151
|
Xu YZ, Heravi M, Thuraisingam T, Di Marco S, Muanza T, Radzioch D. Brg-1 mediates the constitutive and fenretinide-induced expression of SPARC in mammary carcinoma cells via its interaction with transcription factor Sp1. Mol Cancer 2010; 9:210. [PMID: 20687958 PMCID: PMC2924311 DOI: 10.1186/1476-4598-9-210] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 08/05/2010] [Indexed: 02/08/2023] Open
Abstract
Background Secreted protein, acidic and rich in cysteine (SPARC) is a matricellular protein that mediates cell-matrix interactions. It has been shown, depending on the type of cancer, to possess either pro- or anti-tumorigenic properties. The transcriptional regulation of the SPARC gene expression has not been fully elucidated and the effects of anti-cancer drugs on this process have not been explored. Results In the present study, we demonstrated that chromatin remodeling factor Brg-1 is recruited to the proximal SPARC promoter region (-130/-56) through an interaction with transcription factor Sp1. We identified Brg-1 as a critical regulator for the constitutive expression levels of SPARC mRNA and protein in mammary carcinoma cell lines and for SPARC secretion into culture media. Furthermore, we found that Brg-1 cooperates with Sp1 to enhance SPARC promoter activity. Interestingly, fenretinide [N-4(hydroxyphenyl) retinamide, 4-HPR], a synthetic retinoid with anti-cancer properties, was found to up-regulate the transcription, expression and secretion of SPARC via induction of the Brg-1 in a dose-dependent manner. Finally, our results demonstrated that fenretinide-induced expression of SPARC contributes significantly to a decreased invasion of mammary carcinoma cells. Conclusions Overall, our results reveal a novel cooperative role of Brg-1 and Sp1 in mediating the constitutive and fenretinide-induced expression of SPARC, and provide new insights for the understanding of the anti-cancer effects of fenretinide.
Collapse
Affiliation(s)
- Yong Zhong Xu
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
152
|
Niehrs C, Shen J. Regulation of Lrp6 phosphorylation. Cell Mol Life Sci 2010; 67:2551-62. [PMID: 20229235 PMCID: PMC11115861 DOI: 10.1007/s00018-010-0329-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/08/2010] [Accepted: 02/19/2010] [Indexed: 12/14/2022]
Abstract
The Wnt/beta-catenin signaling pathway plays important roles in embryonic development and tissue homeostasis, and is implicated in human disease. Wnts transduce signals via transmembrane receptors of the Frizzled (Fzd/Fz) family and the low density lipoprotein receptor-related protein 5/6 (Lrp5/6). A key mechanism in their signal transduction is that Wnts induce Lrp6 signalosomes, which become phosphorylated at multiple conserved sites, notably at PPSPXS motifs. Lrp6 phosphorylation is crucial to beta-catenin stabilization and pathway activation by promoting Axin and Gsk3 recruitment to phosphorylated sites. Here, we summarize how proline-directed kinases (Gsk3, PKA, Pftk1, Grk5/6) and non-proline-directed kinases (CK1 family) act upon Lrp6, how the phosphorylation is regulated by ligand binding and mitosis, and how Lrp6 phosphorylation leads to beta-catenin stabilization.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 581, Heidelberg, Germany.
| | | |
Collapse
|
153
|
Song H, Goetze S, Bischof J, Spichiger-Haeusermann C, Kuster M, Brunner E, Basler K. Coop functions as a corepressor of Pangolin and antagonizes Wingless signaling. Genes Dev 2010; 24:881-6. [PMID: 20439429 DOI: 10.1101/gad.561310] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wingless (Wg) signaling regulates expression of its target genes via Pangolin and Armadillo, and their interacting cofactors. In the absence of Wg, Pangolin mediates transcriptional repression. In the presence of Wg, Pangolin, Armadillo, and a cohort of coactivators mediate transcriptional activation. Here we uncover Coop (corepressor of Pan) as a Pangolin-interacting protein. Coop and Pangolin form a complex on DNA containing a Pangolin/TCF-binding motif. Overexpression of Coop specifically represses Wg target genes, while loss of Coop function causes derepression. Finally, we show that Coop antagonizes the binding of Armadillo to Pangolin, providing a mechanism for Coop-mediated repression of Wg target gene transcription.
Collapse
Affiliation(s)
- Haiyun Song
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
154
|
Notani D, Gottimukkala KP, Jayani RS, Limaye AS, Damle MV, Mehta S, Purbey PK, Joseph J, Galande S. Global regulator SATB1 recruits beta-catenin and regulates T(H)2 differentiation in Wnt-dependent manner. PLoS Biol 2010; 8:e1000296. [PMID: 20126258 PMCID: PMC2811152 DOI: 10.1371/journal.pbio.1000296] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 12/16/2009] [Indexed: 12/24/2022] Open
Abstract
Chromatin organizer SATB1 and Wnt transducer β-catenin form a complex and regulate expression of GATA3 and TH2 cytokines in Wnt-dependent manner and orchestrate TH2 lineage commitment. In vertebrates, the conserved Wnt signalling cascade promotes the stabilization and nuclear accumulation of β-catenin, which then associates with the lymphoid enhancer factor/T cell factor proteins (LEF/TCFs) to activate target genes. Wnt/β -catenin signalling is essential for T cell development and differentiation. Here we show that special AT-rich binding protein 1 (SATB1), the T lineage-enriched chromatin organizer and global regulator, interacts with β-catenin and recruits it to SATB1's genomic binding sites. Gene expression profiling revealed that the genes repressed by SATB1 are upregulated upon Wnt signalling. Competition between SATB1 and TCF affects the transcription of TCF-regulated genes upon β-catenin signalling. GATA-3 is a T helper type 2 (TH2) specific transcription factor that regulates production of TH2 cytokines and functions as TH2 lineage determinant. SATB1 positively regulated GATA-3 and siRNA-mediated knockdown of SATB1 downregulated GATA-3 expression in differentiating human CD4+ T cells, suggesting that SATB1 influences TH2 lineage commitment by reprogramming gene expression. In the presence of Dickkopf 1 (Dkk1), an inhibitor of Wnt signalling, GATA-3 is downregulated and the expression of signature TH2 cytokines such as IL-4, IL-10, and IL-13 is reduced, indicating that Wnt signalling is essential for TH2 differentiation. Knockdown of β-catenin also produced similar results, confirming the role of Wnt/β-catenin signalling in TH2 differentiation. Furthermore, chromatin immunoprecipitation analysis revealed that SATB1 recruits β-catenin and p300 acetyltransferase on GATA-3 promoter in differentiating TH2 cells in a Wnt-dependent manner. SATB1 coordinates TH2 lineage commitment by reprogramming gene expression. The SATB1:β-catenin complex activates a number of SATB1 regulated genes, and hence this study has potential to find novel Wnt responsive genes. These results demonstrate that SATB1 orchestrates TH2 lineage commitment by mediating Wnt/β-catenin signalling. This report identifies a new global transcription factor involved in β-catenin signalling that may play a major role in dictating the functional outcomes of this signalling pathway during development, differentiation, and tumorigenesis. In vertebrates the canonical Wnt signalling culminates in β-catenin moving into the nucleus where it activates transcription of target genes. Wnt/β-catenin signalling is essential for the thymic maturation and differentiation of naïve T cells. Here we show that SATB1, a T cell lineage-enriched chromatin organizer and global regulator, binds to β-catenin and recruits it to SATB1's genomic binding sites so that genes formerly repressed by SATB1 are upregulated by Wnt signalling. Some of the genes known to be regulated by SATB1 (such as genes encoding cytokines and the transcription factor GATA3) are required for differentiation of Th2 cells, an important subset of helper T cells. Specifically we show that siRNA-mediated knockdown of SATB1 downregulated GATA-3 expression in differentiating human CD4+ T cells. Inhibiting Wnt signalling led to downregulation of GATA-3 and of signature TH2 cytokines such as IL-4, IL-10, and IL-13. Knockdown of β-catenin also produced similar results, thus together these data confirm the role of Wnt/β-catenin signalling in TH2 differentiation. Our data demonstrate that SATB1 orchestrates TH2 lineage commitment by modulating Wnt/β-catenin signalling.
Collapse
Affiliation(s)
- Dimple Notani
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | | | | | | | | | - Sameet Mehta
- National Centre for Cell Science, Ganeshkhind, Pune, India
- Centre for Modelling and Simulation, University of Pune, Ganeshkhind, Pune, India
| | | | - Jomon Joseph
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Sanjeev Galande
- National Centre for Cell Science, Ganeshkhind, Pune, India
- * E-mail:
| |
Collapse
|
155
|
Vachtenheim J, Ondrusová L, Borovanský J. SWI/SNF chromatin remodeling complex is critical for the expression of microphthalmia-associated transcription factor in melanoma cells. Biochem Biophys Res Commun 2010; 392:454-9. [PMID: 20083088 DOI: 10.1016/j.bbrc.2010.01.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 11/28/2022]
Abstract
The microphthalmia-associated transcription factor (MITF) is required for melanocyte development, maintenance of the melanocyte-specific transcription, and survival of melanoma cells. MITF positively regulates expression of more than 25 genes in pigment cells. Recently, it has been demonstrated that expression of several MITF downstream targets requires the SWI/SNF chromatin remodeling complex, which contains one of the two catalytic subunits, Brm or Brg1. Here we show that the expression of MITF itself critically requires active SWI/SNF. In several Brm/Brg1-expressing melanoma cell lines, knockdown of Brg1 severely compromised MITF expression with a concomitant downregulation of MITF targets and decreased cell proliferation. Although Brm was able to substitute for Brg1 in maintaining MITF expression and melanoma cell proliferation, sequential knockdown of both Brm and Brg1 in 501mel cells abolished proliferation. In Brg1-null SK-MEL-5 melanoma cells, depletion of Brm alone was sufficient to abrogate MITF expression and cell proliferation. Chromatin immunoprecipitation confirmed the binding of Brg1 or Brm to the promoter of MITF. Together these results demonstrate the essential role of SWI/SNF for expression of MITF and suggest that SWI/SNF may be a promissing target in melanoma therapy.
Collapse
Affiliation(s)
- Jiri Vachtenheim
- Laboratory of Molecular Biology, University Hospital, Charles University, Prague, Czech Republic.
| | | | | |
Collapse
|
156
|
The chromatin-remodeling protein Osa interacts with CyclinE in Drosophila eye imaginal discs. Genetics 2009; 184:731-44. [PMID: 20008573 DOI: 10.1534/genetics.109.109967] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coordinating cell proliferation and differentiation is essential during organogenesis. In Drosophila, the photoreceptor, pigment, and support cells of the eye are specified in an orchestrated wave as the morphogenetic furrow passes across the eye imaginal disc. Cells anterior of the furrow are not yet differentiated and remain mitotically active, while most cells in the furrow arrest at G(1) and adopt specific ommatidial fates. We used microarray expression analysis to monitor changes in transcription at the furrow and identified genes whose expression correlates with either proliferation or fate specification. Some of these are members of the Polycomb and Trithorax families that encode epigenetic regulators. Osa is one; it associates with components of the Drosophila SWI/SNF chromatin-remodeling complex. Our studies of this Trithorax factor in eye development implicate Osa as a regulator of the cell cycle: Osa overexpression caused a small-eye phenotype, a reduced number of M- and S-phase cells in eye imaginal discs, and a delay in morphogenetic furrow progression. In addition, we present evidence that Osa interacts genetically and biochemically with CyclinE. Our results suggest a dual mechanism of Osa function in transcriptional regulation and cell cycle control.
Collapse
|
157
|
Bommer GT, Feng Y, Iura A, Giordano TJ, Kuick R, Kadikoy H, Sikorski D, Wu R, Cho KR, Fearon ER. IRS1 regulation by Wnt/beta-catenin signaling and varied contribution of IRS1 to the neoplastic phenotype. J Biol Chem 2009; 285:1928-38. [PMID: 19843521 PMCID: PMC2804351 DOI: 10.1074/jbc.m109.060319] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dysregulation of β-catenin levels and localization and constitutive activation of β-catenin/TCF (T cell factor)-regulated gene expression occur in many cancers, including the majority of colorectal carcinomas and a subset of ovarian endometrioid adenocarcinomas. Based on the results of microarray-based gene expression profiling we found the insulin receptor substrate 1 (IRS1) gene as one of the most highly up-regulated genes upon ectopic expression of a mutant, constitutively active form of β-catenin in the rat kidney epithelial cell line RK3E. We demonstrate expression of IRS1 can be directly activated by β-catenin, likely in part via β-catenin/TCF binding to TCF consensus binding elements located in the first intron and downstream of the IRS1 transcriptional start site. Consistent with the proposal that β-catenin is an important regulator of IRS1 expression in vivo, we observed that IRS1 is highly expressed in many cancers with constitutive stabilization of β-catenin, such as colorectal carcinomas and ovarian endometrioid adenocarcinomas. Using a short hairpin RNA approach to abrogate IRS1 expression and function, we found that IRS1 function is required for efficient de novo neoplastic transformation by β-catenin in RK3E cells. Our findings add to the growing body of data implicating IRS1 as a critical signaling component in cancer development and progression.
Collapse
Affiliation(s)
- Guido T Bommer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Yun K, So JS, Jash A, Im SH. Lymphoid enhancer binding factor 1 regulates transcription through gene looping. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:5129-5137. [PMID: 19783677 DOI: 10.4049/jimmunol.0802744] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Efficient transcription depends upon efficient physical and functional interactions between transcriptosome complexes and DNA. We have previously shown that IL-1beta-induced lymphoid enhancer binding factor 1 (Lef1) regulates the transcription of its target genes COX2 and MMP13 in mouse chondrocytes by binding to the Lef1 binding sites located in the 3' region. In this study, we investigated how the 3' region-bound Lef1 regulates expression of target genes. IL-1beta stimulation induced gene looping in COX2 and MMP13 genomic loci, which is mediated by the physical interaction of Lef1 with its binding partners, including beta-catenin, AP-1, and NF-kappaB. As shown by chromosome conformation capture (3C) assay, the 5' and 3' genomic regions of these genes were juxtaposed in an IL-1beta-stimulation dependent manner. Lef1 played a pivotal role in this gene looping; Lef1 knockdown decreased the incidence of gene looping, while Lef1 overexpression induced it. Physical interactions between the 3' region-bound Lef1 and promoter-bound transcription factors AP-1 or NF-kappaB in COX2 and MMP13, respectively, were increased upon stimulation, leading to synergistic up-regulation of gene expression. Knockdown of RelA or c-Jun decreased the formation of gene loop and down-regulated cyclooxygenase 2 (COX2) or matrix metalloproteinase 13 (MMP13) transcription levels. However, overexpression of RelA or c-Jun along with Lef1 increased the looping and their expression levels. Our results indicate a novel function of Lef1, as a mediator of gene looping between 5' and 3' regions. Gene looping may serve to delineate the transcription unit in the inducible gene transcription of mammalian cells.
Collapse
Affiliation(s)
- Kangsun Yun
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | | | | | | |
Collapse
|
159
|
The kinase TNIK is an essential activator of Wnt target genes. EMBO J 2009; 28:3329-40. [PMID: 19816403 DOI: 10.1038/emboj.2009.285] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 09/03/2009] [Indexed: 01/18/2023] Open
Abstract
Wnt signalling maintains the undifferentiated state of intestinal crypt/progenitor cells through the TCF4/beta-catenin-activating transcriptional complex. In colorectal cancer, activating mutations in Wnt pathway components lead to inappropriate activation of the TCF4/beta-catenin transcriptional programme and tumourigenesis. The mechanisms by which TCF4/beta-catenin activate key target genes are not well understood. Using a proteomics approach, we identified Tnik, a member of the germinal centre kinase family as a Tcf4 interactor in the proliferative crypts of mouse small intestine. Tnik is recruited to promoters of Wnt target genes in mouse crypts and in Ls174T colorectal cancer cells in a beta-catenin-dependent manner. Depletion of TNIK and expression of TNIK kinase mutants abrogated TCF-LEF transcription, highlighting the essential function of the kinase activity in Wnt target gene activation. In vitro binding and kinase assays show that TNIK directly binds both TCF4 and beta-catenin and phosphorylates TCF4. siRNA depletion of TNIK followed by expression array analysis showed that TNIK is an essential, specific activator of Wnt transcriptional programme. This kinase may present an attractive candidate for drug targeting in colorectal cancer.
Collapse
|
160
|
Kovalovsky D, Yu Y, Dose M, Emmanouilidou A, Konstantinou T, Germar K, Aghajani K, Guo Z, Mandal M, Gounari F. Beta-catenin/Tcf determines the outcome of thymic selection in response to alphabetaTCR signaling. THE JOURNAL OF IMMUNOLOGY 2009; 183:3873-84. [PMID: 19717519 DOI: 10.4049/jimmunol.0901369] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thymic maturation of T cells depends on the intracellular interpretation of alphabetaTCR signals by processes that are poorly understood. In this study, we report that beta-catenin/Tcf signaling was activated in double-positive thymocytes in response to alphabetaTCR engagement and impacted thymocyte selection. TCR engagement combined with activation of beta-catenin signaled thymocyte deletion, whereas Tcf-1 deficiency rescued from negative selection. Survival/apoptotis mediators including Bim, Bcl-2, and Bcl-x(L) were alternatively influenced by stabilization of beta-catenin or ablation of Tcf-1, and Bim-mediated beta-catenin induced thymocyte deletion. TCR activation in double-positive cells with stabilized beta-catenin triggered signaling associated with negative selection, including sustained overactivation of Lat and Jnk and a transient activation of Erk. These observations are consistent with beta-catenin/Tcf signaling acting as a switch that determines the outcome of thymic selection downstream the alphabetaTCR cascade.
Collapse
Affiliation(s)
- Damian Kovalovsky
- Molecular Oncology Research Institute, Tufts New England Medical Center, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Song H, Spichiger-Haeusermann C, Basler K. The ISWI-containing NURF complex regulates the output of the canonical Wingless pathway. EMBO Rep 2009; 10:1140-6. [PMID: 19713963 DOI: 10.1038/embor.2009.157] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 05/22/2009] [Accepted: 06/15/2009] [Indexed: 11/09/2022] Open
Abstract
Wingless (Wg) signalling regulates the expression of its target genes through Pangolin, Armadillo and their interacting co-factors. In a genetic screen for Wg signalling components, we found that imitation switch (ISWI), a chromatin-remodelling ATPase, had a positive role in transducing the canonical Wg signal, promoting the expression of the Wg target senseless. ISWI is found in several chromatin-remodelling complexes, including nucleosome remodelling factor (NURF). The effect of interfering with the function of other components of the NURF complex in vivo mimics that of ISWI. The NURF complex is also required for the efficient expression of other Wg target genes. Armadillo interacts directly with the NURF complex in vitro and recruits it to Wg targets in cultured cells. Together, our results suggest that the ISWI-containing NURF complex functions as a co-activator of Armadillo to promote Wg-mediated transcription.
Collapse
Affiliation(s)
- Haiyun Song
- Institute of Molecular Biology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
162
|
The transcriptional activity of Pygopus is enhanced by its interaction with cAMP-response-element-binding protein (CREB)-binding protein. Biochem J 2009; 422:493-501. [PMID: 19555349 DOI: 10.1042/bj20090134] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pygopus is a core component of the beta-catenin/TCF (T-cell factor) transcriptional activation complex required for the expression of canonical Wnt target genes. Recent evidence suggests that Pygopus could interpret histone methylation associated with target genes and it was shown to be required for histone acetylation. The involvement of a specific acetyltransferase, however, was not determined. In this report, we demonstrate that Pygopus can interact with the HAT (histone acetyltransferase) CBP [CREB (cAMP-responsive-element-binding protein)-binding protein]. The interaction is via the NHD (N-terminal homology domain) of Pygopus, which binds to two regions in the vicinity of the HAT domain of CBP. Transfected and endogenous hPygo2 (human Pygopus2) and CBP proteins co-immunoprecipitate in HEK-293 (human embryonic kidney 293) cells and both proteins co-localize in SW480 colorectal cancer cells. The interaction with CBP also enhances both DNA-tethered and TCF/LEF1 (lymphoid enhancing factor 1)-dependent transcriptional activity of Pygopus. Furthermore, immunoprecipitated Pygopus protein complexes displayed CBP-dependent histone acetyltransferase activity. Our data support a model in which the NHD region of Pygopus is required to augment TCF/beta-catenin-mediated transcriptional activation by a mechanism that includes both transcriptional activation and histone acetylation resulting from the recruitment of the CBP histone acetyltransferase.
Collapse
|
163
|
|
164
|
Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 2009; 460:66-72. [PMID: 19571879 DOI: 10.1038/nature08137] [Citation(s) in RCA: 537] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 05/13/2009] [Indexed: 12/18/2022]
Abstract
Stem cells are controlled, in part, by genetic pathways frequently dysregulated during human tumorigenesis. Either stimulation of Wnt/beta-catenin signalling or overexpression of telomerase is sufficient to activate quiescent epidermal stem cells in vivo, although the mechanisms by which telomerase exerts these effects are not understood. Here we show that telomerase directly modulates Wnt/beta-catenin signalling by serving as a cofactor in a beta-catenin transcriptional complex. The telomerase protein component TERT (telomerase reverse transcriptase) interacts with BRG1 (also called SMARCA4), a SWI/SNF-related chromatin remodelling protein, and activates Wnt-dependent reporters in cultured cells and in vivo. TERT serves an essential role in formation of the anterior-posterior axis in Xenopus laevis embryos, and this defect in Wnt signalling manifests as homeotic transformations in the vertebrae of Tert(-/-) mice. Chromatin immunoprecipitation of the endogenous TERT protein from mouse gastrointestinal tract shows that TERT physically occupies gene promoters of Wnt-dependent genes. These data reveal an unanticipated role for telomerase as a transcriptional modulator of the Wnt/beta-catenin signalling pathway.
Collapse
|
165
|
Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 2009; 28:151-66. [PMID: 19153669 DOI: 10.1007/s10555-008-9179-y] [Citation(s) in RCA: 622] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The embryonic program 'epithelial-mesenchymal transition' (EMT) is activated during tumor invasion in disseminating cancer cells. Characteristic to these cells is a loss of E-cadherin expression, which can be mediated by EMT-inducing transcriptional repressors, e.g. ZEB1. Consequences of a loss of E-cadherin are an impairment of cell-cell adhesion, which allows detachment of cells, and nuclear localization of beta-catenin. In addition to an accumulation of cancer stem cells, nuclear beta-catenin induces a gene expression pattern favoring tumor invasion, and mounting evidence indicates multiple reciprocal interactions of E-cadherin and beta-catenin with EMT-inducing transcriptional repressors to stabilize an invasive mesenchymal phenotype of epithelial tumor cells.
Collapse
Affiliation(s)
- Otto Schmalhofer
- Department of Visceral Surgery, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | | | | |
Collapse
|
166
|
Railo A, Pajunen A, Itäranta P, Naillat F, Vuoristo J, Kilpeläinen P, Vainio S. Genomic response to Wnt signalling is highly context-dependent--evidence from DNA microarray and chromatin immunoprecipitation screens of Wnt/TCF targets. Exp Cell Res 2009; 315:2690-704. [PMID: 19563800 DOI: 10.1016/j.yexcr.2009.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 05/15/2009] [Accepted: 06/22/2009] [Indexed: 11/27/2022]
Abstract
Wnt proteins are important regulators of embryonic development, and dysregulated Wnt signalling is involved in the oncogenesis of several human cancers. Our knowledge of the downstream target genes is limited, however. We used a chromatin immunoprecipitation-based assay to isolate and characterize the actual gene segments through which Wnt-activatable transcription factors, TCFs, regulate transcription and an Affymetrix microarray analysis to study the global transcriptional response to the Wnt3a ligand. The anti-beta-catenin immunoprecipitation of DNA-protein complexes from mouse NIH3T3 fibroblasts expressing a fusion protein of beta-catenin and TCF7 resulted in the identification of 92 genes as putative TCF targets. GeneChip assays of gene expression performed on NIH3T3 cells and the rat pheochromocytoma cell line PC12 revealed 355 genes in NIH3T3 and 129 genes in the PC12 cells with marked changes in expression after Wnt3a stimulus. Only 2 Wnt-regulated genes were shared by both cell lines. Surprisingly, Disabled-2 was the only gene identified by the chromatin immunoprecipitation approach that displayed a marked change in expression in the GeneChip assay. Taken together, our approaches give an insight into the complex context-dependent nature of Wnt pathway transcriptional responses and identify Disabled-2 as a potential new direct target for Wnt signalling.
Collapse
Affiliation(s)
- Antti Railo
- Oulu Centre for Cell Matrix Research, Biocenter Oulu, Laboratory of Developmental Biology and Department of Medical Biochemistry and Molecular Biology, FIN-90014, University of Oulu, P. O. Box 5000, Finland
| | | | | | | | | | | | | |
Collapse
|
167
|
Ou CY, Kim JH, Yang CK, Stallcup MR. Requirement of cell cycle and apoptosis regulator 1 for target gene activation by Wnt and beta-catenin and for anchorage-independent growth of human colon carcinoma cells. J Biol Chem 2009; 284:20629-37. [PMID: 19520846 DOI: 10.1074/jbc.m109.014332] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aberrant Wnt signaling promotes oncogenesis by increasing cellular levels of beta-catenin, which associates with DNA-bound transcription factors and activates Wnt target genes. However, the molecular mechanism by which beta-catenin mediates gene expression is still poorly understood. Here, we show that cell cycle and apoptosis regulator 1 (CCAR1), which was recently shown to function as a transcriptional coactivator for nuclear receptors, also interacts with beta-catenin and enhances the ability of beta-catenin to activate expression of transiently transfected reporter genes. Furthermore, association of CCAR1 with the promoter of an endogenous Wnt/beta-catenin target gene in a colon cancer cell line depends on the presence of beta-catenin. Depletion of CCAR1 inhibits expression of several Wnt/beta-catenin target genes and suppresses anchorage-independent growth of the colon cancer cell line. Thus, CCAR1 is a novel component of Wnt/beta-catenin signaling that plays an important role in transcriptional regulation by beta-catenin and that, therefore, may represent a novel target for therapeutic intervention in cancers involving aberrantly activated Wnt/beta-catenin signaling.
Collapse
Affiliation(s)
- Chen-Yin Ou
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
168
|
Arce L, Pate KT, Waterman ML. Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression. BMC Cancer 2009; 9:159. [PMID: 19460168 PMCID: PMC2701438 DOI: 10.1186/1471-2407-9-159] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 05/21/2009] [Indexed: 11/28/2022] Open
Abstract
Background Drosophila Groucho and its human Transducin-like-Enhancer of Split orthologs (TLEs) function as transcription co-repressors within the context of Wnt signaling, a pathway with strong links to cancer. The current model for how Groucho/TLE's modify Wnt signaling is by direct competition with β-catenin for LEF/TCF binding. The molecular events involved in this competitive interaction are not defined and the actions of Groucho/TLEs within the context of Wnt-linked cancer are unknown. Methods We used in vitro protein interaction assays with the LEF/TCF family member LEF-1, and in vivo assays with Wnt reporter plasmids to define Groucho/TLE interaction and repressor function. Results Mapping studies reveal that Groucho/TLE binds two regions in LEF-1. The primary site of recognition is a 20 amino acid region in the Context Dependent Regulatory domain. An auxiliary site is in the High Mobility Group DNA binding domain. Mutation of an eight amino acid sequence within the primary region (RFSHHMIP) results in a loss of Groucho action in a transient reporter assay. Drosophila Groucho, human TLE-1, and a truncated human TLE isoform Amino-enhancer-of-split (AES), work equivalently to repress LEF-1•β-catenin transcription in transient reporter assays, and these actions are sensitive to the HDAC inhibitor Trichostatin A. A survey of Groucho/TLE action in a panel of six colon cancer cell lines with elevated β-catenin shows that Groucho is not able to repress transcription in a subset of these cell lines. Conclusion Our data shows that Groucho/TLE repression requires two sites of interaction in LEF-1 and that a central, conserved amino acid sequence within the primary region (F S/T/P/xx y I/L/V) is critical. Our data also reveals that AES opposes LEF-1 transcription activation and that both Groucho and AES repression require histone deacetylase activity suggesting multiple steps in Groucho competition with β-catenin. The variable ability of Groucho/TLE to oppose Wnt signaling in colon cancer cells suggests there may be defects in one or more of these steps.
Collapse
Affiliation(s)
- Laura Arce
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA 92697-4025, USA.
| | | | | |
Collapse
|
169
|
Abstract
The canonical Wnt pathway has gathered much attention in recent years owing to its fundamental contribution to metazoan development, tissue homeostasis and human malignancies. Wnt target gene transcription is regulated by nuclear beta-catenin, and genetic assays have revealed various collaborating protein cofactors. Their daunting number and diverse nature, however, make it difficult to arrange an orderly picture of the nuclear Wnt transduction events. Yet, these findings emphasize that beta-catenin-mediated transcription affects chromatin. How does beta-catenin cope with chromatin regulation to turn on Wnt target genes?
Collapse
|
170
|
Abstract
Although pituitary tumors are mostly benign, they share certain molecular events with more malignant neoplasia, although their precise pathogenesis is far from established. The acquisition of new functional characteristics during their evolution suggests a multistep process that leads to tumor transformation. Mutations in classical tumor suppressor genes or oncogenes are infrequently associated with pituitary tumorigenesis. However, alterations in different signaling pathways, especially those involved in pituitary gland development, have emerged as significant features in pituitary adenomas. In particular, changes in inhibitory components of the beta-catenin pathway and its relationship to the cadherin family of peptides may well play an important role in tumorigenesis. We review and assess the role of the beta-catenin signaling pathway in the pathogenesis of pituitary adenomas.
Collapse
Affiliation(s)
- Maria Gueorguiev
- Centre for Endocrinology, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, UK
| | | |
Collapse
|
171
|
Nibbe RK, Markowitz S, Myeroff L, Ewing R, Chance MR. Discovery and scoring of protein interaction subnetworks discriminative of late stage human colon cancer. Mol Cell Proteomics 2008; 8:827-45. [PMID: 19098285 DOI: 10.1074/mcp.m800428-mcp200] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We used a systems biology approach to identify and score protein interaction subnetworks whose activity patterns are discriminative of late stage human colorectal cancer (CRC) versus control in colonic tissue. We conducted two gel-based proteomics experiments to identify significantly changing proteins between normal and late stage tumor tissues obtained from an adequately sized cohort of human patients. A total of 67 proteins identified by these experiments was used to seed a search for protein-protein interaction subnetworks. A scoring scheme based on mutual information, calculated using gene expression data as a proxy for subnetwork activity, was developed to score the targets in the subnetworks. Based on this scoring, the subnetwork was pruned to identify the specific protein combinations that were significantly discriminative of late stage cancer versus control. These combinations could not be discovered using only proteomics data or by merely clustering the gene expression data. We then analyzed the resultant pruned subnetwork for biological relevance to human CRC. A number of the proteins in these smaller subnetworks have been associated with the progression (CSNK2A2, PLK1, and IGFBP3) or metastatic potential (PDGFRB) of CRC. Others have been recently identified as potential markers of CRC (IFITM1), and the role of others is largely unknown in this disease (CCT3, CCT5, CCT7, and GNA12). The functional interactions represented by these signatures provide new experimental hypotheses that merit follow-on validation for biological significance in this disease. Overall the method outlines a quantitative approach for integrating proteomics data, gene expression data, and the wealth of accumulated legacy experimental data to discover significant protein subnetworks specific to disease.
Collapse
Affiliation(s)
- Rod K Nibbe
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | |
Collapse
|
172
|
Identification of primary MAFB target genes in multiple myeloma. Exp Hematol 2008; 37:78-86. [PMID: 19013005 DOI: 10.1016/j.exphem.2008.08.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/25/2008] [Accepted: 08/25/2008] [Indexed: 11/22/2022]
Abstract
OBJECTIVE In multiple myeloma (MM), seven primary recurrent translocations involving the immunoglobulin heavy chain locus have been identified. One of the partner loci maps to 20q12 and involves the MAFB gene resulting in its ectopic expression. We attempt here to identify MAFB target genes in MM. MATERIALS AND METHODS We used an inducible system to upregulate MAFB in MM cell lines not carrying the t(14;20). Microarray expression analysis was used to detect gene expression changes upon MAFB expression. These genes were further evaluated comparatively with gene expression profiles obtained from MM or plasma cell leukemia tumors carrying an activated MAFB gene. Functional implications of these upregulated genes were studied by testing their promoter activity in reporter assays. C-MAF was included comparatively as well. RESULTS The inducible cell lines identified a total of 284 modulated transcripts. After further evaluation using ex vivo data 14 common upregulated genes were found, common to the C-MAF pathway as well. The promoter activity of some of these secondary genes proved a functional relationship with MAFB. In connection with one of these secondary genes (NOTCH2), even tertiary upregulated genes were found. Functional studies indicated that inducible MAFB expression conferred antiapoptotic effects. CONCLUSION We identified 14 upregulated genes, and their downstream consequences in the combined MAFB/C-MAF pathway. Eleven of these genes are novel in the C-MAF pathway as well. These direct target genes may be responsible for the oncogenic transformation of MAF expressing myeloma cells.
Collapse
|
173
|
Major MB, Roberts BS, Berndt JD, Marine S, Anastas J, Chung N, Ferrer M, Yi X, Stoick-Cooper CL, von Haller PD, Kategaya L, Chien A, Angers S, MacCoss M, Cleary MA, Arthur WT, Moon RT. New regulators of Wnt/beta-catenin signaling revealed by integrative molecular screening. Sci Signal 2008; 1:ra12. [PMID: 19001663 DOI: 10.1126/scisignal.2000037] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The identification and characterization of previously unidentified signal transduction molecules has expanded our understanding of biological systems and facilitated the development of mechanism-based therapeutics. We present a highly validated small interfering RNA (siRNA) screen that functionally annotates the human genome for modulation of the Wnt/beta-catenin signal transduction pathway. Merging these functional data with an extensive Wnt/beta-catenin protein interaction network produces an integrated physical and functional map of the pathway. The power of this approach is illustrated by the positioning of siRNA screen hits into discrete physical complexes of proteins. Similarly, this approach allows one to filter discoveries made through protein-protein interaction screens for functional contribution to the phenotype of interest. Using this methodology, we characterized AGGF1 as a nuclear chromatin-associated protein that participates in beta-catenin-mediated transcription in human colon cancer cells.
Collapse
Affiliation(s)
- Michael B Major
- Howard Hughes Medical Institute, Department of Pharmacology, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Box 357370, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Song LN, Gelmann EP. Silencing mediator for retinoid and thyroid hormone receptor and nuclear receptor corepressor attenuate transcriptional activation by the beta-catenin-TCF4 complex. J Biol Chem 2008; 283:25988-99. [PMID: 18632669 DOI: 10.1074/jbc.m800325200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Catenin is a multifunctional mediator of cellular signaling and an oncogene. Nuclear beta-catenin, when complexed with members of the T-cell factor (TCF)/leukocyte enhancer factor family of DNA-binding proteins, mediates transcriptional activation important for embryonic development and adult cell homeostasis. Deregulation of intracellular levels of beta-catenin is an early event in the development of a variety of cancers. We observed that the proteins silencing mediator for retinoid and thyroid hormone receptor (SMRT) and the nuclear receptor corepressor (NCoR) are negative regulators of transcription induced by the beta-catenin-TCF4 complex. Overexpression of SMRT and NCoR attenuated the transcription of beta-catenin-TCF4-specific reporter gene and of CCND1, an endogenous beta-catenin target gene. Knockdown of endogenous SMRT or NCoR by short interfering RNA augmented the beta-catenin-TCF4-mediated reporter gene expression. Glutathione S-transferase pulldown experiments showed there was a direct physical association of SMRT and NCoR with both beta-catenin and TCF4. DNA-protein interaction studies revealed that the interactions between either SMRT or NCoR and beta-catenin or TCF4 occurred at the promoter regions of CCND1 and other target genes. These findings demonstrate an important role for corepressors SMRT and NCoR in the regulation of beta-catenin-TCF4-mediated gene transcription.
Collapse
Affiliation(s)
- Liang-Nian Song
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032, USA
| | | |
Collapse
|
175
|
de la Roche M, Worm J, Bienz M. The function of BCL9 in Wnt/beta-catenin signaling and colorectal cancer cells. BMC Cancer 2008; 8:199. [PMID: 18627596 PMCID: PMC2478683 DOI: 10.1186/1471-2407-8-199] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 07/15/2008] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Most cases of colorectal cancer are initiated by hyperactivation of the Wnt/beta-catenin pathway due to mutations in the APC tumour suppressor, or in beta-catenin itself. A recently discovered component of this pathway is Legless, which is essential for Wnt-induced transcription during Drosophila development. Limited functional information is available for its two mammalian relatives, BCL9 and B9L/BCL9-2: like Legless, these proteins bind to beta-catenin, and RNAi-mediated depletion of B9L/BCL9-2 has revealed that this protein is required for efficient beta-catenin-mediated transcription in mammalian cell lines. No loss-of-function data are available for BCL9. METHODS We have used overexpression of dominant-negative forms of BCL9, and RNAi-mediated depletion, to study its function in human cell lines with elevated Wnt pathway activity, including colorectal cancer cells. RESULTS We found that BCL9 is required for efficient beta-catenin-mediated transcription in Wnt-stimulated HEK 293 cells, and in the SW480 colorectal cancer cell line whose Wnt pathway is active due to APC mutation. Dominant-negative mutants of BCL9 indicated that its function depends not only on its beta-catenin ligand, but also on an unknown ligand of its C-terminus. Finally, we show that BCL9 and B9L are both Wnt-inducible genes, hyperexpressed in colorectal cancer cell lines, indicating that they are part of a positive feedback loop. CONCLUSION BCL9 is required for efficient beta-catenin-mediated transcription in human cell lines whose Wnt pathway is active, including colorectal cancer cells, indicating its potential as a drug target in colorectal cancer.
Collapse
Affiliation(s)
- Marc de la Roche
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Jesper Worm
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
- Santaris Pharma, Bøge Allé 3, DK-2970 Hørsholm, Denmark
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| |
Collapse
|
176
|
Abstract
Since the first Wnt gene was identified in 1982, the functions and mechanisms of Wnt signaling have been extensively studied. Wnt signaling is conserved from invertebrates to vertebrates and regulates early embryonic development as well as the homeostasis of adult tissues. In addition, both embryonic stem cells and adult stem cells are regulated by Wnt signaling. Deregulation of Wnt signaling is associated with many human diseases, particularly cancers. In this review, we will discuss in detail the functions of many components involved in the Wnt signal transduction pathway. Then, we will explore what is known about the role of Wnt signaling in stem cells and cancers.
Collapse
Affiliation(s)
- Xi Chen
- Sealy Center for Cancer Cell Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Jun Yang
- Sealy Center for Cancer Cell Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Paul M. Evans
- Sealy Center for Cancer Cell Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Chunming Liu
- Sealy Center for Cancer Cell Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| |
Collapse
|
177
|
|
178
|
Staal FJT, Sen JM. The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis. Eur J Immunol 2008; 38:1788-94. [PMID: 18581335 PMCID: PMC2556850 DOI: 10.1002/eji.200738118] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The evolutionarily conserved canonical Wnt-beta-catenin-T cell factor (TCF)/lymphocyte enhancer binding factor (LEF) signaling pathway regulates key checkpoints in the development of various tissues. Therefore, it is not surprising that a large body of gain-of-function and loss-of-function studies implicate Wnt-beta-catenin signaling in lymphopoiesis and hematopoiesis. In contrast, recent papers have reported that Mx-Cre-mediated conditional deletion of beta-catenin and/or its homolog gamma-catenin (plakoglobin) did not impair hematopoiesis or lymphopoiesis. However, these studies also report that TCF reporter activity remains active in beta-catenin- and gamma-catenin-deficient hematopoietic stem cells and all cells derived from these precursors, indicating that the canonical Wnt signaling pathway was not abrogated. Therefore, these studies in fact show that the canonical Wnt signaling pathway is important in hematopoiesis and lymphopoiesis, even though the molecular basis for the induction of the reporter activity is currently unknown. In this perspective, we provide a broad background to the field with a discussion of the available data and create a framework within which the available and future studies may be evaluated.
Collapse
Affiliation(s)
- Frank J. T. Staal
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jyoti M. Sen
- Lymphocyte Development Unit, Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
179
|
Thompson BA, Tremblay V, Lin G, Bochar DA. CHD8 is an ATP-dependent chromatin remodeling factor that regulates beta-catenin target genes. Mol Cell Biol 2008; 28:3894-904. [PMID: 18378692 PMCID: PMC2423111 DOI: 10.1128/mcb.00322-08] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 03/22/2008] [Indexed: 11/20/2022] Open
Abstract
ATP-dependent chromatin remodeling by the CHD family of proteins plays an important role in the regulation of gene transcription. Here we report that full-length CHD8 interacts directly with beta-catenin and that CHD8 is also recruited specifically to the promoter regions of several beta-catenin-responsive genes. Our results indicate that CHD8 negatively regulates beta-catenin-targeted gene expression, since short hairpin RNA against CHD8 results in the activation of several beta-catenin target genes. This regulation is also conserved through evolution; RNA interference against kismet, the apparent Drosophila ortholog of CHD8, results in a similar activation of beta-catenin target genes. We also report the first demonstration of chromatin remodeling activity for a member of the CHD6-9 family of proteins, suggesting that CHD8 functions in transcription through the ATP-dependent modulation of chromatin structure.
Collapse
Affiliation(s)
- Brandi A Thompson
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | | | | | |
Collapse
|
180
|
Abstract
The majority of bone cell biology focuses on activity on the surface of the bone with little attention paid to the activity that occurs below the surface. However, with recent new discoveries, osteocytes, cells embedded within the mineralized matrix of bone, are becoming the target of intensive investigation. In this article, the distinctions between osteoblasts and their descendants, osteocytes, are reviewed. Osteoblasts are defined as cells that make bone matrix and osteocytes are thought to translate mechanical loading into biochemical signals that affect bone (re)modeling. Osteoblasts and osteocytes should have similarities as would be expected of cells of the same lineage, yet these cells also have distinct differences, particularly in their responses to mechanical loading and utilization of the various biochemical pathways to accomplish their respective functions. For example, the Wnt/beta-catenin signaling pathway is now recognized as an important regulator of bone mass and bone cell functions. This pathway is important in osteoblasts for differentiation, proliferation and the synthesis bone matrix, whereas osteocytes appear to use the Wnt/beta-catenin pathway to transmit signals of mechanical loading to cells on the bone surface. New emerging evidence suggests that the Wnt/beta-catenin pathway in osteocytes may be triggered by crosstalk with the prostaglandin pathway in response to loading which then leads to a decrease in expression of negative regulators of the pathway such as Sost and Dkk1. The study of osteocyte biology is becoming an intense area of research interest and this review will examine some of the recent findings that are reshaping our understanding of bone/bone cell biology.
Collapse
Affiliation(s)
- Lynda F Bonewald
- University of Missouri, Kansas City School of Dentistry, Department of Oral Biology, 650 East 25th Street, Kansas City, MO 64108, USA.
| | | |
Collapse
|
181
|
Shitashige M, Hirohashi S, Yamada T. Wnt signaling inside the nucleus. Cancer Sci 2008; 99:631-7. [PMID: 18177486 PMCID: PMC11158179 DOI: 10.1111/j.1349-7006.2007.00716.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 11/21/2007] [Accepted: 11/25/2007] [Indexed: 12/31/2022] Open
Abstract
Accumulation of the beta-catenin protein and transactivation of a certain set of T-cell factor (TCF)-4 target genes by accumulated beta-catenin have been considered crucial in colorectal carcinogenesis. In the present review, we summarize nuclear proteins that interact with, and regulate, the beta-catenin and TCF and lymphoid enhancer factor (LEF) transcriptional complexes. Our recent series of proteomic studies has also revealed that various classes of nuclear proteins participate in the beta-catenin-TCF-4 complex and modulate its transcriptional activity. Furthermore, the protein composition of the TCF-4-containing nuclear complex is not fixed, but is regulated dynamically by endogenous programs associated with intestinal epithelial cell differentiation and exogenous stimuli. Restoration of the loss-of-function mutation of the adenomatous polyposis coli (APC) gene in colorectal cancer cells does not seem to be a realistic approach with currently available medical technologies, and only signaling molecules downstream of the APC gene product can be considered as targets of pharmacological intervention. Nuclear proteins associated with the beta-catenin-TCF-4 complex may include feasible targets for molecular therapy against colorectal cancer. Recently, an inhibitor of the interaction between CREB-binding protein and beta-catenin was shown to efficiently shut down the transcriptional activity of TCF-4 and induce apoptosis of colorectal cancer cells. We also summarize current strategies in the development of drugs against Wnt signaling.
Collapse
Affiliation(s)
- Miki Shitashige
- Chemotherapy Division and Cancer Proteomics Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuoh-ku, Tokyo 104-0045, Japan
| | | | | |
Collapse
|
182
|
Cell-type-specific function of BCL9 involves a transcriptional activation domain that synergizes with beta-catenin. Mol Cell Biol 2008; 28:3526-37. [PMID: 18347063 DOI: 10.1128/mcb.01986-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional regulation by the canonical Wnt pathway involves the stabilization and nuclear accumulation of beta-catenin, which assembles with LEF1/TCF transcription factors and cofactors to activate Wnt target genes. Recently, the nuclear beta-catenin complex has been shown to contain BCL9, which interacts with beta-catenin and recruits Pygopus as a transcriptional coactivator. However, the presumed general functions of Pygopus and BCL9, which has been proposed to act as a scaffolding protein for Pygopus, have been challenged by the rather specific and modest developmental defects of targeted inactivations of both the Pygo1 and the Pygo2 genes. Here, we analyze the function of BCL9 in transcriptional activation by beta-catenin. We find that BCL9 acts in a cell-type-specific manner and, in part, independent of Pygopus. We show that BCL9 itself contains a transcriptional activation domain in the C terminus, which functionally synergizes in lymphoid cells with the C-terminal transactivation domain of beta-catenin. Finally, we identify amino acids in the transactivation domain of beta-catenin that are important for its function and association with the histone acetyltransferases CBP/p300 and TRRAP/GCN5. Thus, BCL9 may serve to modulate and diversify the transcriptional responses to Wnt signaling in a cell-type-specific manner.
Collapse
|
183
|
Sabates-Bellver J, Van der Flier LG, de Palo M, Cattaneo E, Maake C, Rehrauer H, Laczko E, Kurowski MA, Bujnicki JM, Menigatti M, Luz J, Ranalli TV, Gomes V, Pastorelli A, Faggiani R, Anti M, Jiricny J, Clevers H, Marra G. Transcriptome profile of human colorectal adenomas. Mol Cancer Res 2008; 5:1263-75. [PMID: 18171984 DOI: 10.1158/1541-7786.mcr-07-0267] [Citation(s) in RCA: 391] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancers are believed to arise predominantly from adenomas. Although these precancerous lesions have been subjected to extensive clinical, pathologic, and molecular analyses, little is currently known about the global gene expression changes accompanying their formation. To characterize the molecular processes underlying the transformation of normal colonic epithelium, we compared the transcriptomes of 32 prospectively collected adenomas with those of normal mucosa from the same individuals. Important differences emerged not only between the expression profiles of normal and adenomatous tissues but also between those of small and large adenomas. A key feature of the transformation process was the remodeling of the Wnt pathway reflected in patent overexpression and underexpression of 78 known components of this signaling cascade. The expression of 19 Wnt targets was closely correlated with clear up-regulation of KIAA1199, whose function is currently unknown. In normal mucosa, KIAA1199 expression was confined to cells in the lower portion of intestinal crypts, where Wnt signaling is physiologically active, but it was markedly increased in all adenomas, where it was expressed in most of the epithelial cells, and in colon cancer cell lines, it was markedly reduced by inactivation of the beta-catenin/T-cell factor(s) transcription complex, the pivotal mediator of Wnt signaling. Our transcriptomic profiles of normal colonic mucosa and colorectal adenomas shed new light on the early stages of colorectal tumorigenesis and identified KIAA1199 as a novel target of the Wnt signaling pathway and a putative marker of colorectal adenomatous transformation.
Collapse
Affiliation(s)
- Jacob Sabates-Bellver
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Xing Y, Takemaru KI, Liu J, Berndt JD, Zheng JJ, Moon RT, Xu W. Crystal structure of a full-length beta-catenin. Structure 2008; 16:478-87. [PMID: 18334222 PMCID: PMC4267759 DOI: 10.1016/j.str.2007.12.021] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 12/18/2007] [Accepted: 12/28/2007] [Indexed: 01/07/2023]
Abstract
beta-catenin plays essential roles in cell adhesion and Wnt signaling, while deregulation of beta-catenin is associated with multiple diseases including cancers. Here, we report the crystal structures of full-length zebrafish beta-catenin and a human beta-catenin fragment that contains both the armadillo repeat and the C-terminal domains. Our structures reveal that the N-terminal region of the C-terminal domain, a key component of the C-terminal transactivation domain, forms a long alpha helix that packs on the C-terminal end of the armadillo repeat domain, and thus forms part of the beta-catenin superhelical core. The existence of this helix redefines our view of interactions of beta-catenin with some of its critical partners, including ICAT and Chibby, which may form extensive interactions with this C-terminal domain alpha helix. Our crystallographic and NMR studies also suggest that the unstructured N-terminal and C-terminal tails interact with the ordered armadillo repeat domain in a dynamic and variable manner.
Collapse
Affiliation(s)
- Yi Xing
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Ken-Ichi Takemaru
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jing Liu
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jason D. Berndt
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jie J. Zheng
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Randall T. Moon
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Wenqing Xu
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
185
|
Tran H, Hamada F, Schwarz-Romond T, Bienz M. Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. Genes Dev 2008; 22:528-42. [PMID: 18281465 PMCID: PMC2238673 DOI: 10.1101/gad.463208] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 12/14/2007] [Indexed: 01/09/2023]
Abstract
A key effector of the canonical Wnt pathway is beta-catenin, which binds to TCF/LEF factors to promote the transcription of Wnt target genes. In the absence of Wnt stimulation, beta-catenin is phosphorylated constitutively, and modified with K48-linked ubiquitin for subsequent proteasomal degradation. Here, we identify Trabid as a new positive regulator of Wnt signaling in mammalian and Drosophila cells. Trabid show a remarkable preference for binding to K63-linked ubiquitin chains with its three tandem NZF fingers (Npl4 zinc finger), and it cleaves these chains with its OTU (ovarian tumor) domain. These activities of Trabid are required for efficient TCF-mediated transcription in cells with high Wnt pathway activity, including colorectal cancer cell lines. We further show that Trabid can bind to and deubiquitylate the APC tumor suppressor protein, a negative regulator of Wnt-mediated transcription. Epistasis experiments indicate that Trabid acts below the stabilization of beta-catenin, and that it may affect the association or activity of the TCF-beta-catenin transcription complex. Our results indicate a role of K63-linked ubiquitin chains during Wnt-induced transcription.
Collapse
Affiliation(s)
- Hoanh Tran
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 2QH, United Kingdom
| | - Fumihiko Hamada
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 2QH, United Kingdom
| | - Thomas Schwarz-Romond
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 2QH, United Kingdom
| | - Mariann Bienz
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 2QH, United Kingdom
| |
Collapse
|
186
|
Genome-wide pattern of TCF7L2/TCF4 chromatin occupancy in colorectal cancer cells. Mol Cell Biol 2008; 28:2732-44. [PMID: 18268006 DOI: 10.1128/mcb.02175-07] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wnt signaling activates gene expression through the induced formation of complexes between DNA-binding T-cell factors (TCFs) and the transcriptional coactivator beta-catenin. In colorectal cancer, activating Wnt pathway mutations transform epithelial cells through the inappropriate activation of a TCF7L2/TCF4 target gene program. Through a DNA array-based genome-wide analysis of TCF4 chromatin occupancy, we have identified 6,868 high-confidence TCF4-binding sites in the LS174T colorectal cancer cell line. Most TCF4-binding sites are located at large distances from transcription start sites, while target genes are frequently "decorated" by multiple binding sites. Motif discovery algorithms define the in vivo-occupied TCF4-binding site as evolutionarily conserved A-C/G-A/T-T-C-A-A-A-G motifs. The TCF4-binding regions significantly correlate with Wnt-responsive gene expression profiles derived from primary human adenomas and often behave as beta-catenin/TCF4-dependent enhancers in transient reporter assays.
Collapse
|
187
|
Trotter KW, Archer TK. The BRG1 transcriptional coregulator. NUCLEAR RECEPTOR SIGNALING 2008; 6:e004. [PMID: 18301784 PMCID: PMC2254329 DOI: 10.1621/nrs.06004] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 01/23/2008] [Indexed: 01/10/2023]
Abstract
The packaging of genomic DNA into chromatin, often viewed as an impediment to the transcription process, plays a fundamental role in the regulation of gene expression. Chromatin remodeling proteins have been shown to alter local chromatin structure and facilitate recruitment of essential factors required for transcription. Brahma-related gene-1 (BRG1), the central catalytic subunit of numerous chromatin-modifying enzymatic complexes, uses the energy derived from ATP-hydrolysis to disrupt the chromatin architecture of target promoters. In this review, we examine BRG1 as a major coregulator of transcription. BRG1 has been implicated in the activation and repression of gene expression through the modulation of chromatin in various tissues and physiological conditions. Outstanding examples are studies demonstrating that BRG1 is a necessary component for nuclear receptor-mediated transcriptional activation. The remodeling protein is also associated with transcriptional corepressor complexes which recruit remodeling activity to target promoters for gene silencing. Taken together, BRG1 appears to be a critical modulator of transcriptional regulation in cellular processes including transcriptional regulation, replication, DNA repair and recombination.
Collapse
Affiliation(s)
- Kevin W Trotter
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | |
Collapse
|
188
|
Salisbury TB, Binder AK, Nilson JH. Welcoming beta-catenin to the gonadotropin-releasing hormone transcriptional network in gonadotropes. Mol Endocrinol 2008; 22:1295-303. [PMID: 18218726 DOI: 10.1210/me.2007-0515] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GnRH binds its G-coupled protein receptor, GnRHR, on pituitary gonadotropes and stimulates transcription of Cga, Lhb, and Fshb. These three genes encode two heterodimeric glycoprotein hormones, LH and FSH, that act as gonadotropins by regulating gametogenesis and steroidogenesis in both the testes and ovary. GnRH also regulates transcription of Gnrhr. Thus, regulated expression of Cga, Lhb, Fshb, and Gnrhr provides a genomic signature unique to functional gonadotropes. Steadily increasing evidence now indicates that GnRH regulates transcription of its four signature genes indirectly through a hierarchical transcriptional network that includes distinct subclasses of DNA-binding proteins that comprise the immediate early gene (IEG) family. These IEGs, in turn, confer hormonal responsiveness to the four signature genes. Although the IEGs confer responsiveness to GnRH, they cannot act alone. Instead, additional DNA-binding proteins, including the orphan nuclear receptor steroidogenic factor 1, act permissively to allow the four signature genes to respond to GnRH-induced changes in IEG levels. Emerging new findings now indicate that beta-catenin, a transcriptional coactivator and member of the canonical WNT signaling pathway, also plays an essential role in transducing the GnRH signal by interacting with multiple DNA-binding proteins in gonadotropes. Herein we propose that these interactions with beta-catenin define a multicomponent transcriptional network required for regulated expression of the four signature genes of the gonadotrope, Cga, Lhb, Fshb, and Gnrhr.
Collapse
Affiliation(s)
- Travis B Salisbury
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4660, USA
| | | | | |
Collapse
|
189
|
Li J, Wang CY. TBL1-TBLR1 and beta-catenin recruit each other to Wnt target-gene promoter for transcription activation and oncogenesis. Nat Cell Biol 2008; 10:160-9. [PMID: 18193033 DOI: 10.1038/ncb1684] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 12/18/2007] [Indexed: 12/15/2022]
Abstract
Aberrant Wnt signalling promotes oncogenesis by increasing the nuclear accumulation of beta-catenin to activate downstream target genes. However, the mechanism of beta-catenin recruitment to the Wnt target-gene promoter, a critical step for removing the co-repressor complex, is largely unknown. Here, we report that transducin beta-like protein 1 (TBL1) and its highly related family member TBLR1 were required for Wnt-beta-catenin-mediated transcription. Wnt signalling induced the interaction between beta-catenin and TBL1-TBLR1, as well as their binding to Wnt target genes. Importantly, the recruitment of TBL1-TBLR1 and beta-catenin to Wnt target-gene promoters was mutually dependent on each other. Furthermore, the depletion of TBL1-TBLR1 significantly inhibited Wnt-beta-catenin-induced gene expression and oncogenic growth in vitro and in vivo. Our results unravel two new components required for nuclear beta-catenin function, and have important implications in developing new strategies for inhibiting Wnt-beta-catenin-mediated tumorigenesis.
Collapse
Affiliation(s)
- Jiong Li
- Laboratory of Molecular Signalling, Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | | |
Collapse
|
190
|
|
191
|
Takemaru KI, Ohmitsu M, Li FQ. An oncogenic hub: beta-catenin as a molecular target for cancer therapeutics. Handb Exp Pharmacol 2008:261-284. [PMID: 18491056 DOI: 10.1007/978-3-540-72843-6_11] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The Wnt/beta-catenin signaling pathway plays diverse roles in embryonic development and in maintenance of organs and tissues in adults. Activation of this signaling cascade inhibits degradation of the pivotal component beta-catenin, which in turn stimulates transcription of downstream target genes. Over the past two decades, intensive worldwide investigations have yielded considerable progress toward understanding the cellular and molecular mechanisms of Wnt signaling and its involvement in the pathogenesis of a range of human diseases. Remarkably, beta-catenin signaling is aberrantly activated in greater than 70% of colorectal cancers and to a lesser extent in other tumor types, promoting cancer cell proliferation, survival and migration. Accordingly, beta-catenin has gained recognition as an enticing molecular target for cancer therapeutics. Disruption of protein-protein interactions essential for beta-catenin activity holds immense promise for the development of novel anti-cancer drugs. In this review, we focus on the regulation of beta-catenin-dependent transcriptional activation and discuss potential therapeutic opportunities to block this signaling pathway in cancer.
Collapse
Affiliation(s)
- K-I Takemaru
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.
| | | | | |
Collapse
|
192
|
Yamamichi N, Inada KI, Ichinose M, Yamamichi-Nishina M, Mizutani T, Watanabe H, Shiogama K, Fujishiro M, Okazaki T, Yahagi N, Haraguchi T, Fujita S, Tsutsumi Y, Omata M, Iba H. Frequent loss of Brm expression in gastric cancer correlates with histologic features and differentiation state. Cancer Res 2007; 67:10727-35. [PMID: 18006815 DOI: 10.1158/0008-5472.can-07-2601] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mammalian SWI/SNF chromatin remodeling complex, an essential epigenetic regulator, contains either a single Brm or BRG1 molecule as its catalytic subunit. We observed frequent loss of Brm expression but not of BRG1 in human gastric cancer cell lines. Treatment with histone deacetylase inhibitor rescued Brm expression, indicating epigenetic regulation of this gene, and an RNA interference-based colony formation assay revealed antioncogenic properties of Brm. Brm immunostaining of 89 primary gastric cancers showed an obvious reduction in 60 cases (67%) and a severe decrease in 37 cases (42%). Loss of Brm is frequent in the major gastric cancer types (well- or moderately-differentiated tubular adenocarcinoma and poorly-differentiated adenocarcinoma) and positively correlates with the undifferentiated state. Among the minor gastric cancer types, Brm expression persists in signet-ring cell carcinoma and mucinous adenocarcinoma, but a marked decrease is observed in papillary adenocarcinoma. Intestinal metaplasia never shows decreased expression, indicating that Brm is a valid marker of gastric oncogenesis. In contrast, BRG1 is retained in most cases; a concomitant loss of BRG1 and Brm is rare in gastric cancer, contrary to other malignancies. We further show that Brm is required for villin expression, a definitive marker of intestinal metaplasia and differentiation. Via regulating such genes important for gut differentiation, Brm should play significant roles in determining the histologic features of gastric malignancy.
Collapse
Affiliation(s)
- Nobutake Yamamichi
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Alves-Guerra MC, Ronchini C, Capobianco AJ. Mastermind-like 1 Is a specific coactivator of beta-catenin transcription activation and is essential for colon carcinoma cell survival. Cancer Res 2007; 67:8690-8. [PMID: 17875709 DOI: 10.1158/0008-5472.can-07-1720] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Misregulation of the Wnt signaling pathway has been linked to many human cancers including colon carcinoma and melanoma. The primary mediator of the oncogenic effects of the Wnt signaling pathway is beta-catenin. Accumulation of nuclear beta-catenin and transcription activation of lymphoid enhancer factor 1 (LEF1)/T-cell factor (TCF) target genes underlie the oncogenic activity. However, the mechanism of beta-catenin-mediated transcriptional activation remains poorly understood. In this study, we identified Mastermind-like 1 (Maml1), which is thought to be a specific coactivator for the Notch pathway, as a coactivator for beta-catenin. We found that Maml1 participates in the Wnt signaling by modulating the beta-catenin/TCF activity. We show in vivo that Maml1 is recruited by beta-catenin on the cyclin D1 and c-Myc promoters. Importantly, we show that Maml1 functions in the Wnt/beta-catenin pathway independently of Notch signaling. Finally, we show that the knockdown of Mastermind-like family proteins in colonic carcinoma cells results in cell death by affecting beta-catenin-induced expression of cyclin D1 and c-Myc. This is the first demonstration of a role for the Mastermind-like family in another signaling pathway and that the knockdown of Mastermind-like family function leads to tumor cell death.
Collapse
|
194
|
Yi F, Merrill BJ. Stem cells and TCF proteins: a role for beta-catenin--independent functions. ACTA ACUST UNITED AC 2007; 3:39-48. [PMID: 17873380 DOI: 10.1007/s12015-007-0003-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/18/2022]
Abstract
The Wnt signal transduction pathway has been shown to stimulate stem cell self renewal and has been shown to cause cancer in humans. One interesting aspect of Wnt signaling is that it utilizes downstream DNA-binding transcription factors, called Tcf proteins, which can activate transcription of target genes in the presence of a Wnt signal and repress the expression of target genes in the absence of a Wnt signal. Since Tcf proteins are present in Wnt-stimulated and unstimulated stem cells, understanding how Tcf proteins regulate target gene expression in each state offers the potential to understand how stem cells regulate their self-renewal, differentiation, and proliferation. In this article, we will review recent work elucidating the roles Tcf-protein interactions in the context of stem cells and cancer.
Collapse
Affiliation(s)
- Fei Yi
- Molecular Biology Research Building, Department of Biochemistry and Molecular Genetics, University of Illinois, 900 S. Ashland Ave., Chicago, IL 60607, USA
| | | |
Collapse
|
195
|
Das AV, James J, Bhattacharya S, Imbalzano AN, Antony ML, Hegde G, Zhao X, Mallya K, Ahmad F, Knudsen E, Ahmad I. SWI/SNF Chromatin Remodeling ATPase Brm Regulates the Differentiation of Early Retinal Stem Cells/Progenitors by Influencing Brn3b Expression and Notch Signaling. J Biol Chem 2007; 282:35187-201. [PMID: 17855369 DOI: 10.1074/jbc.m706742200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Based on a variety of approaches, evidence suggests that different cell types in the vertebrate retina are generated by multipotential progenitors in response to interactions between cell intrinsic and cell extrinsic factors. The identity of some of the cellular determinants that mediate such interactions has emerged, shedding light on mechanisms underlying cell differentiation. For example, we know now that Notch signaling mediates the influence of the microenvironment on states of commitment of the progenitors by activating transcriptional repressors. Cell intrinsic factors such as the proneural basic helix-loop-helix and homeodomain transcription factors regulate a network of genes necessary for cell differentiation and maturation. What is missing from this picture is the role of developmental chromatin remodeling in coordinating the expression of disparate classes of genes for the differentiation of retinal progenitors. Here we describe the role of Brm, an ATPase in the SWI/SNF chromatin remodeling complex, in the differentiation of retinal progenitors into retinal ganglion cells. Using the perturbation of expression and function analyses, we demonstrate that Brm promotes retinal ganglion cell differentiation by facilitating the expression and function of a key regulator of retinal ganglion cells, Brn3b, and the inhibition of Notch signaling. In addition, we demonstrate that Brm promotes cell cycle exit during retinal ganglion cell differentiation. Together, our results suggest that Brm represents one of the nexus where diverse information of cell differentiation is integrated during cell differentiation.
Collapse
Affiliation(s)
- Ani V Das
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Li L, Chapman K, Hu X, Wong A, Pasdar M. Modulation of the oncogenic potential of beta-catenin by the subcellular distribution of plakoglobin. Mol Carcinog 2007; 46:824-38. [PMID: 17415780 DOI: 10.1002/mc.20310] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Plakoglobin (Pg) and beta-catenin are homologous proteins that function in cell-cell adhesion and signaling. The cadherin-associated form of these proteins mediates adhesion, whereas the cytosolic/nuclear form has a signaling role. Despite their interactions with common cellular partners, beta-catenin has a well-documented oncogenic potential while Pg has a less characterized tumor suppressor activity. We showed previously that Pg overexpression in Pg-deficient SCC9 cells (SCC9-Pg-WT) induced Bcl-2 expression and inhibited apoptosis. To assess the exact role of Pg in Bcl-2 expression, we generated and characterized SCC9 transfectants expressing Pg with a restricted cytoplasmic (Pg-NES) or nuclear (Pg-NLS) distribution. We show that Bcl-2 was expressed regardless of Pg localization, although its level was substantially lower in SCC9-Pg-NLS cells. Bcl-2 expression coincided with increased nuclear beta-catenin levels (Pg-NES) or a decrease in the level of total and nuclear beta-catenin associated with N-cadherin and alpha-catenin (Pg-WT and -NLS) cells. Bcl-2 expression also was induced in SCC9 cells overexpressing beta-catenin. In contrast, SCC9 cells expressing mutant Pg proteins, unable to interact with N-cadherin and alpha-catenin, had noticeably lower Bcl-2 levels. Our data suggest that Bcl-2 expression is induced by beta-catenin and modulated by Pg. We show that the inhibition of beta-catenin-dependent TCF transactivation had no effect on Bcl-2 levels, suggesting that induction of Bcl-2 expression by beta-catenin and its modulation by Pg may involve factors other than, or in addition, to, TCF. These results provide a possible mechanism for the tumor suppressor activity of Pg via its role as a regulator of the oncogenic potential beta-catenin.
Collapse
Affiliation(s)
- Laiji Li
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | |
Collapse
|
197
|
Sims HI, Lane JM, Ulyanova NP, Schnitzler GR. Human SWI/SNF drives sequence-directed repositioning of nucleosomes on C-myc promoter DNA minicircles. Biochemistry 2007; 46:11377-88. [PMID: 17877373 PMCID: PMC2526049 DOI: 10.1021/bi7008823] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human SWI/SNF (hSWI/SNF) ATP-dependent chromatin remodeling complex is a tumor suppressor and essential transcriptional coregulator. SWI/SNF complexes have been shown to alter nucleosome positions, and this activity is likely to be important for their functions. However, previous studies have largely been unable to determine the extent to which DNA sequence might control nucleosome repositioning by SWI/SNF complexes. Here, we employ a minicircle remodeling approach to provide the first evidence that hSWI/SNF moves nucleosomes in a sequence dependent manner, away from nucleosome positioning sequences favored during nucleosome assembly. This repositioning is unaffected by the presence of DNA nicks, and can occur on closed-circular DNAs in the absence of topoisomerases. We observed directed nucleosome movement on minicircles derived from the human SWI/SNF-regulated c-myc promoter, which may contribute to the previously observed "disruption" of two promoter nucleosomes during c-myc activation in vivo. Our results suggest a model wherein hSWI/SNF-directed nucleosome movement away from default positioning sequences results in sequence-specific regulatory effects.
Collapse
Affiliation(s)
- Hillel I. Sims
- The Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA 02111
| | | | | | - Gavin R. Schnitzler
- The Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA 02111
| |
Collapse
|
198
|
Differential control of Wnt target genes involves epigenetic mechanisms and selective promoter occupancy by T-cell factors. Mol Cell Biol 2007; 27:8164-77. [PMID: 17923689 DOI: 10.1128/mcb.00555-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Canonical Wnt signaling and its nuclear effectors, beta-catenin and the family of T-cell factor (TCF) DNA-binding proteins, belong to the small number of regulatory systems which are repeatedly used for context-dependent control of distinct genetic programs. The apparent ability to elicit a large variety of transcriptional responses necessitates that beta-catenin and TCFs distinguish precisely between genes to be activated and genes to remain silent in a specific context. How this is achieved is unclear. Here, we examined patterns of Wnt target gene activation and promoter occupancy by TCFs in different mouse cell culture models. Remarkably, within a given cell type only Wnt-responsive promoters are bound by specific subsets of TCFs, whereas nonresponsive Wnt target promoters remain unoccupied. Wnt-responsive, TCF-bound states correlate with DNA hypomethylation, histone H3 hyperacetylation, and H3K4 trimethylation. Inactive, nonresponsive promoter chromatin shows DNA hypermethylation, is devoid of active histone marks, and additionally can show repressive H3K27 trimethylation. Furthermore, chromatin structural states appear to be independent of Wnt pathway activity. Apparently, cell-type-specific regulation of Wnt target genes comprises multilayered control systems. These involve epigenetic modifications of promoter chromatin and differential promoter occupancy by functionally distinct TCF proteins, which together determine susceptibility to Wnt signaling.
Collapse
|
199
|
Abstract
Beta-catenin plays a critical structural role in cadherin-based adhesions and is also an essential co-activator of Wnt-mediated gene expression. The degree to which beta-catenin participates in these two functions is dictated by the availability of beta-catenin binding partners, and an emerging theme is that these binding interactions are regulated by phosphorylation. Inputs from various cell-signaling events can therefore impact beta-catenin function, which may be necessary for the finely tuned adhesive and signaling responses required for tissue morphogenesis.
Collapse
Affiliation(s)
- Rebecca Leadem Daugherty
- The Integrated Graduate Program in the Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | | |
Collapse
|
200
|
Xu W, Kimelman D. Mechanistic insights from structural studies of β-catenin and its binding partners. J Cell Sci 2007; 120:3337-44. [PMID: 17881495 DOI: 10.1242/jcs.013771] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
β-catenin is both a crucial regulator of cell adhesion and the central effector of the canonical Wnt signaling pathway. It functions as a protein organizer by interacting with numerous partners at the membrane, in the cytosol, and in the nucleus. Recent structural and biochemical studies have revealed how β-catenin engages in critical protein-protein interactions by using its armadillo repeat region and its N- and C-terminal domains. The groove in the armadillo repeat region is a particularly interesting feature of β-catenin, since it serves as a common binding site for several β-catenin-binding partners, with steric hindrance limiting which partners can be bound at a specific time. These studies provide important insights into β-catenin-mediated mechanisms of cell adhesion and Wnt signaling and suggest potential approaches for the design of therapeutic agents to treat diseases caused by misregulated β-catenin expression.
Collapse
Affiliation(s)
- Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|