraneuronal (including autophagy and unfolded protein stress response) and extraneuronal (including interaction of neurons with astrocytes and microglia, phagocytic clearance, autoimmunity, cerebrospinal fluid transport, and transport across the blood-brain barrier) protein clearance mechanisms, which may be altered across the spectrum of LBDs. A better understanding of the pathways underlying protein clearance-in particular of Asyn and Abeta-in LBDs may result in the identification of novel biomarkers for disease onset and progression and of new therapeutic targets.
Collapse
|
189
|
Dobbs RJ, Charlett A, Dobbs SM, Weller C, A Ibrahim MA, Iguodala O, Smee C, Plant JM, Lawson AJ, Taylor D, Bjarnason I. Leukocyte-subset counts in idiopathic parkinsonism provide clues to a pathogenic pathway involving small intestinal bacterial overgrowth. A surveillance study. Gut Pathog 2012; 4:12. [PMID: 23083400 PMCID: PMC3500215 DOI: 10.1186/1757-4749-4-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/25/2012] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED BACKGROUND Following Helicobacter pylori eradication in idiopathic parkinsonism (IP), hypokinesia improved but flexor-rigidity increased. Small intestinal bacterial-overgrowth (SIBO) is a candidate driver of the rigidity: hydrogen-breath-test-positivity is common in IP and case histories suggest that Helicobacter keeps SIBO at bay. METHODS In a surveillance study, we explore relationships of IP-facets to peripheral immune/inflammatory-activation, in light of presence/absence of Helicobacter infection (urea-breath- and/or stool-antigen-test: positivity confirmed by gastric-biopsy) and hydrogen-breath-test status for SIBO (positivity: >20 ppm increment, 2 consecutive 15-min readings, within 2h of 25G lactulose). We question whether any relationships found between facets and blood leukocyte subset counts stand in patients free from anti-parkinsonian drugs, and are robust enough to defy fluctuations in performance consequent on short t½ therapy. RESULTS Of 51 IP-probands, 36 had current or past Helicobacter infection on entry, 25 having undergone successful eradication (median 3.4 years before). Thirty-four were hydrogen-breath-test-positive initially, 42 at sometime (343 tests) during surveillance (2.8 years). Hydrogen-breath-test-positivity was associated inversely with Helicobacter-positivity (OR 0.20 (95% CI 0.04, 0.99), p<0.05).In 38 patients (untreated (17) or on stable long-t½ IP-medication), the higher the natural-killer count, the shorter stride, slower gait and greater flexor-rigidity (by mean 49 (14, 85) mm, 54 (3, 104) mm.s-1, 89 (2, 177) Nm.10-3, per 100 cells.μl-1 increment, p=0.007, 0.04 & 0.04 respectively, adjusted for patient characteristics). T-helper count was inversely associated with flexor-rigidity before (p=0.01) and after adjustment for natural-killer count (-36(-63, -10) Nm.10-3 per 100 cells.μl-1, p=0.007). Neutrophil count was inversely associated with tremor (visual analogue scale, p=0.01). Effect-sizes were independent of IP-medication, and not masked by including 13 patients receiving levodopa (except natural-killer count on flexor-rigidity). Cellular associations held after allowing for potentially confounding effect of hydrogen-breath-test or Helicobacter status. Moreover, additional reduction in stride and speed (68 (24, 112) mm & 103 (38, 168) mm.s-1, each p=0.002) was seen with Helicobacter-positivity. Hydrogen-breath-test-positivity, itself, was associated with higher natural-killer and T-helper counts, lower neutrophils (p=0.005, 0.02 & 0.008). CONCLUSION We propose a rigidity-associated subordinate pathway, flagged by a higher natural-killer count, tempered by a higher T-helper, against which Helicobacter protects by keeping SIBO at bay.
Collapse
Affiliation(s)
- R John Dobbs
- Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
- The Maudsley Hospital, Denmark Hill, London, SE5 8AZ, UK
- Gastroenterology, King’s College Hospital, Bessemer Rd, London, SE5 9PJ, UK
| | - André Charlett
- Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
- Statistics Unit, Health Protection Agency, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - Sylvia M Dobbs
- Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
- The Maudsley Hospital, Denmark Hill, London, SE5 8AZ, UK
- Gastroenterology, King’s College Hospital, Bessemer Rd, London, SE5 9PJ, UK
| | - Clive Weller
- Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | | | - Owens Iguodala
- The Maudsley Hospital, Denmark Hill, London, SE5 8AZ, UK
| | - Cori Smee
- The Maudsley Hospital, Denmark Hill, London, SE5 8AZ, UK
| | | | - Andrew J Lawson
- Laboratory of Gastrointestinal Pathogens, Health Protection Agency, London, NW9 5EQ, UK
| | - David Taylor
- Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
- The Maudsley Hospital, Denmark Hill, London, SE5 8AZ, UK
| | - Ingvar Bjarnason
- Gastroenterology, King’s College Hospital, Bessemer Rd, London, SE5 9PJ, UK
| |
Collapse
|
190
|
Impact of intravenous immunoglobulin on the dopaminergic system and immune response in the acute MPTP mouse model of Parkinson's disease. J Neuroinflammation 2012; 9:234. [PMID: 23046563 PMCID: PMC3520736 DOI: 10.1186/1742-2094-9-234] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/16/2012] [Indexed: 01/19/2023] Open
Abstract
Intravenous immunoglobulin (IVIg) is a blood-derived product, used for the treatment of immunodeficiency and autoimmune diseases. Since a range of immunotherapies have recently been proposed as a therapeutic strategy for Parkinson’s disease (PD), we investigated the effects of an IVIg treatment in a neurotoxin-induced animal model of PD. Mice received four injections of MPTP (15 mg/kg) at 2-hour intervals followed by a 14-day IVIg treatment, which induced key immune-related changes such as increased regulatory T-cell population and decreased CD4+/CD8+ ratio. The MPTP treatment induced significant 80% and 84% decreases of striatal dopamine concentrations (P < 0.01), as well as 33% and 40% reductions in the number of nigral dopaminergic neurons (P < 0.001) in controls and IVIg-treated mice, respectively. Two-way analyses of variance further revealed lower striatal tyrosine hydroxylase protein levels, striatal homovanillic acid concentrations and nigral dopaminergic neurons (P < 0.05) in IVIg-treated animals. Collectively, our results fail to support a neurorestorative effect of IVIg on the nigrostriatal system in the MPTP-treated mice and even suggest a trend toward a detrimental effect of IVIg on the dopaminergic system. These preclinical data underscore the need to proceed with caution before initiating clinical trials of IVIg in PD patients.
Collapse
|
191
|
Gruden MA, Yanamandra K, Kucheryanu VG, Bocharova OR, Sherstnev VV, Morozova-Roche LA, Sewell RDE. Correlation between protective immunity to α-synuclein aggregates, oxidative stress and inflammation. Neuroimmunomodulation 2012; 19:334-342. [PMID: 22986484 DOI: 10.1159/000341400] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/15/2012] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Protein aggregation leading to central amyloid deposition is implicated in Parkinson's disease (PD). During disease progression, inflammation and oxidative stress may well invoke humoral immunity against pathological aggregates of PD-associated α-synuclein. The aim was to investigate any possible concurrence between autoimmune responses to α-synuclein monomers, oligomers or fibrils with oxidative stress and inflammation. METHODS The formation of α-synuclein amyloid species was assessed by thioflavin-T assay and atomic force microscopy was employed to confirm their morphology. Serum autoantibody titers to α-synuclein conformations were determined by ELISA. Enzyme activity and concentrations of oxidative stress/inflammatory indicators were evaluated by enzyme and ELISA protocols. RESULTS In PD patient sera, a differential increase in autoantibody titers to α-synuclein monomers, toxic oligomers or fibrils was associated with boosted levels of the pro-inflammatory cytokine interleukin-6 and tumour necrosis factor-α, but a decrease in interferon-γ concentration. In addition, levels of malondialdehyde were elevated whilst those of glutathione were reduced along with decrements in the activity of the antioxidants: superoxide dismutase, catalase and glutathione transferase. CONCLUSIONS It is hypothesized that the generation of α-synuclein amyloid aggregates allied with oxidative stress and inflammatory reactions may invoke humoral immunity protecting against dopaminergic neuronal death. Hence, humoral immunity is a common integrative factor throughout PD progression which is directed towards prevention of further neurodegeneration, so potential treatment strategies should attempt to maintain PD patient immune status.
Collapse
|
192
|
Depboylu C, Stricker S, Ghobril JP, Oertel WH, Priller J, Höglinger GU. Brain-resident microglia predominate over infiltrating myeloid cells in activation, phagocytosis and interaction with T-lymphocytes in the MPTP mouse model of Parkinson disease. Exp Neurol 2012; 238:183-91. [PMID: 22964486 DOI: 10.1016/j.expneurol.2012.08.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/17/2012] [Accepted: 08/21/2012] [Indexed: 11/16/2022]
Abstract
Parkinson disease (PD) is characterized by dopaminergic neurodegeneration in the substantia nigra (SN). Recent evidence suggests that innate and adaptive immune responses can influence dopaminergic cell death in animal models of PD. However, the precise role of mononuclear phagocytes, key players in damaged tissue clearance and cross-talk with cells of adaptive immune system, remains open in PD. Mononuclear phagocytes in the brain occur as brain-resident microglia and as brain-infiltrating myeloid cells. To elucidate their differential contribution in the uptake of dopaminergic cell debris and antigen presentation capacity, we labeled nigral dopaminergic neurons retrogradely with inert rhodamine-conjugated latex retrobeads before inducing their degeneration by subchronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration. We used green fluorescent protein (GFP)-expressing bone marrow chimeric mice to differentiate brain-infiltrating from brain-resident myeloid cells. We found that half of both endogenous (GFP-) and exogenous (GFP+) microglia (Iba1+) in the SN incorporated the tracer from degenerating dopaminergic neurons 1d after MPTP intoxication. In absolute numbers, endogenous microglia were much more activated to macrophages compared to exogenous myeloid cells at 1d after MPTP. Mainly the endogenous, tracer-phagocytosing microglia expressed the major histocompatibility complex (MHC) class II molecule for antigen presentation. Additionally, T-lymphocytes (Iba1-/GFP+/CD3+), which infiltrate the MPTP-lesioned SN, were mainly in direct contact with MHCII+ endogenous microglia. Our data suggest that brain-resident microglia are predominantly implicated in the removal of dopaminergic cell debris and the cross-talk with infiltrating T-lymphocytes in the SN in the MPTP mouse model of PD.
Collapse
Affiliation(s)
- Candan Depboylu
- Department of Neurology and Laboratory of Experimental Neurology, Philipps University, Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
193
|
IgG Leakage May Contribute to Neuronal Dysfunction in Drug-Refractory Epilepsies With Blood-Brain Barrier Disruption. J Neuropathol Exp Neurol 2012; 71:826-38. [DOI: 10.1097/nen.0b013e31826809a6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
194
|
Benkler M, Agmon-Levin N, Hassin-Baer S, Cohen OS, Ortega-Hernandez OD, Levy A, Moscavitch SD, Szyper-Kravitz M, Damianovich M, Blank M, Chapman J, Shoenfeld Y. Immunology, autoimmunity, and autoantibodies in Parkinson's disease. Clin Rev Allergy Immunol 2012; 42:164-71. [PMID: 21234712 DOI: 10.1007/s12016-010-8242-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent revelations of immune alterations in Parkinson's disease have led to the convergence that an autoimmune mechanism may play a role in the etiopathogenesis of this neurodegenerative disease. In the current study, 77 Parkinson's disease patients and 77 matched healthy controls were analyzed for the presence of seven autoantibodies previously found to be associated with central nervous system manifestations namely: antineuronal-cells, anti-brain lysate, anti-dsDNA, anti-phosphatidylserine, anti-cardiolipin, anti-serotonin, and anti-melanocytes antibodies. Patients underwent systematic assessments of demographics, clinical, and biochemical manifestations. Three autoantibodies were found to be more prevalent among Parkinson's disease patients (antineuronal cells10.3% vs. 1.3%, p = 0.017; anti-brain lysate 9.1% vs. 1.3%, p = 0.032; anti-dsDNA 10.3% vs. 2.6%, p = 0.049). Clinical manifestations of Parkinson's disease, particularly dyskinesia and depression, were found to be associated with the presence of these autoantibodies.
Collapse
Affiliation(s)
- Michal Benkler
- Faculty of Health Sciences, Medical School, Ben-Gurion University of the Negev, Beer-Sheba, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Ahmed I, Tamouza R, Delord M, Krishnamoorthy R, Tzourio C, Mulot C, Nacfer M, Lambert JC, Beaune P, Laurent-Puig P, Loriot MA, Charron D, Elbaz A. Association between Parkinson's disease and the HLA-DRB1 locus. Mov Disord 2012; 27:1104-10. [PMID: 22807207 DOI: 10.1002/mds.25035] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/27/2012] [Accepted: 04/08/2012] [Indexed: 12/31/2022] Open
Abstract
Two genome-wide association studies (GWASs) recently highlighted the HLA-DRA and HLA-DRB5 genes as associated with Parkinson disease (PD). However, because HLA-DRA displays a low level of polymorphisms and HLA-DRB5 is only present in approximately 20% of the population, these findings are difficult to interpret. Our aims were: (1) to replicate and investigate in greater detail the association between PD and the HLA-DR region; (2) to identify PD-associated HLA alleles; and (3) to perform a meta-analysis of our top finding. As part of 2 French population-based case-control studies of PD including highly ethnically homogeneous participants, we investigated the association between PD and 51 Single-nucleotide polymorphisms (SNPs) in the HLA-DR region. HLA-DRB1 alleles were imputed using the HLA(*) IMP software. HLA typing was performed in a subsample of the participants. We performed a meta-analysis of our top finding based on 4 GWAS data sets. Among 499 cases and 1123 controls, after correction for multiple testing, we found an association with rs660895 (OR/minor allele, 0.70; 95% CI, 0.57-0.87) within the HLA-DRB1 gene, which encodes the most polymorphic HLA-DR chain (DRβ). A meta-analysis (7996 cases, 36455 controls) confirmed this association (OR, 0.86; 95% CI, 0.82-0.91; P < .0001). SNP-based imputation of HLA alleles showed an inverse association between PD and the HLA-DRB1(*) 04 allele. We replicated an association between PD and the HLA-DR region and provided further insight into the loci and alleles involved. The highly polymorphic HLA-DRB1 locus contains rs660895, which represents a more legitimate candidate than previous ones. Our finding is in agreement with the hypothesis of an immune component in PD pathophysiology.
Collapse
|
196
|
Sergeyeva TN, Sergeyev VG. Administration of LPS-stimulated autologous macrophages induces α-synuclein aggregation in dopaminergic neurons of rat brain. Bull Exp Biol Med 2012; 150:406-8. [PMID: 22268028 DOI: 10.1007/s10517-011-1153-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Administration of autologous macrophages isolated from the abdominal cavity and stimulated in vitro with bacterial LPS to rats increased blood level of antibodies against α-synuclein. Antibody titer reached its maximum during week 5 of the experiment and exceeded the levels of anti-α-synuclein antibodies appeared in response to transplantation of non-stimulated macrophages. Brain immunohistochemistry showed that additional administration of LPS (250 μg/kg) to animals during week 4 after injection of LPS-stimulated macrophages led to α-synuclein accumulation in 9.4±3.2% dopaminergic neurons of the substantia nigra. These findings attest to induction of humoral immune response to α-synuclein in rats after administration of autologous LPS-stimulated macrophages, which can affect α-synuclein metabolism in dopaminergic neurons of the brain.
Collapse
|
197
|
Koutsilieri E, Lutz MB, Scheller C. Autoimmunity, dendritic cells and relevance for Parkinson's disease. J Neural Transm (Vienna) 2012; 120:75-81. [PMID: 22699458 PMCID: PMC3535404 DOI: 10.1007/s00702-012-0842-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/27/2012] [Indexed: 12/20/2022]
Abstract
Innate and adaptive immune responses in neurodegenerative diseases have become recently a focus of research and discussions. Parkinson’s disease (PD) is a neurodegenerative disorder without known etiopathogenesis. The past decade has generated evidence for an involvement of the immune system in PD pathogenesis. Both inflammatory and autoimmune mechanisms have been recognized and studies have emphasized the role of activated microglia and T-cell infiltration. In this short review, we focus on dendritic cells, on their role in initiation of autoimmune responses, we discuss aspects of neuroinflammation and autoimmunity in PD, and we report new evidence for the involvement of neuromelanin in these processes.
Collapse
Affiliation(s)
- E Koutsilieri
- Institute of Virology and Immunobiology, University of Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany.
| | | | | |
Collapse
|
198
|
Wakabayashi K, Tanji K, Odagiri S, Miki Y, Mori F, Takahashi H. The Lewy body in Parkinson's disease and related neurodegenerative disorders. Mol Neurobiol 2012; 47:495-508. [PMID: 22622968 DOI: 10.1007/s12035-012-8280-y] [Citation(s) in RCA: 278] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/10/2012] [Indexed: 12/20/2022]
Abstract
The histopathological hallmark of Parkinson's disease (PD) is the presence of fibrillar aggregates referred to as Lewy bodies (LBs), in which α-synuclein is a major constituent. Pale bodies, the precursors of LBs, may serve the material for that LBs continue to expand. LBs consist of a heterogeneous mixture of more than 90 molecules, including PD-linked gene products (α-synuclein, DJ-1, LRRK2, parkin, and PINK-1), mitochondria-related proteins, and molecules implicated in the ubiquitin-proteasome system, autophagy, and aggresome formation. LB formation has been considered to be a marker for neuronal degeneration because neuronal loss is found in the predilection sites for LBs. However, recent studies have indicated that nonfibrillar α-synuclein is cytotoxic and that fibrillar aggregates of α-synuclein (LBs and pale bodies) may represent a cytoprotective mechanism in PD.
Collapse
Affiliation(s)
- Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | | | | | | | | | | |
Collapse
|
199
|
Barkholt P, Sanchez-Guajardo V, Kirik D, Romero-Ramos M. Long-term polarization of microglia upon α-synuclein overexpression in nonhuman primates. Neuroscience 2012; 208:85-96. [DOI: 10.1016/j.neuroscience.2012.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/26/2012] [Accepted: 02/02/2012] [Indexed: 12/11/2022]
|
200
|
Huang Y, Halliday GM. Aspects of innate immunity and Parkinson's disease. Front Pharmacol 2012; 3:33. [PMID: 22408621 PMCID: PMC3296959 DOI: 10.3389/fphar.2012.00033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/19/2012] [Indexed: 12/21/2022] Open
Abstract
Genetic studies on PARK genes have identified dysfunction in proteasomal, lysosomal, and mitochondrial enzymes as pathogenic for Parkinson’s disease (PD). We review the role of these and similar enzymes in mediating innate immune signaling. In particular, we have identified that a number of PARK gene products as well as other enzymes have roles in innate immune signaling as well as DNA repair and regulation, ubiquitination, mitochondrial functioning, and synaptic trafficking. PD enzymatic dysfunction is likely to contribute to inadequate innate immune responses to a variety of extra- and intra-cellular stimuli, with a number of the innate immunity related enzymes found in the characteristic Lewy body pathology of PD. The decrease in innate immunity in PD is associated with an increase in markers of adaptive immunity, and recent GWAS studies have identified variants in human leukocyte antigen region as associated with late-onset sporadic PD (Hamza et al., 2010; Hill-Burns et al., 2011). Intriguing new data also suggest that peripheral immune responses may be involved, giving some potential to alleviate such peripheral dysfunction more directly in patients with PD. It is now important to identify the cell type specific immune responses contributing to the initial changes that occur in PD, as well as to the propagating immune responses important for the progression of PD pathology between cells and within the brain. Overall, a complex interplay between different types of immunity appear to be involved in the underlying pathology of PD.
Collapse
Affiliation(s)
- Yue Huang
- Neuroscience Research Australia Sydney, NSW, Australia
| | | |
Collapse
|