151
|
Radhakrishnan I, Pérez-Alvarado GC, Parker D, Dyson HJ, Montminy MR, Wright PE. Structural analyses of CREB-CBP transcriptional activator-coactivator complexes by NMR spectroscopy: implications for mapping the boundaries of structural domains. J Mol Biol 1999; 287:859-65. [PMID: 10222196 DOI: 10.1006/jmbi.1999.2658] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A number of signal-dependent and development-specific transcription factors recruit CREB binding protein (CBP) for their transactivation function. The KIX domain of CBP is a common docking site for many of these transcription factors. We recently determined the solution structure of the KIX domain complexed to one of its targets, the Ser133-phosphorylated kinase inducible transactivation domain (pKID) of the cyclic AMP response element binding protein. The NMR studies have now been extended to a slightly longer KIX construct that, unlike the original KIX construct, is readily amenable to structural analysis in both the free and pKID-bound forms. This addition of six residues (KRRSRL) to the C terminus of the original construct elongates the C-terminal alpha3 helix of KIX by about eight residues. On the basis of the NMR structure of the original KIX construct, residues in the extended helix are predicted to be solvent exposed and thus are not expected to contribute to the hydrophobic core of the domain. Their role appears to be in the stabilization of the alpha3 helix through favorable electrostatic interactions with the helix dipole, which in turn confers stability on the core of the KIX domain. These results have important implications for the identification of novel protein domain boundaries. Chemical shift perturbation mapping firmly establishes a similar mode of pKID binding to the longer KIX construct and rules out any additional intermolecular interactions between residues in the C-terminal extension and pKID.
Collapse
Affiliation(s)
- I Radhakrishnan
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | | | | | | | | |
Collapse
|
152
|
Buhl AM, Cambier JC. Phosphorylation of CD19 Y484 and Y515, and Linked Activation of Phosphatidylinositol 3-Kinase, Are Required for B Cell Antigen Receptor-Mediated Activation of Bruton’s Tyrosine Kinase. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.8.4438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Bruton’s tyrosine kinase (Btk) plays a critical role in B cell Ag receptor (BCR) signaling, as indicated by the X-linked immunodeficiency and X-linked agammaglobulinemia phenotypes of mice and men that express mutant forms of the kinase. Although Btk activity can be regulated by Src-family and Syk tyrosine kinases, and perhaps by phosphatidylinositol 3,4,5-trisphosphate, BCR-coupled signaling pathways leading to Btk activation are poorly understood. In view of previous findings that CD19 is involved in BCR-mediated phosphatidylinositol 3-kinase (PI3-K) activation, we assessed its role in Btk activation. Using a CD19 reconstituted myeloma model and CD19 gene-ablated animals we found that BCR-mediated Btk activation and phosphorylation are dependent on the expression of CD19, while BCR-mediated activation of Lyn and Syk is not. Wortmannin preincubation inhibited the BCR-mediated activation and phosphorylation of Btk. Btk activation was not rescued in the myeloma by expression of a CD19 mutant in which tyrosine residues previously shown to mediate CD19 interaction with PI3-K, Y484 and Y515, were changed to phenylalanine. Taken together, the data presented indicate that BCR aggregation-driven CD19 phosphorylation functions to promote Btk activation via recruitment and activation of PI3-K. Resultant phosphatidylinositol 3,4,5-trisphosphate probably functions to localize Btk for subsequent phosphorylation and activation by Src and Syk family kinases.
Collapse
Affiliation(s)
- Anne Mette Buhl
- *Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, and
| | - John C. Cambier
- *Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, and
- †Department of Immunology, University of Colorado Health Sciences Center, Denver, CO 80206
| |
Collapse
|
153
|
Baraldi E, Djinovic Carugo K, Hyvönen M, Surdo PL, Riley AM, Potter BV, O'Brien R, Ladbury JE, Saraste M. Structure of the PH domain from Bruton's tyrosine kinase in complex with inositol 1,3,4,5-tetrakisphosphate. Structure 1999; 7:449-60. [PMID: 10196129 DOI: 10.1016/s0969-2126(99)80057-4] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The activity of Bruton's tyrosine kinase (Btk) is important for the maturation of B cells. A variety of point mutations in this enzyme result in a severe human immunodeficiency known as X-linked agammaglobulinemia (XLA). Btk contains a pleckstrin-homology (PH) domain that specifically binds phosphatidylinositol 3,4,5-trisphosphate and, hence, responds to signalling via phosphatidylinositol 3-kinase. Point mutations in the PH domain might abolish membrane binding, preventing signalling via Btk. RESULTS We have determined the crystal structures of the wild-type PH domain and a gain-of-function mutant E41K in complex with D-myo-inositol 1,3,4,5-tetra-kisphosphate (Ins (1,3,4,5)P4). The inositol Ins (1,3,4,5)P4 binds to a site that is similar to the inositol 1,4,5-trisphosphate binding site in the PH domain of phospholipase C-delta. A second Ins (1,3,4,5)P4 molecule is associated with the domain of the E41K mutant, suggesting a mechanism for its constitutive interaction with membrane. The affinities of Ins (1,3,4,5)P4 to the wild type (Kd = 40 nM), and several XLA-causing mutants have been measured using isothermal titration calorimetry. CONCLUSIONS Our data provide an explanation for the specificity and high affinity of the interaction with phosphatidylinositol 3,4,5-trisphosphate and lead to a classification of the XLA mutations that reside in the Btk PH domain. Mis-sense mutations that do not simply destabilize the PH fold either directly affect the interaction with the phosphates of the lipid head group or change electrostatic properties of the lipid-binding site. One point mutation (Q127H) cannot be explained by these facts, suggesting that the PH domain of Btk carries an additional function such as interaction with a Galpha protein.
Collapse
Affiliation(s)
- E Baraldi
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Postfach 102209, D-69012 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Günther R, Zill H, Schmidt WE, Fölsch UR. [ZAP genes: characterizing the protein structure of a new family of proliferation associated genes in the exocrine pancreas]. MEDIZINISCHE KLINIK (MUNICH, GERMANY : 1983) 1999; 94:233-8. [PMID: 10373761 DOI: 10.1007/bf03044861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
While interested in proliferation-dependent gene regulation in a pancreatic carcinoma cell line, we cloned a set of proteins (ZAP) characterized by a conserved region consisting of consecutive zinc finger, ankyrin repeat and PH domains. Functional aspects of these domains were obtained by comparison with proteins involved in several signal transduction pathways and cell cycle regulation. The members of the ZAP protein family are individually characterized by different types of supplementary protein domains, their chromosomal localization and their tissue specific gene transcription. All results indicate a wide spectrum of protein-protein interactions. Up to now specific binding partners have not been identified. In summary, the multiplicity of conserved regions and transcriptional data indicate a scaffold function for ZAP proteins in the complex network of proliferation associated intracellular signal transduction pathways.
Collapse
Affiliation(s)
- R Günther
- I. Medizinische Klinik, Christian-Albrechts-Universität zu Kiel.
| | | | | | | |
Collapse
|
155
|
Holbrook PG, Geetha V, Beaven MA, Munson PJ. Recognizing the pleckstrin homology domain fold in mammalian phospholipase D using hidden Markov models. FEBS Lett 1999; 448:269-72. [PMID: 10218490 DOI: 10.1016/s0014-5793(99)00366-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phospholipase D was first described in plant tissue but has recently been shown to occur in mammalian cells where it is activated by cell surface receptors. Its mode of activation by receptors in unclear. Biochemical studies suggest that it may occur downstream of other effector proteins and that small GTP-dependent regulatory proteins may be involved. The sequence in a non-designated region of mammalian phospholipase D1 and 2 shows similarity to a structural domain that is present in signalling proteins that are regulated by protein kinases or heterotrimeric G-proteins. Mammalian phospholipase D has structural similarities with other lipid signalling phospholipases and thus may be regulated by receptors in an analogous fashion.
Collapse
Affiliation(s)
- P G Holbrook
- Laboratory of Molecular Immunology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
156
|
Hanck T, Stricker R, Krishna UM, Falck JR, Chang YT, Chung SK, Reiser G. Recombinant p42IP4, a brain-specific 42-kDa high-affinity Ins(1,3,4,5)P4 receptor protein, specifically interacts with lipid membranes containing Ptd-Ins(3,4,5)P3. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:577-84. [PMID: 10215872 DOI: 10.1046/j.1432-1327.1999.00326.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have recently cloned the cDNA of p42IP4, a membrane-associated and cytosolic inositol (1,3,4,5)tetrakisphosphate receptor protein [Stricker, R., Hülser, E., Fischer, J., Jarchau, T., Walter, U., Lottspeich, F. & Reiser, G. (1997) FEBS Lett. 405, 229-236.] p42IP4 is a protein of 374 amino acids with Mr of 42 kDa. The p42IP4 protein has a zinc finger motif at its N-terminus, followed by two pleckstrin homology domains. To characterize further the biochemical and functional properties of p42IP4, it was expressed as a glutathione-S-transferase fusion protein in Sf9 cells using a recombinant baculovirus vector. The protein was affinity adsorbed on glutathione beads, cleaved from glutathione-S-transferase with the protease factor-Xa and purified on heparin agarose. The recombinant purified protein is active because it shows binding affinities similar to those of the native p42IP4, purified from pig cerebellum or rat brain (Ki for inositol(1,3,4,5)P4 of 4.1 nm and 2.2 nm, respectively). Moreover the ligand specificity of the recombinant protein for various inositol polyphosphates is similar to that of the native protein purified from brain. Importantly, we show here that p42IP4 binds phosphatidylinositol(3,4,5)P3 specifically, as the recombinant protein can associate with lipid membranes (vesicles) containing phosphatidylinositol(3,4,5)P3; this binding occurs in a concentration-dependent manner and is blocked by inositol(1,3,4,5)P4. This specific association and the possibility that endogenous p42IP4 can be converted from a membrane-associated state to a soluble state support the hypothesis that p42IP4 might be redistributed between cellular compartments upon hormonal stimulation.
Collapse
Affiliation(s)
- T Hanck
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
157
|
Vetter IR, Nowak C, Nishimoto T, Kuhlmann J, Wittinghofer A. Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature 1999; 398:39-46. [PMID: 10078529 DOI: 10.1038/17969] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The protein Ran is a small GTP-binding protein that binds to two types of effector inside the cell: Ran-binding proteins, which have a role in terminating export processes from the nucleus to the cytoplasm, and importin-beta-like molecules that bind cargo proteins during nuclear transport. The Ran-binding domain is a conserved sequence motif found in several proteins that participate in these transport processes. The Ran-binding protein RanBP2 contains four of these domains and constitutes a large part of the cytoplasmic fibrils that extend from the nuclear-pore complex. The structure of Ran bound to a non-hydrolysable GTP analogue (Ran x GppNHp) in complex with the first Ran-binding domain (RanBD1) of human RanBP2 reveals not only that RanBD1 has a pleckstrin-homology domain fold, but also that the switch-I region of Ran x GppNHp resembles the canonical Ras GppNHp structure and that the carboxy terminus of Ran is wrapped around RanBD1, contacting a basic patch on RanBD1 through its acidic end. This molecular 'embrace' enables RanBDs to sequester the Ran carboxy terminus, triggering the dissociation of Ran x GTP from importin-beta-related transport factors and facilitating GTP hydrolysis by the GTPase-activating protein ranGAP. Such a mechanism represents a new type of switch mechanism and regulatory protein-protein interaction for a Ras-related protein.
Collapse
Affiliation(s)
- I R Vetter
- Abteilung Strukturelle Biologie, Max-Planck-Institut für molekulare Physiologie, Dortmund, Germany
| | | | | | | | | |
Collapse
|
158
|
Powe AC, Strathdee D, Cutforth T, D'Souza-Correia T, Gaines P, Thackeray J, Carlson J, Gaul U. In vivo functional analysis of Drosophila Gap1: involvement of Ca2+ and IP4 regulation. Mech Dev 1999; 81:89-101. [PMID: 10330487 DOI: 10.1016/s0925-4773(98)00230-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Control of Ras activity is crucial for normal cellular behavior such as fate determination during development. Although several GTPase activating proteins (GAPs) have been shown to act as negative regulators of Ras, the mechanisms involved in regulating their activity in vivo are poorly understood. Here we report the structural requirements for Gap1 activity in cone cell fate decisions during Drosophila eye development. The Gap1 catalytic domain alone is not sufficient for in vivo activity, indicating a requirement for the additional domains. An inositol-1,3,4, 5-tetrakisphosphate (IP4)-sensitive extended PH domain is essential for Gap1 activity, while Ca2+-sensitive C2 domains and a glutamine-rich region contribute equally to full activity in vivo. Furthermore, we find a strong positive genetic interaction between Gap1 and phospholipase Cgamma (PLCgamma), an enzyme which generates inositol-1,4,5-trisphosphate, a precursor for IP4 and a second messenger for intracellular Ca2+ release. These results suggest that Gap1 activity in vivo is stimulated under conditions of elevated intracellular Ca2+ and IP4. Since receptor tyrosine kinases (RTKs) trigger an increase in intracellular Ca2+ and IP4 concentration through stimulation of PLCgamma, RTKs may stimulate not only activation of Ras but also its deactivation by Gap1, thereby moderating the strength and duration of the Ras signal.
Collapse
Affiliation(s)
- A C Powe
- Laboratory of Developmental Neurogenetics, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Lockyer PJ, Vanlingen S, Reynolds JS, McNulty TJ, Irvine RF, Parys JB, Cullen PJ. Tissue-specific expression and endogenous subcellular distribution of the inositol 1,3,4,5-tetrakisphosphate-binding proteins GAP1(IP4BP) and GAP1(m). Biochem Biophys Res Commun 1999; 255:421-6. [PMID: 10049724 DOI: 10.1006/bbrc.1999.0217] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GAP1(IP4BP) and GAP1(m) belong to the GAP1 family of Ras GTPase-activating proteins that are candidate InsP4 receptors. Here we show they are ubiquitously expressed in human tissues and are likely to have tissue-specific splice variants. Analysis by subcellular fractionation of RBL-2H3 rat basophilic leukemia cells confirms that endogenous GAP1(IP4BP) is primarily localised to the plasma membrane, whereas GAP1(m) appears localised to the cytoplasm (cytosol and internal membranes) but not the plasma membrane. Subcellular fractionation did not indicate a specific co-localisation between membrane-bound GAP1(m) and several Ca2+ store markers, consistent with the lack of co-localisation between GAP1(m) and SERCA1 upon co-expression in COS-7 cells. This difference suggests that GAP1(m) does not reside at a site where it could regulate the ability of InsP4 to release intracellular Ca2+. As GAP1(m) is primarily localised to the cytosol of unstimulated cells it may be spatially regulated in order to interact with Ras at the plasma membrane.
Collapse
Affiliation(s)
- P J Lockyer
- Department of Biochemistry, School of Medical Sciences, University of Bristol, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
160
|
Vassilev A, Ozer Z, Navara C, Mahajan S, Uckun FM. Bruton's tyrosine kinase as an inhibitor of the Fas/CD95 death-inducing signaling complex. J Biol Chem 1999; 274:1646-56. [PMID: 9880544 DOI: 10.1074/jbc.274.3.1646] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bruton's tyrosine kinase (BTK) is a member of the Src-related Tec family of protein tyrosine kinases. Mutations in the btk gene have been linked to severe developmental blocks in human B-cell ontogeny leading to X-linked agammaglobulinemia. Here, we provide unique biochemical and genetic evidence that BTK is an inhibitor of the Fas/APO-1 death-inducing signaling complex in B-lineage lymphoid cells. The Src homology 2, pleckstrin homology (PH), and kinase domains of BTK are all individually important and apparently indispensable, but not sufficient, for its function as a negative regulator of Fas-mediated apoptosis. BTK associates with Fas via its kinase and PH domains and prevents the FAS-FADD interaction, which is essential for the recruitment and activation of FLICE by Fas during the apoptotic signal. Fas-resistant DT-40 lymphoma B-cells rendered BTK-deficient through targeted disruption of the btk gene by homologous recombination knockout underwent apoptosis after Fas ligation, but wild-type DT-40 cells or BTK-deficient DT-40 cells reconstituted with wild-type human btk gene did not. Introduction of an Src homology 2 domain, a PH domain, or a kinase domain mutant human btk gene into BTK-deficient cells did not restore the resistance to Fas-mediated apoptosis. Introduction of wild-type BTK protein by electroporation rendered BTK-deficient DT-40 cells resistant to the apoptotic effects of Fas ligation. BTK-deficient RAMOS-1 human Burkitt's leukemia cells underwent apoptosis after Fas ligation, whereas BTK-positive NALM-6-UM1 human B-cell precursor leukemia cells expressing similar levels of Fas did not. Treatment of the anti-Fas-resistant NALM-6-UM1 cells with the leflunomide metabolite analog alpha-cyano-beta-methyl-beta-hydroxy-N-(2, 5-dibromophenyl)propenamide, a potent inhibitor of BTK, abrogated the BTK-Fas association without affecting the expression levels of BTK or Fas and rendered them sensitive to Fas-mediated apoptosis. The ability of BTK to inhibit the pro-apoptotic effects of Fas ligation prompts the hypothesis that apoptosis of developing B-cell precursors during normal B-cell ontogeny may be reciprocally regulated by Fas and BTK.
Collapse
Affiliation(s)
- A Vassilev
- Parker Hughes Cancer Center, Molecular Signal Transduction Laboratory, Departments of Immunology, Molecular Biology, and Biochemistry, Hughes Institute, St. Paul, Minnesota 55113, USA
| | | | | | | | | |
Collapse
|
161
|
Bottomley MJ, Salim K, Panayotou G. Phospholipid-binding protein domains. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1436:165-83. [PMID: 9838094 DOI: 10.1016/s0005-2760(98)00141-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Research into cellular mechanisms for signal transduction is currently one of the most exciting and rapidly advancing fields of biological study. It has been known for some time that numerous intracellular signals are transmitted by specific protein-protein interactions, as exemplified by those involving the Src homology domains. However, after some controversy, it has recently been widely accepted that specific protein-phospholipid interactions also play key roles in many signal transduction pathways. In this review, landmark discoveries and recent advances describing protein domains known to associate with phospholipids are discussed. Particular emphasis is placed on the interactions of proteins with phospholipids acting as second messengers in signalling pathways. For this purpose, the pleckstrin homology (PH) domain is highlighted, since studies of this domain provided some of the earliest, detailed data about protein-phospholipid interactions occurring downstream of growth factor-mediated receptor stimulation. Moreover, studies of PH domains have given insight into the mechanisms of certain diseases, revealed a number of intriguing functional variations on a common structural theme and recently culminated in providing the missing links in erstwhile mysteries of phosphoinositide-dependent signal transduction pathways. Finally, a short discussion is devoted to the developing field of protein-phospholipid interactions that influence cytoskeletal organisation.
Collapse
Affiliation(s)
- M J Bottomley
- Structural Biology Programme, EMBL, Heidelberg, Germany
| | | | | |
Collapse
|
162
|
Setoguchi R, Kinashi T, Sagara H, Hirosawa K, Takatsu K. Defective degranulation and calcium mobilization of bone-marrow derived mast cells from Xid and Btk-deficient mice. Immunol Lett 1998; 64:109-18. [PMID: 9870661 DOI: 10.1016/s0165-2478(98)00086-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Regulation of adhesion and degranulation of mast cells plays an important role in allergy and inflammation. We investigated a possible role of Bruton's tyrosine kinase (Btk) in the regulation of adhesion and degranulation by using bone marrow-derived mast cells from X-linked immunodeficiency (Xid) and Btk-deficient mice. Cross-linking of the high affinity IgE receptor (Fc epsilonRI) and steel factor (SLF) induced indistinguishable adhesive responses of mast cells to fibronectin in kinetics, and these adhesive responses were comparable among wild type, Xid, and Btk-deficient mast cells. Cross-linking of Fc epsilonRI, but not SLF triggered degranulation of bone marrow-derived mast cells. However, Fc epsilonRI-induced degranulation was impaired in Xid and Btk-deficient mast cells. Calcium influx induced by Fc epsilonRI cross-linking and SLF were also reduced in Xid and Btk-deficient mast cells. Degranulation and calcium influx were reduced more severely in Btk-deficient than in Xid mast cells. Consistently, cross-linking Fc epsilonRI and SLF augmented Btk kinase activities transiently. Inositol triphosphate (IP3) production was also severely reduced in Btk-deficient mast cells, indicating Btk play a critical role of Fc epsilonRI-induced IP3 production. The differential sensitivity of wortmannin on calcium influx in wild type and Xid mast cells suggested that the activation of phosphatidylinositol 3 kinase (PI 3-kinase) was required in calcium influx. Furthermore, abnormal secretory granules with translucent contents and variable in size were observed both in Xid and Btk-deficient mast cells. Our study demonstrated a critical role of Btk in regulating intracellular calcium and granule exocytosis.
Collapse
Affiliation(s)
- R Setoguchi
- Department of Immunology, Institute of Medical Science, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
163
|
Kavran JM, Klein DE, Lee A, Falasca M, Isakoff SJ, Skolnik EY, Lemmon MA. Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains. J Biol Chem 1998; 273:30497-508. [PMID: 9804818 DOI: 10.1074/jbc.273.46.30497] [Citation(s) in RCA: 359] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pleckstrin homology (PH) domains are small protein modules involved in recruitment of signaling molecules to cellular membranes, in some cases by binding specific phosphoinositides. We describe use of a convenient "dot-blot" approach to screen 10 different PH domains for those that recognize particular phosphoinositides. Each PH domain bound phosphoinositides in the assay, but only two (from phospholipase C-delta1 and Grp1) showed clear specificity for a single species. Using soluble inositol phosphates, we show that the Grp1 PH domain (originally cloned on the basis of its phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) binding) binds specifically to D-myo-inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) (the PtdIns(3,4,5)P3 headgroup) with KD = 27.3 nM, but binds D-myo-inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) or D-myo-inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) over 80-fold more weakly. We show that this specificity allows localization of the Grp1 PH domain to the plasma membrane of mammalian cells only when phosphatidylinositol 3-kinase (PI 3-K) is activated. The presence of three adjacent equatorial phosphate groups was critical for inositol phosphate binding by the Grp1 PH domain. By contrast, another PH domain capable of PI 3-K-dependent membrane recruitment (encoded by EST684797) does not distinguish Ins(1,3,4)P3 from Ins(1,3,4,5)P3 (binding both with very high affinity), despite selecting strongly against Ins(1,4,5)P3. The remaining PH domains tested appear significantly less specific for particular phosphoinositides. Together with data presented in the literature, our results suggest that many PH domains bind similarly to multiple phosphoinositides (and in some cases phosphatidylserine), and are likely to be regulated in vivo by the most abundant species to which they bind. Thus, using the same simple approach to study several PH domains simultaneously, our studies suggest that highly specific phosphoinositide binding is a characteristic of relatively few cases.
Collapse
Affiliation(s)
- J M Kavran
- Department of Biochemistry and Biophysics, and Johnson Research Foundation, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6089, USA
| | | | | | | | | | | | | |
Collapse
|
164
|
Dingjan GM, Maas A, Nawijn MC, Smit L, Voerman JS, Grosveld F, Hendriks RW. Severe B cell deficiency and disrupted splenic architecture in transgenic mice expressing the E41K mutated form of Bruton's tyrosine kinase. EMBO J 1998; 17:5309-20. [PMID: 9736610 PMCID: PMC1170858 DOI: 10.1093/emboj/17.18.5309] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To identify B-cell signaling pathways activated by Bruton's tyrosine kinase (Btk) in vivo, we generated transgenic mice in which Btk expression is driven by the MHC class II Ea gene locus control region. Btk overexpression did not have significant adverse effects on B cell function, and essentially corrected the X-linked immunodeficiency (xid) phenotype in Btk- mice. In contrast, expression of a constitutively activated form of Btk carrying the E41K gain-of-function mutation resulted in a B cell defect that was more severe than xid. The mice showed a marked reduction of the B cell compartment in spleen, lymph nodes, peripheral blood and peritoneal cavity. The levels in the serum of most immunoglobulin subclasses decreased with age, and B cell responses to both T cell-independent type II and T cell-dependent antigens were essentially absent. Expression of the E41K Btk mutant enhanced blast formation of splenic B cells in vitro in response to anti-IgM stimulation. Furthermore, the mice manifested a disorganization of B cell areas and marginal zones in the spleen. Our findings demonstrate that expression of constitutively activated Btk blocks the development of follicular recirculating B cells.
Collapse
Affiliation(s)
- G M Dingjan
- Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, Dr Molewaterplein 50, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
165
|
Isakoff SJ, Cardozo T, Andreev J, Li Z, Ferguson KM, Abagyan R, Lemmon MA, Aronheim A, Skolnik EY. Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. EMBO J 1998; 17:5374-87. [PMID: 9736615 PMCID: PMC1170863 DOI: 10.1093/emboj/17.18.5374] [Citation(s) in RCA: 274] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) mediates a variety of cellular responses by generating PtdIns(3,4)P2 and PtdIns(3,4,5)P3. These 3-phosphoinositides then function directly as second messengers to activate downstream signaling molecules by binding pleckstrin homology (PH) domains in these signaling molecules. We have established a novel assay in the yeast Saccharomyces cerevisiae to identify proteins that bind PtdIns(3,4)P2 and PtdIns(3,4,5)P3 in vivo which we have called TOPIS (Targets of PI3K Identification System). The assay uses a plasma membrane-targeted Ras to complement a temperature-sensitive CDC25 Ras exchange factor in yeast. Coexpression of PI3K and a fusion protein of activated Ras joined to a PH domain known to bind PtdIns(3,4)P2 (AKT) or PtdIns(3,4,5)P3 (BTK) rescues yeast growth at the non-permissive temperature of 37 degreesC. Using this assay, we have identified several amino acids in the beta1-beta2 region of PH domains that are critical for high affinity binding to PtdIns(3,4)P2 and/or PtdIns(3,4,5)P3, and we have proposed a structural model for how these PH domains might bind PI3K products with high affinity. From these data, we derived a consensus sequence which predicts high-affinity binding to PtdIns(3, 4)P2 and/or PtdIns(3,4,5)P3, and we have identified several new PH domain-containing proteins that bind PI3K products, including Gab1, Dos, myosinX, and Sbf1. Use of this assay to screen for novel cDNAs which rescue yeast at the non-permissive temperature should provide a powerful approach for uncovering additional targets of PI3K.
Collapse
Affiliation(s)
- S J Isakoff
- The Skirball Institute for Biomolecular Medicine and Department of Pharmacology, New York University Medical Center, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Abstract
Multiple counterregulatory mechanisms have been identified in B-cell precursors that operate to regulate cell survival and growth, thereby ensuring the orderly development and differentiation of B-cells. Inappropriate apoptosis may underlie the pathogenesis of immunodeficiencies, as well as pathogenesis and drug/radiation resistance of human leukemias and lymphomas, which makes control of apoptosis an important potential target for therapeutic interventions. Therefore, identification of the molecular regulators of apoptosis is an area of intense investigation. Bruton's tyrosine kinase (BTK) is the first tyrosine kinase to be identified as a dual-function regulator of apoptosis, which promotes radiation-induced apoptosis but inhibits Fas-activated apoptosis in B-cells. BTK functions in a pro-apoptotic manner when B-cells are exposed to reactive oxygen intermediates, at least in part, by down-regulating the anti-apoptotic activity of STAT-3 transcription factor. In contrast, BTK associates with the death receptor Fas and impairs its interaction with Fas-associated protein with death domain (FADD), which is essential for the recruitment and activation of FLICE by Fas during the apoptotic signal, thereby preventing the assembly of a pro-apoptotic death inducing signaling complex (DISC) after Fas-ligation. The identification of BTK as a dual-function regulator of apoptosis will significantly increase our understanding of both the biological processes involved in programmed cell death and the diseases associated with dysregulation of apoptosis. New agents with BTK-modulatory activity may have clinical potential in the treatment of B-cell malignancies (in particular acute lymphoblastic leukemia, the most common form of childhood cancer), as well as B-cell immunodeficiencies.
Collapse
Affiliation(s)
- F M Uckun
- Wayne Hughes Institute, St. Paul, MN 55113, USA
| |
Collapse
|
167
|
Nagel W, Schilcher P, Zeitlmann L, Kolanus W. The PH domain and the polybasic c domain of cytohesin-1 cooperate specifically in plasma membrane association and cellular function. Mol Biol Cell 1998; 9:1981-94. [PMID: 9693361 PMCID: PMC25450 DOI: 10.1091/mbc.9.8.1981] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recruitment of intracellular proteins to the plasma membrane is a commonly found requirement for the initiation of signal transduction events. The recently discovered pleckstrin homology (PH) domain, a structurally conserved element found in approximately 100 signaling proteins, has been implicated in this function, because some PH domains have been described to be involved in plasma membrane association. Furthermore, several PH domains bind to the phosphoinositides phosphatidylinositol-(4,5)-bisphosphate and phosphatidylinositol-(3,4,5)-trisphosphate in vitro, however, mostly with low affinity. It is unclear how such weak interactions can be responsible for observed membrane binding in vivo as well as the resulting biological phenomena. Here, we investigate the structural and functional requirements for membrane association of cytohesin-1, a recently discovered regulatory protein of T cell adhesion. We demonstrate that both the PH domain and the adjacent carboxyl-terminal polybasic sequence of cytohesin-1 (c domain) are necessary for plasma membrane association and biological function, namely interference with Jurkat cell adhesion to intercellular adhesion molecule 1. Biosensor measurements revealed that phosphatidylinositol-(3,4,5)-trisphosphate binds to the PH domain and c domain together with high affinity (100 nM), whereas the isolated PH domain has a substantially lower affinity (2-3 microM). The cooperativity of both elements appears specific, because a chimeric protein, consisting of the c domain of cytohesin-1 and the PH domain of the beta-adrenergic receptor kinase does not associate with membranes, nor does it inhibit adhesion. Moreover, replacement of the c domain of cytohesin-1 with a palmitoylation-isoprenylation motif partially restored the biological function, but the specific targeting to the plasma membrane was not retained. Thus we conclude that two elements of cytohesin-1, the PH domain and the c domain, are required and sufficient for membrane association. This appears to be a common mechanism for plasma membrane targeting of PH domains, because we observed a similar functional cooperativity of the PH domain of Bruton's tyrosine kinase with the adjacent Bruton's tyrosine kinase motif, a novel zinc-containing fold.
Collapse
Affiliation(s)
- W Nagel
- Laboratorium für Molekulare Biologie, Genzentrum der Universität München, D-81377 München, Germany
| | | | | | | |
Collapse
|
168
|
Abstract
A susceptibility gene in the MHC class III region may underlie the defective B-cell differentiation in familial IgA deficiency and common variable immunodeficiency. Mutations in Bruton's tyrosine kinase, immunoglobulin heavy chain and lambda 5/14.1 surrogate light chain loci disrupt B-cell development to cause profound antibody deficiency. Mutational, biochemical and transgenic studies offer insight into the function of these and other 'antibody deficiency genes'.
Collapse
Affiliation(s)
- M E Conley
- Department of Pediatrics, University of Tennessee School of Medicine, Memphis 38105, USA
| | | |
Collapse
|
169
|
Gryk MR, Abseher R, Simon B, Nilges M, Oschkinat H. Heteronuclear relaxation study of the PH domain of beta-spectrin: restriction of loop motions upon binding inositol trisphosphate. J Mol Biol 1998; 280:879-96. [PMID: 9671557 DOI: 10.1006/jmbi.1998.1731] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structural dynamics of protein ligand binding sites is one factor determining the specificity towards related ligands. In this context, the spectrin PH domain, which binds to a number of phosphatidylinositol lipid head groups, was investigated with respect to the dynamics of the binding loops. The latter were found to be of intermediate flexibility on a picosecond to nanosecond time-scale in the free protein and become more rigid upon ligand binding. Significant 15N and proton chemical shift changes occur in the binding loops. The internal correlation time, determined from 15N heteronuclear relaxation data using the standard model-free approach, decreases upon ligand binding. For several residues a concomitant rise in the generalized order parameter is observed. This is interpreted as a dampening effect of the ligand on a slow loop motion, while a fast component is not affected. Molecular dynamics simulations were performed to further investigate this situation. In fact, two time-scales of loop motions in the free state are observed in a 9 ns molecular dynamics trajectory. Agreement with generalized order parameters obtained from the experiment improves when a subtrajectory is analyzed that excludes rare dihedral transitions.
Collapse
Affiliation(s)
- M R Gryk
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, D-69117, Germany
| | | | | | | | | |
Collapse
|
170
|
Abstract
The pleckstrin homology (PH) domains of a number of proteins have been found to interact in vitro with inositol phospholipids; recent experiments show that these interactions may be important in directing protein translocation to specific parts of the cell following stimulus-induced lipid breakdown or synthesis.
Collapse
Affiliation(s)
- R Irvine
- Department of Pharmacology University of Cambridge Tennis Court Road, Cambridge CB2 1QJ, UK.
| |
Collapse
|
171
|
Rebecchi MJ, Scarlata S. Pleckstrin homology domains: a common fold with diverse functions. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1998; 27:503-28. [PMID: 9646876 DOI: 10.1146/annurev.biophys.27.1.503] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pleckstrin homology (PH) motifs are approximately 100 amino-acid residues long and have been identified in nearly 100 different eukaryotic proteins, many of which participate in cell signaling and cytoskeletal regulation. Despite minimal sequence homology, the three-dimensional structures are remarkably conserved. This review gives an overview of the PH domain architecture and examines the best-studied examples in an attempt to understand their function.
Collapse
Affiliation(s)
- M J Rebecchi
- Department of Anesthesiology, State University of New York at Stony Brook 11794, USA.
| | | |
Collapse
|
172
|
Smith CI, Bäckesjö CM, Berglöf A, Brandén LJ, Islam T, Mattsson PT, Mohamed AJ, Müller S, Nore B, Vihinen M. X-linked agammaglobulinemia: lack of mature B lineage cells caused by mutations in the Btk kinase. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1998; 19:369-81. [PMID: 9618763 DOI: 10.1007/bf00792597] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C I Smith
- Department of Biosciences at Novum, Karolinska Institute, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Abstract
The detection of homologous protein sequences frequently provides useful predictions of function and structure. Methods for homology searching have continued to improve, such that very distant evolutionary relationships can now be detected. Little attention has been paid, however, to the problems of detecting homology when domains are inserted or permuted. Here we review recent occurrences of these phenomena and discuss methods that permit their detection.
Collapse
Affiliation(s)
- R B Russell
- SmithKline Beecham Pharmaceuticals, Bioinformatics, New Frontiers Science Park (North), Essex, UK.
| | | |
Collapse
|
174
|
Bolland S, Pearse RN, Kurosaki T, Ravetch JV. SHIP modulates immune receptor responses by regulating membrane association of Btk. Immunity 1998; 8:509-16. [PMID: 9586640 DOI: 10.1016/s1074-7613(00)80555-5] [Citation(s) in RCA: 300] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Membrane recruitment of SHIP is responsible for the inhibitory signal generated by FcgammaRIIB coligation to the BCR. By reducing the level of PIP3, SHIP regulates the association of the tyrosine kinase Btk with the membrane through PH domain-phosphoinositol lipid interactions. Inhibition of BCR signaling by either FcgammaRIIB coligation, membrane expression of SHIP, or inhibition of P13K, conditions which result in decreased levels of PIP3, is suppressed by the expression of Btk as a membrane-associated chimera. Conversely, increasing PIP3 levels by deletion of SHIP results in increased Btk association with the membrane and hyperresponsive BCR signaling. These results suggest a central role for PIP3 in regulating the B cell stimulatory state by modulating Btk localization and thereby calcium fluxes.
Collapse
Affiliation(s)
- S Bolland
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
175
|
Qiu Y, Robinson D, Pretlow TG, Kung HJ. Etk/Bmx, a tyrosine kinase with a pleckstrin-homology domain, is an effector of phosphatidylinositol 3'-kinase and is involved in interleukin 6-induced neuroendocrine differentiation of prostate cancer cells. Proc Natl Acad Sci U S A 1998; 95:3644-9. [PMID: 9520419 PMCID: PMC19889 DOI: 10.1073/pnas.95.7.3644] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/1997] [Accepted: 01/28/1998] [Indexed: 02/06/2023] Open
Abstract
Etk/Bmx is the newest member of Btk tyrosine kinase family that contains a pleckstrin homology domain, an src homology 3 domain, an src homology 2 domain, and a catalytic domain. Unlike other members of the Btk family kinases, which are mostly hemopoietic cell-specific, Etk/Bmx is preferentially expressed in epithelial and endothelial cells. We first identified this kinase in prostate cancer [Robinson, D., He, F., Pretlow, T. & Kung, H. J. (1996) Proc. Natl. Acad. Sci. USA 93, 5958-5962). Here we report that Etk is engaged in phosphatidylinositol 3-kinase (PI3-kinase) pathway and plays a pivotal role in interleukin 6 (IL-6) signaling in a prostate cancer cell line, LNCaP. Our evidence that PI3-kinase is involved in Etk activation includes: (i) Wortmannin, a specific inhibitor of PI3-kinase, abolished the activation of Etk by IL-6; (ii) a constitutively active p110 subunit of PI3-kinase was able to activate Etk in the absence of IL-6; and (iii) a dominant negative p85 subunit of PI3-kinase mutant blocked the activation of Etk by IL-6. Interestingly, IL-6 treatment of LNCaP induced a remarkable neuroendocrine-like differentiation phenotype, with neurite extension and enhanced expression of neuronal markers. This phenotype could be abrogated by the overexpression of a dominant-negative Etk, indicating Etk is required for this differentiation process.
Collapse
Affiliation(s)
- Y Qiu
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
176
|
Hirata M, Kanematsu T, Takeuchi H, Yagisawa H. Pleckstrin homology domain as an inositol compound binding module. JAPANESE JOURNAL OF PHARMACOLOGY 1998; 76:255-63. [PMID: 9593218 DOI: 10.1254/jjp.76.255] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many of the proteins that participate in cell signalling contain structural modules involved in regulatory interactions between components of signal transduction cascades. One of such modules is the pleckstrin homology (PH) domain, a region of approximately 120 amino acids that can form an electrostatically polarized tertiary structure. Several molecules such as inositol 1,4,5-trisphosphate/phosphatidylinositol 4,5-bisphosphate, the betagamma-subunits of heterotrimeric G proteins and protein kinase C have been proposed as common ligands for the PH domain. Through these potential interactions, the PH domain has been proposed to play a role in membrane recruitment of proteins containing the PH domain, thus targeting them to appropriate cellular compartment or enabling them to interact with other components of the signal transduction pathway. In this review, we mainly focus on membrane targeting through the binding to inositol phosphates/phosphoinositides.
Collapse
Affiliation(s)
- M Hirata
- Department of Biochemistry, Faculty of Dentistry, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
177
|
Fushman D, Najmabadi-Haske T, Cahill S, Zheng J, LeVine H, Cowburn D. The solution structure and dynamics of the pleckstrin homology domain of G protein-coupled receptor kinase 2 (beta-adrenergic receptor kinase 1). A binding partner of Gbetagamma subunits. J Biol Chem 1998; 273:2835-43. [PMID: 9446593 DOI: 10.1074/jbc.273.5.2835] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The solution structure of an extended pleckstrin homology (PH) domain from the beta-adrenergic receptor kinase is obtained by high resolution NMR. The structure establishes that the beta-adrenergic receptor kinase extended PH domain has the same fold and topology as other PH domains, and there are several unique features, most notably an extended C-terminal alpha-helix that behaves as a molten helix, and a surface charge polarity that is extensively modified by positive residues in the extended alpha-helix and the C terminus. These observations complement biochemical evidence that the C-terminal portion of this PH domain participates in protein-protein interactions with Gbetagamma subunits. This suggests that the C-terminal segment of the PH domain may function to mediate protein-protein interactions with the targets of PH domains.
Collapse
Affiliation(s)
- D Fushman
- Laboratory of Physical Biochemistry, The Rockefeller University, New York, New York 10021-6399, USA
| | | | | | | | | | | |
Collapse
|
178
|
Blomberg N, Nilges M. Functional diversity of PH domains: an exhaustive modelling study. FOLDING & DESIGN 1998; 2:343-55. [PMID: 9427008 DOI: 10.1016/s1359-0278(97)00048-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pleckstrin homology (PH) domains are found in many proteins involved in signal transduction or cytoskeletal organization. The general function for the domain is still unclear; phospholipid binding of some PH domains and a strong electrostatic polarization in the experimental structures suggest a role in localization on membranes. We have analyzed the electrostatic properties and the spatial amino acid distribution from homology models of the entire PH domain family. RESULTS Despite the sequence divergence, the quality of the models is sufficient for our study. Most PH domains have an electrostatic polarization similar to the experimental structures. but roughly half of the PH domains linked to a Dbl homology domain have very different electrostatic properties. We also found a striking electrostatic complementarity in some internal PH domain repeats. The analysis of the spatial distribution of amino acids identified residues in the phospholipid-binding site of the spectrin and dynamin PH domains as specific for these domains. CONCLUSIONS The mostly conserved electrostatic polarization supports a general function in binding to phospholipid membranes. But the presence of PH domains with opposite polarity suggests that ligands and functions have diverged during evolution. We also demonstrate homology modelling as a general sequence analysis tool that can yield significantly more information than conventional analysis.
Collapse
Affiliation(s)
- N Blomberg
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
179
|
Vihinen M, Brandau O, Brandén LJ, Kwan SP, Lappalainen I, Lester T, Noordzij JG, Ochs HD, Ollila J, Pienaar SM, Riikonen P, Saha BK, Smith CI. BTKbase, mutation database for X-linked agammaglobulinemia (XLA). Nucleic Acids Res 1998; 26:242-7. [PMID: 9399844 PMCID: PMC147244 DOI: 10.1093/nar/26.1.242] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
X-linked agammaglobulinemia (XLA) is an immunodeficiency caused by mutations in the gene coding for Bruton's agammaglobulinemia tyrosine kinase (BTK). A database (BTKbase) of BTK mutations has been compiled and the recent update lists 463 mutation entries from 406 unrelated families showing 303 unique molecular events. In addition to mutations, the database also lists variants or polymorphisms. Each patient is given a unique patient identity number (PIN). Information is included regarding the phenotype including symptoms. Mutations in all the five domains of BTK have been noticed to cause the disease, the most common event being missense mutations. The mutations appear almost uniformly throughout the molecule and frequently affect CpG sites that code for arginine residues. The putative structural implications of all the missense mutations are given in the database. The improved version of the registry having a number of new features is available at http://www. helsinki.fi/science/signal/btkbase.html
Collapse
Affiliation(s)
- M Vihinen
- Department of Biosciences, Division of Biochemistry, PO Box 56, FIN-00014 University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Abstract
The process by which extracellular signals are relayed from the plasma membrane to specific intracellular sites is an essential facet of cellular regulation. Many signaling pathways do so by altering the phosphorylation state of tyrosine, serine, or threonine residues of target proteins. Recently, it has become apparent that regulatory mechanisms exist to influence where and when protein kinases and phosphatases are activated in the cell. The role of scaffold, anchoring, and adaptor proteins that contribute to the specificity of signal transduction events by recruiting active enzymes into signaling networks or by placing enzymes close to their substrates is discussed.
Collapse
Affiliation(s)
- T Pawson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | |
Collapse
|
181
|
Li Z, Wahl MI, Eguinoa A, Stephens LR, Hawkins PT, Witte ON. Phosphatidylinositol 3-kinase-gamma activates Bruton's tyrosine kinase in concert with Src family kinases. Proc Natl Acad Sci U S A 1997; 94:13820-5. [PMID: 9391111 PMCID: PMC28391 DOI: 10.1073/pnas.94.25.13820] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bruton's tyrosine kinase (Btk) is essential for normal B lymphocyte development and function. The activity of Btk is partially regulated by transphosphorylation within its kinase domain by Src family kinases at residue Tyr-551 and subsequent autophosphorylation at Tyr-223. Activation correlates with Btk association with cellular membranes. Based on specific loss of function mutations, the Btk pleckstrin homology (PH) domain plays an essential role in this activation process. The Btk PH domain can bind in vitro to several lipid end products of the phosphatidylinositol 3-kinase (PI 3-kinase) family including phosphatidylinositol 3,4,5-trisphosphate. Activation of Btk as monitored by elevation of phosphotyrosine content and a cellular transformation response was dramatically enhanced by coexpressing a weakly activated allele of Src (E378G) and the two subunits of PI 3-kinase-gamma. This activation correlates with new sites of phosphorylation on Btk identified by two-dimensional phosphopeptide mapping. Activation of Btk was dependent on the catalytic activity of all three enzymes and an intact Btk PH domain and Src transphosphorylation site. These combined data define Btk as a downstream target of PI 3-kinase-gamma and Src family kinases.
Collapse
Affiliation(s)
- Z Li
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles, CA 90095-1662, USA
| | | | | | | | | | | |
Collapse
|
182
|
Lockyer PJ, Bottomley JR, Reynolds JS, McNulty TJ, Venkateswarlu K, Potter BV, Dempsey CE, Cullen PJ. Distinct subcellular localisations of the putative inositol 1,3,4,5-tetrakisphosphate receptors GAP1IP4BP and GAP1m result from the GAP1IP4BP PH domain directing plasma membrane targeting. Curr Biol 1997; 7:1007-10. [PMID: 9382842 DOI: 10.1016/s0960-9822(06)00423-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inositol 1,3,4,5-tetrakisphosphate (IP4), is a ubiquitous inositol phosphate that has been suggested to function as a second messenger. Recently, we purified and cloned a putative IP4 receptor, termed GAP1(IP4BP)[1], which is also a member of the GAP1 family of GTPase-activating proteins for the Ras family of GTPases. A homologue of GAP1(IP4BP), called GAP1(m), has been identified [2] and here we describe the cloning of a GAP1(m) cDNA from a human circulating-blood cDNA library. We found that a deletion mutant of GAP1(m), in which the putative phospholipid-binding domains (C2A and C2B) have been removed, binds to IP4 with a similar affinity and specificity to that of the corresponding GAP1(IP4BP) mutant. Expression studies of the proteins in either COS-7 or HeLa cells showed that, whereas GAP1(IP4BP) is located solely at the plasma membrane, GAP1(m) seems to have a distinct perinuclear localisation. By mutational analysis, we have shown that the contrast in subcellular distribution of these two closely related proteins may be a function of their respective pleckstrin homology (PH) domains. This difference in localisation has fundamental significance for our understanding of the second messenger functions of IP4.
Collapse
Affiliation(s)
- P J Lockyer
- Laboratory of Molecular Studies on Cell Regulation, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Wahl MI, Fluckiger AC, Kato RM, Park H, Witte ON, Rawlings DJ. Phosphorylation of two regulatory tyrosine residues in the activation of Bruton's tyrosine kinase via alternative receptors. Proc Natl Acad Sci U S A 1997; 94:11526-33. [PMID: 9326643 PMCID: PMC23526 DOI: 10.1073/pnas.94.21.11526] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mutation of Bruton's tyrosine kinase (Btk) impairs B cell maturation and function and results in a clinical phenotype of X-linked agammaglobulinemia. Activation of Btk correlates with an increase in the phosphorylation of two regulatory Btk tyrosine residues. Y551 (site 1) within the Src homology type 1 (SH1) domain is transphosphorylated by the Src family tyrosine kinases. Y223 (site 2) is an autophosphorylation site within the Btk SH3 domain. Polyclonal, phosphopeptide-specific antibodies were developed to evaluate the phosphorylation of Btk sites 1 and 2. Crosslinking of the B cell antigen receptor (BCR) or the mast cell Fcepsilon receptor, or interleukin 5 receptor stimulation each induced rapid phosphorylation at Btk sites 1 and 2 in a tightly coupled manner. Btk molecules were singly and doubly tyrosine-phosphorylated. Phosphorylated Btk comprised only a small fraction (</=5%) of the total pool of Btk molecules in the BCR-activated B cells. Increased dosage of Lyn in B cells augmented BCR-induced phosphorylation at both sites. Kinetic analysis supports a sequential activation mechanism in which individual Btk molecules undergo serial transphosphorylation (site 1) then autophosphorylation (site 2), followed by successive dephosphorylation of site 1 then site 2. The phosphorylation of conserved tyrosine residues within structurally related Tec family kinases is likely to regulate their activation.
Collapse
Affiliation(s)
- M I Wahl
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles, CA 90095-1662, USA
| | | | | | | | | | | |
Collapse
|
184
|
Vihinen M, Nore BF, Mattsson PT, Bäckesjö CM, Nars M, Koutaniemi S, Watanabe C, Lester T, Jones A, Ochs HD, Smith CI. Missense mutations affecting a conserved cysteine pair in the TH domain of Btk. FEBS Lett 1997; 413:205-10. [PMID: 9280283 DOI: 10.1016/s0014-5793(97)00912-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tec family protein tyrosine kinases have in their N-terminus two domains. The PH domain is followed by Tec homology (TH) domain, which consists of two motifs. The first pattern, Btk motif, is also present in some Ras GAP molecules. C-terminal half of the TH domain, a proline-rich region, has been shown to bind to SH3 domains. Mutations in Bruton's tyrosine kinase (Btk) belonging to the Tec family cause X-linked agammaglobulinemia (XLA) due to developmental arrest of B cells. Here we present the first missense mutations in the TH domain. The substitutions affect a conserved pair of cysteines, residues 154 and 155, involved in Zn2+ binding and thereby the mutations alter protein folding and stability.
Collapse
Affiliation(s)
- M Vihinen
- Department of Biosciences, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
Bruton's tyrosine kinase (Btk), the target of inactivating mutations in X-linked immunodeficiency diseases of mice and humans, is essential for normal B cell responsiveness. Recent studies have outlined a mechanism for the activation of Btk by B cell receptor engagement and have identified proximal and distal targets of Btk action.
Collapse
Affiliation(s)
- S Desiderio
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
186
|
Liddington R, Frederick C. Paper Alert. Structure 1997. [DOI: 10.1016/s0969-2126(97)00262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
187
|
Saha BK, Curtis SK, Vogler LB, Vihinen M. Molecular and structural characterization of five novel mutations in the Bruton's tyrosine kinase gene from patients with X-linked agammaglobulinemia. Mol Med 1997; 3:477-85. [PMID: 9260159 PMCID: PMC2230218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The Btk (Bruton's tyrosine kinase) gene has been shown to be mutated in the human immunodeficiency disease, XLA (X-linked agammaglobulinemia). Btk is a member of the Tec family of cytosolic protein tyrosine kinases with distinct functional domains PH, TH, SH3, SH2, and kinase. Mutations have been observed in each of the Btk subdomains in XLA. We have analyzed the Btk gene in six XLA patients from five unrelated families. MATERIALS AND METHODS DNA was prepared from the patients peripheral blood. The Btk exons including the junctional sequences were analyzed by single-strand conformation polymorphism (SSCP) followed by direct nucleotide sequencing after PCR-amplification. For structural analysis, the missense mutations were introduced into three-dimensional models of the PH and kinase domains of Btk and the outcome was predicted based on the knowledge of the protein function. RESULTS Five novel mutations and two novel polymorphisms, all of which resulted from single-base alterations, were identified. Three of the five mutations were in the PH domain and two were in the kinase domain of Btk. Three of these mutations were of the missense type, two of which altered the same codon in the PH domain; the third one was located in the kinase domain. The fourth mutation was a point deletion in the PH domain causing a frameshift followed by premature termination. The fifth mutation was a splice donor-site mutation within the kinase domain which could result in an exon skipping. In four of the five instances, mothers of the patients were shown to be obligate carriers. In one instance, a sibling sister was identified as a heterozygote establishing her as a carrier. CONCLUSIONS Functional consequences of the mutations causing frameshifts and altered splicing can be inferred directly. Functional consequences of the missense mutations were interpreted by 3-dimensional structural modeling of Btk domains. It is proposed that the two PH domain mutations will interfere with membrane localization while the kinase domain mutation will interfere with the enzymatic function of Btk. This study provides further insight into the role of Btk in XLA.
Collapse
Affiliation(s)
- B K Saha
- Department of Pathology, Emory University, Atlanta, Georgia, USA.
| | | | | | | |
Collapse
|
188
|
Saha BK, Curtis SK, Vogler LB, Vihinen M. Molecular and Structural Characterization of Five Novel Mutations in the Bruton’s Tyrosine Kinase Gene from Patients with X-Linked Agammaglobulinemia. Mol Med 1997. [DOI: 10.1007/bf03401694] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|