151
|
Abstract
The term spreading depolarization (SD) refers to waves of abrupt, sustained mass depolarization in gray matter of the CNS. SD, which spreads from neuron to neuron in affected tissue, is characterized by a rapid near-breakdown of the neuronal transmembrane ion gradients. SD can be induced by hypoxic conditions--such as from ischemia--and facilitates neuronal death in energy-compromised tissue. SD has also been implicated in migraine aura, where SD is assumed to ascend in well-nourished tissue and is typically benign. In addition to these two ends of the "SD continuum," an SD wave can propagate from an energy-depleted tissue into surrounding, well-nourished tissue, as is often the case in stroke and brain trauma. This review presents the neurobiology of SD--its triggers and propagation mechanisms--as well as clinical manifestations of SD, including overlaps and differences between migraine aura and stroke, and recent developments in neuromonitoring aimed at better diagnosis and more targeted treatments.
Collapse
Affiliation(s)
- Jens P Dreier
- Department of Neurology, Charité University Medicine Berlin, 10117 Berlin, Germany; Department of Experimental Neurology, Charité University Medicine Berlin, 10117 Berlin, Germany; Center for Stroke Research, Charité University Medicine Berlin, 10117 Berlin, Germany.
| | - Clemens Reiffurth
- Department of Experimental Neurology, Charité University Medicine Berlin, 10117 Berlin, Germany; Center for Stroke Research, Charité University Medicine Berlin, 10117 Berlin, Germany
| |
Collapse
|
152
|
Zhang XL, Shuttleworth CW, Moskal JR, Stanton PK. Suppression of spreading depolarization and stabilization of dendritic spines by GLYX-13, an NMDA receptor glycine-site functional partial agonist. Exp Neurol 2015; 273:312-21. [PMID: 26244282 DOI: 10.1016/j.expneurol.2015.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 07/14/2015] [Accepted: 07/28/2015] [Indexed: 12/12/2022]
Abstract
Cortical spreading depolarization (SD) is a slow self-propagating wave of mass cellular depolarization in brain tissue, thought to be the underlying cause of migraine scintillating scotoma and aura, and associated with stroke, traumatic brain injury, and termination of status epilepticus. The N-methyl-d-aspartate subtype of glutamate receptor (NMDAR), which gates influx of calcium and is an important trigger of long-term synaptic plasticity, is also a contributor to the initiation and propagation of SD. The current study tested the potential of pharmacological modulation of NMDAR activity through the obligatory co-agonist binding site, to suppress the initiation of SD, and modulate the effects of SD on dendritic spine morphology, in in vitro hippocampal slices. A novel NMDAR functional glycine site partial agonist, GLYX-13, sometimes completely prevented the induction of SD and consistently slowed its rate of propagation. The passage of SD through the hippocampal CA1 region produced a rapid retraction of dendritic spines which reversed after neuronal depolarization had recovered. GLYX-13 improved the rate and extent of return of dendritic spines to their original sizes and locations following SD, suggesting that NMDAR modulators can protect synaptic connections in the brain from structural alterations elicited by SD. These data indicate that NMDAR modulation to renormalize activity may be an effective new treatment strategy for suppression or amelioration of the contribution of SD to short and long-term symptoms of migraine attacks, as well as the effects of SD on tissue damaged by stroke or traumatic brain injury.
Collapse
Affiliation(s)
- Xiao-Lei Zhang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Joseph R Moskal
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
| | - Patric K Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA; Department of Neurology, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
153
|
O'Connor KL, Westover MB, Phillips MT, Iftimia NA, Buckley DA, Ogilvy CS, Shafi MM, Rosenthal ES. High risk for seizures following subarachnoid hemorrhage regardless of referral bias. Neurocrit Care 2015; 21:476-82. [PMID: 24723663 DOI: 10.1007/s12028-014-9974-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND To investigate the frequency, predictors, and clinical impact of electrographic seizures in patients with high clinical or radiologic grade non-traumatic subarachnoid hemorrhage (SAH), independent of referral bias. METHODS We compared rates of electrographic seizures and associated clinical variables and outcomes in patients with high clinical or radiologic grade non-traumatic SAH. Rates of electrographic seizure detection before and after institution of a guideline which made continuous EEG monitoring routine in this population were compared. RESULTS Electrographic seizures occurred in 17.6 % of patients monitored expressly because of clinically suspected subclinical seizures. In unselected patients, seizures still occurred in 9.6 % of all cases, and in 8.6 % of cases in which there was no a priori suspicion of seizures. The first seizure detected occurred 5.4 (IQR 2.9-7.3) days after onset of subarachnoid hemorrhage with three of eight patients (37.5 %) having the first recorded seizure more than 48 h following EEG initiation, and 2/8 (25 %) at more than 72 h following EEG initiation. High clinical grade was associated with poor outcome at time of hospital discharge; electrographic seizures were not associated with poor outcome. CONCLUSIONS Electrographic seizures occur at a relatively high rate in patients with non-traumatic SAH even after accounting for referral bias. The prolonged time to the first detected seizure in this cohort may reflect dynamic clinical features unique to the SAH population.
Collapse
Affiliation(s)
- Kathryn L O'Connor
- Department of Neurology, Massachusetts General Hospital, Lunder 6 Neurosciences ICU, 55 Fruit Street, Boston, MA, 02114, USA,
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Pusic AD, Mitchell HM, Kunkler PE, Klauer N, Kraig RP. Spreading depression transiently disrupts myelin via interferon-gamma signaling. Exp Neurol 2015; 264:43-54. [PMID: 25500111 PMCID: PMC4324018 DOI: 10.1016/j.expneurol.2014.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 01/31/2023]
Abstract
Multiple sclerosis and migraine with aura are clinically correlated and both show imaging changes suggestive of myelin disruption. Furthermore, cortical myelin loss in the cuprizone animal model of multiple sclerosis enhances susceptibility to spreading depression, the likely underlying cause of migraine with aura. Since multiple sclerosis pathology involves inflammatory T cell lymphocyte production of interferon-gamma and a resulting increase in oxidative stress, we tested the hypothesis that spreading depression disrupts myelin through similar signaling pathways. Rat hippocampal slice cultures were initially used to explore myelin loss in spreading depression, since they contain T cells, and allow for controlled tissue microenvironment. These experiments were then translated to the in vivo condition in neocortex. Spreading depression in slice cultures induced significant loss of myelin integrity and myelin basic protein one day later, with gradual recovery by seven days. Myelin basic protein loss was abrogated by T cell depletion, neutralization of interferon-gamma, and pharmacological inhibition of neutral sphingomyelinase-2. Conversely, one day after exposure to interferon-gamma, significant reductions in spreading depression threshold, increases in oxidative stress, and reduced levels of glutathione, an endogenous neutral sphingomyelinase-2 inhibitor, emerged. Similarly, spreading depression triggered significant T cell accumulation, sphingomyelinase activation, increased oxidative stress, and reduction of gray and white matter myelin in vivo. Myelin disruption is involved in spreading depression, thereby providing pathophysiological links between multiple sclerosis and migraine with aura. Myelin disruption may promote spreading depression by enhancing aberrant excitability. Thus, preservation of myelin integrity may provide novel therapeutic targets for migraine with aura.
Collapse
Affiliation(s)
- Aya D Pusic
- Department of Neurology, The University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637-1470, USA; The Committee on Neurobiology, The University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637-1470, USA.
| | - Heidi M Mitchell
- Department of Neurology, The University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637-1470, USA.
| | - Phillip E Kunkler
- Department of Neurology, The University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637-1470, USA.
| | - Neal Klauer
- Department of Neurology, The University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637-1470, USA.
| | - Richard P Kraig
- Department of Neurology, The University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637-1470, USA; The Committee on Neurobiology, The University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637-1470, USA.
| |
Collapse
|
155
|
Bramlett HM, Dietrich WD. Long-Term Consequences of Traumatic Brain Injury: Current Status of Potential Mechanisms of Injury and Neurological Outcomes. J Neurotrauma 2014; 32:1834-48. [PMID: 25158206 DOI: 10.1089/neu.2014.3352] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant clinical problem with few therapeutic interventions successfully translated to the clinic. Increased importance on the progressive, long-term consequences of TBI have been emphasized, both in the experimental and clinical literature. Thus, there is a need for a better understanding of the chronic consequences of TBI, with the ultimate goal of developing novel therapeutic interventions to treat the devastating consequences of brain injury. In models of mild, moderate, and severe TBI, histopathological and behavioral studies have emphasized the progressive nature of the initial traumatic insult and the involvement of multiple pathophysiological mechanisms, including sustained injury cascades leading to prolonged motor and cognitive deficits. Recently, the increased incidence in age-dependent neurodegenerative diseases in this patient population has also been emphasized. Pathomechanisms felt to be active in the acute and long-term consequences of TBI include excitotoxicity, apoptosis, inflammatory events, seizures, demyelination, white matter pathology, as well as decreased neurogenesis. The current article will review many of these pathophysiological mechanisms that may be important targets for limiting the chronic consequences of TBI.
Collapse
Affiliation(s)
- Helen M Bramlett
- The Miami Project to Cure Paralysis/Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis/Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida
| |
Collapse
|
156
|
Keezer MR, Bauer PR, Ferrari MD, Sander JW. The comorbid relationship between migraine and epilepsy: a systematic review and meta-analysis. Eur J Neurol 2014; 22:1038-47. [DOI: 10.1111/ene.12612] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/07/2014] [Indexed: 01/13/2023]
Affiliation(s)
- M. R. Keezer
- NIHR University College London Hospitals Biomedical Research Centre; UCL Institute of Neurology; Queen Square; London UK
| | - P. R. Bauer
- Stichting Epilepsie Instellingen Nederland (SEIN); Heemstede The Netherlands
| | - M. D. Ferrari
- Department of Neurology; Leiden University Medical Centre; Leiden The Netherlands
| | - J. W. Sander
- NIHR University College London Hospitals Biomedical Research Centre; UCL Institute of Neurology; Queen Square; London UK
- Stichting Epilepsie Instellingen Nederland (SEIN); Heemstede The Netherlands
- Epilepsy Society; Chalfont St Peter UK
| |
Collapse
|
157
|
Neonatal dexamethasone accelerates spreading depression in the rat, and antioxidant vitamins counteract this effect. Brain Res 2014; 1591:93-101. [DOI: 10.1016/j.brainres.2014.09.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 12/27/2022]
|
158
|
Ghaemi A, Sajadian A, Khodaie B, Lotfinia AA, Lotfinia M, Aghabarari A, Khaleghi Ghadiri M, Meuth S, Gorji A. Immunomodulatory Effect of Toll-Like Receptor-3 Ligand Poly I:C on Cortical Spreading Depression. Mol Neurobiol 2014; 53:143-154. [PMID: 25416860 DOI: 10.1007/s12035-014-8995-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/07/2014] [Indexed: 02/07/2023]
Abstract
The release of inflammatory mediators following cortical spreading depression (CSD) is suggested to play a role in pathophysiology of CSD-related neurological disorders. Toll-like receptors (TLR) are master regulators of innate immune function and involved in the activation of inflammatory responses in the brain. TLR3 agonist poly I:C exerts anti-inflammatory effect and prevents cell injury in the brain. The aim of the present study was to examine the effect of systemic administration of poly I:C on the release of cytokines (TNF-α, IFN-γ, IL-4, TGF-β1, and GM-CSF) in the brain and spleen, splenic lymphocyte proliferation, expression of GAD65, GABAAα, GABAAβ as well as Hsp70, and production of dark neurons after induction of repetitive CSD in juvenile rats. Poly I:C significantly attenuated CSD-induced production of TNF-α and IFN-γ in the brain as well as TNF-α and IL-4 in the spleen. Poly I:C did not affect enhancement of splenic lymphocyte proliferation after CSD. Administration of poly I:C increased expression of GABAAα, GABAAβ as well as Hsp70 and decreased expression of GAD65 in the entorhinal cortex compared to CSD-treated tissues. In addition, poly I:C significantly prevented production of CSD-induced dark neurons. The data indicate neuroprotective and anti-inflammatory effects of TLR3 activation on CSD-induced neuroinflammation. Targeting TLR3 may provide a novel strategy for developing new treatments for CSD-related neurological disorders.
Collapse
Affiliation(s)
- Amir Ghaemi
- Shefa Neuroscience Research Center, Tehran, Iran.,Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | | | | | | | | | | | - Maryam Khaleghi Ghadiri
- Klinik und Poliklinik für Neurochirurgie, WestfälischeWilhelms-Universität Münster, Münster, Germany
| | - Sven Meuth
- Department of Neurology, WestfälischeWilhelms-Universität Münster, Münster, Germany
| | - Ali Gorji
- Shefa Neuroscience Research Center, Tehran, Iran. .,Institut für Physiologie I, WestfälischeWilhelms-Universität Münster, Münster, Germany. .,Epilepsy Research Center, Universität Münster, Albert-Schweitzer-Campus 1, Gebäude: A1, 48149, Münster, Germany.
| |
Collapse
|
159
|
Aiba I, Shuttleworth CW. Characterization of inhibitory GABA-A receptor activation during spreading depolarization in brain slice. PLoS One 2014; 9:e110849. [PMID: 25338191 PMCID: PMC4206427 DOI: 10.1371/journal.pone.0110849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/24/2014] [Indexed: 12/28/2022] Open
Abstract
Spreading depolarization (SD) is a slowly propagating wave of near complete depolarizations of neurons and glia. Previous studies have reported large GABA releases during SD, but there is limited understanding of how GABA release and receptor activation are regulated and influence the propagating SD wavefront, as well as an excitatory phase immediately following the passage of SD. The present study characterized GABA-A type receptor (GABAAR) currents during SD generated by KCl microinjection in acute hippocampal slices from adult mice. Spontaneous GABAAR-mediated currents (sIPSCs) were initially enhanced, and were followed by a large outward current at the wavefront. sIPSC were then transiently supressed during the late SD phase, resulting in a significant reduction of the sIPSC/sEPSC ratio. The large outward current generated during SD was eliminated by the GABAAR antagonist gabazine, but the channel potentiator/agonist propofol failed to potentiate the current, likely because of a ceiling effect. Extracellular Cl− decreases recorded during SD were reduced by the antagonist but were not increased by the potentiator. Together with effects of GABAAR modulators on SD propagation rate, these results demonstrate a significant inhibitory role of the initial GABAAR activation and suggest that intracellular Cl− loading is insufficient to generate excitatory GABAAR responses during SD propagation. These results provide a mechanistic explanation for facilitating effects of GABAAR antagonists, and the lack of inhibitory effect of GABAAR potentiators on SD propagation. In addition, selective suppression of GABA transmission in the late SD period and the lack of effect of GABAA modulators on the duration of SD suggests that GABA modulation may not be effective approach to protect neurons during the vulnerable phase of SD.
Collapse
Affiliation(s)
- Isamu Aiba
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
160
|
Cortical Spreading Depression Increases the Phosphorylation of AMP-Activated Protein Kinase in the Cerebral Cortex. Neurochem Res 2014; 39:2431-9. [DOI: 10.1007/s11064-014-1447-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 12/16/2022]
|
161
|
Haarmann AM, Jafarian M, Karimzadeh F, Gorji A. Modulatory Effects of Dopamine D2 Receptors on Spreading Depression in Rat Somatosensory Neocortex. Basic Clin Neurosci 2014; 5:246-52. [PMID: 27284388 PMCID: PMC4656929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Spreading depression (SD) is a propagating wave of depolarization followed by depression of the neuroglial activities and can modulate extracellular dopamine concentrations in the neocortex. It has been shown that the dopaminergic system plays a role in migraine. SD has been suggested as a critical phenomenon in the pathophysiology of migraine. The aim of this study was to investigate the effect of dopamine D2 receptors on the characteristic features of SD in rat neocortical tissues. METHODS The effect of dopamine D2 receptor agonist quinpirole and D2 receptor antagonist sulpiride was tested on different characteristic features (amplitude, duration and velocity) of KCl-induced SD in somatosensory neocortical slices of adult rats. The effect of above-mentioned substances on production of long-term potentiation (LTP) in the neocortex was also evaluated. RESULTS The present data revealed a dose-dependent suppression of the amplitude and duration of SD in the presence of the dopamine D2 receptor antagonist sulpiride in the neocortex. D2 dopamine receptor agonist quinpirole dose-dependently enhanced the amplitude and duration of the neocortical SD. Furthermore, application of D2 receptor antagonist significantly suppressed induction of LTP. DISCUSSION These results indicate that D2 receptors modulate the initiation of SD in the neocortex. This finding refers to the potential role of D2 receptor antagonist in treatment of migraine pain.
Collapse
Affiliation(s)
- Anna Maria Haarmann
- Institute of Neurophysiology, Westfälische Wilhelms-Universität Münster, Germany
| | - Maryam Jafarian
- Shefa Neuroscience Research Center, Tehran, Iran.,School of Advanced Medical Technology, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Gorji
- Shefa Neuroscience Research Center, Tehran, Iran.,Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Germany.,Corresponding Author: Ali Gorji, PhD, Address: Epilepsy Research Center, Universität Münster, Robert-Koch-Strasse 27a, D-48149 Münster, Germany. Tel.: +49 (251) 8355564 / Fax: +49 (251) 8355551, E-mail:
| |
Collapse
|
162
|
Hartings JA, Wilson JA, Hinzman JM, Pollandt S, Dreier JP, DiNapoli V, Ficker DM, Shutter LA, Andaluz N. Spreading depression in continuous electroencephalography of brain trauma. Ann Neurol 2014; 76:681-94. [PMID: 25154587 DOI: 10.1002/ana.24256] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Cortical spreading depolarizations are a pathophysiological mechanism and candidate target for advanced monitoring in acute brain injury. Here we investigated manifestations of spreading depolarization in continuous electroencephalography (EEG) as a broadly applicable, noninvasive method for neuromonitoring. METHODS Eighteen patients requiring surgical treatment of traumatic brain injury were monitored by invasive electrocorticography (ECoG; subdural electrodes) and noninvasive scalp EEG during intensive care. Spreading depolarizations were first identified in subdural recordings, and EEG was then examined visually and quantitatively to identify correlates. RESULTS A total of 455 spreading depolarizations occurred during 65.9 days of simultaneous ECoG/EEG monitoring. For 179 of 455 events (39%), depolarizations caused temporally isolated, transient depressions of spontaneous EEG amplitudes to 57% (median) of baseline power. Depressions lasted 21 minutes (median) and occurred as suppressions of high-amplitude delta activity present as a baseline pattern in the injured hemisphere. For 62 of 179 (35%) events, isolated depressions showed a clear spread of depression between EEG channels with delays of 17 minutes (median), sometimes spanning the entire hemisphere. A further 188 of 455 (41%) depolarizations were associated with continuous EEG depression that lasted hours to days due to ongoing depolarizations. Depolarizations were also evidenced in EEG as shifts in direct current potentials. INTERPRETATION Leão's spreading depression can be observed in clinically standard, continuous scalp EEG, and underlying depolarizations can spread widely across the injured cerebral hemisphere. These results open the possibility of monitoring noninvasively a neuronal pathophysiological mechanism in a wide range of disorders including ischemic stroke, subarachnoid hemorrhage, and brain trauma, and suggest a novel application for continuous EEG.
Collapse
Affiliation(s)
- Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH; Neurotrauma Center at University of Cincinnati Neuroscience Institute, Cincinnati, OH; Mayfield Clinic, Cincinnati, OH
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Martens-Mantai T, Speckmann EJ, Gorji A. Propagation of cortical spreading depression into the hippocampus: The role of the entorhinal cortex. Synapse 2014; 68:574-584. [PMID: 25049108 DOI: 10.1002/syn.21769] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/03/2014] [Accepted: 07/16/2014] [Indexed: 12/27/2022]
Abstract
Propagation of cortical spreading depression (CSD) to the subcortical structures could be the underlying mechanism of some neurological deficits in migraine with aura. The entorhinal cortex (EC) as a gray matter bridge between the neocortex and subcortical regions plays an important role in this propagation. In vitro combined neocortex-hippocampus brain slices were used to study the propagation pattern of CSD between the neocortex and the hippocampus. The effects of different compounds as well as tetanic electrical stimulations in the EC on propagation of CSD to the hippocampus were investigated. Repetitive induction of CSD by KCl injection in the somatosensory cortex enhanced the probability of CSD entrance to the hippocampus via EC. Local application of AMPA receptor blocker CNQX and cannabinoid receptor agonist WIN 55212-2 in EC facilitated the propagation of CSD to the hippocampus, whereas application of NMDA receptor blocker APV and GABAA receptor blocker bicuculline in this region reduced the probability of CSD penetration to the hippocampus. Application of tetanic stimulation in EC also facilitated the propagation of CSD entrance to the hippocampus. Our data suggest the importance of synaptic plasticity of EC in filtering the propagation of CSD into subcortical structures and possibly the occurrence of concomitant neurological deficits. Synapse 68:574-584, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tanja Martens-Mantai
- Institute of Neurophysiology, Westfälische Wilhelms-Universität Münster, Germany
| | | | - Ali Gorji
- Institute of Neurophysiology, Westfälische Wilhelms-Universität Münster, Germany.,Department of Neurosurgery and Neurology, Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Germany.,Shefa Neuroscience Research Center, Tehran, Iran
| |
Collapse
|
164
|
Sarrafzadeh AS, Vajkoczy P, Bijlenga P, Schaller K. Monitoring in Neurointensive Care - The Challenge to Detect Delayed Cerebral Ischemia in High-Grade Aneurysmal SAH. Front Neurol 2014; 5:134. [PMID: 25101052 PMCID: PMC4104636 DOI: 10.3389/fneur.2014.00134] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/04/2014] [Indexed: 12/25/2022] Open
Abstract
Delayed cerebral ischemia (DCI) is a feared and significant medical complication following aneurysmal subarachnoid hemorrhage (aSAH). It occurs in about 30% of patients surviving the initial hemorrhage, mostly between days 4 and 10 after aSAH. Clinical deterioration attributable to DCI is a diagnosis of exclusion and especially difficult to diagnose in patients who are comatose or sedated. The latter are typically patients with a high grade on the World Federation of Neurosurgical Societies scale (WFNS grade 4-5), who represent approximately 40-70% of the patient population with ruptured aneurysms. In this group of patients, the incidence of DCI is often underestimated and higher when compared to low WFNS grade patients. To overcome difficulties in diagnosing DCI, which is especially relevant in sedated and comatose patients, the article reports the most recent recommendation for definition of DCI and discusses their advantages and problematic issues in neurocritical care practice. Finally, appropriate neuromonitoring techniques and their clinical impact in high-grade SAH patients are summarized.
Collapse
Affiliation(s)
- Asita S Sarrafzadeh
- Division of Neurosurgery, Geneva Neuroscience Center, Faculty of Medicine, University of Geneva , Geneva , Switzerland ; Department of Neurosurgery, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Philippe Bijlenga
- Division of Neurosurgery, Geneva Neuroscience Center, Faculty of Medicine, University of Geneva , Geneva , Switzerland
| | - Karl Schaller
- Division of Neurosurgery, Geneva Neuroscience Center, Faculty of Medicine, University of Geneva , Geneva , Switzerland
| |
Collapse
|
165
|
Pusic KM, Pusic AD, Kemme J, Kraig RP. Spreading depression requires microglia and is decreased by their M2a polarization from environmental enrichment. Glia 2014; 62:1176-94. [PMID: 24723305 PMCID: PMC4081540 DOI: 10.1002/glia.22672] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 12/12/2022]
Abstract
Microglia play an important role in fine-tuning neuronal activity. In part, this involves their production of tumor necrosis factor-alpha (TNFα), which increases neuronal excitability. Excessive synaptic activity is necessary to initiate spreading depression (SD). Increased microglial production of proinflammatory cytokines promotes initiation of SD, which, when recurrent, may play a role in conversion of episodic to high frequency and chronic migraine. Previous work shows that this potentiation of SD occurs through increased microglial production of TNFα and reactive oxygen species, both of which are associated with an M1-skewed microglial population. Hence, we explored the role of microglia and their M1 polarization in SD initiation. Selective ablation of microglia from rat hippocampal slice cultures confirmed that microglia are essential for initiation of SD. Application of minocycline to dampen M1 signaling led to increased SD threshold. In addition, we found that SD threshold was increased in rats exposed to environmental enrichment. These rats had increased neocortical levels of interleukin-11 (IL-11), which decreases TNFα signaling and polarized microglia to an M2a-dominant phenotype. M2a microglia reduce proinflammatory signaling and increase production of anti-inflammatory cytokines, and therefore may protect against SD. Nasal administration of IL-11 to mimic effects of environmental enrichment likewise increased M2a polarization and increased SD threshold, an effect also seen in vitro. Similarly, application of conditioned medium from M2a polarized primary microglia to slice cultures also increased SD threshold. Thus, microglia and their polarization state play an essential role in SD initiation, and perhaps by extension migraine with aura and migraine.
Collapse
Affiliation(s)
- Kae M. Pusic
- Department of Neurology, The University of Chicago, Chicago, IL 60637, USA
| | - Aya D. Pusic
- Department of Neurology, The University of Chicago, Chicago, IL 60637, USA
- Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| | - Jordan Kemme
- Department of Neurology, The University of Chicago, Chicago, IL 60637, USA
| | - Richard P. Kraig
- Department of Neurology, The University of Chicago, Chicago, IL 60637, USA
- Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
166
|
Broberg M, Pope KJ, Olsson T, Shuttleworth CW, Willoughby JO. Spreading depression: Evidence of five electroencephalogram phases. J Neurosci Res 2014; 92:1384-94. [DOI: 10.1002/jnr.23412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 03/05/2014] [Accepted: 04/15/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Marita Broberg
- Center for Neuroscience and Department of Neurology; Flinders University; Adelaide South Australia Australia
| | - Kenneth J. Pope
- School of Informatics and Engineering; Flinders University; Adelaide South Australia Australia
| | - Torsten Olsson
- Department of Signals and Systems; Chalmers University of Technology; Göteborg Sweden
| | - C. William Shuttleworth
- Department of Neurosciences; University of New Mexico School of Medicine; Albuquerque New Mexico
| | - John O. Willoughby
- Center for Neuroscience and Department of Neurology; Flinders University; Adelaide South Australia Australia
| |
Collapse
|
167
|
Orfanakis A, Brambrink AM. Long-term outcome call into question the benefit of positive fluid balance and colloid treatment after aneurysmal subarachnoid hemorrhage. Neurocrit Care 2014; 19:137-9. [PMID: 24022830 DOI: 10.1007/s12028-013-9900-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
168
|
Ibrahim GM, Macdonald RL. The effects of fluid balance and colloid administration on outcomes in patients with aneurysmal subarachnoid hemorrhage: a propensity score-matched analysis. Neurocrit Care 2014; 19:140-9. [PMID: 23715669 DOI: 10.1007/s12028-013-9860-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Delayed ischemic neurological deficit (DIND) following aneurysmal subarachnoid hemorrhage (SAH) remains a significant cause of mortality and disability. The administration of colloids and the induction of a positive fluid balance during the vasospasm risk period remain controversial. Here, we compared DIND and outcomes among propensity score-matched cohorts who did and did not receive colloids and also tested the effect of a positive fluid balance on these endpoints. METHODS Exploratory analysis was performed on 413 patients enrolled in CONSCIOUS-1, a prospective randomized trial of clazosentan for the prevention of angiographic vasospasm. Propensity score matching was performed on the basis of age, gender, pre-existing heart conditions, hypertension, nicotine use, World Federation of Neurosurgical Societies scores, aneurysm location, clazosentan treatment, subarachnoid clot burden, and severity of angiographic vasospasm. Inferential statistics were used for group-wise comparisons. RESULTS One hundred twenty-three subjects were matched (41 received colloids, whereas 82 did not). The covariate balance and propensity score distributions were acceptable. There was no difference between the groups with respect to DIND (17 vs. 22%; p = 0.64) or the presence (48 vs. 51%; p = 0.71) or volume of delayed infarcts (volume >7.5 cm3; 62 vs. 48%; p = 0.41). Similarly, no differences were found on multivariate analysis between patients who did and did not have a positive fluid balance, although patients with severe angiographic vasospasm had more delayed infarcts with a negative fluid balance (p = 0.01). Among all subjects, the administration of colloids and a positive fluid balance were associated with worse outcomes on the NIHSS (p = 0.04) and modified Rankin (p = 0.02) scales, respectively. CONCLUSIONS Colloid administration and induction of a positive fluid balance during the vasospasm risk period may be associated with poor outcomes in specific patient groups. Patient selection is of utmost importance when managing the fluid status of patients with aneurysmal SAH.
Collapse
Affiliation(s)
- George M Ibrahim
- Division of Neurosurgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada,
| | | |
Collapse
|
169
|
Seghatoleslam M, Ghadiri MK, Ghaffarian N, Speckmann EJ, Gorji A. Cortical spreading depression modulates the caudate nucleus activity. Neuroscience 2014; 267:83-90. [DOI: 10.1016/j.neuroscience.2014.02.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/13/2014] [Accepted: 02/16/2014] [Indexed: 12/24/2022]
|
170
|
Eickhoff M, Kovac S, Shahabi P, Khaleghi Ghadiri M, Dreier JP, Stummer W, Speckmann EJ, Pape HC, Gorji A. Spreading depression triggers ictaform activity in partially disinhibited neuronal tissues. Exp Neurol 2014; 253:1-15. [DOI: 10.1016/j.expneurol.2013.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/19/2013] [Accepted: 12/16/2013] [Indexed: 11/17/2022]
|
171
|
Jiruska P, de Curtis M, Jefferys JGR. Modern concepts of focal epileptic networks. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 114:1-7. [PMID: 25078496 DOI: 10.1016/b978-0-12-418693-4.00001-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Premysl Jiruska
- Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of Czech Republic, Prague, Czech Republic; Department of Neurology, 2nd Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czech Republic.
| | - Marco de Curtis
- Department of Epileptology and Experimental Neurophysiology, Fondazione IRCCS, Istituto Neurologico C Besta, Milan, Italy
| | - John G R Jefferys
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
172
|
What Is the Clinical Relevance of In Vitro Epileptiform Activity? ISSUES IN CLINICAL EPILEPTOLOGY: A VIEW FROM THE BENCH 2014; 813:25-41. [DOI: 10.1007/978-94-017-8914-1_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
173
|
KAZEMI H, SPECKMANN EJ, GORJI A. Familial hemiplegic migraine and spreading depression. IRANIAN JOURNAL OF CHILD NEUROLOGY 2014; 8:6-11. [PMID: 25143767 PMCID: PMC4135274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/02/2013] [Accepted: 08/07/2013] [Indexed: 11/28/2022]
Abstract
Familial hemiplegic migraine (FHM) is an autosomal dominantly inherited subtype of migraine with aura, characterized by transient neurological signs and symptoms. Typical hemiplegic migraine attacks start in the first or second decade of life. Some patients with FHM suffer from daily recurrent attacks since childhood. Results from extensive studies of cellular and animal models have indicated that gene mutations in FHM increase neuronal excitability and reduce the threshold for spreading depression (SD). SD is a transient wave of profound neuronal and glial depolarization that slowly propagates throughout the brain tissue and is characterized by a high amplitude negative DC shift. After induction of SD, S218L mutant mice exhibited neurological signs highly reminiscent of clinical attacks in FHM type 1 patients carrying this mutation. FHM1 with ataxia is attributable to specific mutations that differ from mutations that cause pure FHM1 and have peculiar consequences on cerebellar Cav2.1 currents that lead to profound Purkinje cell dysfunction and neuronal loss with atrophy. SD in juvenile rats produced neuronal injury and death. Hormonal factors involved in FHM affect SD initiation and propagation. The data identify SD as a possible target of treatment of FHM. In addition, FHM is a useful model to explore the mechanisms of more common types of migraine.
Collapse
Affiliation(s)
- Hadi KAZEMI
- Department of Pediatric, Shahed University, Tehran, Iran ,Shefa Neuroscience Research Center, Tehran, Iran
| | - Erwin-Josef SPECKMANN
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Germany ,Institut für Physiologie I, Westfälische Wilhelms-Universität Münster, Germany
| | - Ali GORJI
- Shefa Neuroscience Research Center, Tehran, Iran ,Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Germany ,Institut für Physiologie I, Westfälische Wilhelms-Universität Münster, Germany,Klinik und Poliklinik für Neurochirurgie, Westfälische Wilhelms-Universität Münster, Germany,Department ofNeurology, Westfälische Wilhelms-Universität Münster, Germany
| |
Collapse
|
174
|
Helbok R, Claassen J. Multimodal invasive monitoring in status epilepticus: what is the evidence it has a place? Epilepsia 2013; 54 Suppl 6:57-60. [PMID: 24001075 DOI: 10.1111/epi.12279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The underlying pathophysiology of status epilepticus (SE) remains mostly invisible to the clinician in the intensive care unit (ICU) setting. In animal studies associated hemodynamic and brain neurochemical changes have been well described. In the last decade, bedside invasive neuromonitoring techniques allow the assessments of changes in focal and global cerebral physiology associated with ictal activity on the tissue level in humans. Recent studies demonstrate that laboratory research insufficiently replicates the complexity of the human condition. Herein we summarize the current knowledge gained from human studies integrating cortical electrographic and brain tissue metabolic and hemodynamic information into the current pathophysiologic concept of SE in humans. With increasing experience gained by the use of extended neuromonitoring, we are more and more able to understand associated hemodynamic and brain neurochemical changes in patients with SE. In the future, this information can potentially provide integrated pathophysiologic end points into SE treatment concepts.
Collapse
Affiliation(s)
- Raimund Helbok
- Department of Neurology, Division of Neurocritical Care, Innsbruck Medical University, Anichstrasse 35, Innsbruck, Austria.
| | | |
Collapse
|
175
|
Cuomo O, Rispoli V, Leo A, Politi GB, Vinciguerra A, di Renzo G, Cataldi M. The antiepileptic drug levetiracetam suppresses non-convulsive seizure activity and reduces ischemic brain damage in rats subjected to permanent middle cerebral artery occlusion. PLoS One 2013; 8:e80852. [PMID: 24236205 PMCID: PMC3827478 DOI: 10.1371/journal.pone.0080852] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/11/2013] [Indexed: 02/06/2023] Open
Abstract
The antiepileptic drug Levetiracetam (Lev) has neuroprotective properties in experimental stroke, cerebral hemorrhage and neurotrauma. In these conditions, non-convulsive seizures (NCSs) propagate from the core of the focal lesion into perilesional tissue, enlarging the damaged area and promoting epileptogenesis. Here, we explore whether Lev neuroprotective effect is accompanied by changes in NCS generation or propagation. In particular, we performed continuous EEG recordings before and after the permanent occlusion of the middle cerebral artery (pMCAO) in rats that received Lev (100 mg/kg) or its vehicle immediately before surgery. Both in Lev-treated and in control rats, EEG activity was suppressed after pMCAO. In control but not in Lev-treated rats, EEG activity reappeared approximately 30-45 min after pMCAO. It initially consisted in single spikes and, then, evolved into spike-and-wave and polyspike-and-wave discharges. In Lev-treated rats, only rare spike events were observed and the EEG power was significantly smaller than in controls. Approximately 24 hours after pMCAO, EEG activity increased in Lev-treated rats because of the appearance of polyspike events whose power was, however, significantly smaller than in controls. In rats sacrificed 24 hours after pMCAO, the ischemic lesion was approximately 50% smaller in Lev-treated than in control rats. A similar neuroprotection was observed in rats sacrificed 72 hours after pMCAO. In conclusion, in rats subjected to pMCAO, a single Lev injection suppresses NCS occurrence for at least 24 hours. This electrophysiological effect could explain the long lasting reduction of ischemic brain damage caused by this drug.
Collapse
Affiliation(s)
- Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Federico II University of Naples, Naples, Italy
| | - Vincenzo Rispoli
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Giovanni Bosco Politi
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Federico II University of Naples, Naples, Italy
| | - Gianfranco di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Federico II University of Naples, Naples, Italy
| | - Mauro Cataldi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Federico II University of Naples, Naples, Italy
- * E-mail:
| |
Collapse
|
176
|
Cerebral Lactate Correlates with Early Onset Pneumonia after Aneurysmal SAH. Transl Stroke Res 2013; 5:278-85. [DOI: 10.1007/s12975-013-0292-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/23/2013] [Accepted: 09/26/2013] [Indexed: 10/26/2022]
|
177
|
Irimia A, Goh SYM, Torgerson CM, Stein NR, Chambers MC, Vespa PM, Van Horn JD. Electroencephalographic inverse localization of brain activity in acute traumatic brain injury as a guide to surgery, monitoring and treatment. Clin Neurol Neurosurg 2013; 115:2159-65. [PMID: 24011495 DOI: 10.1016/j.clineuro.2013.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/24/2013] [Accepted: 08/04/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To inverse-localize epileptiform cortical electrical activity recorded from severe traumatic brain injury (TBI) patients using electroencephalography (EEG). METHODS Three acute TBI cases were imaged using computed tomography (CT) and multimodal magnetic resonance imaging (MRI). Semi-automatic segmentation was performed to partition the complete TBI head into 25 distinct tissue types, including 6 tissue types accounting for pathology. Segmentations were employed to generate a finite element method model of the head, and EEG activity generators were modeled as dipolar currents distributed over the cortical surface. RESULTS We demonstrate anatomically faithful localization of EEG generators responsible for epileptiform discharges in severe TBI. By accounting for injury-related tissue conductivity changes, our work offers the most realistic implementation currently available for the inverse estimation of cortical activity in TBI. CONCLUSION Whereas standard localization techniques are available for electrical activity mapping in uninjured brains, they are rarely applied to acute TBI. Modern models of TBI-induced pathology can inform the localization of epileptogenic foci, improve surgical efficacy, contribute to the improvement of critical care monitoring and provide guidance for patient-tailored treatment. With approaches such as this, neurosurgeons and neurologists can study brain activity in acute TBI and obtain insights regarding injury effects upon brain metabolism and clinical outcome.
Collapse
Affiliation(s)
- Andrei Irimia
- The Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | | | | | | | | | | | | |
Collapse
|
178
|
Ibrahim GM, Fallah A, Macdonald RL. Clinical, laboratory, and radiographic predictors of the occurrence of seizures following aneurysmal subarachnoid hemorrhage. J Neurosurg 2013; 119:347-52. [DOI: 10.3171/2013.3.jns122097] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
At present, the administration of prophylactic antiepileptic medication following aneurysmal subarachnoid hemorrhage (SAH) is controversial, and the practice is heterogeneous. Here, the authors sought to inform clinical decision making by identifying factors associated with the occurrence of seizures following aneurysm rupture.
Methods
Exploratory analysis was performed on 413 patients enrolled in CONSCIOUS-1 (Clazosentan to Overcome Neurological Ischemia and Infarction Occurring after Subarachnoid Hemorrhage), a prospective randomized trial of clazosentan for the prevention of angiographic vasospasm. The association among clinical, laboratory, and radiographic covariates and the occurrence of seizures following SAH were determined. Covariates with a significance level of p < 0.20 on univariate analysis were entered into a multivariate logistic regression model. Receiver operating characteristic (ROC) curve analysis was used to define optimal predictive thresholds.
Results
Of the 413 patients enrolled in the study, 57 (13.8%) had at least 1 seizure following SAH. On univariate analysis, a World Federation of Neurosurgical Societies grade of IV–V, a greater subarachnoid clot burden, and the presence of midline shift and subdural hematomas were associated with seizure activity. On multivariate analysis, only a subarachnoid clot burden (OR 2.76, 95% CI 1.39–5.49) and subdural hematoma (OR 5.67, 95% CI 1.56–20.57) were associated with seizures following SAH. Using ROC curve analysis, the optimal predictive cutoff for subarachnoid clot burden was determined to be 21 (of a possible 30) on the Hijdra scale (area under the curve 0.63).
Conclusions
A greater subarachnoid clot burden and subdural hematoma are associated with the occurrence of seizures after aneurysm rupture. These findings may help to identify patients at greatest risk for seizures and guide informed decisions regarding the prescription of prophylactic anticonvulsive therapy. Clinical trial registration no.: NCT00111085 (ClinicalTrials.gov).
Collapse
|
179
|
Claassen J, Perotte A, Albers D, Kleinberg S, Schmidt JM, Tu B, Badjatia N, Lantigua H, Hirsch LJ, Mayer SA, Connolly ES, Hripcsak G. Nonconvulsive seizures after subarachnoid hemorrhage: Multimodal detection and outcomes. Ann Neurol 2013; 74:53-64. [PMID: 23813945 DOI: 10.1002/ana.23859] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Seizures have been implicated as a cause of secondary brain injury, but the systemic and cerebral physiologic effects of seizures after acute brain injury are poorly understood. METHODS We analyzed intracortical electroencephalographic (EEG) and multimodality physiological recordings in 48 comatose subarachnoid hemorrhage patients to better characterize the physiological response to seizures after acute brain injury. RESULTS Intracortical seizures were seen in 38% of patients, and 8% had surface seizures. Intracortical seizures were accompanied by elevated heart rate (p = 0.001), blood pressure (p < 0.001), and respiratory rate (p < 0.001). There were trends for rising cerebral perfusion pressure (p = 0.03) and intracranial pressure (p = 0.06) seen after seizure onset. Intracortical seizure-associated increases in global brain metabolism, partial brain tissue oxygenation, and regional cerebral blood flow (rCBF) did not reach significance, but a trend for a pronounced delayed rCBF rise was seen for surface seizures (p = 0.08). Functional outcome was very poor for patients with severe background attenuation without seizures and best for those without severe attenuation or seizures (77% vs 0% dead or severely disabled, respectively). Outcome was intermediate for those with seizures independent of the background EEG and worse for those with intracortical only seizures when compared to those with intracortical and scalp seizures (50% and 25% death or severe disability, respectively). INTERPRETATION We replicated in humans complex physiologic processes associated with seizures after acute brain injury previously described in laboratory experiments and illustrated differences such as the delayed increase in rCBF. These real world physiologic observations may permit more successful translation of laboratory research to the bedside.
Collapse
Affiliation(s)
- Jan Claassen
- Division of Critical Care Neurology, Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY; Comprehensive Epilepsy Center, Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY; Department of Neurosurgery, College of Physicians and Surgeons, Columbia University, New York, NY
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Bauer PR, Carpay JA, Terwindt GM, Sander JW, Thijs RJ, Haan J, Visser GH. Headache and Epilepsy. Curr Pain Headache Rep 2013; 17:351. [DOI: 10.1007/s11916-013-0351-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
181
|
Sánchez-Porras R, Zheng Z, Santos E, Schöll M, Unterberg AW, Sakowitz OW. The role of spreading depolarization in subarachnoid hemorrhage. Eur J Neurol 2013; 20:1121-7. [DOI: 10.1111/ene.12139] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/15/2013] [Indexed: 11/30/2022]
Affiliation(s)
- R. Sánchez-Porras
- Department of Neurosurgery; Heidelberg University Hospital; Heidelberg; Germany
| | - Z. Zheng
- Department of Neurosurgery; Heidelberg University Hospital; Heidelberg; Germany
| | - E. Santos
- Department of Neurosurgery; Heidelberg University Hospital; Heidelberg; Germany
| | - M. Schöll
- Department of Neurosurgery; Heidelberg University Hospital; Heidelberg; Germany
| | - A. W. Unterberg
- Department of Neurosurgery; Heidelberg University Hospital; Heidelberg; Germany
| | - O. W. Sakowitz
- Department of Neurosurgery; Heidelberg University Hospital; Heidelberg; Germany
| |
Collapse
|
182
|
Winkler MKL, Chassidim Y, Lublinsky S, Revankar GS, Major S, Kang EJ, Oliveira-Ferreira AI, Woitzik J, Sandow N, Scheel M, Friedman A, Dreier JP. Impaired neurovascular coupling to ictal epileptic activity and spreading depolarization in a patient with subarachnoid hemorrhage: possible link to blood-brain barrier dysfunction. Epilepsia 2013; 53 Suppl 6:22-30. [PMID: 23134492 DOI: 10.1111/j.1528-1167.2012.03699.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spreading depolarization describes a sustained neuronal and astroglial depolarization with abrupt ion translocation between intraneuronal and extracellular space leading to a cytotoxic edema and silencing of spontaneous activity. Spreading depolarizations occur abundantly in acutely injured human brain and are assumed to facilitate neuronal death through toxic effects, increased metabolic demand, and inverse neurovascular coupling. Inverse coupling describes severe hypoperfusion in response to spreading depolarization. Ictal epileptic events are less frequent than spreading depolarizations in acutely injured human brain but may also contribute to lesion progression through increased metabolic demand. Whether abnormal neurovascular coupling can occur with ictal epileptic events is unknown. Herein we describe a patient with aneurysmal subarachnoid hemorrhage in whom spreading depolarizations and ictal epileptic events were measured using subdural opto-electrodes for direct current electrocorticography and regional cerebral blood flow recordings with laser-Doppler flowmetry. Simultaneously, changes in tissue partial pressure of oxygen were recorded with an intraparenchymal oxygen sensor. Isolated spreading depolarizations and clusters of recurrent spreading depolarizations with persistent depression of spontaneous activity were recorded over several days followed by a status epilepticus. Both spreading depolarizations and ictal epileptic events where accompanied by hyperemic blood flow responses at one optode but mildly hypoemic blood flow responses at another. Of note, quantitative analysis of Gadolinium-diethylene-triamine-pentaacetic acid (DTPA)-enhanced magnetic resonance imaging detected impaired blood-brain barrier integrity in the region where the optode had recorded the mildly hypoemic flow responses. The data suggest that abnormal flow responses to spreading depolarizations and ictal epileptic events, respectively, may be associated with blood-brain barrier dysfunction.
Collapse
Affiliation(s)
- Maren K L Winkler
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Drenckhahn C, Brabetz C, Major S, Wiesenthal D, Woitzik J, Dreier JP. Criteria for the diagnosis of noninfectious and infectious complications after aneurysmal subarachnoid hemorrhage in DISCHARGE-1. ACTA NEUROCHIRURGICA. SUPPLEMENT 2013; 115:153-159. [PMID: 22890662 DOI: 10.1007/978-3-7091-1192-5_30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Patients with aneurysmal subarachnoid hemorrhage (aSAH) frequently develop secondary noninfectious and infectious complications that have an important impact on clinical course and outcome. We here report on criteria for the diagnosis of the most important complications after aSAH based on clinical status, neuroimaging, and laboratory tests, including cerebrospinal fluid parameters. These criteria will be used for a retrospective analysis of aSAH patients who were recruited at the Charité Berlin for the CoOperative Study on Brain Injury Depolarisations (COSBID) before the Depolarisations in Ischaemia after Subarachnoid Haemorrhage-1 (DISCHARGE-1) trial started. Moreover, they serve for the survey of complications in DISCHARGE-1. We also report on a customized, Web-based database that has been developed for the documentation of the clinical course after aSAH. This database is used for the COSBID outcome study on aSAH and for DISCHARGE-1.
Collapse
|
184
|
Brain-derived neurotrophic factor-estrogen interactions in the hippocampal mossy fiber pathway: implications for normal brain function and disease. Neuroscience 2012; 239:46-66. [PMID: 23276673 DOI: 10.1016/j.neuroscience.2012.12.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/13/2012] [Indexed: 12/17/2022]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) and the steroid hormone estrogen exhibit potent effects on hippocampal neurons during development and in adulthood. BDNF and estrogen have also been implicated in the etiology of diverse types of neurological disorders or psychiatric illnesses, or have been discussed as potentially important in treatment. Although both are typically studied independently, it has been suggested that BDNF mediates several of the effects of estrogen in the hippocampus, and that these interactions play a role in the normal brain as well as disease. Here we focus on the mossy fiber (MF) pathway of the hippocampus, a critical pathway in normal hippocampal function, and a prime example of a location where numerous studies support an interaction between BDNF and estrogen in the rodent brain. We first review the temporal and spatially regulated expression of BDNF and estrogen in the MFs, as well as their receptors. Then we consider the results of studies that suggest that 17β-estradiol alters hippocampal function by its influence on BDNF expression in the MF pathway. We also address the hypothesis that estrogen influences the hippocampus by mechanisms related not only to the mature form of BDNF, acting at trkB receptors, but also by regulating the precursor, proBDNF, acting at p75NTR. We suggest that the interactions between BDNF and 17β-estradiol in the MFs are potentially important in the normal function of the hippocampus, and have implications for sex differences in functions that depend on the MFs and in diseases where MF plasticity has been suggested to play an important role, Alzheimer's disease, epilepsy and addiction.
Collapse
|
185
|
Lapilover EG, Lippman K, Salar S, Maslarova A, Dreier JP, Heinemann U, Friedman A. Peri-infarct blood-brain barrier dysfunction facilitates induction of spreading depolarization associated with epileptiform discharges. Neurobiol Dis 2012; 48:495-506. [PMID: 22782081 PMCID: PMC3588590 DOI: 10.1016/j.nbd.2012.06.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/12/2012] [Accepted: 06/27/2012] [Indexed: 11/17/2022] Open
Abstract
Recent studies showed that spreading depolarizations (SDs) occurs abundantly in patients following ischemic stroke and experimental evidence suggests that SDs recruit tissue at risk into necrosis. We hypothesized that BBB opening with consequent alterations of the extracellular electrolyte composition and extravasation of albumin facilitates generation of SDs since albumin mediates an astrocyte transcriptional response with consequent disturbance of potassium and glutamate homeostasis. Here we show extravasation of Evans blue-albumin complex into the hippocampus following cortical photothrombotic stroke in the neighboring neocortex. Using extracellular field potential recordings and exposure to serum electrolytes we observed spontaneous SDs in 80% of hippocampal slices obtained from rats 24 h after cortical photothrombosis. Hippocampal exposure to albumin for 24 h through intraventricular application together with serum electrolytes lowered the threshold for the induction of SDs in most slices irrespective of the pathway of stimulation. Exposing acute slices from naive animals to albumin led also to a reduced SD threshold. In albumin-exposed slices the onset of SDs was usually associated with larger stimulus-induced accumulation of extracellular potassium, and preceded by epileptiform activity, which was also observed during the recovery phase of SDs. Application of ifenprodil (3 μM), an NMDA-receptor type 2 B antagonist, blocked stimulus dependent epileptiform discharges and generation of SDs in slices from animals treated with albumin in-vivo. We suggest that BBB opening facilitates the induction of peri-infarct SDs through impaired homeostasis of K+.
Collapse
Affiliation(s)
- EG Lapilover
- Institute of Neurophysiology, Charité Universitätsmedizin, 13347 Berlin, Germany
| | - K. Lippman
- Institute of Neurophysiology, Charité Universitätsmedizin, 13347 Berlin, Germany
| | - S. Salar
- Institute of Neurophysiology, Charité Universitätsmedizin, 13347 Berlin, Germany
| | - A. Maslarova
- Institute of Neurophysiology, Charité Universitätsmedizin, 13347 Berlin, Germany
| | - JP Dreier
- Center for Stroke Research Berlin, Charité Universitätsmedizin, 10117 Berlin, Germany
- Department of Experimental Neurology, Charité Universitätsmedizin, 10117 Berlin, Germany
- Department of Neurology, Charité Universitätsmedizin, 10117 Berlin, Germany
| | - U. Heinemann
- Institute of Neurophysiology, Charité Universitätsmedizin, 13347 Berlin, Germany
- Neurocure Research Center, Charité Universitätsmedizin, 13347 Berlin, Germany
| | - A. Friedman
- Institute of Neurophysiology, Charité Universitätsmedizin, 13347 Berlin, Germany
- Department of Physiology and Neurobiology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
186
|
Brophy GM, Bell R, Claassen J, Alldredge B, Bleck TP, Glauser T, Laroche SM, Riviello JJ, Shutter L, Sperling MR, Treiman DM, Vespa PM. Guidelines for the evaluation and management of status epilepticus. Neurocrit Care 2012; 17:3-23. [PMID: 22528274 DOI: 10.1007/s12028-012-9695-z] [Citation(s) in RCA: 1035] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Status epilepticus (SE) treatment strategies vary substantially from one institution to another due to the lack of data to support one treatment over another. To provide guidance for the acute treatment of SE in critically ill patients, the Neurocritical Care Society organized a writing committee to evaluate the literature and develop an evidence-based and expert consensus practice guideline. Literature searches were conducted using PubMed and studies meeting the criteria established by the writing committee were evaluated. Recommendations were developed based on the literature using standardized assessment methods from the American Heart Association and Grading of Recommendations Assessment, Development, and Evaluation systems, as well as expert opinion when sufficient data were lacking.
Collapse
Affiliation(s)
- Gretchen M Brophy
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Medical College of Virginia Campus, 410 N. 12th Street, P.O. Box 980533, Richmond, VA 23298-0533, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Aiba I, Shuttleworth CW. Sustained NMDA receptor activation by spreading depolarizations can initiate excitotoxic injury in metabolically compromised neurons. J Physiol 2012; 590:5877-93. [PMID: 22907056 PMCID: PMC3528997 DOI: 10.1113/jphysiol.2012.234476] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/15/2012] [Indexed: 01/09/2023] Open
Abstract
Spreading depolarizations (SDs) are slowly propagating waves of near-complete neuronal and glial depolarization. SDs have been recorded in patients with brain injury, and the incidence of SD significantly correlates with outcome severity. Although it is well accepted that the ionic dyshomeostasis of SD presents a severe metabolic burden, there is currently limited understanding of SD-induced injury processes at a cellular level. In the current study we characterized events accompanying SD in the hippocampal CA1 region of murine brain slices, using whole-cell recordings and single-cell Ca(2+) imaging. We identified an excitatory phase that persisted for approximately 2 min following SD onset, and accompanied with delayed dendritic ionic dyshomeostasis. The excitatory phase coincided with a significant increase in presynaptic glutamate release, evidenced by a transient increase in spontaneous EPSC frequency and paired-pulse depression of evoked EPSCs. Activation of NMDA receptors (NMDARs) during this late excitatory phase contributed to the duration of individual neuronal depolarizations and delayed recovery of extracellular slow potential changes. Selectively targeting the NMDAR activation following SD onset (by delayed pressure application of a competitive NMDAR antagonist) significantly decreased the duration of cellular depolarizations. Recovery of dendritic Ca(2+) elevations following SD were also sensitive to delayed NMDA antagonist application. Partial inhibition of neuronal energy metabolism converted SD into an irrecoverable event with persistent Ca(2+) overload and membrane compromise. Delayed NMDAR block was sufficient to prevent these acute injurious events in metabolically compromised neurons. These results identify a significant contribution of a late component of SD that could underlie neuronal injury in pathological circumstances.
Collapse
Affiliation(s)
- Isamu Aiba
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131-0001, USA
| | | |
Collapse
|
188
|
Lindquist BE, Shuttleworth CW. Adenosine receptor activation is responsible for prolonged depression of synaptic transmission after spreading depolarization in brain slices. Neuroscience 2012; 223:365-76. [PMID: 22864185 PMCID: PMC3489063 DOI: 10.1016/j.neuroscience.2012.07.053] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 01/03/2023]
Abstract
Spreading depolarization (SD) is a slowly propagating, coordinated depolarization of brain tissue, which is followed by a transient (5-10min) depression of synaptic activity. The mechanisms for synaptic depression after SD are incompletely understood. We examined the relative contributions of action potential failure and adenosine receptor activation to the suppression of evoked synaptic activity in murine brain slices. Focal micro-injection of potassium chloride (KCl) was used to induce SD and synaptic potentials were evoked by electrical stimulation of Schaffer collateral inputs to hippocampal area Cornu Ammonis area 1 (CA1). SD was accompanied by loss of both presynaptic action potentials (as assessed from fiber volleys) and field excitatory postsynaptic potentials (fEPSPs). Fiber volleys recovered rapidly upon neutralization of the extracellular direct current (DC) potential, whereas fEPSPs underwent a secondary suppression phase lasting several minutes. Paired-pulse ratio was elevated during the secondary suppression period, consistent with a presynaptic mechanism of synaptic depression. A transient increase in extracellular adenosine concentration was detected during the period of secondary suppression. Antagonists of adenosine A1 receptors (8-cyclopentyl-1,3-dipropylxanthine [DPCPX] or 8-cyclopentyl-1,3-dimethylxanthine [8-CPT]) greatly accelerated fEPSP recovery and abolished increases in paired-pulse ratio normally observed after SD. The duration of fEPSP suppression was correlated with both the duration of the DC shift and the area of tissue depolarized, consistent with the model that adenosine accumulates in proportion to the metabolic burden of SD. These results suggest that in brain slices, the duration of the DC shift approximately defined the period of action potential failure, but the secondary depression of evoked responses was in large part due to endogenous adenosine accumulation after SD.
Collapse
Affiliation(s)
- Britta E. Lindquist
- Department of Neurosciences, University of New Mexico School of Medicine, 1 University of New Mexico, Albuquerque NM 87131, USA, ;
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, 1 University of New Mexico, Albuquerque NM 87131, USA, ;
| |
Collapse
|
189
|
Batista-de-Oliveira M, Monte-Silva-Machado K, Paiva A, Lima H, Fregni F, Guedes R. Favorable and unfavorable lactation modulates the effects of electrical stimulation on brain excitability: A spreading depression study in adult rats. Life Sci 2012; 91:306-11. [DOI: 10.1016/j.lfs.2012.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 06/06/2012] [Accepted: 07/06/2012] [Indexed: 11/24/2022]
|
190
|
Marchi N, Granata T, Ghosh C, Janigro D. Blood-brain barrier dysfunction and epilepsy: pathophysiologic role and therapeutic approaches. Epilepsia 2012; 53:1877-86. [PMID: 22905812 DOI: 10.1111/j.1528-1167.2012.03637.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The blood-brain barrier (BBB) is located within a unique anatomic interface and has functional ramifications to most of the brain and blood cells. In the past, the BBB was considered a pharmacokinetic impediment to antiepileptic drug penetration into the brain; nowadays it is becoming increasingly evident that targeting of the damaged or dysfunctional BBB may represent a therapeutic approach to reduce seizure burden. Several studies have investigated the mechanisms linking the onset and sustainment of seizures to BBB dysfunction. These studies have shown that the BBB is at the crossroad of a multifactorial pathophysiologic process that involves changes in brain milieu, altered neuroglial physiology, development of brain inflammation, leukocyte-endothelial interactions, faulty angiogenesis, and hemodynamic changes leading to energy mismatch. A number of knowledge gaps, conflicting points of view, and discordance between clinical and experimental data currently characterize this field of neuroscience. As more pieces are added to this puzzle, it is apparent that each mechanism needs to be validated in an appropriate clinical context. We now offer a BBB-centric view of seizure disorders, linking several aspects of seizures and epilepsy physiopathology to BBB dysfunction. We have reviewed the therapeutic, antiseizure effect of drugs that promote BBB repair. We also present BBB neuroimaging as a tool to correlate BBB restoration to seizure mitigation. Add-on cerebrovascular drug could be of efficacy in reducing seizure burden when used in association with neuronal antiepileptic drugs.
Collapse
Affiliation(s)
- Nicola Marchi
- Departments of Molecular Medicine Cell Biology, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, U.S.A.
| | | | | | | |
Collapse
|
191
|
Dreier JP, Isele T, Reiffurth C, Offenhauser N, Kirov SA, Dahlem MA, Herreras O. Is spreading depolarization characterized by an abrupt, massive release of gibbs free energy from the human brain cortex? Neuroscientist 2012; 19:25-42. [PMID: 22829393 DOI: 10.1177/1073858412453340] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the evolution of the cerebral cortex, the sophisticated organization in a steady state far away from thermodynamic equilibrium has produced the side effect of two fundamental pathological network events: ictal epileptic activity and spreading depolarization. Ictal epileptic activity describes the partial disruption, and spreading depolarization describes the near-complete disruption of the physiological double Gibbs-Donnan steady state. The occurrence of ictal epileptic activity in patients has been known for decades. Recently, unequivocal electrophysiological evidence has been found in patients that spreading depolarizations occur abundantly in stroke and brain trauma. The authors propose that the ion changes can be taken to estimate relative changes in Gibbs free energy from state to state. The calculations suggest that in transitions from the physiological state to ictal epileptic activity to spreading depolarization to death, the cortex releases Gibbs free energy in a stepwise fashion. Spreading depolarization thus appears as a twilight state close to death. Consistently, electrocorticographic recordings in the core of focal ischemia or after cardiac arrest display a smooth transition from the initial spreading depolarization component to the later ultraslow negative potential, which is assumed to reflect processes in cellular death.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
192
|
Imaging mass spectrometry to visualize biomolecule distributions in mouse brain tissue following hemispheric cortical spreading depression. J Proteomics 2012; 75:5027-5035. [PMID: 22776886 DOI: 10.1016/j.jprot.2012.06.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 06/29/2012] [Indexed: 01/14/2023]
Abstract
MALDI mass spectrometry can simultaneously measure hundreds of biomolecules directly from tissue. Using essentially the same technique but different sample preparation strategies, metabolites, lipids, peptides and proteins can be analyzed. Spatially correlated analysis, imaging MS, enables the distributions of these biomolecular ions to be simultaneously measured in tissues. A key advantage of imaging MS is that it can annotate tissues based on their MS profiles and thereby distinguish biomolecularly distinct regions even if they were unexpected or are not distinct using established histological and histochemical methods e.g. neuropeptide and metabolite changes following transient electrophysiological events such as cortical spreading depression (CSD), which are spreading events of massive neuronal and glial depolarisations that occur in one hemisphere of the brain and do not pass to the other hemisphere , enabling the contralateral hemisphere to act as an internal control. A proof-of-principle imaging MS study, including 2D and 3D datasets, revealed substantial metabolite and neuropeptide changes immediately following CSD events which were absent in the protein imaging datasets. The large high dimensionality 3D datasets make even rudimentary contralateral comparisons difficult to visualize. Instead non-negative matrix factorization (NNMF), a multivariate factorization tool that is adept at highlighting latent features, such as MS signatures associated with CSD events, was applied to the 3D datasets. NNMF confirmed that the protein dataset did not contain substantial contralateral differences, while these were present in the neuropeptide dataset.
Collapse
|
193
|
Levi H, Schoknecht K, Prager O, Chassidim Y, Weissberg I, Serlin Y, Friedman A. Stimulation of the sphenopalatine ganglion induces reperfusion and blood-brain barrier protection in the photothrombotic stroke model. PLoS One 2012; 7:e39636. [PMID: 22745798 PMCID: PMC3382129 DOI: 10.1371/journal.pone.0039636] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/27/2012] [Indexed: 01/22/2023] Open
Abstract
Purpose The treatment of stroke remains a challenge. Animal studies showing that electrical stimulation of the sphenopalatine ganglion (SPG) exerts beneficial effects in the treatment of stroke have led to the initiation of clinical studies. However, the detailed effects of SPG stimulation on the injured brain are not known. Methods The effect of acute SPG stimulation was studied by direct vascular imaging, fluorescent angiography and laser Doppler flowmetry in the sensory motor cortex of the anaesthetized rat. Focal cerebral ischemia was induced by the rose bengal (RB) photothrombosis method. In chronic experiments, SPG stimulation, starting 15 min or 24 h after photothrombosis, was given for 3 h per day on four consecutive days. Structural damage was assessed using histological and immunohistochemical methods. Cortical functions were assessed by quantitative analysis of epidural electro-corticographic (ECoG) activity continuously recorded in behaving animals. Results Stimulation induced intensity- and duration-dependent vasodilation and increased cerebral blood flow in both healthy and photothrombotic brains. In SPG-stimulated rats both blood brain-barrier (BBB) opening, pathological brain activity and lesion volume were attenuated compared to untreated stroke animals, with no apparent difference in the glial response surrounding the necrotic lesion. Conclusion SPG-stimulation in rats induces vasodilation of cortical arterioles, partial reperfusion of the ischemic lesion, and normalization of brain functions with reduced BBB dysfunction and stroke volume. These findings support the potential therapeutic effect of SPG stimulation in focal cerebral ischemia even when applied 24 h after stroke onset and thus may extend the therapeutic window of currently administered stroke medications.
Collapse
Affiliation(s)
- Haviv Levi
- Departments of Physiology and Neurobiology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Karl Schoknecht
- Institute of Neurophysiology, Neurocure Research Center, Charité Universitätsmedizin, Berlin, Germany
| | - Ofer Prager
- Departments of Physiology and Neurobiology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yoash Chassidim
- Departments of Physiology and Neurobiology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Itai Weissberg
- Departments of Physiology and Neurobiology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yonatan Serlin
- Departments of Physiology and Neurobiology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Friedman
- Departments of Physiology and Neurobiology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Institute of Neurophysiology, Neurocure Research Center, Charité Universitätsmedizin, Berlin, Germany
- * E-mail:
| |
Collapse
|
194
|
Spreading depolarisations and traumatic brain injury: time course and mechanisms – Authors' reply. Lancet Neurol 2012. [DOI: 10.1016/s1474-4422(12)70085-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
195
|
Drenckhahn C, Winkler MKL, Major S, Scheel M, Kang EJ, Pinczolits A, Grozea C, Hartings JA, Woitzik J, Dreier JP. Correlates of spreading depolarization in human scalp electroencephalography. Brain 2012; 135:853-68. [PMID: 22366798 PMCID: PMC3286336 DOI: 10.1093/brain/aws010] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It has been known for decades that suppression of spontaneous scalp electroencephalographic activity occurs during ischaemia. Trend analysis for such suppression was found useful for intraoperative monitoring during carotid endarterectomy, or as a screening tool to detect delayed cerebral ischaemia after aneurismal subarachnoid haemorrhage. Nevertheless, pathogenesis of such suppression of activity has remained unclear. In five patients with aneurismal subarachnoid haemorrhage and four patients with decompressive hemicraniectomy after malignant hemispheric stroke due to middle cerebral artery occlusion, we here performed simultaneously full-band direct and alternating current electroencephalography at the scalp and direct and alternating current electrocorticography at the cortical surface. After subarachnoid haemorrhage, 275 slow potential changes, identifying spreading depolarizations, were recorded electrocorticographically over 694 h. Visual inspection of time-compressed scalp electroencephalography identified 193 (70.2%) slow potential changes [amplitude: −272 (−174, −375) µV (median quartiles), duration: 5.4 (4.0, 7.1) min, electrocorticography–electroencephalography delay: 1.8 (0.8, 3.5) min]. Intervals between successive spreading depolarizations were significantly shorter for depolarizations with electroencephalographically identified slow potential change [33.0 (27.0, 76.5) versus 53.0 (28.0, 130.5) min, P = 0.009]. Electroencephalography was thus more likely to display slow potential changes of clustered than isolated spreading depolarizations. In contrast to electrocorticography, no spread of electroencephalographic slow potential changes was seen, presumably due to superposition of volume-conducted electroencephalographic signals from widespread cortical generators. In two of five patients with subarachnoid haemorrhage, serial magnetic resonance imaging revealed large delayed infarcts at the recording site, while electrocorticography showed clusters of spreading depolarizations with persistent depression of spontaneous activity. Alternating current electroencephalography similarly displayed persistent depression of spontaneous activity, and direct current electroencephalography slow potential changes riding on a shallow negative ultraslow potential. Isolated spreading depolarizations with depression of both spontaneous electrocorticographic and electroencephalographic activity displayed significantly longer intervals between successive spreading depolarizations than isolated depolarizations with only depression of electrocorticographic activity [44.0 (28.0, 132.0) min, n = 96, versus 30.0 (26.5, 51.5) min, n = 109, P = 0.001]. This suggests fusion of electroencephalographic depression periods at high depolarization frequency. No propagation of electroencephalographic depression was seen between scalp electrodes. Durations/magnitudes of isolated electroencephalographic and corresponding electrocorticographic depression periods correlated significantly. Fewer spreading depolarizations were recorded in patients with malignant hemispheric stroke but characteristics were similar to those after subarachnoid haemorrhage. In conclusion, spreading depolarizations and depressions of spontaneous activity display correlates in time-compressed human scalp direct and alternating current electroencephalography that may serve for their non-invasive detection.
Collapse
Affiliation(s)
- Christoph Drenckhahn
- Centre for Stroke Research Berlin, Charité University Medicine Berlin, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|