151
|
Tsolou A, Nelson G, Trachana V, Chondrogianni N, Saretzki G, von Zglinicki T, Gonos ES. The 19S proteasome subunit Rpn7 stabilizes DNA damage foci upon genotoxic insult. IUBMB Life 2012; 64:432-42. [DOI: 10.1002/iub.1018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 02/08/2012] [Indexed: 12/15/2022]
|
152
|
Shukla P, Ghosh K, Vundinti BR. Current and emerging therapeutic strategies for Fanconi anemia. THE HUGO JOURNAL 2012. [PMCID: PMC4685155 DOI: 10.1186/1877-6566-6-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abstract
Fanconi Anemia (FA) is a rare disorder with incidence of 1in 350,000 births. It is characterized by progressive bone marrow failure leading to death of many patients in their childhood while development of cancer at later stages of life in some. The treatment of FA is still a medical challenge. Current treatments of FA include androgen administration, hematopoietic growth factors administration and hematopoietic stem cell transplantation (HSCT). Clinical gene therapy trials are still ongoing. The partial success of current therapies has renewed interest in the search for new treatments. Generation of patient-specific induced pluripotent stem (iPS) has shown promising results for cell and gene based therapy. Small molecule interventions have been observed to delay tumor onset in FA. Tumors deficient in FA pathway can be treated by profiling of DNA repair pathway through synthetic lethality mechanism. Targeting toll-like receptor 8 (TLR8) dependent TNFα overexpression is yet another upcoming therapeutic approach to treat FA patients. In conclusion, in the present scenario of treatments available for FA, a proper algorithm of treatment decisions must be followed for better management of FA patients and to ensure their increased survival. Innovative therapeutic approaches that can prevent both anemia and cancer should be developed for more effective treatment of FA.
Collapse
|
153
|
Chionh F, Mitchell G, Lindeman GJ, Friedlander M, Scott CL. The role of poly adenosine diphosphate ribose polymerase inhibitors in breast and ovarian cancer: current status and future directions. Asia Pac J Clin Oncol 2012; 7:197-211. [PMID: 21884432 DOI: 10.1111/j.1743-7563.2011.01430.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Poly adenosine diphosphate ribose polymerase (PARP) inhibitors have demonstrated single agent activity in the treatment of patients with recurrent BRCA1-mutated and BRCA2-mutated breast and ovarian cancers. They also appear to have a potential role as maintenance therapy following chemotherapy in patients with platinum sensitive recurrent sporadic and BRCA1/2 related high-grade serous ovarian cancers. The concept of BRCAness raises the possibility that PARP inhibitors may be active in selected patients with homologous recombination (HR) DNA repair-deficient tumors, even if they do not harbor a BRCA1/2 germline mutation. Further research will be required to identify the subset of patients with sporadic cancers who may benefit from PARP inhibitor therapy. Precise details on the mechanisms of action, relative potency and anti-cancer effects of different PARP inhibitors remain to be clarified and are being investigated. PARP inhibitors are known to inhibit the base excision repair (BER) pathway but in addition, recent reports indicate that aberrant activation of the error-prone non-homologous end-joining (NHEJ) pathway occurs in HR-deficient cells and that cell death provoked by PARP inhibition is dependent on NHEJ-induced genomic instability. Characterization of the precise molecular mechanisms responsible for PARP inhibitor activity should lead to the identification of predictive biomarkers of response and help identify which patients should be treated with PARP inhibitors. This is a very active field of research and the current status and future directions are reviewed.
Collapse
Affiliation(s)
- Fiona Chionh
- The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
154
|
Bilardi RA, Kimura KI, Phillips DR, Cutts SM. Processing of anthracycline-DNA adducts via DNA replication and interstrand crosslink repair pathways. Biochem Pharmacol 2012; 83:1241-50. [PMID: 22326903 DOI: 10.1016/j.bcp.2012.01.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/25/2012] [Accepted: 01/26/2012] [Indexed: 11/24/2022]
Abstract
Anthracycline chemotherapeutics are well characterised as poisons of topoisomerase II, however many anthracyclines, including doxorubicin, are also capable of forming drug-DNA adducts. Anthracycline-DNA adducts present an unusual obstacle for cells as they are covalently attached to one DNA strand and stabilised by hydrogen bonding to the other strand. We now show that in cycling cells processing of anthracycline adducts through DNA replication appears dominant compared to processing via transcription-coupled pathways, and that the processing of these adducts into DNA breaks is independent of topoisomerase II. It has previously been shown that cells deficient in homologous recombination (HR) are hypersensitive to adduct forming treatments. Given that anthracycline-DNA adducts, whilst not true crosslinks, are associated with both DNA strands, the role of ICL repair pathways was investigated. Mus81 is a structure specific nuclease implicated in Holliday junction resolution and the resolution of branched DNA formed by stalled replication forks. We now show that ICL repair deficient cells (Mus81(-/-)) are hypersensitive to anthracycline-DNA adducts and ET-743, a compound which causes a chemically similar type of DNA damage. Further analysis of this mechanism showed that Mus81 does not appear to cause DNA breaks resulting from either anthracycline- or ET743-DNA adducts. This suggests Mus81 processes these novel forms of DNA damage in a fundamentally different way compared to the processing of classical covalent crosslinks. Improved understanding of the role of DNA repair in response to such adducts may lead to more effective chemotherapy for patients with BRCA1/2 mutations and other HR deficiencies.
Collapse
Affiliation(s)
- R A Bilardi
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | | | | | | |
Collapse
|
155
|
Seeliger K, Dukowic-Schulze S, Wurz-Wildersinn R, Pacher M, Puchta H. BRCA2 is a mediator of RAD51- and DMC1-facilitated homologous recombination in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2012; 193:364-75. [PMID: 22077663 DOI: 10.1111/j.1469-8137.2011.03947.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• Mutations in the breast cancer susceptibility gene 2 (BRCA2) are correlated with hereditary breast cancer in humans. Studies have revealed that mammalian BRCA2 plays crucial roles in DNA repair. Therefore, we wished to define the role of the BRCA2 homologs in Arabidopsis in detail. • As Arabidopsis contains two functional BRCA2 homologs, an Atbrca2 double mutant was generated and analyzed with respect to hypersensitivity to genotoxic agents and recombination frequencies. Cytological studies addressing male and female meiosis were also conducted, and immunolocalization was performed in male meiotic prophase I. • The Atbrca2 double mutant showed hypersensitivity to the cross-linking agent mitomycin C and displayed a dramatic reduction in somatic homologous recombination frequency, especially after double-strand break induction. The loss of AtBRCA2 also led to severe defects in male meiosis and development of the female gametophyte and impeded proper localization of the synaptonemal complex protein AtZYP1 and the recombinases AtRAD51 and AtDMC1. • The results demonstrate that AtBRCA2 is important for both somatic and meiotic homologous recombination. We further show that AtBRCA2 is required for proper meiotic synapsis and mediates the recruitment of AtRAD51 and AtDMC1. Our results suggest that BRCA2 controls single-strand invasion steps during homologous recombination in plants.
Collapse
Affiliation(s)
- Katharina Seeliger
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
156
|
Taleei R, Weinfeld M, Nikjoo H. Single strand annealing mathematical model for double strand break repair. ACTA ACUST UNITED AC 2012. [DOI: 10.7243/2050-1412-1-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
157
|
Kaye SB, Lubinski J, Matulonis U, Ang JE, Gourley C, Karlan BY, Amnon A, Bell-McGuinn KM, Chen LM, Friedlander M, Safra T, Vergote I, Wickens M, Lowe ES, Carmichael J, Kaufman B. Phase II, open-label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly (ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer. J Clin Oncol 2011; 30:372-9. [PMID: 22203755 DOI: 10.1200/jco.2011.36.9215] [Citation(s) in RCA: 375] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Olaparib (AZD2281), an orally active poly (ADP-ribose) polymerase inhibitor that induces synthetic lethality in BRCA1- or BRCA2-deficient cells, has shown promising clinical efficacy in nonrandomized phase II trials in patients with ovarian cancer with BRCA1 or BRCA2 deficiency. We assessed the comparative efficacy and safety of olaparib and pegylated liposomal doxorubicin (PLD) in this patient population. PATIENTS AND METHODS In this multicenter, open-label, randomized, phase II study, patients with ovarian cancer that recurred within 12 months of prior platinum therapy and with confirmed germline BRCA1 or BRCA2 mutations were enrolled. Patients were assigned in a 1:1:1 ratio to olaparib 200 mg twice per day or 400 mg twice per day continuously or PLD 50 mg/m(2) intravenously every 28 days. The primary efficacy end point was Response Evaluation Criteria in Solid Tumors (RECIST) -assessed progression-free survival (PFS). Secondary end points included objective response rate (ORR) and safety. RESULTS Ninety-seven patients were randomly assigned. Median PFS was 6.5 months (95% CI, 5.5 to 10.1 months), 8.8 months (95% CI, 5.4 to 9.2 months), and 7.1 months (95% CI, 3.7 to 10.7 months) for the olaparib 200 mg, olaparib 400 mg, and PLD groups, respectively. There was no statistically significant difference in PFS (hazard ratio, 0.88; 95% CI, 0.51 to 1.56; P = .66) for combined olaparib doses versus PLD. RECIST-assessed ORRs were 25%, 31%, and 18% for olaparib 200 mg, olaparib 400 mg, and PLD, respectively; differences were not statistically significant. Tolerability of both treatments was as expected based on previous trials. CONCLUSION The efficacy of olaparib was consistent with previous studies. However, the efficacy of PLD was greater than expected. Olaparib 400 mg twice per day is a suitable dose to explore in further studies in this patient population.
Collapse
Affiliation(s)
- Stan B Kaye
- The Royal Marsden National Health Service Foundation Trust and The Institute of Cancer Research, Sycamore House, Downs Rd, Sutton, Surrey SM2 5PT, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Okada S, Tokunaga E, Kitao H, Akiyoshi S, Yamashita N, Saeki H, Oki E, Morita M, Kakeji Y, Maehara Y. Loss of heterozygosity at BRCA1 locus is significantly associated with aggressiveness and poor prognosis in breast cancer. Ann Surg Oncol 2011; 19:1499-507. [PMID: 22179631 DOI: 10.1245/s10434-011-2166-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND BRCA1 and BRCA2 are two major tumor suppressor genes for hereditary breast and ovarian cancer. In sporadic breast cancer, although somatic mutations of these genes are rare, loss of heterozygosity (LOH) at BRCA1 and BRCA2 loci is common. METHODS LOH at BRCA1 and BRCA2 loci were investigated in 202 Japanese invasive breast cancer patients. The relationships between LOH at these gene loci and clinicopathologic characteristics were analyzed. RESULTS Among 166 informative cases for both BRCA1 and BRCA2 loci, 69 (41.6%) and 52 (31.3%) tumors revealed LOH at BRCA1 and BRCA2 loci, respectively. LOH at BRCA1 LOH or BRCA2 locus was associated with higher nuclear grade (P < 0.0001, P = 0.0187). LOH at BRCA1 locus was associated with estrogen receptor and progesterone receptor negativity (P = 0.001 and P = 0.015) and significantly shorter disease-free survival (P < 0.0001), distant metastasis-free survival (P < 0.0001), and overall survival (P < 0.0001). In contrast, LOH at BRCA2 locus had no associations with estrogen receptor or progesterone receptor status and prognosis. LOH at BRCA1 locus was independently associated with poor prognosis in terms of disease-free survival (hazard ratio 3.08, 95% confidence interval [CI] 1.58-6.18, P = 0.0009), distant metastasis-free survival (hazard ratio 5.18, 95% CI 2.35-12.19, P < 0.0001), and overall survival (hazard ratio 4.97, 95% CI 1.84-15.1, P = 0.0013). CONCLUSIONS LOH at BRCA1 locus could be an independent prognostic biomarker useful in identifying a subgroup of patients with poor prognosis.
Collapse
Affiliation(s)
- Satoko Okada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Singh KK, Shukla PC, Quan A, Desjardins JF, Lovren F, Pan Y, Garg V, Gosal S, Garg A, Szmitko PE, Schneider MD, Parker TG, Stanford WL, Leong-Poi H, Teoh H, Al-Omran M, Verma S. BRCA2 protein deficiency exaggerates doxorubicin-induced cardiomyocyte apoptosis and cardiac failure. J Biol Chem 2011; 287:6604-14. [PMID: 22157755 DOI: 10.1074/jbc.m111.292664] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor breast cancer susceptibility gene 2 (BRCA2) plays an important role in the repair of DNA damage, and loss of BRCA2 predisposes carriers to breast and ovarian cancers. Doxorubicin (DOX) remains the cornerstone of chemotherapy in such individuals. However, it is often associated with cardiac failure, which once manifests carries a poor prognosis. Because BRCA2 regulates genome-wide stability and facilitates DNA damage repair, we hypothesized that loss of BRCA2 may increase susceptibility to DOX-induced cardiac failure. To this aim, we generated cardiomyocyte-specific BRCA2 knock-out (CM-BRCA2(-/-)) mice using the Cre-loxP technology and evaluated their basal and post-DOX treatment phenotypes. Although CM-BRCA2(-/-) mice exhibited no basal cardiac phenotype, DOX treatment resulted in markedly greater cardiac dysfunction and mortality in CM-BRCA2(-/-) mice compared with control mice. Apoptosis in left ventricular (LV) sections from CM-BRCA2(-/-) mice compared with that in corresponding sections from wild-type (WT) littermate controls was also significantly enhanced after DOX treatment. Microscopic examination of LV sections from DOX-treated CM-BRCA2(-/-) mice revealed a greater number of DNA double-stranded breaks and the absence of RAD51 focus formation, an essential marker of double-stranded break repair. The levels of p53 and the p53-related proapoptotic proteins p53-up-regulated modulator of apoptosis (PUMA) and Bax were significantly increased in samples from CM-BRCA2(-/-) mice. This corresponded with increased Bax to Bcl-2 ratios and elevated cytochrome c release in the LV sections of DOX-treated CM-BRCA2(-/-) mice. Taken together, these data suggest a critical and previously unrecognized role of BRCA2 as a gatekeeper of DOX-induced cardiomyocyte apoptosis and susceptibility to overt cardiac failure. Pharmacogenomic studies evaluating cardiac function in BRCA2 mutation carriers treated with doxorubicin are encouraged.
Collapse
Affiliation(s)
- Krishna K Singh
- Division of Cardiac Surgery, The Keenan Research Centre in the Li Ka Shing Knowledge Institute of St.Michael’s Hospital,Toronto, Ontario M5B 1W8, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Chiarugi A. A snapshot of chemoresistance to PARP inhibitors. Trends Pharmacol Sci 2011; 33:42-8. [PMID: 22055391 DOI: 10.1016/j.tips.2011.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 09/28/2011] [Accepted: 10/03/2011] [Indexed: 12/19/2022]
Abstract
The exploitation of synthetic lethality in BRCA-deficient tumor carriers using potent inhibitors of the enzyme poly(ADP-ribose) polymerase (PARP)-1 has led to an enthusiastic response among basic scientists, oncologists and pharmaceutical companies. However, accumulating evidence demonstrates that resistance to these drugs develops in tumors in both preclinical and clinical settings. Here, I focus on literature dealing with resistance to these drugs and discuss the molecular mechanisms involved, such as restoration of BRCA function, upregulation of nonhomologous end-joining-dependent DNA repair, induction of P-glycoprotein expression and epigenetic deregulation. Clinical implications of resistance to PARP1 inhibitors are also discussed.
Collapse
Affiliation(s)
- Alberto Chiarugi
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| |
Collapse
|
161
|
p38γ mitogen-activated protein kinase contributes to oncogenic properties maintenance and resistance to poly (ADP-ribose)-polymerase-1 inhibition in breast cancer. Neoplasia 2011; 13:472-82. [PMID: 21532888 DOI: 10.1593/neo.101748] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 01/01/2023] Open
Abstract
p38γ MAPK, one of the four members of p38 mitogen-activated protein kinases (MAPKs), has previously been shown to harbor oncogenic functions. However, the biologic function of p38γ MAPK in breast cancer has not been well defined. In this study, we have shown that p38γ MAPK is overexpressed in highly metastatic human and mouse breast cancer cell lines and p38γ MAPK expression is preferentially associated with basal-like and metastatic phenotypes of breast tumor samples. Ectopic expression of p38γ MAPK did not lead to an increase in oncogenic properties in vitro in most tested mammary epithelial cells. However, knockdown of p38γ MAPK expression resulted in a dramatic decrease in cell proliferation, colony formation, cell migration, invasion in vitro and significant retardation of tumorigenesis, and long-distance metastasis to the lungs in vivo. Moreover, knockdown of p38γ MAPK triggered the activation of AKT signaling. Inhibition of this feedback loop with various PI3K/AKT signaling inhibitors facilitated the effect of targeting p38γ MAPK. We further found that overexpression of p38γ MAPK did not promote cell resistance to chemotherapeutic agents doxorubicin and paclitaxel but significantly increased cell resistance to PJ-34, a DNA damage agent poly (ADP-ribose)-polymerase-1 (PARP) inhibitor in vitro and in vivo. Finally, we identified that p38γ MAPK overexpression led to marked cell cycle arrest in G(2)/M phase. Our study for the first time clearly demonstrates that p38γ MAPK is a promising target for the design of targeted therapies for basal-like breast cancer with metastatic characteristics and for overcoming potential resistance against the PARP inhibitor.
Collapse
|
162
|
|
163
|
Wilkerson PM, Dedes KJ, Wetterskog D, Mackay A, Lambros MB, Mansour M, Frankum J, Lord CJ, Natrajan R, Ashworth A, Reis-Filho JS. Functional characterization of EMSY
gene amplification in human cancers. J Pathol 2011; 225:29-42. [DOI: 10.1002/path.2944] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 05/18/2011] [Accepted: 05/18/2011] [Indexed: 11/10/2022]
|
164
|
Barber LJ, Rosa Rosa JM, Kozarewa I, Fenwick K, Assiotis I, Mitsopoulos C, Sims D, Hakas J, Zvelebil M, Lord CJ, Ashworth A. Comprehensive genomic analysis of a BRCA2 deficient human pancreatic cancer. PLoS One 2011; 6:e21639. [PMID: 21750719 PMCID: PMC3130048 DOI: 10.1371/journal.pone.0021639] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/03/2011] [Indexed: 01/06/2023] Open
Abstract
Capan-1 is a well-characterised BRCA2-deficient human cell line isolated from a liver metastasis of a pancreatic adenocarcinoma. Here we report a genome-wide assessment of structural variations and high-depth exome characterization of single nucleotide variants and small insertion/deletions in Capan-1. To identify potential somatic and tumour-associated variations in the absence of a matched-normal cell line, we devised a novel method based on the analysis of HapMap samples. We demonstrate that Capan-1 has one of the most rearranged genomes sequenced to date. Furthermore, small insertions and deletions are detected more frequently in the context of short sequence repeats than in other genomes. We also identify a number of novel mutations that may represent genetic changes that have contributed to tumour progression. These data provide insight into the genomic effects of loss of BRCA2 function.
Collapse
Affiliation(s)
- Louise J. Barber
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Juan M. Rosa Rosa
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Iwanka Kozarewa
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Kerry Fenwick
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Ioannis Assiotis
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Costas Mitsopoulos
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - David Sims
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Jarle Hakas
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Marketa Zvelebil
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Christopher J. Lord
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
- * E-mail: (CJL); (AA)
| | - Alan Ashworth
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
- * E-mail: (CJL); (AA)
| |
Collapse
|
165
|
Allen C, Ashley AK, Hromas R, Nickoloff JA. More forks on the road to replication stress recovery. J Mol Cell Biol 2011; 3:4-12. [PMID: 21278446 DOI: 10.1093/jmcb/mjq049] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
High-fidelity replication of DNA, and its accurate segregation to daughter cells, is critical for maintaining genome stability and suppressing cancer. DNA replication forks are stalled by many DNA lesions, activating checkpoint proteins that stabilize stalled forks. Stalled forks may eventually collapse, producing a broken DNA end. Fork restart is typically mediated by proteins initially identified by their roles in homologous recombination repair of DNA double-strand breaks (DSBs). In recent years, several proteins involved in DSB repair by non-homologous end joining (NHEJ) have been implicated in the replication stress response, including DNA-PKcs, Ku, DNA Ligase IV-XRCC4, Artemis, XLF and Metnase. It is currently unclear whether NHEJ proteins are involved in the replication stress response through indirect (signaling) roles, and/or direct roles involving DNA end joining. Additional complexity in the replication stress response centers around RPA, which undergoes significant post-translational modification after stress, and RAD52, a conserved HR protein whose role in DSB repair may have shifted to another protein in higher eukaryotes, such as BRCA2, but retained its role in fork restart. Most cancer therapeutic strategies create DNA replication stress. Thus, it is imperative to gain a better understanding of replication stress response proteins and pathways to improve cancer therapy.
Collapse
Affiliation(s)
- Chris Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft Collins, CO 80523, USA
| | | | | | | |
Collapse
|
166
|
Trapp O, Seeliger K, Puchta H. Homologs of breast cancer genes in plants. FRONTIERS IN PLANT SCIENCE 2011; 2:19. [PMID: 22629260 PMCID: PMC3355568 DOI: 10.3389/fpls.2011.00019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/02/2011] [Indexed: 05/22/2023]
Abstract
Since the initial discovery of genes involved in hereditary breast cancer in humans, a vast wealth of information has been published. Breast cancer proteins were shown to work as tumor suppressors primarily through their involvement in DNA-damage repair. Surprisingly, homologs of these genes can be found in plant genomes, as well. Here, we want to give an overview of the identification and characterization of the biological roles of these proteins, in plants. In addition to the conservation of their function in DNA repair, new plant-specific characteristics have been revealed. BRCA1 is required for the efficient repair of double strand breaks (DSB) by homologous recombination in somatic cells of the model plant Arabidopsis thaliana. Bioinformatic analysis indicates that, whereas most homologs of key components of the different mammalian BRCA1 complexes are present in plant genomes, homologs of most factors involved in the recruitment of BRCA1 to the DSB cannot be identified. Thus, it is not clear at the moment whether differences exist between plants and animals at this important step. The most conserved region of BRCA1 and BARD1 homologs in plants is a PHD domain which is absent in mammals and which, in AtBARD1, might be involved in the transcriptional regulation of plant development. The presence of a plant-specific domain prompted us to reevaluate the current model for the evolution of BRCA1 homologs and to suggest a new hypothesis, in which we postulate that plant BRCA1 and BARD1 have one common predecessor that gained a PHD domain before duplication. Furthermore, work in Arabidopsis demonstrates that - as in animals - BRCA2 homologs are important for meiotic DNA recombination. Surprisingly, recent research has revealed that AtBRCA2 also has an important role in systemic acquired resistance. In Arabidopsis, BRCA2 is involved in the transcriptional regulation of pathogenesis-related (PR) genes via its interaction with the strand exchange protein RAD51.
Collapse
Affiliation(s)
- Oliver Trapp
- Botanical Institute II, Karlsruhe Institute of TechnologyKarlsruhe, Germany
| | - Katharina Seeliger
- Botanical Institute II, Karlsruhe Institute of TechnologyKarlsruhe, Germany
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of TechnologyKarlsruhe, Germany
| |
Collapse
|
167
|
Effect of the overexpression of BRCA2 unclassified missense variants on spontaneous homologous recombination in human cells. Breast Cancer Res Treat 2011; 129:1001-9. [PMID: 21671020 DOI: 10.1007/s10549-011-1607-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/21/2011] [Indexed: 10/18/2022]
Abstract
Breast Cancer 2 gene (BRCA2) mutation carriers have a 45% chance of developing breast cancer and a 11% risk of developing ovarian cancer by the age of 70. While hundreds of BRCA2-truncating mutations have been associated with an increased cancer risk in carriers, the contribution of unclassified variants (UCVs) to cancer risk remains largely undefined. BRCA2-defective cells show a high degree of chromosome instability. Although a functional assay based on the BRCA2 capability to stimulate DSB-induced homologous recombination (HR) as a way to classify UCVs has been proposed, so far no data are available concerning the effect of BRCA2 UCVs on spontaneous HR. In this study, we proposed a novel functional HR-based assay that determines the effect of the transient overexpression of the BRCA2 variant on spontaneous HR. This assay will help one in the difficult task of classifying UCVs, and it will give more information on how BRCA2 may induce genome instability and on the basic mechanism of BRCA2-induced tumourigenesis. We chose 11 BRCA2 UCVs not previously described or classified in other articles, and distributed along the entire BRCA2-coding region. They are as follows: G173V, D191V, S286P, M927V, T1011R, L1019V, N1878K, S2006R, R2108C, G2353R and V3091I. Basically, because the expression of BRCA2wt and the neutral variants did not increase spontaneous HR, we classified the variants G173V, S286P, M927V, T1011R and L1019V as HR-negative and presumed that they were not pathogenic. The HR-positive variants, D191V, N1878K, S2006R, R2108C, G2353R, and V3091I, which increased HR as much as the cancer-associated variant G2748D, could probably be classified as pathogenic. We observed that all our variants in the C-terminus of the protein behaved differently from the wt, suggesting a role for this protein region in spontaneous HR.
Collapse
|
168
|
Rowley M, Ohashi A, Mondal G, Mills L, Yang L, Zhang L, Sundsbak R, Shapiro V, Muders M, Smyrk T, Couch FJ. Inactivation of Brca2 promotes Trp53-associated but inhibits KrasG12D-dependent pancreatic cancer development in mice. Gastroenterology 2011; 140:1303-1313.e1-3. [PMID: 21199651 PMCID: PMC3066280 DOI: 10.1053/j.gastro.2010.12.039] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/22/2010] [Accepted: 12/20/2010] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Inherited mutations in the BRCA2 tumor suppressor have been associated with an increased risk of pancreatic cancer. To establish the contribution of Brca2 to pancreatic cancer we developed a mouse model of pancreas-specific Brca2 inactivation. Because BRCA2-inactivating mutations cause defects in repair of DNA double-strand breaks that result in chromosomal instability, we evaluated whether Brca2 inactivation induced instability in pancreatic tissue from these mice and whether associated pancreatic tumors were hypersensitive to DNA damaging agents. METHODS We developed mouse models that combined pancreas-specific Kras activation and Trp53 deletion with Brca2 inactivation. Development of pancreatic cancer was assessed; tumors and nonmalignant tissues were analyzed for chromosomal instability and apoptosis. Cancer cell lines were evaluated for sensitivity to DNA damaging agents. RESULTS In the presence of disrupted Trp53, Brca2 inactivation promoted the development of premalignant lesions and pancreatic tumors that reflected the histology of human disease. Cancer cell lines derived from these tumors were hypersensitive to specific DNA damaging agents. In contrast, in the presence of KrasG12D, Brca2 inactivation promoted chromosomal instability and apoptosis and unexpectedly inhibited growth of premalignant lesions and tumors. CONCLUSIONS Trp53 signaling must be modified before inactivation of the Brca2 wild-type allele, irrespective of Kras status, for Brca2-deficient cells to form tumors.
Collapse
Affiliation(s)
- Matthew Rowley
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, 55905
| | - Akihiro Ohashi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, 55905
| | - Gourish Mondal
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, 55905
| | - Lisa Mills
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, 55905
| | - Lin Yang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, 55905
| | - Lizhi Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, 55905
| | - Rhianna Sundsbak
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, 55905
| | - Virginia Shapiro
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, 55905
| | - Michael Muders
- Department of Urology, Mayo Clinic, Rochester, Minnesota, 55905
| | - Thomas Smyrk
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, 55905
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, 55905
| |
Collapse
|
169
|
Kim TM, Ko JH, Choi YJ, Hu L, Hasty P. The phenotype of FancB-mutant mouse embryonic stem cells. Mutat Res 2011; 712:20-7. [PMID: 21458466 DOI: 10.1016/j.mrfmmm.2011.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/11/2011] [Accepted: 03/23/2011] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a rare autosomal recessive disease characterized by bone marrow failure, developmental defects and cancer. There are multiple FA genes that enable the repair of interstrand crosslinks (ICLs) in coordination with a variety of other DNA repair pathways in a way that is poorly understood. Here we present the phenotype of mouse embryonic stem (ES) cells mutated for FancB. We found FancB-mutant cells exhibited reduced cellular proliferation, hypersensitivity to the crosslinking agent mitomycin C (MMC), increased spontaneous and MMC-induced chromosomal abnormalities, reduced spontaneous sister chromatid exchanges (SCEs), reduced gene targeting, reduced MMC-induced Rad51 foci and absent MMC-induced FancD2 foci. Since FancB is on the X chromosome and since ES cells are typically XY, FancB is an excellent target for an epistatic analysis to elucidate FA's role in ICL repair.
Collapse
Affiliation(s)
- Tae Moon Kim
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | | | | | | | | |
Collapse
|
170
|
Hucl T, Gallmeier E. DNA repair: exploiting the Fanconi anemia pathway as a potential therapeutic target. Physiol Res 2011; 60:453-65. [PMID: 21401292 DOI: 10.33549/physiolres.932115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DNA repair is an active cellular process to respond to constant DNA damage caused by metabolic processes and environmental factors. Since the outcome of DNA damage is generally adverse and long term effects may contribute to oncogenesis, cells have developed a variety of DNA repair mechanisms, which operate depending on the type of DNA damage inflicted. At least 15 Fanconi anemia (FA) proteins interact in a common pathway involved in homologous recombination. Inherited homozygous mutations in any of these FA genes cause a rare disease, Fanconi anemia, characterized by congenital abnormalities, progressive bone-marrow failure and cancer susceptibility. Heterozygous germline FA mutations predispose to various types of cancer. In addition, somatic FA mutations have been identified in diverse cancer types. Evidence exists that cells deficient in the FA pathway become dependent on alternative pathways for survival. Additional inhibition of such alternative pathways is thus expected to result in cell death, creating a relationship of synthetic lethality. Identifying these relationships can reveal yet unknown mechanisms of DNA repair and new targets for therapy.
Collapse
Affiliation(s)
- T Hucl
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | |
Collapse
|
171
|
Hall M, Misra S, Chaudhuri M, Chaudhuri G. Peptide aptamer mimicking RAD51-binding domain of BRCA2 inhibits DNA damage repair and survival in Trypanosoma brucei. Microb Pathog 2011; 50:252-62. [PMID: 21296653 DOI: 10.1016/j.micpath.2010.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 11/26/2010] [Accepted: 11/30/2010] [Indexed: 10/18/2022]
Abstract
The eukaryotic DNA recombination repair protein BRCA2 is functional in the parasitic protozoan Trypanosoma brucei. The mechanism of the involvement of BRCA2 in homologous recombination includes its interaction with the DNA recombinase proteins of the RAD51 family. BRCA2 is known to interact with RAD51 through its unique and essential BRC sequence motifs. T. brucei BRCA2 homolog (TbBRCA2) has fifteen repeating BRC motifs as compared to mammalian BRCA2 that has only eight. We report here our yeast 2-hybrid analysis studies on the interactions of TbBRCA2 BRC motifs with five different RAD51 paralogues of T. brucei. Our study revealed that a single BRC motif is sufficient to bind to these RAD51 paralogues. To test the possibility whether a single 44 amino acid long repeating unit of the TbBRCA2 BRC motif may be exploited as an inhibitor of T. brucei growth, we ectopically expressed this peptide segment in the procyclic form of the parasite and evaluated its effects on cell survival as well as the sensitivity of these cells to the DNA damaging agent methyl methane sulfonate (MMS). Expression of a single BRC motif led to MMS sensitivity and inhibited cellular proliferation in T. brucei.
Collapse
Affiliation(s)
- Mack Hall
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | |
Collapse
|
172
|
Dhillon KK, Swisher EM, Taniguchi T. Secondary mutations of BRCA1/2 and drug resistance. Cancer Sci 2011; 102:663-9. [PMID: 21205087 DOI: 10.1111/j.1349-7006.2010.01840.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inherited mutations in the tumor suppressor genes BRCA1 and BRCA2 cause increased risk of developing various cancers, especially breast and ovarian cancers. Tumors that develop in patients with inherited BRCA1/2 mutations are generally believed to be BRCA1/2-deficient. Cancer cells with BRCA1/2 deficiency are defective in DNA repair by homologous recombination and sensitive to interstrand DNA crosslinking agents, such as cisplatin and carboplatin, and poly(ADP-ribose) polymerase inhibitors. Therefore, these agents are logical choices for the treatment for BRCA1/2-deficient tumors and have shown to be clinically effective. However, BRCA1/2-mutated tumors often develop resistance to these drugs. Restoration of BRCA1/2 functions due to secondary BRCA1/2 mutations has been recognized as a mechanism of acquired resistance to cisplatin and poly(ADP-ribose) polymerase inhibitors in BRCA1/2-mutated cancer cells. This indicates that even disease-causing inherited mutations of tumor suppressor genes can be genetically reverted in cancer cells, if the genetic reversion is advantageous for the cells' survival. In this review, we will discuss this drug resistance mechanism.
Collapse
Affiliation(s)
- Kiranjit K Dhillon
- Howard Hughes Medical Institute, Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | |
Collapse
|
173
|
|
174
|
Jensen RB, Carreira A, Kowalczykowski SC. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 2010; 467:678-83. [PMID: 20729832 PMCID: PMC2952063 DOI: 10.1038/nature09399] [Citation(s) in RCA: 509] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 08/11/2010] [Indexed: 12/18/2022]
Abstract
Mutation of the breast cancer susceptibility gene, BRCA2, leads to breast and ovarian cancers. Mechanistic insight into the functions of human BRCA2 has been limited by the difficulty of isolating this large protein (3,418 amino acids). Here we report purification of full length BRCA2 and show that it both binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). BRCA2 acts by: targeting RAD51 to ssDNA over double-stranded DNA; enabling RAD51 to displace Replication protein-A (RPA) from ssDNA; and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. BRCA2 does not anneal ssDNA complexed with RPA, implying it does not directly function in repair processes that involve ssDNA annealing. Our findings show that BRCA2 is a key mediator of homologous recombination, and they provide a molecular basis for understanding how this DNA repair process is disrupted by BRCA2 mutations, which lead to chromosomal instability and cancer.
Collapse
Affiliation(s)
- Ryan B Jensen
- Department of Microbiology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
175
|
Rassool FV, Tomkinson AE. Targeting abnormal DNA double strand break repair in cancer. Cell Mol Life Sci 2010; 67:3699-710. [PMID: 20697770 PMCID: PMC3014093 DOI: 10.1007/s00018-010-0493-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 12/19/2022]
Abstract
A major challenge in cancer treatment is the development of therapies that target cancer cells with little or no toxicity to normal tissues and cells. Alterations in DNA double strand break (DSB) repair in cancer cells include both elevated and reduced levels of key repair proteins and changes in the relative contributions of the various DSB repair pathways. These differences can result in increased sensitivity to DSB-inducing agents and increased genomic instability. The development of agents that selectively inhibit the DSB repair pathways that cancer cells are more dependent upon will facilitate the design of therapeutic strategies that exploit the differences in DSB repair between normal and cancer cells. Here, we discuss the pathways of DSB repair, alterations in DSB repair in cancer, inhibitors of DSB repair and future directions for cancer therapies that target DSB repair.
Collapse
Affiliation(s)
- Feyruz V. Rassool
- Department of Radiation Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 655 West Baltimore Street, BRB, Rm 7-025, Baltimore, MD 21201 USA
| | - Alan E. Tomkinson
- Department of Radiation Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 655 West Baltimore Street, BRB, Rm 7-025, Baltimore, MD 21201 USA
| |
Collapse
|
176
|
Amir E, Seruga B, Serrano R, Ocana A. Targeting DNA repair in breast cancer: A clinical and translational update. Cancer Treat Rev 2010; 36:557-65. [PMID: 20385443 DOI: 10.1016/j.ctrv.2010.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 03/12/2010] [Accepted: 03/16/2010] [Indexed: 01/10/2023]
Affiliation(s)
- Eitan Amir
- Medical Oncology Department, Princess Margaret Hospital, 610 University Avenue, Toronto, Canada
| | | | | | | |
Collapse
|
177
|
Tan Y, Chen Y, Yu L, Zhu H, Meng X, Huang X, Meng L, Ding M, Wang Z, Shan L. Two-fold elevation of expression of FoxM1 transcription factor in mouse embryonic fibroblasts enhances cell cycle checkpoint activity by stimulating p21 and Chk1 transcription. Cell Prolif 2010; 43:494-504. [PMID: 20887555 DOI: 10.1111/j.1365-2184.2010.00699.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Forkhead Box M1 (FoxM1) transcription factor regulates expression of cell cycle effective genes and is stabilized by checkpoint kinase 2 (Chk2) to stimulate expression of DNA repair enzymes in response to DNA damage. This study intended to test whether FoxM1 is involved in cell cycle checkpoint pathways. MATERIALS AND METHODS Analysis of senescence and cell proliferation in FoxM1 transgenic (TG) mouse embryonic fibroblasts (MEFs) with 2-fold elevation of FoxM1, and overexpression or knockdown of FoxM1 in an inducible FoxM1 expression cell line, or FoxM1 siRNA. Chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assays (EMSA), and cotransfection to determine FoxM1 transcription targets, as well as RNase protection assays and western blot analysis, were performed. RESULTS Two-fold elevation of FoxM1 in FoxM1-TG-MEFs resulted in low levels of cell proliferation and increase in permanent cell cycle arrest at early passages (from passage 6 to 9). These phenotypes correlated with increased phosphorylation of p53 on Ser15, elevated expression of cell cycle inhibitor p21 and Chk1 at passage 3. FoxM1 was stabilized in response to DNA damage in MEFs and FoxM1 overexpression induced p21. Knockdown of FoxM1 resulted in decrease in Chk1. ChIP, EMSA and cotransfection assays confirmed that FoxM1 stimulated promoters of p21 and Chk1. CONCLUSIONS Chk1 and p21 are direct transcription targets of FoxM1 and FoxM1 participates in transcriptional responses to stress in normal cells.
Collapse
Affiliation(s)
- Y Tan
- Biomedical Engineering Center and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
PARP inhibition: targeting the Achilles' heel of DNA repair to treat germline and sporadic ovarian cancers. Curr Opin Oncol 2010; 22:473-80. [DOI: 10.1097/cco.0b013e32833b5126] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
179
|
Abstract
Drugs that inhibit the enzyme poly(ADP-ribose)polymerase (PARP) are showing considerable promise for the treatment of cancers that have mutations in the BRCA1 or BRCA2 tumor suppressors. This therapeutic approach exploits a synthetic lethal strategy to target the specific DNA repair pathway in these tumors. High-grade ovarian cancers have a generally poor prognosis, and accumulating evidence suggests that mutations in BRCA1 or BRCA2, or silencing of BRCA1 by promoter methylation, may be common in this disease. Here, we consider how the potential benefit of PARP inhibitors might be maximized in ovarian cancer. We suggest that it will be crucial to explore novel therapeutic trial strategies and drug combinations, and incorporate robust biomarkers predictive of response if these drugs are to reach their full potential.
Collapse
|
180
|
Kass EM, Jasin M. Collaboration and competition between DNA double-strand break repair pathways. FEBS Lett 2010; 584:3703-8. [PMID: 20691183 DOI: 10.1016/j.febslet.2010.07.057] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 07/28/2010] [Indexed: 12/12/2022]
Abstract
DNA double-strand breaks resulting from normal cellular processes including replication and exogenous sources such as ionizing radiation pose a serious risk to genome stability, and cells have evolved different mechanisms for their efficient repair. The two major pathways involved in the repair of double-strand breaks in eukaryotic cells are non-homologous end joining and homologous recombination. Numerous factors affect the decision to repair a double-strand break via these pathways, and accumulating evidence suggests these major repair pathways both cooperate and compete with each other at double-strand break sites to facilitate efficient repair and promote genomic integrity.
Collapse
Affiliation(s)
- Elizabeth M Kass
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
181
|
Manthey GM, Bailis AM. Rad51 inhibits translocation formation by non-conservative homologous recombination in Saccharomyces cerevisiae. PLoS One 2010; 5:e11889. [PMID: 20686691 PMCID: PMC2912366 DOI: 10.1371/journal.pone.0011889] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/07/2010] [Indexed: 11/24/2022] Open
Abstract
Chromosomal translocations are a primary biological response to ionizing radiation (IR) exposure, and are likely to result from the inappropriate repair of the DNA double-strand breaks (DSBs) that are created. An abundance of repetitive sequences in eukaryotic genomes provides ample opportunity for such breaks to be repaired by homologous recombination (HR) between non-allelic repeats. Interestingly, in the budding yeast, Saccharomyces cerevisiae the central strand exchange protein, Rad51 that is required for DSB repair by gene conversion between unlinked repeats that conserves genomic structure also suppresses translocation formation by several HR mechanisms. In particular, Rad51 suppresses translocation formation by single-strand annealing (SSA), perhaps the most efficient mechanism for translocation formation by HR in both yeast and mammalian cells. Further, the enhanced translocation formation that emerges in the absence of Rad51 displays a distinct pattern of genetic control, suggesting that this occurs by a separate mechanism. Since hypomorphic mutations in RAD51 in mammalian cells also reduce DSB repair by conservative gene conversion and stimulate non-conservative repair by SSA, this mechanism may also operate in humans and, perhaps contribute to the genome instability that propels the development of cancer.
Collapse
Affiliation(s)
- Glenn M. Manthey
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Adam M. Bailis
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
182
|
Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM, Scott C, Weitzel JN, Oaknin A, Loman N, Lu K, Schmutzler RK, Matulonis U, Wickens M, Tutt A. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 2010; 376:245-51. [PMID: 20609468 DOI: 10.1016/s0140-6736(10)60893-8] [Citation(s) in RCA: 1056] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Olaparib is a novel, orally active poly(ADP-ribose) polymerase (PARP) inhibitor that induces synthetic lethality in homozygous BRCA-deficient cells. We aimed to assess the efficacy and safety of olaparib for treatment of advanced ovarian cancer in patients with BRCA1 or BRCA2 mutations. METHODS In this international, multicentre, phase 2 study, we enrolled two sequential cohorts of women (aged >or=18 years) with confirmed genetic BRCA1 or BRCA2 mutations, and recurrent, measurable disease. The study was undertaken in 12 centres in Australia, Germany, Spain, Sweden, and the USA. The first cohort (n=33) was given continuous oral olaparib at the maximum tolerated dose of 400 mg twice daily, and the second cohort (n=24) was given continuous oral olaparib at 100 mg twice daily. The primary efficacy endpoint was objective response rate (ORR). This study is registered with ClinicalTrials.gov, number NCT00494442. FINDINGS Patients had been given a median of three (range 1-16) previous chemotherapy regimens. ORR was 11 (33%) of 33 patients (95% CI 20-51) in the cohort assigned to olaparib 400 mg twice daily, and three (13%) of 24 (4-31) in the cohort assigned to 100 mg twice daily. In patients given olaparib 400 mg twice daily, the most frequent causally related adverse events were nausea (grade 1 or 2, 14 [42%]; grade 3 or 4, two [6%]), fatigue (grade 1 or 2, ten [30%]; grade 3 or 4, one [3%]), and anaemia (grade 1 or two, five [15%]; grade 3 or 4, one [3%]). The most frequent causally related adverse events in the cohort given 100 mg twice daily were nausea (grade 1 or 2, seven [29%]; grade 3 or 4, two [8%]) and fatigue (grade 1 or 2, nine [38%]; none grade 3 or 4). INTERPRETATION Findings from this phase 2 study provide positive proof of concept of the efficacy and tolerability of genetically targeted treatment with olaparib in BRCA-mutated advanced ovarian cancer. FUNDING AstraZeneca.
Collapse
Affiliation(s)
- M William Audeh
- Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, Friedlander M, Arun B, Loman N, Schmutzler RK, Wardley A, Mitchell G, Earl H, Wickens M, Carmichael J. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 2010; 376:235-44. [PMID: 20609467 DOI: 10.1016/s0140-6736(10)60892-6] [Citation(s) in RCA: 1334] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Olaparib, a novel, orally active poly(ADP-ribose) polymerase (PARP) inhibitor, induced synthetic lethality in BRCA-deficient cells. A maximum tolerated dose and initial signal of efficacy in BRCA-deficient ovarian cancers have been reported. We therefore assessed the efficacy, safety, and tolerability of olaparib alone in women with BRCA1 or BRCA2 mutations and advanced breast cancer. METHODS Women (aged >or=18 years) with confirmed BRCA1 or BRCA2 mutations and recurrent, advanced breast cancer were assigned to two sequential cohorts in a phase 2 study undertaken in 16 centres in Australia, Germany, Spain, Sweden, the UK, and the USA. The first cohort (n=27) was given continuous oral olaparib at the maximum tolerated dose (400 mg twice daily), and the second (n=27) was given a lower dose (100 mg twice daily). The primary efficacy endpoint was objective response rate (ORR). This study is registered with ClinicalTrials.gov, number NCT00494234. FINDINGS Patients had been given a median of three previous chemotherapy regimens (range 1-5 in cohort 1, and 2-4 in cohort 2). ORR was 11 (41%) of 27 patients (95% CI 25-59) in the cohort assigned to 400 mg twice daily, and six (22%) of 27 (11-41) in the cohort assigned to 100 mg twice daily. Toxicities were mainly at low grades. The most frequent causally related adverse events in the cohort given 400 mg twice daily were fatigue (grade 1 or 2, 11 [41%]; grade 3 or 4, four [15%]), nausea (grade 1 or 2, 11 [41%]; grade 3 or 4, four [15%]), vomiting (grade 1 or 2, three [11%]; grade 3 or 4, three [11%]), and anaemia (grade 1 or 2, one [4%]; grade 3 or 4, three [11%]). The most frequent causally related adverse events in the cohort given 100 mg twice daily were nausea (grade 1 or 2, 11 [41%]; none grade 3 or 4) and fatigue (grade 1 or 2, seven [26%]; grade 3 or 4, one [4%]). INTERPRETATION The results of this study provide positive proof of concept for PARP inhibition in BRCA-deficient breast cancers and shows a favourable therapeutic index for a novel targeted treatment strategy in patients with tumours that have genetic loss of function of BRCA1-associated or BRCA2-associated DNA repair. Toxicity in women with BRCA1 and BRCA2 mutations was similar to that reported previously in those without such mutations. FUNDING AstraZeneca.
Collapse
Affiliation(s)
- Andrew Tutt
- Breakthrough Breast Cancer Research Unit, Guy's Hospital Campus, King's College London School of Medicine, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Underhill C, Toulmonde M, Bonnefoi H. A review of PARP inhibitors: from bench to bedside. Ann Oncol 2010; 22:268-79. [PMID: 20643861 DOI: 10.1093/annonc/mdq322] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitors, with novel and selective mechanisms of action, have moved from the laboratory to the clinic in just the last few years. DESIGN We conducted an extensive review of PARP inhibitors using a Medline search. We also searched abstracts in databases of major international oncology meetings from the last 4 years. RESULTS To understand the mechanisms of action of PARP inhibitors requires a basic understanding of DNA repair mechanisms and the critical role of the PARP enzyme. We briefly review these DNA repair mechanisms, the concept of 'synthetic lethality', and how PARP inhibitors play a role to selectively disrupt DNA repair in cells with absent or dysfunctional BRCA genes. We review the preclinical data highlighting this unique and selective mechanism of action and we discuss early but highly promising clinical data and ongoing studies. CONCLUSION PARP inhibitors show promise as a powerful therapeutic tool, especially in the management of BRCA-associated breast and ovarian cancers but also in tumours where BRCA genes may be dysfunctional. Clinical studies are ongoing and many translational questions remain unanswered that will help clarify how to determine the best way to use PARP inhibitors.
Collapse
Affiliation(s)
- C Underhill
- Department of Medical Oncology, Insitut Bergonié Cancer Center and University of Bordeaux, Bordeaux, France
| | | | | |
Collapse
|
185
|
Francis JC, McCarthy A, Thomsen MK, Ashworth A, Swain A. Brca2 and Trp53 deficiency cooperate in the progression of mouse prostate tumourigenesis. PLoS Genet 2010; 6:e1000995. [PMID: 20585617 PMCID: PMC2891704 DOI: 10.1371/journal.pgen.1000995] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 05/19/2010] [Indexed: 01/07/2023] Open
Abstract
Epidemiological studies have shown that one of the strongest risk factors for prostate cancer is a family history of the disease, suggesting that inherited factors play a major role in prostate cancer susceptibility. Germline mutations in BRCA2 predispose to breast and ovarian cancer with its predominant tumour suppressor function thought to be the repair of DNA double-strand breaks. BRCA2 has also been implicated in prostate cancer etiology, but it is unclear the impact that mutations in this gene have on prostate tumourigenesis. Here we have undertaken a genetic analysis in the mouse to determine the role of Brca2 in the adult prostate. We show that deletion of Brca2 specifically in prostate epithelia results in focal hyperplasia and low-grade prostate intraepithelial neoplasia (PIN) in animals over 12 months of age. Simultaneous deletion of Brca2 and the tumour suppressor Trp53 in prostate epithelia gave rise to focal hyperplasia and atypical cells at 6 months, leading to high-grade PIN in animals from 12 months. Epithelial cells in these lesions show an increase in DNA damage and have higher levels of proliferation, but also elevated apoptosis. Castration of Brca2;Trp53 mutant animals led to regression of PIN lesions, but atypical cells persisted that continued to proliferate and express nuclear androgen receptor. This study provides evidence that Brca2 can act as a tumour suppressor in the prostate, and the model we describe should prove useful in the development of new therapeutic approaches. In Western countries, prostate cancer is the most common male cancer and the second biggest cause of cancer-related deaths in men. Men with a familial history of either breast or ovarian cancer have an elevated predisposition to prostate cancer, suggesting there is a genetic element to this disease. Indeed, the inheritance of a mutated form of the breast cancer susceptibility gene BRCA2 has been linked to the development of prostate cancer, although the precise role that BRCA2 dysfunction plays in the development of prostate cancer is unclear. To address this, we have generated an animal model in which the mouse Brca2 gene is specifically deleted in the adult prostate. These mice develop precancerous prostate lesions, which progress in severity and incidence with the loss-of-function of an additional tumour suppressor, Trp53. Importantly, blocking male steroidal hormone production by castration leads to partial regression of the prostate lesions, however cells continue to proliferate after androgen withdrawal. This suggests human BRCA2 mutant prostate tumours, like the majority of prostate cancers, will respond to hormone therapy, but will relapse, as frequently occurs in this disease. In summary, our model suggests that BRCA2 acts as a tumour suppressor in the prostate and provides a pre-invasive model to test novel therapeutics.
Collapse
Affiliation(s)
- Jeffrey C. Francis
- Section of Gene Function and Regulation, Institute of Cancer Research, London, United Kingdom
| | - Afshan McCarthy
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Martin K. Thomsen
- Section of Gene Function and Regulation, Institute of Cancer Research, London, United Kingdom
| | - Alan Ashworth
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Amanda Swain
- Section of Gene Function and Regulation, Institute of Cancer Research, London, United Kingdom
- * E-mail:
| |
Collapse
|
186
|
Sourisseau T, Maniotis D, McCarthy A, Tang C, Lord CJ, Ashworth A, Linardopoulos S. Aurora-A expressing tumour cells are deficient for homology-directed DNA double strand-break repair and sensitive to PARP inhibition. EMBO Mol Med 2010; 2:130-42. [PMID: 20373286 PMCID: PMC3377280 DOI: 10.1002/emmm.201000068] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The protein kinase Aurora-A is a major regulator of the cell cycle that orchestrates mitotic entry and is required for the assembly of a functional mitotic spindle. Overexpression of Aurora-A has been strongly linked with oncogenesis and this has led to considerable efforts at therapeutic targeting of the kinase activity of this protein. However, the exact mechanism by which Aurora-A promotes oncogenesis remains unclear. Here, we show that Aurora-A modulates the repair of DNA double-strand breaks (DSBs). Aurora-A expression inhibits RAD51 recruitment to DNA DSBs, decreases DSB repair by homologous recombination and sensitizes cancer cells to PARP inhibition. This impairment of RAD51 function requires inhibition of CHK1 by Polo-like kinase 1 (PLK1). These results identify a novel function of Aurora-A in modulating the response to DNA DSB that likely contributes to carcinogenesis and suggest a novel therapeutic approach to the treatment of cancers overexpressing this protein.
Collapse
Affiliation(s)
- Tony Sourisseau
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK.
| | | | | | | | | | | | | |
Collapse
|
187
|
Bennett SM, Mercer JM, Noor MAF. Slip-sliding away: serial changes and homoplasy in repeat number in the Drosophila yakuba homolog of human cancer susceptibility gene BRCA2. PLoS One 2010; 5:e11006. [PMID: 20543987 PMCID: PMC2882388 DOI: 10.1371/journal.pone.0011006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 05/17/2010] [Indexed: 11/18/2022] Open
Abstract
Several recent studies have examined the function and evolution of a Drosophila homolog to the human breast cancer susceptibility gene BRCA2, named dmbrca2. We previously identified what appeared to be a recent expansion in the RAD51-binding BRC-repeat array in the ancestor of Drosophila yakuba. In this study, we examine patterns of variation and evolution of the dmbrca2 BRC-repeat array within D. yakuba and its close relatives. We develop a model of how unequal crossing over may have produced the expanded form, but we also observe short repeat forms, typical of other species in the D. melanogaster group, segregating within D. yakuba and D. santomea. These short forms do not appear to be identical-by-descent, suggesting that the history of dmbrca2 in the D. melanogaster subgroup has involved repeat unit contractions resulting in homoplasious forms. We conclude that the evolutionary history of dmbrca2 in D. yakuba and perhaps in other Drosophila species may be more complicated than can be inferred from examination of the published single genome sequences per species.
Collapse
Affiliation(s)
- Sarah M. Bennett
- Biology Department, Duke University, Durham, North Carolina, United States of America
| | - John M. Mercer
- Biology Department, Duke University, Durham, North Carolina, United States of America
| | - Mohamed A. F. Noor
- Biology Department, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
188
|
Price M, Monteiro ANA. Fine tuning chemotherapy to match BRCA1 status. Biochem Pharmacol 2010; 80:647-53. [PMID: 20510205 DOI: 10.1016/j.bcp.2010.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 05/12/2010] [Accepted: 05/14/2010] [Indexed: 02/01/2023]
Abstract
Targeted cancer therapies have been primarily directed at inhibiting oncogenes that are overexpressed or constitutively active in tumors. It is thought that as the cell's circuitry gets re-wired by the constitutive activation of some pathways it becomes exquisitely dependent on this activity. Tumor cell death normally results from inhibiting constitutively active pathways. The dependence of tumor cells on the activity of these pathways has been called oncogene addiction. Approaches that aim to exploit loss of function, rather than gain of function changes have also become a powerful addition to our arsenal of cancer therapies. In particular, when tumors acquire mutations that disrupt pathways in the DNA damage response they rely on alternative pathways that can be targeted pharmacologically. Here we review the use of BRCA1 as a marker of response to therapy with a particular focus on the use of Cisplatin and PARP inhibitors. We also explore the use of BRCA1 as a marker of response to microtubule inhibitors and how all these approaches will bring us closer to the goal of personalized medicine in cancer treatment.
Collapse
Affiliation(s)
- Melissa Price
- Risk Assessment, Detection, and Intervention Program, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | |
Collapse
|
189
|
Abstract
Germline mutations in the BRCA1 and BRCA2 genes are characterized by deficient repair of DNA double-strand breaks by homologous recombination. Defective DNA double-strand break repair has been not only implicated as a key contributor to tumorigenesis in mutation carriers but also represents a potential target for therapy. The transcriptional similarities between BRCA1-deficient tumors and sporadic tumors of the basal-like subtype have led to the investigation of homologous recombination repair-directed therapy in triple-negative tumors, which demonstrates overlap with the basal-like subtype. We broaden the scope of this topic by addressing a "repair-defective" rather than "BRCA1-like" phenotype. We discuss structural and functional aspects of key repair proteins including BRCA1, BRCA2, BRCA1 interacting protein C-terminal helicase 1, and partner and localizer of BRCA2 and describe the phenotypic consequences of their loss at the cellular, tissue, and organism level. We review potential mechanisms of repair pathway dysfunction in sporadic tumors and address how the identification of such defects may guide the application of repair-directed therapies.
Collapse
|
190
|
Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 2010; 11:196-207. [PMID: 20177395 DOI: 10.1038/nrm2851] [Citation(s) in RCA: 679] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitotic homologous recombination promotes genome stability through the precise repair of DNA double-strand breaks and other lesions that are encountered during normal cellular metabolism and from exogenous insults. As a result, homologous recombination repair is essential during proliferative stages in development and during somatic cell renewal in adults to protect against cell death and mutagenic outcomes from DNA damage. Mutations in mammalian genes encoding homologous recombination proteins, including BRCA1, BRCA2 and PALB2, are associated with developmental abnormalities and tumorigenesis. Recent advances have provided a clearer understanding of the connections between these proteins and of the key steps of homologous recombination and DNA strand exchange.
Collapse
|
191
|
Pre-clinical and clinical evaluation of PARP inhibitors as tumour-specific radiosensitisers. Cancer Treat Rev 2010; 36:566-75. [PMID: 20409643 DOI: 10.1016/j.ctrv.2010.03.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/08/2010] [Accepted: 03/11/2010] [Indexed: 11/21/2022]
Abstract
Approximately two million fractions of radiotherapy are administered in the UK every year, as part of adjuvant, radical or palliative cancer treatment. For many tumour types, radiotherapy is routinely combined with concomitant chemotherapy as part of adjuvant or radical treatment. In addition, new agents have been developed in recent years and tested in phase 1, 2 and 3 trials concomitantly with radiotherapy or chemoradiotherapy. One such class of drugs, the poly(ADP-ribose) polymerase (PARP) inhibitors, has shown activity in conjunction with radiotherapy in several cancer cell lines. Pre-clinical data suggest that PARP inhibitors may potentiate the effects of radiotherapy in several tumour types, namely lung, colorectal, head and neck, glioma, cervix and prostate cancers. In vitro, PARP inhibitors are radiosensitisers in various cell lines with enhancement ratios of up to 1.7. In vivo, non-toxic doses of PARP inhibitors have been shown to increase radiation-induced growth delay of xenograft tumours in mice. Clinical trials to assess the toxicity and potential benefit of combining radiotherapy with PARP inhibition are now needed.
Collapse
|
192
|
O'Donovan PJ, Livingston DM. BRCA1 and BRCA2: breast/ovarian cancer susceptibility gene products and participants in DNA double-strand break repair. Carcinogenesis 2010; 31:961-7. [PMID: 20400477 DOI: 10.1093/carcin/bgq069] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BRCA1 and BRCA2 are tumor suppressor genes, familial mutations in which account for approximately 5% of breast cancer cases in the USA annually. Germ line mutations in BRCA1 that truncate or inactivate the protein lead to a cumulative risk of breast cancer, by age 70, of up to 80%, whereas the risk of ovarian cancer is 30-40%. For germ line BRCA2 mutations, the breast cancer cumulative risk approaches 50%, whereas for ovarian cancers, it is between 10 and 15%. Both BRCA1 and BRCA2 are involved in maintaining genome integrity at least in part by engaging in DNA repair, cell cycle checkpoint control and even the regulation of key mitotic or cell division steps. Unsurprisingly, the complete loss of function of either protein leads to a dramatic increase in genomic instability. How they function in maintaining genome integrity after the onset of DNA damage will be the focus of this review.
Collapse
Affiliation(s)
- Peter J O'Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | |
Collapse
|
193
|
Sandhu SK, Yap TA, de Bono JS. Poly(ADP-ribose) polymerase inhibitors in cancer treatment: a clinical perspective. Eur J Cancer 2010; 46:9-20. [PMID: 19926276 DOI: 10.1016/j.ejca.2009.10.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/09/2009] [Accepted: 10/15/2009] [Indexed: 12/22/2022]
Abstract
Inbuilt mechanisms of DNA surveillance and repair are integral to the maintenance of genomic stability. Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme that plays a critical role in DNA damage response processes. PARP inhibition has been successfully employed as a novel therapeutic strategy to enhance the cytotoxic effects of DNA-damaging agents. We have shown that PARP inhibition has substantial single agent antitumour activity with a wide therapeutic index in homologous DNA repair-defective tumours such as those arising in BRCA1 and BRCA2 mutation carriers. This is the first successful clinical application of a synthetic lethal approach to targeting cancer. Exploitation of defects in DNA repair pathways through targeted inhibition of salvage repair pathways is an exciting anticancer approach, with potentially broad clinical applicability. Several PARP inhibitors are now in clinical development. This review outlines the biological function and rationale of targeting PARP, details pre-clinical and clinical data and discusses the promises and challenges involved in developing these antitumour agents.
Collapse
Affiliation(s)
- Shahneen K Sandhu
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom
| | | | | |
Collapse
|
194
|
Bennardo N, Gunn A, Cheng A, Hasty P, Stark JM. Limiting the persistence of a chromosome break diminishes its mutagenic potential. PLoS Genet 2009; 5:e1000683. [PMID: 19834534 PMCID: PMC2752804 DOI: 10.1371/journal.pgen.1000683] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 09/15/2009] [Indexed: 01/05/2023] Open
Abstract
To characterize the repair pathways of chromosome double-strand breaks (DSBs), one approach involves monitoring the repair of site-specific DSBs generated by rare-cutting endonucleases, such as I-SceI. Using this method, we first describe the roles of Ercc1, Msh2, Nbs1, Xrcc4, and Brca1 in a set of distinct repair events. Subsequently, we considered that the outcome of such assays could be influenced by the persistent nature of I-SceI-induced DSBs, in that end-joining (EJ) products that restore the I-SceI site are prone to repeated cutting. To address this aspect of repair, we modified I-SceI-induced DSBs by co-expressing I-SceI with a non-processive 3′ exonuclease, Trex2, which we predicted would cause partial degradation of I-SceI 3′ overhangs. We find that Trex2 expression facilitates the formation of I-SceI-resistant EJ products, which reduces the potential for repeated cutting by I-SceI and, hence, limits the persistence of I-SceI-induced DSBs. Using this approach, we find that Trex2 expression causes a significant reduction in the frequency of repair pathways that result in substantial deletion mutations: EJ between distal ends of two tandem DSBs, single-strand annealing, and alternative-NHEJ. In contrast, Trex2 expression does not inhibit homology-directed repair. These results indicate that limiting the persistence of a DSB causes a reduction in the frequency of repair pathways that lead to significant genetic loss. Furthermore, we find that individual genetic factors play distinct roles during repair of non-cohesive DSB ends that are generated via co-expression of I-SceI with Trex2. A deleterious lesion in DNA is a break of both strands, or a chromosome double-strand break (DSB). DSBs can arise during normal cellular metabolism, but are also a consequence of many forms of cancer therapy. If DSBs are not repaired prior to cell division, entire segments of a chromosome can be lost. Several pathways ensure that DSBs are repaired, though some pathways are prone to causing mutations and/or chromosomal rearrangements, each of which can contribute to cancer development. In the first part of this study, we describe the roles of individual genetic factors in distinct repair pathways of DSBs generated by the I-SceI endonuclease. From these studies, we find that some factors can function in multiple repair pathways. In the second part of this study, we present a method for partially degrading the cohesive DSB overhangs that are generated by I-SceI, which we find facilitates repair products that are not prone to being re-cut by the endonuclease. As a consequence, we have limited the persistence of such breaks, which we find causes a reduction in repair pathways that lead to significant genetic loss. As well, we use this method to characterize the role of individual genetic factors during the repair of non-cohesive DSB ends.
Collapse
Affiliation(s)
- Nicole Bennardo
- Department of Cancer Biology, Division of Radiation Biology, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | | | | | | | | |
Collapse
|
195
|
Papeo G, Forte B, Orsini P, Perrera C, Posteri H, Scolaro A, Montagnoli A. Poly(ADP-ribose) polymerase inhibition in cancer therapy: are we close to maturity? Expert Opin Ther Pat 2009; 19:1377-400. [DOI: 10.1517/13543770903215883] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
196
|
Hemphill AW, Akkari Y, Newell AH, Schultz RA, Grompe M, North PS, Hickson ID, Jakobs PM, Rennie S, Pauw D, Hejna J, Olson SB, Moses RE. Topo IIIalpha and BLM act within the Fanconi anemia pathway in response to DNA-crosslinking agents. Cytogenet Genome Res 2009; 125:165-75. [PMID: 19738377 DOI: 10.1159/000230001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2009] [Indexed: 12/24/2022] Open
Abstract
The Bloom protein (BLM) and Topoisomerase IIIalpha are found in association with proteins of the Fanconi anemia (FA) pathway, a disorder manifesting increased cellular sensitivity to DNA crosslinking agents. In order to determine if the association reflects a functional interaction for the maintenance of genome stability, we have analyzed the effects of siRNA-mediated depletion of the proteins in human cells. Depletion of Topoisomerase IIIalpha or BLM leads to increased radial formation, as is seen in FA. BLM and Topoisomerase IIIalpha are epistatic to the FA pathway for suppression of radial formation in response to DNA interstrand crosslinks since depletion of either of them in FA cells does not increase radial formation. Depletion of Topoisomerase IIIalpha or BLM also causes an increase in sister chromatid exchanges, as is seen in Bloom syndrome cells. Human Fanconi anemia cells, however, do not demonstrate increased sister chromatid exchanges, separating this response from radial formation. Primary cell lines from mice defective in both Blm and Fancd2 have the same interstrand crosslink-induced genome instability as cells from mice deficient in the Fancd2 protein alone. These observations demonstrate that the association of BLM and Topoisomerase IIIalpha with Fanconi proteins is a functional one, delineating a BLM-Topoisomerase IIIalpha-Fanconi pathway that is critical for suppression of chromosome radial formation.
Collapse
Affiliation(s)
- A W Hemphill
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Deng X, Prakash A, Dhar K, Baia GS, Kolar C, Oakley GG, Borgstahl GEO. Human replication protein A-Rad52-single-stranded DNA complex: stoichiometry and evidence for strand transfer regulation by phosphorylation. Biochemistry 2009; 48:6633-43. [PMID: 19530647 PMCID: PMC2710861 DOI: 10.1021/bi900564k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The eukaryotic single-stranded DNA-binding protein, replication protein A (RPA), is essential in DNA metabolism and is phosphorylated in response to DNA-damaging agents. Rad52 and RPA participate in the repair of double-stranded DNA breaks (DSBs). It is known that human RPA and Rad52 form a complex, but the molecular mass, stoichiometry, and exact role of this complex in DSB repair are unclear. In this study, absolute molecular masses of individual proteins and complexes were measured in solution using analytical size-exclusion chromatography coupled with multiangle light scattering, the protein species present in each purified fraction were verified via sodium dodecyl sulfate−polyacrylamide gel electrophoresis (SDS−PAGE)/Western analyses, and the presence of biotinylated ssDNA in the complexes was verified by chemiluminescence detection. Then, employing UV cross-linking, the protein partner holding the ssDNA was identified. These data show that phosphorylated RPA promoted formation of a complex with monomeric Rad52 and caused the transfer of ssDNA from RPA to Rad52. This suggests that RPA phosphorylation may regulate the first steps of DSB repair and is necessary for the mediator function of Rad52.
Collapse
Affiliation(s)
- Xiaoyi Deng
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, Nebraska 68198-7696, USA
| | | | | | | | | | | | | |
Collapse
|
198
|
Stefansson OA, Jonasson JG, Johannsson OT, Olafsdottir K, Steinarsdottir M, Valgeirsdottir S, Eyfjord JE. Genomic profiling of breast tumours in relation to BRCA abnormalities and phenotypes. Breast Cancer Res 2009; 11:R47. [PMID: 19589159 PMCID: PMC2750106 DOI: 10.1186/bcr2334] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 04/27/2009] [Accepted: 07/09/2009] [Indexed: 11/17/2022] Open
Abstract
Introduction Germline mutations in the BRCA1 and BRCA2 genes account for a considerable fraction of familial predisposition to breast cancer. Somatic mutations in BRCA1 and BRCA2 have not been found and the involvement of these genes in sporadic tumour development therefore remains unclear. Methods The study group consisted of 67 primary breast tumours with and without BRCA1 or BRCA2 abnormalities. Genomic alterations were profiled by high-resolution (~7 kbp) comparative genome hybridisation (CGH) microarrays. Tumour phenotypes were analysed by immunohistochemistry on tissue microarrays using selected biomarkers (ER, PR, HER-2, EGFR, CK5/6, CK8, CK18). Results Classification of genomic profiles through cluster analysis revealed four subgroups, three of which displayed high genomic instability indices (GII). Two of these GII-high subgroups were enriched with either BRCA1- or BRCA2-related tumours whereas the third was not BRCA-related. The BRCA1-related subgroup mostly displayed non-luminal phenotypes, of which basal-like were most prominent, whereas the other two genomic instability subgroups BRCA2- and GII-high-III (non-BRCA), were almost entirely of luminal phenotype. Analysis of genome architecture patterns revealed similarities between the BRCA1- and BRCA2 subgroups, with long deletions being prominent. This contrasts with the third instability subgroup, not BRCA-related, where small gains were more prominent. Conclusions The results suggest that BRCA1- and BRCA2-related tumours develop largely through distinct genetic pathways in terms of the regions altered while also displaying distinct phenotypes. Importantly, we show that the development of a subset of sporadic tumours is similar to that of either familial BRCA1- or BRCA2 tumours. Despite their differences, we observed clear similarities between the BRCA1- and BRCA2-related subgroups reflected in the type of genomic alterations acquired with deletions of long DNA segments being prominent. This suggests similarities in the mechanisms promoting genomic instability for BRCA1- and BRCA2-associated tumours, possibly relating to deficiency in DNA repair through homologous recombination. Indeed, this feature characterized both familial and sporadic tumours displaying BRCA1- or BRCA2-like spectrums of genomic alterations. The importance of these findings lies in the potential benefit from targeted therapy, through the use of agents leading to DNA double-strand breaks such as PARP inhibitors (olaparib) and cisplatin, for a much larger group of patients than the few BRCA1 and BRCA2 germline mutation carriers.
Collapse
|
199
|
Zhang F, Fan Q, Ren K, Andreassen PR. PALB2 functionally connects the breast cancer susceptibility proteins BRCA1 and BRCA2. Mol Cancer Res 2009; 7:1110-8. [PMID: 19584259 DOI: 10.1158/1541-7786.mcr-09-0123] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BRCA1 and BRCA2 are prominently associated with inherited breast and ovarian cancer. The encoded proteins function in DNA damage responses, but no functional link between BRCA1 and BRCA2 has been established. We show here that PALB2 physically and functionally connects BRCA1 and BRCA2 into a DNA damage response network that also includes the RAD51 recombinase. PALB2 directly binds BRCA1, as determined with bacterially expressed fragments of each protein. Furthermore, PALB2 independently interacts with BRCA1 and BRCA2 through its NH2 and COOH termini, respectively. Critically, two point mutants (L21P and L24P) of the PALB2 coiled-coil domain or an NH2-terminal deletion (Delta1-70) disrupt its interaction with BRCA1. We have reconstituted PALB2-deficient cells with PALB2Delta1-70, PALB2-L21P, or PALB2-L24P, or with COOH-terminally truncated PALB2 that is deficient for interaction with BRCA2. Using extracts from these cells, we find that PALB2 mediates the physical interaction of BRCA2 with a COOH-terminal fragment of BRCA1. Analysis of the assembly of foci in these cells by BRCA1, PALB2, BRCA2, and RAD51 suggests that BRCA1 recruits PALB2, which in turn organizes BRCA2 and RAD51. Resistance to mitomycin C and the repair of DNA double-strand breaks by homologous recombination require the interaction of PALB2 with both BRCA1 and BRCA2. These results suggest that BRCA1 and BRCA2 cooperate in DNA damage responses in a PALB2-dependent manner, and have important implications for the genesis of breast/ovarian cancer and for chemotherapy with DNA interstrand cross-linking agents.
Collapse
Affiliation(s)
- Fan Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
200
|
Peralta-Leal A, Rodríguez-Vargas JM, Aguilar-Quesada R, Rodríguez MI, Linares JL, de Almodóvar MR, Oliver FJ. PARP inhibitors: new partners in the therapy of cancer and inflammatory diseases. Free Radic Biol Med 2009; 47:13-26. [PMID: 19362586 DOI: 10.1016/j.freeradbiomed.2009.04.008] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 12/21/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are defined as cell signaling enzymes that catalyze the transfer of ADP-ribose units from NAD(+) to a number of acceptor proteins. PARP-1, the best characterized member of the PARP family, which currently comprises 18 members, is an abundant nuclear enzyme implicated in cellular responses to DNA injury provoked by genotoxic stress. PARP is involved in DNA repair and transcriptional regulation and is now recognized as a key regulator of cell survival and cell death as well as a master component of a number of transcription factors involved in tumor development and inflammation. PARP-1 is essential to the repair of DNA single-strand breaks via the base excision repair pathway. Inhibitors of PARP-1 have been shown to enhance the cytotoxic effects of ionizing radiation and DNA-damaging chemotherapy agents, such as the methylating agents and topoisomerase I inhibitors. There are currently at least five PARP inhibitors in clinical trial development. Recent in vitro and in vivo evidence suggests that PARP inhibitors could be used not only as chemo/radiotherapy sensitizers, but also as single agents to selectively kill cancers defective in DNA repair, specifically cancers with mutations in the breast cancer-associated genes (BRCA1 and BRCA2). PARP becomes activated in response to oxidative DNA damage and depletes cellular energy pools, thus leading to cellular dysfunction in various tissues. The activation of PARP may also induce various cell death processes and promotes an inflammatory response associated with multiple organ failure. Inhibition of PARP activity is protective in a wide range of inflammatory and ischemia-reperfusion-associated diseases, including cardiovascular diseases, diabetes, rheumatoid arthritis, endotoxic shock, and stroke. The aim of this review is to overview the emerging data in the literature showing the role of PARP in the pathogenesis of cancer and inflammatory diseases and unravel the solid body of literature that supports the view that PARP is an important target for therapeutic intervention in critical illness.
Collapse
Affiliation(s)
- Andreína Peralta-Leal
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Cientificas (CSIC), Granada, Spain
| | | | | | | | | | | | | |
Collapse
|