151
|
|
152
|
Maranesi M, Rodà F, Bonini L, Rozzi S, Ferrari PF, Fogassi L, Coudé G. Anatomo-functional organization of the ventral primary motor and premotor cortex in the macaque monkey. Eur J Neurosci 2012; 36:3376-87. [DOI: 10.1111/j.1460-9568.2012.08252.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
153
|
Hecht EE, Patterson R, Barbey AK. What can other animals tell us about human social cognition? An evolutionary perspective on reflective and reflexive processing. Front Hum Neurosci 2012; 6:224. [PMID: 22866032 PMCID: PMC3406331 DOI: 10.3389/fnhum.2012.00224] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/12/2012] [Indexed: 11/15/2022] Open
Abstract
Human neuroscience has seen a recent boom in studies on reflective, controlled, explicit social cognitive functions like imitation, perspective-taking, and empathy. The relationship of these higher-level functions to lower-level, reflexive, automatic, implicit functions is an area of current research. As the field continues to address this relationship, we suggest that an evolutionary, comparative approach will be useful, even essential. There is a large body of research on reflexive, automatic, implicit processes in animals. A growing perspective sees social cognitive processes as phylogenically continuous, making findings in other species relevant for understanding our own. One of these phylogenically continuous processes appears to be self-other matching or simulation. Mice are more sensitive to pain after watching other mice experience pain; geese experience heart rate increases when seeing their mate in conflict; and infant macaques, chimpanzees, and humans automatically mimic adult facial expressions. In this article, we review findings in different species that illustrate how such reflexive processes are related to (“higher order”) reflexive processes, such as cognitive empathy, theory of mind, and learning by imitation. We do so in the context of self-other matching in three different domains—in the motor domain (somatomotor movements), in the perceptual domain (eye movements and cognition about visual perception), and in the autonomic/emotional domain. We also review research on the developmental origin of these processes and their neural bases across species. We highlight gaps in existing knowledge and point out some questions for future research. We conclude that our understanding of the psychological and neural mechanisms of self-other mapping and other functions in our own species can be informed by considering the layered complexity these functions in other species.
Collapse
Affiliation(s)
- E E Hecht
- Graduate Neuroscience Program, Emory University, Atlanta GA, USA
| | | | | |
Collapse
|
154
|
Abstract
Objects grasped by an agent have a value not only for the acting agent, but also for an individual observing the grasping act. The value that the observer attributes to the object that is grasped can be pivotal for selecting a possible behavioral response. Mirror neurons in area F5 of the monkey premotor cortex have been suggested to play a crucial role in the understanding of action goals. However, it has not been addressed if these neurons are also involved in representing the value of the grasped object. Here we report that observation-related neuronal responses of F5 mirror neurons are indeed modulated by the value that the monkey associates with the grasped object. These findings suggest that during action observation F5 mirror neurons have access to key information needed to shape the behavioral responses of the observer.
Collapse
|
155
|
Bonini L, Ugolotti Serventi F, Bruni S, Maranesi M, Bimbi M, Simone L, Rozzi S, Ferrari PF, Fogassi L. Selectivity for grip type and action goal in macaque inferior parietal and ventral premotor grasping neurons. J Neurophysiol 2012; 108:1607-19. [PMID: 22745465 DOI: 10.1152/jn.01158.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Grasping objects requires the selection of specific grip postures in relation to the objects' physical properties. Furthermore, grasping acts can be embedded in actions aimed at different goals, depending on the context in which the action is performed. Here we assessed whether information on grip and action type integrate at the single-neuron level within the parieto-frontal motor system. For this purpose, we trained three monkeys to perform simple grasp-to-eat and grasp-to-place actions, depending on contextual cues, in which different grip types were required in relation to target features. We recorded 173 grasping neurons: 86 from the inferior parietal area PFG and 87 from the ventral premotor area F5. Results showed that most neurons in both areas are selective for grip type, but the discharge of many of them, particularly in PFG, appears to differ in relation to action context. Kinematics data and control experiments indicated that neuronal selectivity appears more likely to depend on the action goal triggered by the context than on specific contextual elements. The temporal dynamics of grip and goal selectivity showed that grasping neurons reflect first "how" the object has to be grasped (grip), to guide and monitor the hand shaping phase, and then "why" the action is performed (goal), very likely to facilitate subsequent motor acts following grasping. These findings suggest that, in the parieto-frontal system, grip types and action goals are processed by both parallel and converging pathways, and area PFG appears to be particularly relevant for integrating this information for action organization.
Collapse
Affiliation(s)
- Luca Bonini
- Istituto Italiano di Tecnologia, Brain Center for Social and Motor Cognition, Via Volturno 39, 43125 Parma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Abstract
For humans, daily life is characterized by routine interaction with many different tools for which corresponding actions are specified and performed according to well-learned procedures. The current study used functional MRI (fMRI) repetition suppression (RS) to identify brain areas underlying the transformation of visually defined tool properties to corresponding motor programs for conventional use. Before grasping and demonstrating how to use a specific tool, participants passively viewed either the same (repeated) tool or a different (non-repeated) tool. Repetition of tools led to reduced fMRI signals (RS) within a selective network of parietal and premotor areas. Comparison with newly learned, arbitrarily defined control actions revealed specificity of RS for tool use, thought to reflect differences in the extent of previous sensorimotor experience. The findings indicate that familiar tools are visually represented within the same sensorimotor areas underlying their dexterous use according to learned properties defined by previous experience. This interpretation resonates with the broader concept of affordance specification considered fundamental to action planning and execution whereby action-relevant object properties (affordances) are visually represented in sensorimotor areas. The current findings extend this view to reveal that affordance specification in humans includes learned object properties defined by previous sensorimotor experience. From an evolutionary perspective, the neural mechanisms identified in the current study offer clear survival advantage, providing fast efficient transformation of visual information to appropriate motor responses based on previous experience.
Collapse
|
157
|
Gerbella M, Borra E, Tonelli S, Rozzi S, Luppino G. Connectional Heterogeneity of the Ventral Part of the Macaque Area 46. Cereb Cortex 2012; 23:967-87. [DOI: 10.1093/cercor/bhs096] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
158
|
Wuerger SM, Parkes L, Lewis PA, Crocker-Buque A, Rutschmann R, Meyer GF. Premotor Cortex Is Sensitive to Auditory–Visual Congruence for Biological Motion. J Cogn Neurosci 2012; 24:575-87. [PMID: 22126670 PMCID: PMC7614374 DOI: 10.1162/jocn_a_00173] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
The auditory and visual perception systems have developed special processing strategies for ecologically valid motion stimuli, utilizing some of the statistical properties of the real world. A well-known example is the perception of biological motion, for example, the perception of a human walker. The aim of the current study was to identify the cortical network involved in the integration of auditory and visual biological motion signals. We first determined the cortical regions of auditory and visual coactivation (Experiment 1); a conjunction analysis based on unimodal brain activations identified four regions: middle temporal area, inferior parietal lobule, ventral premotor cortex, and cerebellum. The brain activations arising from bimodal motion stimuli (Experiment 2) were then analyzed within these regions of coactivation. Auditory footsteps were presented concurrently with either an intact visual point-light walker (biological motion) or a scrambled point-light walker; auditory and visual motion in depth (walking direction) could either be congruent or incongruent. Our main finding is that motion incongruency (across modalities) increases the activity in the ventral premotor cortex, but only if the visual point-light walker is intact. Our results extend our current knowledge by providing new evidence consistent with the idea that the premotor area assimilates information across the auditory and visual modalities by comparing the incoming sensory input with an internal representation.
Collapse
|
159
|
Pouring or chilling a bottle of wine: an fMRI study on the prospective planning of object-directed actions. Exp Brain Res 2012; 218:189-200. [DOI: 10.1007/s00221-012-3016-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/25/2012] [Indexed: 10/28/2022]
|
160
|
Activation patterns during action observation are modulated by context in mirror system areas. Neuroimage 2012; 59:608-15. [DOI: 10.1016/j.neuroimage.2011.07.080] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/13/2011] [Accepted: 07/23/2011] [Indexed: 11/17/2022] Open
|
161
|
Role of the parietal cortex in predicting incoming actions. Neuroimage 2012; 59:556-64. [DOI: 10.1016/j.neuroimage.2011.07.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 07/14/2011] [Accepted: 07/16/2011] [Indexed: 11/23/2022] Open
|
162
|
Chersi F, Ferrari PF, Fogassi L. Neuronal chains for actions in the parietal lobe: a computational model. PLoS One 2011; 6:e27652. [PMID: 22140455 PMCID: PMC3225358 DOI: 10.1371/journal.pone.0027652] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 10/21/2011] [Indexed: 11/19/2022] Open
Abstract
The inferior part of the parietal lobe (IPL) is known to play a very important role in sensorimotor integration. Neurons in this region code goal-related motor acts performed with the mouth, with the hand and with the arm. It has been demonstrated that most IPL motor neurons coding a specific motor act (e.g., grasping) show markedly different activation patterns according to the final goal of the action sequence in which the act is embedded (grasping for eating or grasping for placing). Some of these neurons (parietal mirror neurons) show a similar selectivity also during the observation of the same action sequences when executed by others. Thus, it appears that the neuronal response occurring during the execution and the observation of a specific grasping act codes not only the executed motor act, but also the agent's final goal (intention).In this work we present a biologically inspired neural network architecture that models mechanisms of motor sequences execution and recognition. In this network, pools composed of motor and mirror neurons that encode motor acts of a sequence are arranged in form of action goal-specific neuronal chains. The execution and the recognition of actions is achieved through the propagation of activity bursts along specific chains modulated by visual and somatosensory inputs.The implemented spiking neuron network is able to reproduce the results found in neurophysiological recordings of parietal neurons during task performance and provides a biologically plausible implementation of the action selection and recognition process.Finally, the present paper proposes a mechanism for the formation of new neural chains by linking together in a sequential manner neurons that represent subsequent motor acts, thus producing goal-directed sequences.
Collapse
Affiliation(s)
- Fabian Chersi
- Institute of Science and Technology of Cognition, CNR Rome, Rome, Italy.
| | | | | |
Collapse
|
163
|
What is so special about embodied simulation? Trends Cogn Sci 2011; 15:512-9. [PMID: 21983148 DOI: 10.1016/j.tics.2011.09.003] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/13/2011] [Accepted: 09/19/2011] [Indexed: 11/23/2022]
Abstract
Simulation theories of social cognition abound in the literature, but it is often unclear what simulation means and how it works. The discovery of mirror neurons, responding both to action execution and observation, suggested an embodied approach to mental simulation. Over the past few years this approach has been hotly debated and alternative accounts have been proposed. We discuss these accounts and argue that they fail to capture the uniqueness of embodied simulation (ES). ES theory provides a unitary account of basic social cognition, demonstrating that people reuse their own mental states or processes represented with a bodily format in functionally attributing them to others.
Collapse
|
164
|
Thill S, Svensson H, Ziemke T. Modeling the Development of Goal-Specificity in Mirror Neurons. Cognit Comput 2011; 3:525-538. [PMID: 22207881 PMCID: PMC3228964 DOI: 10.1007/s12559-011-9108-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 08/26/2011] [Indexed: 11/29/2022]
Abstract
Neurophysiological studies have shown that parietal mirror neurons encode not only actions but also the goal of these actions. Although some mirror neurons will fire whenever a certain action is perceived (goal-independently), most will only fire if the motion is perceived as part of an action with a specific goal. This result is important for the action-understanding hypothesis as it provides a potential neurological basis for such a cognitive ability. It is also relevant for the design of artificial cognitive systems, in particular robotic systems that rely on computational models of the mirror system in their interaction with other agents. Yet, to date, no computational model has explicitly addressed the mechanisms that give rise to both goal-specific and goal-independent parietal mirror neurons. In the present paper, we present a computational model based on a self-organizing map, which receives artificial inputs representing information about both the observed or executed actions and the context in which they were executed. We show that the map develops a biologically plausible organization in which goal-specific mirror neurons emerge. We further show that the fundamental cause for both the appearance and the number of goal-specific neurons can be found in geometric relationships between the different inputs to the map. The results are important to the action-understanding hypothesis as they provide a mechanism for the emergence of goal-specific parietal mirror neurons and lead to a number of predictions: (1) Learning of new goals may mostly reassign existing goal-specific neurons rather than recruit new ones; (2) input differences between executed and observed actions can explain observed corresponding differences in the number of goal-specific neurons; and (3) the percentage of goal-specific neurons may differ between motion primitives.
Collapse
Affiliation(s)
- Serge Thill
- Cognition and Interaction Lab, School of Humanities and Informatics, University of Skövde, P.O. Box 408, 541 28 Skövde, Sweden
| | | | | |
Collapse
|
165
|
Carpaneto J, Umiltà M, Fogassi L, Murata A, Gallese V, Micera S, Raos V. Decoding the activity of grasping neurons recorded from the ventral premotor area F5 of the macaque monkey. Neuroscience 2011; 188:80-94. [DOI: 10.1016/j.neuroscience.2011.04.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 04/14/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
|
166
|
Sgandurra G, Ferrari A, Cossu G, Guzzetta A, Biagi L, Tosetti M, Fogassi L, Cioni G. Upper limb children action-observation training (UP-CAT): a randomised controlled trial in hemiplegic cerebral palsy. BMC Neurol 2011; 11:80. [PMID: 21711525 PMCID: PMC3141400 DOI: 10.1186/1471-2377-11-80] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 06/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rehabilitation for children with hemiplegic cerebral palsy (HCP) aimed to improve function of the impaired upper limb (UL) uses a wide range of intervention programs. A new rehabilitative approach, called Action-Observation Therapy, based on the recent discovery of mirror neurons, has been used in adult stroke but not in children. The purpose of the present study is to design a randomised controlled trial (RCT) for evaluating the efficacy of Action-Observation Therapy in improving UL activity in children with HCP. METHODS/DESIGN The trial is designed according to CONSORT Statement. It is a randomised, evaluator-blinded, match-pair group trial. Children with HCP will be randomised within pairs to either experimental or control group. The experimental group will perform an Action-Observation Therapy, called UP-CAT (Upper Limb-Children Action-Observation Training) in which they will watch video sequences showing goal-directed actions, chosen according to children UL functional level, combined with motor training with their hemiplegic UL. The control group will perform the same tailored actions after watching computer games. A careful revision of psychometric properties of UL outcome measures for children with hemiplegia was performed. Assisting Hand Assessment was chosen as primary measure and, based on its calculation power, a sample size of 12 matched pairs was established. Moreover, Melbourne and ABILHAND-Kids were included as secondary measures. The time line of assessments will be T0 (in the week preceding the onset of the treatment), T1 and T2 (in the week after the end of the treatment and 8 weeks later, respectively). A further assessment will be performed at T3 (24 weeks after T1), to evaluate the retention of effects. In a subgroup of children enrolled in both groups functional Magnetic Resonance Imaging, exploring the mirror system and sensory-motor function, will be performed at T0, T1 and T2. DISCUSSION The paper aims to describe the methodology of a RCT for evaluating the efficacy of Action-Observation Therapy in improving UL activity in children with hemiplegia. This study will be the first to test this new type of treatment in childhood. The paper presents the theoretical background, study hypotheses, outcome measures and trial methodology. TRIAL REGISTRATION NCT01016496.
Collapse
Affiliation(s)
- Giuseppina Sgandurra
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33 - 56127 Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Grasping neurons of monkey parietal and premotor cortices encode action goals at distinct levels of abstraction during complex action sequences. J Neurosci 2011; 31:5876-86. [PMID: 21490229 DOI: 10.1523/jneurosci.5186-10.2011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Natural actions are formed by distinct motor acts, each of which is endowed with its own motor purpose (i.e., grasping), chained together to attain the final action goal. Previous studies have shown that grasping neurons of parietal area PFG and premotor area F5 can code the goal of simple actions in which grasping is embedded. While during simple actions the target is usually visible, directly cueing the final goal, during complex action sequences is often concealed and has to be kept in mind to shape action unfolding. The aim of this study was to assess the relative contribution of sensory-cued or memory-driven information about the final goal to PFG and F5 grasping neurons activity. To this purpose, we trained two monkeys to perform complex action sequences, each including two successive grasping acts, aimed at specific final goals (eating or placing). We recorded 122 PFG and 89 F5 neurons. Forty-seven PFG and 26 F5 neurons displayed action goal selectivity only during the late phase of the action, when sensory information cueing the action goal became available. Reward contingency did not affect neuronal selectivity. Notably, 17 PFG neurons reflected the final goal from the early phase of action unfolding, when only memory-driven information was available. Crucially, when monkeys were prevented from obtaining such information before action onset, neurons lost their early selectivity. Our findings suggest that external sensory cues and individual's motor intention integrate at different level of abstraction within a large anatomo-functional network, encompassing parietal and premotor cortices.
Collapse
|
168
|
Ocampo B, Kritikos A. Interpreting actions: The goal behind mirror neuron function. ACTA ACUST UNITED AC 2011; 67:260-7. [DOI: 10.1016/j.brainresrev.2011.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 02/28/2011] [Accepted: 03/03/2011] [Indexed: 11/17/2022]
|
169
|
Abstract
In both monkeys and humans, the observation of actions performed by others activates cortical motor areas. An unresolved question concerns the pathways through which motor areas receive visual information describing motor acts. Using functional magnetic resonance imaging (fMRI), we mapped the macaque brain regions activated during the observation of grasping actions, focusing on the superior temporal sulcus region (STS) and the posterior parietal lobe. Monkeys viewed either videos with only the grasping hand visible or videos with the whole actor visible. Observation of both types of grasping videos activated elongated regions in the depths of both lower and upper banks of STS, as well as parietal areas PFG and anterior intraparietal (AIP). The correlation of fMRI data with connectional data showed that visual action information, encoded in the STS, is forwarded to ventral premotor cortex (F5) along two distinct functional routes. One route connects the upper bank of the STS with area PFG, which projects, in turn, to the premotor area F5c. The other connects the anterior part of the lower bank of the STS with premotor areas F5a/p via AIP. Whereas the first functional route emphasizes the agent and may relay visual information to the parieto-frontal mirror circuit involved in understanding the agent's intentions, the second route emphasizes the object of the action and may aid in understanding motor acts with respect to their immediate goal.
Collapse
|
170
|
Chersi F. Neural mechanisms and models underlying joint action. Exp Brain Res 2011; 211:643-53. [PMID: 21526335 DOI: 10.1007/s00221-011-2690-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 04/05/2011] [Indexed: 11/25/2022]
Abstract
Humans, in particular, and to a lesser extent also other species of animals, possess the impressive capability of smoothly coordinating their actions with those of others. The great amount of work done in recent years in neuroscience has provided new insights into the processes involved in joint action, intention understanding, and task sharing. In particular, the discovery of mirror neurons, which fire both when animals execute actions and when they observe the same actions done by other individuals, has shed light on the intimate relationship between perception and action elucidating the direct contribution of motor knowledge to action understanding. Up to date, however, a detailed description of the neural processes involved in these phenomena is still mostly lacking. Building upon data from single neuron recordings in monkeys observing the actions of a demonstrator and then executing the same or a complementary action, this paper describes the functioning of a biologically constraint neural network model of the motor and mirror systems during joint action. In this model, motor sequences are encoded as independent neuronal chains that represent concatenations of elementary motor acts leading to a specific goal. Action execution and recognition are achieved through the propagation of activity within specific chains. Due to the dual property of mirror neurons, the same architecture is capable of smoothly integrating and switching between observed and self-generated action sequences, thus allowing to evaluate multiple hypotheses simultaneously, understand actions done by others, and to respond in an appropriate way.
Collapse
Affiliation(s)
- Fabian Chersi
- Istituto di Scienze e Tecnologie della Cognizione, CNR, Via S. Martino della Battaglia 44, Roma, Italy.
| |
Collapse
|
171
|
Glenberg AM, Gallese V. Action-based language: a theory of language acquisition, comprehension, and production. Cortex 2011; 48:905-22. [PMID: 21601842 DOI: 10.1016/j.cortex.2011.04.010] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 10/12/2010] [Accepted: 04/13/2011] [Indexed: 10/18/2022]
Abstract
Evolution and the brain have done a marvelous job solving many tricky problems in action control, including problems of learning, hierarchical control over serial behavior, continuous recalibration, and fluency in the face of slow feedback. Given that evolution tends to be conservative, it should not be surprising that these solutions are exploited to solve other tricky problems, such as the design of a communication system. We propose that a mechanism of motor control, paired controller/predictor models, has been exploited for language learning, comprehension, and production. Our account addresses the development of grammatical regularities and perspective, as well as how linguistic symbols become meaningful through grounding in perception, action, and emotional systems.
Collapse
Affiliation(s)
- Arthur M Glenberg
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA.
| | | |
Collapse
|
172
|
Abstract
Mirror neurons are a class of visuomotor neurons in the monkey premotor and parietal cortices that discharge during the execution and observation of goal-directed motor acts. They are deemed to be at the basis of primates' social abilities. In this review, the authors provide a fresh view about two still open questions about mirror neurons. The first question is their possible functional role. By reviewing recent neurophysiological data, the authors suggest that mirror neurons might represent a flexible system that encodes observed actions in terms of several behaviorally relevant features. The second question concerns the possible developmental mechanisms responsible for their initial emergence. To provide a possible answer to question, the authors review two different aspects of sensorimotor development: facial and hand movements, respectively. The authors suggest that possibly two different "mirror" systems might underlie the development of action understanding and imitative abilities in the two cases. More specifically, a possibly prewired system already present at birth but shaped by the social environment might underlie the early development of facial imitative abilities. On the contrary, an experience-dependent system might subserve perception-action couplings in the case of hand movements. The development of this latter system might be critically dependent on the observation of own movements.
Collapse
Affiliation(s)
- Antonino Casile
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy.
| | | | | |
Collapse
|
173
|
Abstract
Mirror neurons (MNs) were first discovered in monkeys and subsequently in humans and birds. While MNs are deemed to play a number of high-level cognitive functions, here we propose that they serve a unitary form of sensorimotor recognition of others' behavior. We caution that this basic function should not be confounded with the higher order functions that stem from the wider cortical systems in which MNs are embedded. Depending on the species, MNs function at different levels of motor event recognition, from motor goals to fine grained movements, thus contributing to social learning and imitative phenomena. Recent studies show that MNs coding has a prospective nature, suggesting that MNs also play a role in anticipating and predicting the behavior of others during social interactions. The presence of mirroring mechanisms in subcortical structures related to visceromotor reactions and the large diffusion of imitative phenomena among animals suggest that MN systems may be more ancient and widespread than previously thought.
Collapse
Affiliation(s)
- Luca Bonini
- Department of Neuroscience, University of Parma and Italian Institute of Technology, Parma, Italy
| | - Pier Francesco Ferrari
- Department of Neuroscience, University of Parma and Italian Institute of Technology, Parma, Italy
- Department of Evolutionary and Functional Biology, University of Parma, Parma, Italy
| |
Collapse
|
174
|
Marangon M, Jacobs S, Frey SH. Evidence for context sensitivity of grasp representations in human parietal and premotor cortices. J Neurophysiol 2011; 105:2536-46. [PMID: 21367998 DOI: 10.1152/jn.00796.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Grasp-related responses in neurons of the macaque rostral inferior parietal lobule [PF/PFG and the anterior intraparietal area (AIP)] are modulated by task context. Event-related functional MRI was used to determine whether this is true in putative homologs of the human cortex, the rostral inferior parietal lobule (rIPL) and the anterior intraparietal sulcus (aIPS). Fifteen healthy, right-handed adults were required to select prospectively the most comfortable way to grasp a horizontally oriented handle using the cued hand (left or right). In the "no-rotation" condition, the task was simply to grasp the handle, whereas in the "rotation" condition, the goal was to plan to grasp and rotate it into a vertical orientation with the cued end (medial or lateral) pointing downward. In both conditions, participants remained still and indicated their grip preferences by pressing foot pedals. As in overt grasping, participants' grip preferences were significantly influenced by anticipation of the demands associated with handle rotation. Activity within the aIPS and rIPL increased bilaterally in both the rotation and no-rotation conditions. Importantly, these responses were significantly greater in the rotation vs. no-rotation condition. Similar context effects were detected in the presupplementary motor area, caudal intraparietal sulcus/superior parietal lobule, and bilateral dorsal and left ventral premotor cortices. Grasp representations within the rIPL and aIPS are sensitive to predicted task demands and play a role in context-sensitive grip selection. Moreover, the findings provide additional evidence that areas involved in the sensorimotor control of grasp also contribute to feedforward planning.
Collapse
Affiliation(s)
- Mattia Marangon
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA
| | | | | |
Collapse
|
175
|
Sinigaglia C, Rizzolatti G. Through the looking glass: self and others. Conscious Cogn 2011; 20:64-74. [PMID: 21220203 DOI: 10.1016/j.concog.2010.11.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 11/30/2010] [Indexed: 12/25/2022]
Abstract
In the present article we discuss the relevance of the mirror mechanism for our sense of self and our sense of others. We argue that, by providing us with an understanding from the inside of actions, the mirror mechanism radically challenges the traditional view of the self and of the others. Indeed, this mechanism not only reveals the common ground on the basis of which we become aware of ourselves as selves distinct from other selves, but also sheds new light on the content of our self and other experience, showing that we primarily experience ourselves and the others in terms of our own and of their motor possibilities respectively.
Collapse
Affiliation(s)
- Corrado Sinigaglia
- University of Milan, Department of Philosophy, via Festa del Perdono 7, I-20122 Milano, Italy.
| | | |
Collapse
|
176
|
Caggiano V, Fogassi L, Rizzolatti G, Pomper JK, Thier P, Giese MA, Casile A. View-Based Encoding of Actions in Mirror Neurons of Area F5 in Macaque Premotor Cortex. Curr Biol 2011; 21:144-8. [DOI: 10.1016/j.cub.2010.12.022] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/02/2010] [Accepted: 12/10/2010] [Indexed: 11/28/2022]
|
177
|
Responses of mirror neurons in area F5 to hand and tool grasping observation. Exp Brain Res 2010; 204:605-16. [PMID: 20577726 PMCID: PMC2903687 DOI: 10.1007/s00221-010-2329-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 06/08/2010] [Indexed: 11/01/2022]
Abstract
Mirror neurons are a distinct class of neurons that discharge both during the execution of a motor act and during observation of the same or similar motor act performed by another individual. However, the extent to which mirror neurons coding a motor act with a specific goal (e.g., grasping) might also respond to the observation of a motor act having the same goal, but achieved with artificial effectors, is not yet established. In the present study, we addressed this issue by recording mirror neurons from the ventral premotor cortex (area F5) of two monkeys trained to grasp objects with pliers. Neuron activity was recorded during the observation and execution of grasping performed with the hand, with pliers and during observation of an experimenter spearing food with a stick. The results showed that virtually all neurons responding to the observation of hand grasping also responded to the observation of grasping with pliers and, many of them to the observation of spearing with a stick. However, the intensity and pattern of the response differed among conditions. Hand grasping observation determined the earliest and the strongest discharge, while pliers grasping and spearing observation triggered weaker responses at longer latencies. We conclude that F5 grasping mirror neurons respond to the observation of a family of stimuli leading to the same goal. However, the response pattern depends upon the similarity between the observed motor act and the one executed by the hand, the natural motor template.
Collapse
|
178
|
Fogassi L, Ferrari PF. Mirror systems. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2010; 2:22-38. [PMID: 26301910 DOI: 10.1002/wcs.89] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mirror neurons are a class of visuomotor neurons, discovered in the monkey premotor cortex and in an anatomically connected area of the inferior parietal lobule, that activate both during action execution and action observation. They constitute a circuit dedicated to match actions made by others with the internal motor representations of the observer. It has been proposed that this matching system enables individuals to understand others' behavior and motor intentions. Here we will describe the main features of mirror neurons in monkeys. Then we will present evidence of the presence of a mirror system in humans and of its involvement in several social-cognitive functions, such as imitation, intention, and emotion understanding. This system may have several implications at a cognitive level and could be linked to specific social deficits in humans such as autism. Recent investigations addressed the issue of the plasticity of the mirror neuron system in both monkeys and humans, suggesting also their possible use in rehabilitation. WIREs Cogn Sci 2011 2 22-38 DOI: 10.1002/wcs.89 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Leonardo Fogassi
- Departments of Neuroscience and Department of Psychology, Italian Institute of Technology, University of Parma, Italy
| | - Pier Francesco Ferrari
- Departments of Neuroscience and Department of Evolutionary and Functional Biology, Italian Institute of Technology, University of Parma, Italy
| |
Collapse
|
179
|
Grafton ST. The cognitive neuroscience of prehension: recent developments. Exp Brain Res 2010; 204:475-91. [PMID: 20532487 PMCID: PMC2903689 DOI: 10.1007/s00221-010-2315-2] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 05/22/2010] [Indexed: 12/04/2022]
Abstract
Prehension, the capacity to reach and grasp, is the key behavior that allows humans to change their environment. It continues to serve as a remarkable experimental test case for probing the cognitive architecture of goal-oriented action. This review focuses on recent experimental evidence that enhances or modifies how we might conceptualize the neural substrates of prehension. Emphasis is placed on studies that consider how precision grasps are selected and transformed into motor commands. Then, the mechanisms that extract action relevant information from vision and touch are considered. These include consideration of how parallel perceptual networks within parietal cortex, along with the ventral stream, are connected and share information to achieve common motor goals. On-line control of grasping action is discussed within a state estimation framework. The review ends with a consideration about how prehension fits within larger action repertoires that solve more complex goals and the possible cortical architectures needed to organize these actions.
Collapse
Affiliation(s)
- Scott T Grafton
- Department of Psychology, Sage Center for the Study of Mind, University of California at Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
180
|
Chersi F, Thill S, Ziemke T, Borghi AM. Sentence processing: linking language to motor chains. Front Neurorobot 2010; 4. [PMID: 20725506 PMCID: PMC2901116 DOI: 10.3389/fnbot.2010.00004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 04/27/2010] [Indexed: 11/18/2022] Open
Abstract
A growing body of evidence in cognitive science and neuroscience points towards the existence of a deep interconnection between cognition, perception and action. According to this embodied perspective language is grounded in the sensorimotor system and language understanding is based on a mental simulation process (Jeannerod, 2007; Gallese, 2008; Barsalou, 2009). This means that during action words and sentence comprehension the same perception, action, and emotion mechanisms implied during interaction with objects are recruited. Among the neural underpinnings of this simulation process an important role is played by a sensorimotor matching system known as the mirror neuron system (Rizzolatti and Craighero, 2004). Despite a growing number of studies, the precise dynamics underlying the relation between language and action are not yet well understood. In fact, experimental studies are not always coherent as some report that language processing interferes with action execution while others find facilitation. In this work we present a detailed neural network model capable of reproducing experimentally observed influences of the processing of action-related sentences on the execution of motor sequences. The proposed model is based on three main points. The first is that the processing of action-related sentences causes the resonance of motor and mirror neurons encoding the corresponding actions. The second is that there exists a varying degree of crosstalk between neuronal populations depending on whether they encode the same motor act, the same effector or the same action-goal. The third is the fact that neuronal populations’ internal dynamics, which results from the combination of multiple processes taking place at different time scales, can facilitate or interfere with successive activations of the same or of partially overlapping pools.
Collapse
Affiliation(s)
- Fabian Chersi
- Institute of Sciences and Technologies of Cognition, National Research Council Rome, Italy
| | | | | | | |
Collapse
|
181
|
Rizzolatti G, Sinigaglia C. The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci 2010; 11:264-74. [PMID: 20216547 DOI: 10.1038/nrn2805] [Citation(s) in RCA: 967] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|