151
|
Turner A, Aggarwal P, Matter A, Olson B, Gu CC, Hunt SC, Lewis CE, Arnett DK, Lorier R, Broeckel U. Donor-specific phenotypic variation in hiPSC cardiomyocyte-derived exosomes impacts endothelial cell function. Am J Physiol Heart Circ Physiol 2021; 320:H954-H968. [PMID: 33416449 DOI: 10.1152/ajpheart.00463.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Exosomes are an important mechanism of cell-cell interaction in the cardiovascular system, both in maintaining homeostasis and in stress response. Interindividual differences that alter content in exosomes may play a role in cardiovascular disease pathology. To study the effect of interindividual cardiomyocyte (CM) variation, we characterized exosomal content in phenotypically diverse human induced pluripotent stem cell-derived CMs (hiPSC-CMs). Cell lines were generated from six participants in the HyperGEN cohort: three with left ventricular hypertrophy (LVH) and three with normal left ventricular mass (LVM). Sequence analysis of the intracellular and exosomal RNA populations showed distinct expression pattern differences between hiPSC-CM lines derived from individuals with LVH and those with normal LVM. Functional analysis of hiPSC-endothelial cells (hiPSC-ECs) treated with exosomes from both hiPSC-CM groups showed significant variation in response, including differences in tube formation, migration, and proliferation. Overall, treatment of hiPSC-ECs with exosomes resulted in significant expression changes associated with angiogenesis and endothelial cell vasculogenesis. However, the hiPSC-ECs treated with exosomes from the LVH-affected donors exhibited significantly increased proliferation but decreased tube formation and migration, suggesting angiogenic dysregulation.NEW & NOTEWORTHY The intracellular RNA and the miRNA content in exosomes are significantly different in hiPSC-CMs derived from LVH-affected individuals compared with those from unaffected individuals. Treatment of endothelial cells with these exosomes functionally affects cellular phenotypes in a donor-specific manner. These findings provide novel insight into underlying mechanisms of hypertrophic cell signaling between different cell types. With a growing interest in stem cells and exosomes for cardiovascular therapeutic use, this also provides information important for regenerative medicine.
Collapse
Affiliation(s)
- Amy Turner
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Children's Research Institute and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Praful Aggarwal
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Children's Research Institute and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andrea Matter
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Children's Research Institute and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Benjamin Olson
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Children's Research Institute and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Molecular Genetics and Genomics, Washington University, St. Louis, Missouri
| | - C Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Steven C Hunt
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar.,Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Cora E Lewis
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Donna K Arnett
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, Kentucky
| | - Rachel Lorier
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Children's Research Institute and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ulrich Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Children's Research Institute and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
152
|
Qin B, Zhang Q, Chen D, Yu HY, Luo AX, Suo LP, Cai Y, Cai DY, Luo J, Huang JF, Xiong K. Extracellular vesicles derived from mesenchymal stem cells: A platform that can be engineered. Histol Histopathol 2021; 36:615-632. [PMID: 33398872 DOI: 10.14670/hh-18-297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells play an important role in tissue damage and repair. This role is mainly due to a paracrine mechanism, and extracellular vesicles (EVs) are an important part of the paracrine function. EVs play a vital role in many aspects of cell homeostasis, physiology, and pathology, and EVs can be used as clinical biomarkers, vaccines, or drug delivery vehicles. A large number of studies have shown that EVs derived from mesenchymal stem cells (MSC-EVs) play an important role in the treatment of various diseases. However, the problems of low production, low retention rate, and poor targeting of MSC-EVs are obstacles to current clinical applications. The engineering transformation of MSC-EVs can make up for those shortcomings, thereby improving treatment efficiency. This review summarizes the latest research progress of MSC-EV direct and indirect engineering transformation from the aspects of improving MSC-EV retention rate, yield, targeting, and MSC-EV visualization research, and proposes some feasible MSC-EV engineering methods of transformation.
Collapse
Affiliation(s)
- Bo Qin
- Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Qi Zhang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Dan Chen
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hai-Yang Yu
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ai-Xiang Luo
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Liang-Peng Suo
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yan Cai
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - De-Yang Cai
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jia Luo
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ju-Fang Huang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China.
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China.
| |
Collapse
|
153
|
Lee TL, Lai TC, Lin SR, Lin SW, Chen YC, Pu CM, Lee IT, Tsai JS, Lee CW, Chen YL. Conditioned medium from adipose-derived stem cells attenuates ischemia/reperfusion-induced cardiac injury through the microRNA-221/222/PUMA/ETS-1 pathway. Theranostics 2021; 11:3131-3149. [PMID: 33537078 PMCID: PMC7847683 DOI: 10.7150/thno.52677] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023] Open
Abstract
Rationale: Cardiovascular diseases, such as myocardial infarction (MI), are the leading causes of death worldwide. Reperfusion therapy is the common standard treatment for MI. However, myocardial ischemia/reperfusion (I/R) causes cardiomyocyte injury, including apoptosis and fibrosis. We aimed to investigate the effects of conditioned medium from adipose-derived stem cells (ADSC-CM) on apoptosis and fibrosis in I/R-treated hearts and hypoxia/reoxygenation (H/R)-treated cardiomyocytes and the underlying mechanisms. Methods: ADSC-CM was collected from ADSCs. The effects of intramuscular injection of ADSC-CM on cardiac function, cardiac apoptosis, and fibrosis examined by echocardiography, Evans blue/TTC staining, TUNEL assay, and Masson's trichrome staining in I/R-treated mice. We also examined the effects of ADSC-CM on apoptosis and fibrosis in H/R-treated H9c2 cells by annexin V/PI flow cytometry, TUNEL assay, and immunocytochemistry. Results: ADSC-CM treatment significantly reduced heart damage and fibrosis of I/R-treated mice and H/R-treated cardiomyocytes. In addition, the expression of apoptosis-related proteins, such as p53 upregulated modulator of apoptosis (PUMA), p-p53 and B-cell lymphoma 2 (BCL2), as well as the fibrosis-related proteins ETS-1, fibronectin and collagen 3, were significantly reduced by ADSC-CM treatment. Moreover, we demonstrated that ADSC-CM contains a large amount of miR-221/222, which can target and regulate PUMA or ETS-1 protein levels. Furthermore, the knockdown of PUMA and ETS-1 decreased the induction of apoptosis and fibrosis, respectively. MiR-221/222 overexpression achieved similar results. We also observed that cardiac I/R markedly increased apoptosis and fibrosis in miR-221/222 knockout (KO) mice, while ADSC-CM decreased these effects. The increased phosphorylation of p38 and NF‐κB not only mediated myocardial apoptosis through the PUMA/p53/BCL2 pathway but also regulated fibrosis through the ETS-1/fibronectin/collagen 3 pathway. Conclusions: Overall, our results show that ADSC-CM attenuates cardiac apoptosis and fibrosis by reducing PUMA and ETS-1 expression, respectively. The protective effect is mediated via the miR-221/222/p38/NF-κB pathway.
Collapse
|
154
|
Xiong YY, Gong ZT, Tang RJ, Yang YJ. The pivotal roles of exosomes derived from endogenous immune cells and exogenous stem cells in myocardial repair after acute myocardial infarction. Am J Cancer Res 2021; 11:1046-1058. [PMID: 33391520 PMCID: PMC7738892 DOI: 10.7150/thno.53326] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of mortality around the world, and the inflammatory response plays a pivotal role in the progress of myocardial necrosis and ventricular remodeling, dysfunction and heart failure after AMI. Therapies aimed at modulating immune response after AMI on a molecular and cellular basis are urgently needed. Exosomes are a type of extracellular vesicles which contain a large amount of biologically active substances, like lipids, nucleic acids, proteins and so on. Emerging evidence suggests key roles of exosomes in immune regulation post AMI. A variety of immune cells participate in the immunomodulation after AMI, working together to clean up necrotic tissue and repair damaged myocardium. Stem cell therapy for myocardial infarction has long been a research hotspot during the last two decades and exosomes secreted by stem cells are important active substances and have similar therapeutic effects of immunomodulation, anti-apoptosis, anti-fibrotic and angiogenesis to those of stem cells themselves. Therefore, in this review, we focus on the characteristics and roles of exosomes produced by both of endogenous immune cells and exogenous stem cells in myocardial repair through immunomodulation after AMI.
Collapse
|
155
|
Chen P, Wang L, Fan X, Ning X, Yu B, Ou C, Chen M. Targeted delivery of extracellular vesicles in heart injury. Am J Cancer Res 2021; 11:2263-2277. [PMID: 33500724 PMCID: PMC7797669 DOI: 10.7150/thno.51571] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) are nanoscale extracellular vesicles derived from endocytosis that are crucial to intercellular communication. EVs possess natural biocompatibility and stability that allow them to cross biological membranes and that protect them from degradation. Recent studies have shown that EVs-mediated crosstalk between different cell types in the heart could play important roles in the maintenance of cardiac homeostasis and the pathogenesis of heart diseases. In particular, EVs secreted by different types of stem cells exhibit cardioprotective effects. However, numerous studies have shown that intravenously injected EVs are quickly cleared by macrophages of the mononuclear phagocyte system (MPS) and preferentially accumulate in MPS organs such as the liver, spleen, and lung. In this review, we discuss exosome biogenesis, the role of EVs in heart diseases, and challenges in delivering EVs to the heart. Furthermore, we extensively discuss the targeted delivery of EVs for treating ischemic heart disease. These understandings will aid in the development of effective treatment strategies for heart diseases.
Collapse
|
156
|
Riaud M, Martinez MC, Montero-Menei CN. Scaffolds and Extracellular Vesicles as a Promising Approach for Cardiac Regeneration after Myocardial Infarction. Pharmaceutics 2020; 12:E1195. [PMID: 33317141 PMCID: PMC7763019 DOI: 10.3390/pharmaceutics12121195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
Clinical studies have demonstrated the regenerative potential of stem cells for cardiac repair over the past decades, but their widespread use is limited by the poor tissue integration and survival obtained. Natural or synthetic hydrogels or microcarriers, used as cell carriers, contribute to resolving, in part, the problems encountered by providing mechanical support for the cells allowing cell retention, survival and tissue integration. Moreover, hydrogels alone also possess mechanical protective properties for the ischemic heart. The combined effect of growth factors with cells and an appropriate scaffold allow a therapeutic effect on myocardial repair. Despite this, the effects obtained with cell therapy remain limited and seem to be equivalent to the effects obtained with extracellular vesicles, key actors in intercellular communication. Extracellular vesicles have cardioprotective effects which, when combined proangiogenic properties with antiapoptotic and anti-inflammatory actions, make it possible to act on all the damages caused by ischemia. The evolution of biomaterial engineering allows us to envisage their association with new major players in cardiac therapy, extracellular vesicles, in order to limit undesirable effects and to envisage a transfer to the clinic. This new therapeutic approach could be associated with the release of growth factors to potentialized the beneficial effect obtained.
Collapse
Affiliation(s)
- Melody Riaud
- SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, F-49800 Angers, France;
- CRCINA, UMR 1232, INSERM, Université de Nantes, Université d’Angers, F-49933 Angers, France
| | | | | |
Collapse
|
157
|
Lin Y, Anderson JD, Rahnama LMA, Gu SV, Knowlton AA. Exosomes in disease and regeneration: biological functions, diagnostics, and beneficial effects. Am J Physiol Heart Circ Physiol 2020; 319:H1162-H1180. [PMID: 32986962 PMCID: PMC7792703 DOI: 10.1152/ajpheart.00075.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Exosomes are a subtype of extracellular vesicles. They range from 30 to 150 nm in diameter and originate from intraluminal vesicles. Exosomes were first identified as the mechanism for releasing unnecessary molecules from reticulocytes as they matured to red blood cells. Since then, exosomes have been shown to be secreted by a broad spectrum of cells and play an important role in the cardiovascular system. Different stimuli are associated with increased exosome release and result in different exosome content. The release of harmful DNA and other molecules via exosomes has been proposed as a mechanism to maintain cellular homeostasis. Because exosomes contain parent cell-specific proteins on the membrane and in the cargo that is delivered to recipient cells, exosomes are potential diagnostic biomarkers of various types of diseases, including cardiovascular disease. As exosomes are readily taken up by other cells, stem cell-derived exosomes have been recognized as a potential cell-free regenerative therapy to repair not only the injured heart but other tissues as well. The objective of this review is to provide an overview of the biological functions of exosomes in heart disease and tissue regeneration. Therefore, state-of-the-art methods for exosome isolation and characterization, as well as approaches to assess exosome functional properties, are reviewed. Investigation of exosomes provides a new approach to the study of disease and biological processes. Exosomes provide a potential "liquid biopsy," as they are present in most, if not all, biological fluids that are released by a wide range of cell types.
Collapse
Affiliation(s)
- Yun Lin
- Molecular and Cellular Cardiology, Cardiovascular Medicine, University of California, Davis, California
| | | | - Lily M A Rahnama
- Molecular and Cellular Cardiology, Cardiovascular Medicine, University of California, Davis, California
| | - Shenwen V Gu
- Molecular and Cellular Cardiology, Cardiovascular Medicine, University of California, Davis, California
| | - Anne A Knowlton
- Molecular and Cellular Cardiology, Cardiovascular Medicine, University of California, Davis, California
| |
Collapse
|
158
|
Charles CJ, Li RR, Yeung T, Mazlan SMI, Lai RC, de Kleijn DPV, Lim SK, Richards AM. Systemic Mesenchymal Stem Cell-Derived Exosomes Reduce Myocardial Infarct Size: Characterization With MRI in a Porcine Model. Front Cardiovasc Med 2020; 7:601990. [PMID: 33304934 PMCID: PMC7701257 DOI: 10.3389/fcvm.2020.601990] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022] Open
Abstract
The observations that mesenchymal stem cells (MSCs) exert cardiac protection and repair via their secretome with the active component(s) identified as exosomes underpinned our test of the efficacy of MSC exosomes in a porcine model of myocardial infarction (MI) when administered systemically by the convenient method of intravenous (IV) bolus injection. Results show that 7 days of IV exosomes results in clear reduction (30-40%) of infarct size measured at both 7 and 28 days post-MI, despite near identical release of hs Troponin T. Together with reduced infarct size, exosome treatment reduced transmurality and lessened wall thinning in the infarct zone. Exosome treated pigs showed relative preservation of LV function with significant amelioration of falls in fractional wall thickening compared with control. However, global measures of LV function were less protected by exosome treatment. It is possible that greater preservation of global LV function may have been attenuated by increased cardiac fibrosis, as T1 values showed significant increase in the exosome pigs compared to control particularly in the infarct related segments. Taken together, these results show clear effects of IV exosomes administered over 7 days to reduce infarct size with relatively preserved cardiac function compared to control treated infarct pigs.
Collapse
Affiliation(s)
- Christopher J. Charles
- Cardiovascular Research Institute (CVRI), National University Heart Centre, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Renee R. Li
- Cardiovascular Research Institute (CVRI), National University Heart Centre, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Teresa Yeung
- Cardiovascular Research Institute (CVRI), National University Heart Centre, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Stephane M. Ibraham Mazlan
- Cardiovascular Research Institute (CVRI), National University Heart Centre, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ruenn Chai Lai
- Institute of Medical Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Dominique P. V. de Kleijn
- Department of Vascular Surgery, University Medical Centre, Utrecht, and Netherlands Heart Institute, Utrecht, Netherlands
| | - Sai Kiang Lim
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Medical Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - A. Mark Richards
- Cardiovascular Research Institute (CVRI), National University Heart Centre, Singapore, Singapore
- Department of Medicine, Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| |
Collapse
|
159
|
Zarà M, Amadio P, Campodonico J, Sandrini L, Barbieri SS. Exosomes in Cardiovascular Diseases. Diagnostics (Basel) 2020; 10:E943. [PMID: 33198302 PMCID: PMC7696149 DOI: 10.3390/diagnostics10110943] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are nano-sized biovesicles of endocytic origin physiologically released by nearly all cell types into surrounding body fluids. They carry cell-specific cargos of protein, lipids, and genetic materials and can be selectively taken up by neighboring or distant cells. Since the intrinsic properties of exosomes are strictly influenced by the state of the parental cell and by the cellular microenvironment, the analysis of exosome origin and content, and their cell-targeting specificity, make them attractive as possible diagnostic and prognostic biomarkers. While the possible role of exosomes as messengers and a regenerative tool in cardiovascular diseases (CVDs) is actively investigated, the evidence about their usefulness as biomarkers is still limited and incomplete. Further complications are due to the lack of consensus regarding the most appropriate approach for exosome isolation and characterization, both important issues for their effective clinical translation. As a consequence, in this review, we will discuss the few information currently accessible about the diagnostic/prognostic potential of exosomes in CVDs and on the methodologies available for exosome isolation, analysis, and characterization.
Collapse
Affiliation(s)
- Marta Zarà
- Unit of Brain-Heart axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (P.A.); (L.S.)
| | - Patrizia Amadio
- Unit of Brain-Heart axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (P.A.); (L.S.)
| | - Jeness Campodonico
- Intensive Cardiac Care Unit, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy;
| | - Leonardo Sandrini
- Unit of Brain-Heart axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (P.A.); (L.S.)
| | - Silvia S. Barbieri
- Unit of Brain-Heart axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (P.A.); (L.S.)
| |
Collapse
|
160
|
de Abreu RC, Fernandes H, da Costa Martins PA, Sahoo S, Emanueli C, Ferreira L. Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nat Rev Cardiol 2020; 17:685-697. [PMID: 32483304 PMCID: PMC7874903 DOI: 10.1038/s41569-020-0389-5] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of natural particles that are relevant to the treatment of cardiovascular diseases. These endogenous vesicles have certain properties that allow them to survive in the extracellular space, bypass biological barriers and deliver their biologically active molecular cargo to recipient cells. Moreover, EVs can be bioengineered to increase their stability, bioactivity, presentation to acceptor cells and capacity for on-target binding at both cell-type-specific and tissue-specific levels. Bioengineering of EVs involves the modification of the donor cell before EV isolation or direct modification of the EV properties after isolation. The therapeutic potential of native EVs and bioengineered EVs has been only minimally explored in the context of cardiovascular diseases. Efforts to harness the therapeutic potential of EVs will require innovative approaches and a comprehensive integration of knowledge gathered from decades of research into molecular-compound delivery. In this Review, we outline the endogenous properties of EVs that make them natural delivery agents as well as the features that can be improved by bioengineering. We also discuss the therapeutic applications of native and bioengineered EVs to cardiovascular diseases and examine the opportunities and challenges that need to be addressed to advance this research area, with an emphasis on clinical translation.
Collapse
Affiliation(s)
- Ricardo Cerqueira de Abreu
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.,Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, Netherlands.,CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Hugo Fernandes
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paula A da Costa Martins
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.,Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, Netherlands
| | - Susmita Sahoo
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Lino Ferreira
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
161
|
Zhang TR, Huang WQ. Angiogenic Exosome-Derived microRNAs: Emerging Roles in Cardiovascular Disease. J Cardiovasc Transl Res 2020; 14:824-840. [PMID: 33104961 DOI: 10.1007/s12265-020-10082-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Angiogenesis is the process of growing endothelial capillary cells. Exosomes are extracellular vesicles that are rich in miRNAs. Studies have shown that exosomes can carry communication between cells and various tissues by delivering miRNAs to their target organs and cells. It has been repeatedly proven that miRNAs regulate the expression of growth factors and other proteins in endothelial cells through paracrine signalling and participate in the physiological and pathological processes of angiogenesis. In the diagnosis and treatment of diseases, exosome-derived microRNAs can play important roles as biomarkers and drug carriers. In this review, we introduce the characteristics of miRNAs and exosomes and their interactions. Then, we specifically summarize the exosome-derived miRNAs related to angiogenesis, and we discuss the potential uses of exosome-derived miRNAs for diagnosing and treating cardiovascular diseases. Graphical abstract.
Collapse
Affiliation(s)
- Tian-Rong Zhang
- Department of Geriatric Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Disease Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, The Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wei-Qiang Huang
- Department of Geriatric Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Disease Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, The Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
162
|
Menasché P. Cell Therapy With Human ESC-Derived Cardiac Cells: Clinical Perspectives. Front Bioeng Biotechnol 2020; 8:601560. [PMID: 33195177 PMCID: PMC7649799 DOI: 10.3389/fbioe.2020.601560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
In the ongoing quest for the “ideal” cell type for heart repair, pluripotent stem cells (PSC) derived from either embryonic or reprogrammed somatic cells have emerged as attractive candidates because of their unique ability to give rise to lineage-specific cells and to transplant them at the desired stage of differentiation. The technical obstacles which have initially hindered their clinical use have now been largely overcome and several trials are under way which encompass several different diseases, including heart failure. So far, there have been no safety warning but it is still too early to draw definite conclusions regarding efficacy. In parallel, mechanistic studies suggest that the primary objective of “remuscularizing” the heart with PSC-derived cardiac cells can be challenged by their alternate use as ex vivo sources of a biologically active extracellular vesicle-enriched secretome equally able to improve heart function through harnessing endogenous repair pathways. The exclusive use of this secretome would combine the advantages of a large-scale production more akin to that of a biological medication, the likely avoidance of cell-associated immune and tumorigenicity risks and the possibility of intravenous infusions compatible with repeated dosing.
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Paris, France.,PARCC, INSERM, University of Paris, Paris, France
| |
Collapse
|
163
|
Zwi-Dantsis L, Winter CW, Kauscher U, Ferrini A, Wang B, Whittaker TE, Hood SR, Terracciano CM, Stevens MM. Highly purified extracellular vesicles from human cardiomyocytes demonstrate preferential uptake by human endothelial cells. NANOSCALE 2020; 12:19844-19854. [PMID: 32969445 PMCID: PMC7610784 DOI: 10.1039/d0nr04278a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Extracellular vesicles (EVs) represent a promising cell-free alternative for treatment of cardiovascular diseases. Nevertheless, the lack of standardised and reproducible isolation methods capable of recovering pure, intact EVs presents a significant obstacle. Additionally, there is significant interest in investigating the interactions of EVs with different cardiac cell types. Here we established a robust technique for the production and isolation of EVs harvested from an enriched (>97% purity) population of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) with size exclusion chromatography. Utilizing an advanced fluorescence labelling strategy, we then investigated the interplay of the CM-EVs with the three major cellular components of the myocardium (fibroblasts, cardiomyocytes and endothelial cells) and identified that cardiac endothelial cells show preferential uptake of these EVs. Overall, our findings provide a great opportunity to overcome the translational hurdles associated with the isolation of intact, non-aggregated human iPSC-CM EVs at high purity. Furthermore, understanding in detail the interaction of the secreted EVs with their surrounding cells in the heart may open promising new avenues in the field of EV engineering for targeted delivery in cardiac regeneration.
Collapse
Affiliation(s)
- Limor Zwi-Dantsis
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College London, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Large Animal Models of Cell-Free Cardiac Regeneration. Biomolecules 2020; 10:biom10101392. [PMID: 33003617 PMCID: PMC7600588 DOI: 10.3390/biom10101392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022] Open
Abstract
The adult mammalian heart lacks the ability to sufficiently regenerate itself, leading to the progressive deterioration of function and heart failure after ischemic injuries such as myocardial infarction. Thus far, cell-based therapies have delivered unsatisfactory results, prompting the search for cell-free alternatives that can induce the heart to repair itself through cardiomyocyte proliferation, angiogenesis, and advantageous remodeling. Large animal models are an invaluable step toward translating basic research into clinical applications. In this review, we give an overview of the state-of-the-art in cell-free cardiac regeneration therapies that have been tested in large animal models, mainly pigs. Cell-free cardiac regeneration therapies involve stem cell secretome- and extracellular vesicles (including exosomes)-induced cardiac repair, RNA-based therapies, mainly regarding microRNAs, but also modified mRNA (modRNA) as well as other molecules including growth factors and extracellular matrix components. Various methods for the delivery of regenerative substances are used, including adenoviral vectors (AAVs), microencapsulation, and microparticles. Physical stimulation methods and direct cardiac reprogramming approaches are also discussed.
Collapse
|
165
|
Kesidou D, da Costa Martins PA, de Windt LJ, Brittan M, Beqqali A, Baker AH. Extracellular Vesicle miRNAs in the Promotion of Cardiac Neovascularisation. Front Physiol 2020; 11:579892. [PMID: 33101061 PMCID: PMC7546892 DOI: 10.3389/fphys.2020.579892] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide claiming almost 17. 9 million deaths annually. A primary cause is atherosclerosis within the coronary arteries, which restricts blood flow to the heart muscle resulting in myocardial infarction (MI) and cardiac cell death. Despite substantial progress in the management of coronary heart disease (CHD), there is still a significant number of patients developing chronic heart failure post-MI. Recent research has been focused on promoting neovascularisation post-MI with the ultimate goal being to reduce the extent of injury and improve function in the failing myocardium. Cardiac cell transplantation studies in pre-clinical models have shown improvement in cardiac function; nonetheless, poor retention of the cells has indicated a paracrine mechanism for the observed improvement. Cell communication in a paracrine manner is controlled by various mechanisms, including extracellular vesicles (EVs). EVs have emerged as novel regulators of intercellular communication, by transferring molecules able to influence molecular pathways in the recipient cell. Several studies have demonstrated the ability of EVs to stimulate angiogenesis by transferring microRNA (miRNA, miR) molecules to endothelial cells (ECs). In this review, we describe the process of neovascularisation and current developments in modulating neovascularisation in the heart using miRNAs and EV-bound miRNAs. Furthermore, we critically evaluate methods used in cell culture, EV isolation and administration.
Collapse
Affiliation(s)
- Despoina Kesidou
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Paula A. da Costa Martins
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
- Faculty of Health, Medicine and Life Sciences, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Leon J. de Windt
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Abdelaziz Beqqali
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew Howard Baker
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
166
|
Dong J, Wu Y, Zhang Y, Yu M, Tian W. Comparison of the Therapeutic Effect of Allogeneic and Xenogeneic Small Extracellular Vesicles in Soft Tissue Repair. Int J Nanomedicine 2020; 15:6975-6991. [PMID: 33061363 PMCID: PMC7519865 DOI: 10.2147/ijn.s269069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/19/2020] [Indexed: 02/05/2023] Open
Abstract
Purpose Small extracellular vesicles (sEV) are a heterogeneous group of vesicles that consist of proteins, lipids and miRNA molecules derived from the cell of origin. Although xenogeneic sEV have been applied for soft tissue regeneration successfully, the regeneration effect of allogeneic and xenogeneic sEV has not been compared systematically. Methods Our previous study has shown that sEV derived from rat adipose tissue successfully induced neoadipose regeneration. In this study, sEV were isolated from rat adipose tissue (r-sEV-AT) and porcine adipose tissue (p-sEV-AT), the morphology, size distribution and marker proteins expression of r-sEV-AT and p-sEV-AT were characterized. Besides, the sEV/AT ratio was evaluated and compared between r-sEV-AT and p-sEV-AT. Rat adipose-derived stromal/stem cells (rASCs) and rat aorta endothelial cells (rECs) were adopted to test the cellular response to allogeneic and xenogeneic sEV-AT. The effects of allogeneic and xenogeneic sEV-AT on host cells migration and neoadipose formation were evaluated in a subcutaneous custom-designed model. A full-thickness skin wound healing model was used to further compare the ability of allogeneic and xenogeneic sEV-AT in inducing complex soft tissue regeneration. Results p-sEV-AT showed similar morphology and size distribution to r-sEV-AT. Marker proteins of sEV were detected in both r-sEV-AT and p-sEV-AT. The sEV/AT ratio of porcine was slightly higher than that of rat. The effects of r-sEV-AT and p-sEV-AT on the differentiation of rASCs and rECs showed no significant difference. When allogeneic and xenogeneic sEV-AT were subcutaneously implanted into the back of SD rats, the host cells chemotactic infiltration was observed in 1 week and neoadipose tissue formation was induced in 8 weeks; no significant difference was observed between allogeneic and xenogeneic sEV-AT. For complex soft tissue regeneration, both allogeneic and xenogeneic sEV-AT significantly promoted wound re-epithelialization, granulation tissue formation and hair follicle regeneration and then accelerated skin wound healing. Conclusion Our results demonstrated that sEV derived from the same tissues of different species might be loaded with similar therapeutic substance benefitting tissue repair and regeneration, and paved the way for future research aimed at xenogeneic sEV application.
Collapse
Affiliation(s)
- Jia Dong
- State Key Laboratory of Oral Disease, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yue Wu
- State Key Laboratory of Oral Disease, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, Hunan, People's Republic of China
| | - Yan Zhang
- State Key Laboratory of Oral Disease, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Mei Yu
- State Key Laboratory of Oral Disease, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Disease, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
167
|
Shimada BK, Yang Y, Zhu J, Wang S, Suen A, Kronstadt SM, Jeyaram A, Jay SM, Zou L, Chao W. Extracellular miR-146a-5p Induces Cardiac Innate Immune Response and Cardiomyocyte Dysfunction. Immunohorizons 2020; 4:561-572. [PMID: 32958516 PMCID: PMC7754174 DOI: 10.4049/immunohorizons.2000075] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 08/28/2020] [Indexed: 11/19/2022] Open
Abstract
Previous studies have demonstrated that transient myocardial ischemia leads to release of cellular nucleic acids such as RNA. Extracellular RNA reportedly plays a pivotal role in myocardial inflammation and ischemic injury in animals. RNA profiling has identified that numerous microRNA (miRNAs), such as ss-miR-146a-5p, are upregulated in plasma following myocardial ischemia, and certain uridine-rich miRNAs exhibit strong proinflammatory effects in immune cells via ssRNA-sensing mechanism. However, the effect of extracellular miRNAs on myocardial inflammation and cardiac cell function remains unknown. In this study, we treated adult mouse cardiomyocytes with miR-146a-5p loaded in extracellular vesicles and observed a dose- and TLR7-dependent production of CXCL-2, IL-6, and TNF-α. In vivo, a single dose of myocardial injection of miR-146a-5p induced both cytokine expression (CXCL2, IL-6, and TNF-α) and innate immune cell activation (CD45+ leukocytes, Ly6Cmid+ monocytes, Ly6G+ neutrophils), which was significantly attenuated in the hearts of TLR7 KO mice. We discovered that conditioned media from miR-146a-treated macrophages stimulated proinflammatory cytokine production in adult cardiomyocytes and significantly inhibited their sarcomere shortening. Finally, using an electric cell impedance-sensing assay, we found that the conditioned media from miR-146a-treated cardiac fibroblasts or cardiomyocytes impaired the barrier function of coronary artery endothelial cells. Taken together, these data demonstrate that extracellular miR-146a-5p activates multiple cardiac cells and induces myocardial inflammation and cardiomyocyte dysfunction via intercellular interaction and innate immune TLR7 nucleic acid sensing.
Collapse
Affiliation(s)
- Briana K Shimada
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Yang Yang
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Jing Zhu
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Sheng Wang
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Andrew Suen
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20740
| | - Anjana Jeyaram
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20740
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20740
| | - Lin Zou
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201; and
| |
Collapse
|
168
|
Song Y, Kim Y, Ha S, Sheller-Miller S, Yoo J, Choi C, Park CH. The emerging role of exosomes as novel therapeutics: Biology, technologies, clinical applications, and the next. Am J Reprod Immunol 2020; 85:e13329. [PMID: 32846024 PMCID: PMC7900947 DOI: 10.1111/aji.13329] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
The extracellular vesicles (EVs) research area has grown rapidly because of their pivotal roles in intercellular communications and maintaining homeostasis of individual organism. As a subtype of EVs, exosomes are made via unique biogenesis pathway and exhibit disparate functional and phenotypic characteristics. Functionally, exosomes transfer biological messages from donor cell to recipient cell, which makes exosomes as a novel therapeutic platform delivering therapeutic materials to the target tissue/cell. Currently, both academia and industry try to develop exosome platform‐based therapeutics for disease management, some of which are already in clinical trials. In this review, we will discuss focusing on therapeutic values of exosomes, recent advances in therapeutic exosome platform development, and late development of exosome therapeutics in diverse therapeutic areas.
Collapse
Affiliation(s)
| | | | - Sunhyung Ha
- ILIAS Biologics Inc, Daejeon, Republic of Korea
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | | | - Chulhee Choi
- ILIAS Biologics Inc, Daejeon, Republic of Korea.,Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | | |
Collapse
|
169
|
He X, Wang Q, Zhao Y, Zhang H, Wang B, Pan J, Li J, Yu H, Wang L, Dai J, Wang D. Effect of Intramyocardial Grafting Collagen Scaffold With Mesenchymal Stromal Cells in Patients With Chronic Ischemic Heart Disease: A Randomized Clinical Trial. JAMA Netw Open 2020; 3:e2016236. [PMID: 32910197 PMCID: PMC7489863 DOI: 10.1001/jamanetworkopen.2020.16236] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IMPORTANCE Cell therapy may be helpful for cardiac disease but has been fraught with poor cell retention and survival after transplantation. OBJECTIVE To determine whether cell-laden hydrogel treatment is safe and feasible for patients with chronic ischemic heart disease (CIHD). DESIGN, SETTING, AND PARTICIPANTS This randomized, double-blind clinical trial was conducted between March 1, 2016, and August 31, 2019, at a single hospital in Nanjing, China. Among 115 eligible patients with CIHD, 50 patients with left ventricular ejection fraction of 45% or less were selected to receive elective coronary artery bypass grafting (CABG) and additionally randomized to cell-plus-collagen treatment (collagen/cell group), cell treatment alone (cell group), or a control group. Sixty-five patients were excluded because of severe comorbidities or unwillingness to participate. Forty-four participants (88%) completed the study. The last patient completed 12 months of follow-up in August 2019. Analyses were prespecified and included all patients with available data. INTERVENTIONS During CABG, patients in the collagen/cell group were treated with human umbilical cord-derived mesenchymal stromal cell (hUC-MSC)-laden collagen hydrogel intramyocardial injection, and the cell group was treated with hUC-MSCs alone. Patients in the control group underwent CABG alone. MAIN OUTCOMES AND MEASURES The primary outcome was safety of the cell-laden collagen hydrogel assessed by the incidence of serious adverse events. The secondary end point was the efficacy of treatment, according to cardiovascular magnetic resonance imaging-based left ventricular ejection fraction and infarct size. RESULTS Fifty patients (mean [SD] age, 62.6 [8.3] years; 38 men [76%]) were enrolled, of whom 18 were randomized to the collagen/cell group, 17 to the cell group, and 15 to the control group. Patient characteristics did not differ among groups at baseline. For the primary end point, no significant differences in serious adverse events, myocardial damage markers, and renal or liver function were observed among all groups after treatment; the collagen/cell and cell groups each had 1 case of hospitalization because of heart failure, and no serious adverse events were seen in the control group. At 12 months after treatment, the mean infarct size percentage change was -3.1% (95% CI, -6.20% to -0.02%; P = .05) in the collagen/cell group, 5.19% (-1.85% to 12.22%, P = .35) in the cell group, and 8.59% (-3.06% to 20.25%, P = .21) in the control group. CONCLUSIONS AND RELEVANCE This study provides, to our knowledge, the first clinical evidence that the use of collagen hydrogel is safe and feasible for cell delivery. These findings provide a basis for larger clinical studies. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02635464.
Collapse
Affiliation(s)
- Xiaojun He
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qiang Wang
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yannan Zhao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - He Zhang
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Bin Wang
- Center for Clinical Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jun Pan
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jie Li
- Department of Cardiology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hongming Yu
- Department of Radiology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Liudi Wang
- Center for Clinical Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jianwu Dai
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
170
|
Nazari-Shafti TZ, Neuber S, Garcia Duran A, Xu Z, Beltsios E, Seifert M, Falk V, Stamm C. Human mesenchymal stromal cells and derived extracellular vesicles: Translational strategies to increase their proangiogenic potential for the treatment of cardiovascular disease. Stem Cells Transl Med 2020; 9:1558-1569. [PMID: 32761804 PMCID: PMC7695640 DOI: 10.1002/sctm.19-0432] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) offer great potential for the treatment of cardiovascular diseases (CVDs) such as myocardial infarction and heart failure. Studies have revealed that the efficacy of MSCs is mainly attributed to their capacity to secrete numerous trophic factors that promote angiogenesis, inhibit apoptosis, and modulate the immune response. There is growing evidence that MSC‐derived extracellular vesicles (EVs) containing a cargo of lipids, proteins, metabolites, and RNAs play a key role in this paracrine mechanism. In particular, encapsulated microRNAs have been identified as important positive regulators of angiogenesis in pathological settings of insufficient blood supply to the heart, thus opening a new path for the treatment of CVD. In the present review, we discuss the current knowledge related to the proangiogenic potential of MSCs and MSC‐derived EVs as well as methods to enhance their biological activities for improved cardiac tissue repair. Increasing our understanding of mechanisms supporting angiogenesis will help optimize future approaches to CVD intervention.
Collapse
Affiliation(s)
- Timo Z Nazari-Shafti
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Neuber
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ana Garcia Duran
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Zhiyi Xu
- Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eleftherios Beltsios
- Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Seifert
- Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Division of Cardiovascular Surgery, University of Zurich, Zurich, Switzerland
| | - Christof Stamm
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
171
|
Bheri S, Hoffman JR, Park HJ, Davis ME. Biomimetic nanovesicle design for cardiac tissue repair. Nanomedicine (Lond) 2020; 15:1873-1896. [PMID: 32752925 DOI: 10.2217/nnm-2020-0097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is a major cause of mortality and morbidity worldwide. Exosome therapies are promising for cardiac repair. Exosomes transfer cargo between cells, have high uptake by native cells and are ideal natural carriers for proteins and nucleic acids. Despite their proreparative potential, exosome production is dependent on parent cell state with typically low yields and cargo variability. Therefore, there is potential value in engineering exosomes to maximize their benefits by delivering customized, potent cargo for cardiovascular disease. Here, we outline several methods of exosome engineering focusing on three important aspects: optimizing cargo, homing to target tissue and minimizing clearance. Finally, we put these methods in context of the cardiac field and discuss the future potential of vesicle design.
Collapse
Affiliation(s)
- Sruti Bheri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Jessica R Hoffman
- Molecular & Systems Pharmacology Graduate Training Program, Graduate Division of Biological & Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Hyun-Ji Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA 30332, USA.,Department of Pediatrics, Division of Pediatric Cardiology, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
172
|
Constantinou C, Miranda AMA, Chaves P, Bellahcene M, Massaia A, Cheng K, Samari S, Rothery SM, Chandler AM, Schwarz RP, Harding SE, Punjabi P, Schneider MD, Noseda M. Human pluripotent stem cell-derived cardiomyocytes as a target platform for paracrine protection by cardiac mesenchymal stromal cells. Sci Rep 2020; 10:13016. [PMID: 32747668 PMCID: PMC7400574 DOI: 10.1038/s41598-020-69495-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemic heart disease remains the foremost cause of death globally, with survivors at risk for subsequent heart failure. Paradoxically, cell therapies to offset cardiomyocyte loss after ischemic injury improve long-term cardiac function despite a lack of durable engraftment. An evolving consensus, inferred preponderantly from non-human models, is that transplanted cells benefit the heart via early paracrine signals. Here, we tested the impact of paracrine signals on human cardiomyocytes, using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) as the target of mouse and human cardiac mesenchymal stromal cells (cMSC) with progenitor-like features. In co-culture and conditioned medium studies, cMSCs markedly inhibited human cardiomyocyte death. Little or no protection was conferred by mouse tail tip or human skin fibroblasts. Consistent with the results of transcriptomic profiling, functional analyses showed that the cMSC secretome suppressed apoptosis and preserved cardiac mitochondrial transmembrane potential. Protection was independent of exosomes under the conditions tested. In mice, injecting cMSC-conditioned media into the infarct border zone reduced apoptotic cardiomyocytes > 70% locally. Thus, hPSC-CMs provide an auspicious, relevant human platform to investigate extracellular signals for cardiac muscle survival, substantiating human cardioprotection by cMSCs, and suggesting the cMSC secretome or its components as potential cell-free therapeutic products.
Collapse
Affiliation(s)
- Chrystalla Constantinou
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Antonio M A Miranda
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK
| | - Patricia Chaves
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK
| | - Mohamed Bellahcene
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK
| | - Andrea Massaia
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK
| | - Kevin Cheng
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Sara Samari
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK
| | - Stephen M Rothery
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Anita M Chandler
- Kardia Therapeutics, Houston, TX, 77030, USA
- Department of Bioengineering, BioScience Research Collaborative, Rice University, Houston, TX, 77005, USA
| | - Richard P Schwarz
- Kardia Therapeutics, Houston, TX, 77030, USA
- CV Ventures, LLC, Blue Bell, PA, 19422, USA
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK
| | - Prakash Punjabi
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK
- Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Michael D Schneider
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK.
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK.
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK.
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
173
|
Prakash A, Crespo-Avilan GE, Hernandez-Resendiz S, Ong SG, Hausenloy DJ. Extracellular vesicles - mediating and delivering cardioprotection in acute myocardial infarction and heart failure. CONDITIONING MEDICINE 2020; 3:227-238. [PMID: 34296067 PMCID: PMC8294590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
New treatments are urgently needed to reduce myocardial infarct size and prevent adverse post-infarct left ventricular remodeling, in order to preserve cardiac function, and prevent the onset of heart failure in patients presenting with acute myocardial infarction (AMI). In this regard, extracellular vesicles (EVs) have emerged as key mediators of cardioprotection. Endogenously produced EVs are known to play crucial roles in maintaining normal cardiac homeostasis and function, by acting as mediators of intercellular communication between different types of cardiac cells. Endogenous EVs have also been shown to contribute to innate cardioprotective strategies such as remote ischemic conditioning. In terms of EV-based therapeutics, stem cell-derived EVs have been shown to confer cardioprotection in a large number of small and large animal AMI models, and have the therapeutic potential to be applied in the clinical setting for the benefit of AMI patients, although several challenges need to be overcome. Finally, EVs may be used as vehicles to deliver therapeutics to the infarcted heart, providing a potential synergist approach to cardioprotection. In this review article, we highlight the various roles that EVs play as mediators and deliverers of cardioprotection, and discuss their therapeutic potential for improving clinical outcomes following AMI.
Collapse
Affiliation(s)
- Aishwarya Prakash
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, Singapore
| | - Gustavo E. Crespo-Avilan
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- Department of Biochemistry, Medical Faculty, Justus Liebig-University, Giessen, Germany
| | - Sauri Hernandez-Resendiz
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| | - Sang-Ging Ong
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Derek J. Hausenloy
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, UK
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan
| |
Collapse
|
174
|
Fu S, Zhang Y, Li Y, Luo L, Zhao Y, Yao Y. Extracellular vesicles in cardiovascular diseases. Cell Death Discov 2020; 6:68. [PMID: 32821437 PMCID: PMC7393487 DOI: 10.1038/s41420-020-00305-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Due to the continued high incidence and mortality rate worldwide, there is still a need to develop new strategies for the prevention, diagnosis and treatment of cardiovascular diseases (CVDs). Proper cardiovascular function depends on the coordinated interplay and communication between cardiomyocytes and noncardiomyocytes. Extracellular vesicles (EVs) are enclosed in a lipid bilayer and represent a significant mechanism for intracellular communication. By containing and transporting various bioactive molecules, such as micro-ribonucleic acids (miRs) and proteins, to target cells, EVs impart favourable, neutral or detrimental effects on recipient cells, such as modulating gene expression, influencing cell phenotype, affecting molecular pathways and mediating biological behaviours. EVs can be released by cardiovascular system-related cells, such as cardiomyocytes, endotheliocytes, fibroblasts, platelets, smooth muscle cells, leucocytes, monocytes and macrophages. EVs containing miRs and proteins regulate a multitude of diverse functions in target cells, maintaining cardiovascular balance and health or inducing pathological changes in CVDs. On the one hand, miRs and proteins transferred by EVs play biological roles in maintaining normal cardiac structure and function under physiological conditions. On the other hand, EVs change the composition of their miR and protein cargoes under pathological conditions, which gives rise to the development of CVDs. Therefore, EVs hold tremendous potential to prevent, diagnose and treat CVDs. The current article reviews the specific functions of EVs in different CVDs.
Collapse
Affiliation(s)
- Shihui Fu
- Department of Geriatric Cardiology, Chinese People’s Liberation Army General Hospital, Beijing, 100853 China
- Department of Cardiology, Hainan Hospital of Chinese People’s Liberation Army General Hospital, Sanya, 572013 China
| | - Yujie Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Yulong Li
- Department of Geriatric Cardiology, Chinese People’s Liberation Army General Hospital, Beijing, 100853 China
| | - Leiming Luo
- Department of Geriatric Cardiology, Chinese People’s Liberation Army General Hospital, Beijing, 100853 China
| | - Yali Zhao
- Central Laboratory, Hainan Hospital of Chinese People’s Liberation Army General Hospital, Sanya, 572013 China
| | - Yao Yao
- Centre for the Study of Ageing and Human Development and Geriatrics Division, Medical School of Duke University, Durham, NC 27708 USA
- Centre for Healthy Ageing and Development Studies, National School of Development, Peking University, Beijing, 100871 China
| |
Collapse
|
175
|
Tang TT, Wang B, Lv LL, Liu BC. Extracellular vesicle-based Nanotherapeutics: Emerging frontiers in anti-inflammatory therapy. Theranostics 2020; 10:8111-8129. [PMID: 32724461 PMCID: PMC7381724 DOI: 10.7150/thno.47865] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022] Open
Abstract
Dysregulated inflammation is a complicated pathological process involved in various diseases, and the treatment of inflammation-linked disorders currently represents an enormous global burden. Extracellular vesicles (EVs) are nanosized, lipid membrane-enclosed vesicles secreted by virtually all types of cells, which act as an important intercellular communicative medium. Considering their capacity to transfer bioactive substances, both unmodified and engineered EVs are increasingly being explored as potential therapeutic agents or therapeutic vehicles. Moreover, as the nature's own delivery tool, EVs possess many desirable advantages, such as stability, biocompatibility, low immunogenicity, low toxicity, and biological barrier permeability. The application of EV-based therapy to combat inflammation, though still in an early stage of development, has profound transformative potential. In this review, we highlight the recent progress in EV engineering for inflammation targeting and modulation, summarize their preclinical applications in the treatment of inflammatory disorders, and present our views on the anti-inflammatory applications of EV-based nanotherapeutics.
Collapse
|
176
|
Popowski K, Lutz H, Hu S, George A, Dinh PU, Cheng K. Exosome therapeutics for lung regenerative medicine. J Extracell Vesicles 2020; 9:1785161. [PMID: 32944172 PMCID: PMC7480570 DOI: 10.1080/20013078.2020.1785161] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes are 30 to 100 nm extracellular vesicles that are secreted by many cell types. Initially viewed as cellular garbage with no biological functions, exosomes are now recognized for their therapeutic potential and used in regenerative medicine. Cell-derived exosomes are released into almost all biological fluids, making them abundant and accessible vesicles for a variety of diseases. These naturally occurring nanoparticles have a wide range of applications including drug delivery and regenerative medicine. Exosomes sourced from a specific tissue have been proven to provide greater therapeutic effects to their native tissue, expanding exosome sources beyond traditional cell lines such as mesenchymal stem cells. However, standardizing production and passing regulations remain obstacles, due to variations in methods and quantification techniques across studies. Additionally, obtaining pure exosomes at sufficient quantities remains difficult due to the heterogeneity of exosomes. In this review, we will underline the uses of exosomes as a therapy and their roles in lung regenerative medicine, as well as current challenges in exosome therapies.
Collapse
Affiliation(s)
- Kristen Popowski
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Halle Lutz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Arianna George
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Phuong-Uyen Dinh
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State
University, NC, USA
- Division of Pharmacoengineering and Molecular
Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC,
USA
| |
Collapse
|
177
|
Saha P, Sharma S, Korutla L, Datla SR, Shoja-Taheri F, Mishra R, Bigham GE, Sarkar M, Morales D, Bittle G, Gunasekaran M, Ambastha C, Arfat MY, Li D, Habertheuer A, Hu R, Platt MO, Yang P, Davis ME, Vallabhajosyula P, Kaushal S. Circulating exosomes derived from transplanted progenitor cells aid the functional recovery of ischemic myocardium. Sci Transl Med 2020; 11:11/493/eaau1168. [PMID: 31118291 DOI: 10.1126/scitranslmed.aau1168] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/11/2018] [Accepted: 04/16/2019] [Indexed: 12/19/2022]
Abstract
The stem cell field is hindered by its inability to noninvasively monitor transplanted cells within the target organ in a repeatable, time-sensitive, and condition-specific manner. We hypothesized that quantifying and characterizing transplanted cell-derived exosomes in the recipient plasma would enable reliable, noninvasive surveillance of the conditional activity of the transplanted cells. To test this hypothesis, we used a human-into-rat xenogeneic myocardial infarction model comparing two well-studied progenitor cell types: cardiosphere-derived cells (CDCs) and c-kit+ cardiac progenitor cells (CPCs), both derived from the right atrial appendage of adults undergoing cardiopulmonary bypass. CPCs outperformed the CDCs in cell-based and in vivo regenerative assays. To noninvasively monitor the activity of transplanted CDCs or CPCs in vivo, we purified progenitor cell-specific exosomes from recipient total plasma exosomes. Seven days after transplantation, the concentration of plasma CPC-specific exosomes increased about twofold compared to CDC-specific exosomes. Computational pathway analysis failed to link CPC or CDC cellular messenger RNA (mRNA) with observed myocardial recovery, although recovery was linked to the microRNA (miRNA) cargo of CPC exosomes purified from recipient plasma. We further identified mechanistic pathways governing specific outcomes related to myocardial recovery associated with transplanted CPCs. Collectively, these findings demonstrate the potential of circulating progenitor cell-specific exosomes as a liquid biopsy that provides a noninvasive window into the conditional state of the transplanted cells. These data implicate the surveillance potential of cell-specific exosomes for allogeneic cell therapies.
Collapse
Affiliation(s)
- Progyaparamita Saha
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sudhish Sharma
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Laxminarayana Korutla
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Srinivasa Raju Datla
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Farnaz Shoja-Taheri
- Wallace H. Coulter Department of Biomedical Engineering and Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rachana Mishra
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Grace E Bigham
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Malini Sarkar
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David Morales
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Gregory Bittle
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Muthukumar Gunasekaran
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chetan Ambastha
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mir Yasir Arfat
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Deqiang Li
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Andreas Habertheuer
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert Hu
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Manu O Platt
- Wallace H. Coulter Department of Biomedical Engineering and Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peixin Yang
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering and Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Sunjay Kaushal
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
178
|
Zhang J, Cui X, Guo J, Cao C, Zhang Z, Wang B, Zhang L, Shen D, Lim K, Woodfield T, Tang J, Zhang J. Small but significant: Insights and new perspectives of exosomes in cardiovascular disease. J Cell Mol Med 2020; 24:8291-8303. [PMID: 32578938 PMCID: PMC7412413 DOI: 10.1111/jcmm.15492] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/17/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a major health problem worldwide, and health professionals are still actively seeking new and effective approaches for CVDs treatment. Presently, extracellular vesicles, particularly exosomes, have gained its popularity for CVDs treatment because of their function as messengers for inter- and extra-cellular communications to promote cellular functions in cardiovascular system. However, as a newly developed field, researchers are still trying to fully understand the role of exosomes, and their mechanism in mediating cardiac repair process. Therefore, a comprehensive review of this topic can be timely and favourable. In this review, we summarized the basic biogenesis and characterization of exosomes and then further extended the focus on the circulating exosomes in cellular communication and stem cell-derived exosomes in cardiac disease treatment. In addition, we covered interactions between the heart and other organs through exosomes, leading to the diagnostic characteristics of exosomes in CVDs. Future perspectives and limitations of exosomes in CVDs were also discussed with a special focus on exploring the potential delivery routes, targeting the injured tissue and engineering novel exosomes, as well as its potential as one novel target in the metabolism-related puzzle.
Collapse
Affiliation(s)
- Jianchao Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Xiaolin Cui
- Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand.,Medical Technologies Center of Research Excellence, Christchurch, New Zealand
| | - Jiacheng Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Chang Cao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Zenglei Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Bo Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Deliang Shen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Khoon Lim
- Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand.,Medical Technologies Center of Research Excellence, Christchurch, New Zealand
| | - Tim Woodfield
- Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand.,Medical Technologies Center of Research Excellence, Christchurch, New Zealand
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Jinying Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| |
Collapse
|
179
|
Roles and Clinical Applications of Exosomes in Cardiovascular Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5424281. [PMID: 32596327 PMCID: PMC7303764 DOI: 10.1155/2020/5424281] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/04/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023]
Abstract
Despite substantial improvements in therapeutic strategies, cardiovascular disease (CVD) is still among the leading causes of mortality and morbidity worldwide. Exosomes, extracellular vesicles with a lipid bilayer membrane of endosomal origin, have been the focus of a large body of research in CVD. Exosomes not only serve as carriers for signal molecules responsible for intercellular and interorgan communication underlying CVD pathophysiology but also are bioactive agents which are partly responsible for the therapeutic effect of stem cell therapy of CVD. We here review recent insights gained into the role of exosomes in apoptosis, hypertrophy, angiogenesis, fibrosis, and inflammation in CVD pathophysiology and progression and the application and mechanisms of exosomes as therapeutic agents for CVD.
Collapse
|
180
|
López E, Marinaro F, de Pedro MDLÁ, Sánchez-Margallo FM, Gómez-Serrano M, Ponath V, Pogge von Strandmann E, Jorge I, Vázquez J, Fernández-Pereira LM, Crisóstomo V, Álvarez V, Casado JG. The Immunomodulatory Signature of Extracellular Vesicles From Cardiosphere-Derived Cells: A Proteomic and miRNA Profiling. Front Cell Dev Biol 2020; 8:321. [PMID: 32582685 PMCID: PMC7295954 DOI: 10.3389/fcell.2020.00321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Experimental data demonstrated that the regenerative potential and immunomodulatory capacity of cardiosphere-derived cells (CDCs) is mediated by paracrine mechanisms. In this process, extracellular vesicles derived from CDCs (EV-CDCs) are key mediators of their therapeutic effect. Considering the future applicability of these vesicles in human diseases, an accurate preclinical-to-clinical translation is needed, as well as an exhaustive molecular characterization of animal-derived therapeutic products. Based on that, the main goal of this study was to perform a comprehensive characterization of proteins and miRNAs in extracellular vesicles from porcine CDCs as a clinically relevant animal model. The analysis was performed by identification and quantification of proteins and miRNA expression profiles. Our results revealed the presence of clusters of immune-related and cardiac-related molecular biomarkers in EV-CDCs. Additionally, considering that priming stem cells with inflammatory stimuli may increase the therapeutic potential of released vesicles, here we studied the dynamic changes that occur in the extracellular vesicles from IFNγ-primed CDCs. These analyses detected statistically significant changes in several miRNAs and proteins. Notably, the increase in interleukin 6 (IL6) protein, as well as the increase in mir-125b (that targets IL6 receptor) was especially relevant. These results suggest a potential involvement of EV-CDCs in the regulation of the IL6/IL6R axis, with implications in inflammatory-mediated diseases.
Collapse
Affiliation(s)
- Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | | | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - María Gómez-Serrano
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany
| | - Viviane Ponath
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany.,Clinic for Hematology, Oncology, and Immunology, Philipps University, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany.,Clinic for Hematology, Oncology, and Immunology, Philipps University, Marburg, Germany
| | - Inmaculada Jorge
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Verónica Crisóstomo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
181
|
Oh JG, Lee P, Gordon RE, Sahoo S, Kho C, Jeong D. Analysis of extracellular vesicle miRNA profiles in heart failure. J Cell Mol Med 2020; 24:7214-7227. [PMID: 32485073 PMCID: PMC7339231 DOI: 10.1111/jcmm.15251] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) have recently emerged as an important carrier for various genetic materials including microRNAs (miRs). Growing evidences suggested that several miRs transported by EVs were particularly involved in modulating cardiac function. However, it has remained unclear what miRs are enriched in EVs and play an important role in the pathological condition. Therefore, we established the miR expression profiles in EVs from murine normal and failing hearts and consecutively identified substantially altered miRs. In addition, we have performed bioinformatics approach to predict potential cardiac outcomes through the identification of miR targets. Conclusively, we observed approximately 63% of predicted targets were validated with previous reports. Notably, the predicted targets by this approach were often involved in both beneficial and malicious signalling pathways, which may reflect heterogeneous cellular origins of EVs in tissues. Lastly, there has been an active debate on U6 whether it is a proper control. Through further analysis of EV miR profiles, miR‐676 was identified as a superior reference control due to its consistent and abundant expressions. In summary, our results contribute to identifying specific EV miRs for the potential therapeutic targets in heart failure and suggest that miR‐676 as a new reference control for the EV miR studies.
Collapse
Affiliation(s)
- Jae Gyun Oh
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philyoung Lee
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald E Gordon
- Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susmita Sahoo
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Changwon Kho
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Applied Medicine, School of Korean Medicine, Pusan National University, Republic of Korea
| | - Dongtak Jeong
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
182
|
Exosomes: Potential Therapies for Disease via Regulating TLRs. Mediators Inflamm 2020; 2020:2319616. [PMID: 32565722 PMCID: PMC7273472 DOI: 10.1155/2020/2319616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/11/2020] [Accepted: 05/02/2020] [Indexed: 12/22/2022] Open
Abstract
Exosomes are small membrane vesicles that retain various substances such as proteins, nucleic acids, and small RNAs. Exosomes play crucial roles in many physiological and pathological processes, including innate immunity. Innate immunity is an important process that protects the organism through activating pattern recognition receptors (PRRs), which then can induce inflammatory factors to resist pathogen invasion. Toll-like receptor (TLR) is one member of PRRs and is important in pathogen clearance and nervous disease development. Although exosomes and TLRs are two independent materials, abundant evidences imply exosomes can regulate innate immunity through integrating with TLRs. Herein, we review the most recent data regarding exosome regulation of TLR pathways. Specifically, exosome-containing materials can regulate TLR pathways through the interaction with TLRs. This is a new strategy regulating immunity to resist pathogens and therapy diseases, which provide a potential method to cure diseases.
Collapse
|
183
|
Mancuso T, Barone A, Salatino A, Molinaro C, Marino F, Scalise M, Torella M, De Angelis A, Urbanek K, Torella D, Cianflone E. Unravelling the Biology of Adult Cardiac Stem Cell-Derived Exosomes to Foster Endogenous Cardiac Regeneration and Repair. Int J Mol Sci 2020; 21:E3725. [PMID: 32466282 PMCID: PMC7279257 DOI: 10.3390/ijms21103725] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiac remuscularization has been the stated goal of the field of regenerative cardiology since its inception. Along with the refreshment of lost and dysfunctional cardiac muscle cells, the field of cell therapy has expanded in scope encompassing also the potential of the injected cells as cardioprotective and cardio-reparative agents for cardiovascular diseases. The latter has been the result of the findings that cell therapies so far tested in clinical trials exert their beneficial effects through paracrine mechanisms acting on the endogenous myocardial reparative/regenerative potential. The endogenous regenerative potential of the adult heart is still highly debated. While it has been widely accepted that adult cardiomyocytes (CMs) are renewed throughout life either in response to wear and tear and after injury, the rate and origin of this phenomenon are yet to be clarified. The adult heart harbors resident cardiac/stem progenitor cells (CSCs/CPCs), whose discovery and characterization were initially sufficient to explain CM renewal in response to physiological and pathological stresses, when also considering that adult CMs are terminally differentiated cells. The role of CSCs in CM formation in the adult heart has been however questioned by some recent genetic fate map studies, which have been proved to have serious limitations. Nevertheless, uncontested evidence shows that clonal CSCs are effective transplantable regenerative agents either for their direct myogenic differentiation and for their paracrine effects in the allogeneic setting. In particular, the paracrine potential of CSCs has been the focus of the recent investigation, whereby CSC-derived exosomes appear to harbor relevant regenerative and reparative signals underlying the beneficial effects of CSC transplantation. This review focuses on recent advances in our knowledge about the biological role of exosomes in heart tissue homeostasis and repair with the idea to use them as tools for new therapeutic biotechnologies for "cell-less" effective cardiac regeneration approaches.
Collapse
Affiliation(s)
- Teresa Mancuso
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Antonella Barone
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Alessandro Salatino
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Claudia Molinaro
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Fabiola Marino
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Mariangela Scalise
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Michele Torella
- Department of Translational Medical Sciences, AORN dei Colli/Monaldi Hospital, University of Campania “L. Vanvitelli”, Via Leonardo Bianchi, 80131 Naples, Italy;
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “L.Vanvitelli”, 80121 Naples, Italy;
| | - Konrad Urbanek
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Eleonora Cianflone
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| |
Collapse
|
184
|
Zhang G, Zhu Z, Wang H, Yu Y, Chen W, Waqas A, Wang Y, Chen L. Exosomes derived from human neural stem cells stimulated by interferon gamma improve therapeutic ability in ischemic stroke model. J Adv Res 2020; 24:435-445. [PMID: 32551140 PMCID: PMC7289755 DOI: 10.1016/j.jare.2020.05.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
hNSC-Exo presented therapeutic roles in brain ischemic stroke model of rats. IFN-γ preconditioning significantly altered the abilities and contents of hNSC-Exo. IFN-γ-hNSC-Exo shown more therapeutic benefits than hNSC-Exo in vitro and in vivo. Exosomal miRNAs in IFN-γ-hNSC-Exo mediated the potential effects on cell survival.
Transplanted neural stem cells promote neural tissue regeneration and functional recovery primarily by releasing paracrine factors. Exosomes act as important secreted paracrine molecules to deliver therapeutic agents involved in cellular functions. Here, we focused on the role of exosomes (hNSC-Exo) derived from human neural stem cells (hNSCs). We utilized the pro-inflammatory factor interferon gamma (IFN-γ) to induce the generation of altered exosomes (IFN-γ-hNSC-Exo), and compared their roles with those of hNSC-Exo and explored the potential mechanism. Importantly, IFN-γ preconditioning did not affect the secretion, but significantly altered the ability of exosomes derived from hNSCs. Moreover, IFN-γ-hNSC-Exo was functionally superior to hNSC-Exo; showed increased cell proliferation and cell survival and decreased cell apoptosis in vitro. Furthermore, IFN-γ-hNSC-Exo further exerted therapeutic effects (showed better behavioral and structural outcomes) compared to those of hNSCs-Exo in an ischemic stroke rat model. Next-generation sequencing (NGS) revealed specific exosomal miRNAs (hsa-miR-206, hsa-miR-133a-3p and hsa-miR-3656) in IFN-γ-hNSC-Exo with important roles in cell survival. Thus, our findings demonstrate that the inflammatory factor IFN-γ can regulate the functions of exosomes and highlight its role in regulating the application of neural stem cell-derived exosomes.
Collapse
Affiliation(s)
- Guilong Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zhihan Zhu
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Hong Wang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Yongbo Yu
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Wanghao Chen
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Ahmed Waqas
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Yezhong Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
| |
Collapse
|
185
|
Rogers RG, Ciullo A, Marbán E, Ibrahim AG. Extracellular Vesicles as Therapeutic Agents for Cardiac Fibrosis. Front Physiol 2020; 11:479. [PMID: 32528309 PMCID: PMC7255103 DOI: 10.3389/fphys.2020.00479] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Heart disease remains an increasing major public health challenge in the United States and worldwide. A common end-organ feature in diseased hearts is myocardial fibrosis, which stiffens the heart and interferes with normal pump function, leading to pump failure. The development of cells for regenerative therapy has been met with many pitfalls on its path to clinical translation. Recognizing that regenerative cells secrete therapeutically bioactive vesicles has paved the way to circumvent many failures of cell therapy. In this review, we provide an overview of extracellular vesicles (EVs), with a focus on their utility as therapeutic agents for cardiac regeneration. We also highlight the engineering potential of EVs to enhance their therapeutic application.
Collapse
Affiliation(s)
| | | | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | |
Collapse
|
186
|
Dergilev KV, Vasilets ID, Tsokolaeva ZI, Zubkova ES, Parfenova EV. [Perspectives of cell therapy for myocardial infarction and heart failure based on cardiosphere cells]. TERAPEVT ARKH 2020; 92:111-120. [PMID: 32598708 DOI: 10.26442/00403660.2020.04.000634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. In recent years, researchers are attracted to the use of cell therapy based on stem cell and progenitor cells, which has been a promising strategy for cardiac repair after injury. However, conducted research using intracoronary or intramyocardial transplantation of various types of stem/progenitor cells as a cell suspension showed modest efficiency. This is due to the low degree of integration and cell survival after transplantation. To overcome these limitations, the concept of the use of multicellular spheroids modeling the natural microenvironment of cells has been proposed, which allows maintaining their viability and therapeutic properties. It is of great interest to use so-called cardial spheroids (cardiospheres) spontaneously forming three-dimensional structures under low-adhesive conditions, consisting of a heterogeneous population of myocardial progenitor cells and extracellular matrix proteins. This review presents data on methods for creating cardiospheres, directed regulation of their properties and reparative potential, as well as the results of preclinical and clinical studies on their use for the treatment of heart diseases.
Collapse
Affiliation(s)
| | | | - Z I Tsokolaeva
- National Medical Research Center for Cardiology.,Negovsky Scientific Research Institute of General Reanimatology of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
| | - E S Zubkova
- National Medical Research Center for Cardiology
| | - E V Parfenova
- National Medical Research Center for Cardiology.,Lomonosov Moscow State University
| |
Collapse
|
187
|
Singh S, Chakravarty T, Chen P, Akhmerov A, Falk J, Friedman O, Zaman T, Ebinger JE, Gheorghiu M, Marbán L, Marbán E, Makkar RR. Allogeneic cardiosphere-derived cells (CAP-1002) in critically ill COVID-19 patients: compassionate-use case series. Basic Res Cardiol 2020; 115:36. [PMID: 32399655 PMCID: PMC7214858 DOI: 10.1007/s00395-020-0795-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 01/08/2023]
Abstract
There are no definitive therapies for patients with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Therefore, new therapeutic strategies are needed to improve clinical outcomes, particularly in patients with severe disease. This case series explores the safety and effectiveness of intravenous allogeneic cardiosphere-derived cells (CDCs), formulated as CAP-1002, in critically ill patients with confirmed coronavirus disease 2019 (COVID-19). Adverse reactions to CAP-1002, clinical status on the World Health Organization (WHO) ordinal scale, and changes in pro-inflammatory biomarkers and leukocyte counts were analyzed. All patients (n = 6; age range 19-75 years, 1 female) required ventilatory support (invasive mechanical ventilation, n = 5) with PaO2/FiO2 ranging from 69 to 198. No adverse events related to CAP-1002 administration were observed. Four patients (67%) were weaned from respiratory support and discharged from the hospital. One patient remains mechanically ventilated as of April 28th, 2020; all survive. A contemporaneous control group of critically ill COVID-19 patients (n = 34) at our institution showed 18% overall mortality at a similar stage of hospitalization. Ferritin was elevated in all patients at baseline (range of all patients 605.43-2991.52 ng/ml) and decreased in 5/6 patients (range of all patients 252.89-1029.90 ng/ml). Absolute lymphocyte counts were low in 5/6 patients at baseline (range 0.26-0.82 × 103/µl) but had increased in three of these five patients at last follow-up (range 0.23-1.02 × 103/µl). In this series of six critically ill COVID-19 patients, intravenous infusion of CAP-1002 was well tolerated and associated with resolution of critical illness in 4 patients. This series demonstrates the apparent safety of CAP-1002 in COVID-19. While this initial experience is promising, efficacy will need to be further assessed in a randomized controlled trial.
Collapse
Affiliation(s)
- Siddharth Singh
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S. San Vicente Boulevard, Advanced Health Sciences Pavilion, Third Floor, Suite A3100, Los Angeles, CA, 90048, USA
| | - Tarun Chakravarty
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S. San Vicente Boulevard, Advanced Health Sciences Pavilion, Third Floor, Suite A3100, Los Angeles, CA, 90048, USA
| | - Peter Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Akbarshakh Akhmerov
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S. San Vicente Boulevard, Advanced Health Sciences Pavilion, Third Floor, Suite A3100, Los Angeles, CA, 90048, USA
| | - Jeremy Falk
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Oren Friedman
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S. San Vicente Boulevard, Advanced Health Sciences Pavilion, Third Floor, Suite A3100, Los Angeles, CA, 90048, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Tanzira Zaman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Joseph E Ebinger
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S. San Vicente Boulevard, Advanced Health Sciences Pavilion, Third Floor, Suite A3100, Los Angeles, CA, 90048, USA
| | - Mitch Gheorghiu
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S. San Vicente Boulevard, Advanced Health Sciences Pavilion, Third Floor, Suite A3100, Los Angeles, CA, 90048, USA
| | | | - Eduardo Marbán
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S. San Vicente Boulevard, Advanced Health Sciences Pavilion, Third Floor, Suite A3100, Los Angeles, CA, 90048, USA
| | - Raj R Makkar
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S. San Vicente Boulevard, Advanced Health Sciences Pavilion, Third Floor, Suite A3100, Los Angeles, CA, 90048, USA.
| |
Collapse
|
188
|
Lee JR, Park BW, Kim J, Choo YW, Kim HY, Yoon JK, Kim H, Hwang JW, Kang M, Kwon SP, Song SY, Ko IO, Park JA, Ban K, Hyeon T, Park HJ, Kim BS. Nanovesicles derived from iron oxide nanoparticles-incorporated mesenchymal stem cells for cardiac repair. SCIENCE ADVANCES 2020; 6:eaaz0952. [PMID: 32494669 PMCID: PMC7195131 DOI: 10.1126/sciadv.aaz0952] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/12/2020] [Indexed: 05/18/2023]
Abstract
Because of poor engraftment and safety concerns regarding mesenchymal stem cell (MSC) therapy, MSC-derived exosomes have emerged as an alternative cell-free therapy for myocardial infarction (MI). However, the diffusion of exosomes out of the infarcted heart following injection and the low productivity limit the potential of clinical applications. Here, we developed exosome-mimetic extracellular nanovesicles (NVs) derived from iron oxide nanoparticles (IONPs)-incorporated MSCs (IONP-MSCs). The retention of injected IONP-MSC-derived NVs (IONP-NVs) within the infarcted heart was markedly augmented by magnetic guidance. Furthermore, IONPs significantly increased the levels of therapeutic molecules in IONP-MSCs and IONP-NVs, which can reduce the concern of low exosome productivity. The injection of IONP-NVs into the infarcted heart and magnetic guidance induced an early shift from the inflammation phase to the reparative phase, reduced apoptosis and fibrosis, and enhanced angiogenesis and cardiac function recovery. This approach can enhance the therapeutic potency of an MSC-derived NV therapy.
Collapse
Affiliation(s)
- Ju-Ro Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Woo Park
- Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jonghoon Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Yeon Woong Choo
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Han Young Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Kee Yoon
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeok Kim
- Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, Seoul 06591, Republic of Korea
| | - Ji-Won Hwang
- Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, Seoul 06591, Republic of Korea
| | - Mikyung Kang
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Pil Kwon
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seuk Young Song
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - In Ok Ko
- Division of Applied RI, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Ji-Ae Park
- Division of Applied RI, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Taeghwan Hyeon
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul 08826, Republic of Korea
- Institute of Chemical Processes, Institute of Engineering Research, BIOMAX, Seoul National University, Seoul 08826, Republic of Korea
| | - Hun-Jun Park
- Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, Seoul 06591, Republic of Korea
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Corresponding author. (B.-S.K.); (H.-J.P.)
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Chemical Processes, Institute of Engineering Research, BIOMAX, Seoul National University, Seoul 08826, Republic of Korea
- Corresponding author. (B.-S.K.); (H.-J.P.)
| |
Collapse
|
189
|
Turner D, Rieger AC, Balkan W, Hare JM. Clinical-based Cell Therapies for Heart Disease-Current and Future State. Rambam Maimonides Med J 2020; 11:RMMJ.10401. [PMID: 32374254 PMCID: PMC7202446 DOI: 10.5041/rmmj.10401] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Patients have an ongoing unmet need for effective therapies that reverse the cellular and functional damage associated with heart damage and disease. The discovery that ~1%-2% of adult cardiomyocytes turn over per year provided the impetus for treatments that stimulate endogenous repair mechanisms that augment this rate. Preclinical and clinical studies provide evidence that cell-based therapy meets these therapeutic criteria. Recent and ongoing studies are focused on determining which cell type(s) works best for specific patient population(s) and the mechanism(s) by which these cells promote repair. Here we review clinical and preclinical stem cell studies and anticipate future directions of regenerative medicine for heart disease.
Collapse
Affiliation(s)
- Darren Turner
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Angela C. Rieger
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
190
|
The Role of Proteostasis in the Regulation of Cardiac Intercellular Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:279-302. [DOI: 10.1007/978-3-030-38266-7_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
191
|
Dong M, Yang Z, Fang H, Xiang J, Xu C, Zhou Y, Wu Q, Liu J. Aging Attenuates Cardiac Contractility and Affects Therapeutic Consequences for Myocardial Infarction. Aging Dis 2020; 11:365-376. [PMID: 32257547 PMCID: PMC7069457 DOI: 10.14336/ad.2019.0522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiac function of the human heart changes with age. The age-related change of systolic function is subtle under normal conditions, but abrupt under stress or in a pathogenesis state. Aging decreases the cardiac tolerance to stress and increases susceptibility to ischemia, which caused by aging-induced Ca2+ transient impairment and metabolic dysfunction. The changes of contractility proteins and the relative molecules are in a non-linear fashion. Specifically, the expression and activation of cMLCK increase first then fall during ischemia and reperfusion (I/R). This change is responsible for the nonmonotonic contractility alteration in I/R which the underlying mechanism is still unclear. Contractility recovery in I/R is also attenuated by age. The age-related change in cardiac contractility influences the therapeutic effect and intervention timepoint. For most cardiac ischemia therapies, the therapeutic result in the elderly is not identical to the young. Anti-aging treatment has the potential to prevent the development of ischemic injury and improves cardiac function. In this review we discuss the mechanism underlying the contractility changes in the aged heart and age-induced ischemic injury. The potential mechanism underlying the increased susceptibility to ischemic injury in advanced age is highlighted. Furthermore, we discuss the effect of age and the administration time for intervention in cardiac ischemia therapies.
Collapse
Affiliation(s)
- Ming Dong
- Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Guangdong, China
| | - Ziyi Yang
- Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Guangdong, China
| | - Hongcheng Fang
- Shenzhen Shajing Hospital, Affiliated of Guangzhou Medical University, Shenzhen, Guangdong, China
| | - Jiaqing Xiang
- Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Guangdong, China
| | - Cong Xu
- Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Guangdong, China
| | - Yanqing Zhou
- Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Guangdong, China
| | - Qianying Wu
- Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Guangdong, China
| | - Jie Liu
- Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Guangdong, China
| |
Collapse
|
192
|
Nazari-Shafti TZ, Exarchos V, Biefer HRC, Cesarovic N, Meyborg H, Falk V, Emmert MY. MicroRNA Mediated Cardioprotection - Is There a Path to Clinical Translation? Front Bioeng Biotechnol 2020; 8:149. [PMID: 32266222 PMCID: PMC7099408 DOI: 10.3389/fbioe.2020.00149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
In the past 20 years, there have been several approaches to achieve cardioprotection or cardiac regeneration using a vast variety of cell therapies and remote ischemic pre-conditioning (RIPC). To date, substantial proof that either cell therapy or RIPC has the potential for clinically relevant cardiac repair or regeneration of cardiac tissue is still pending. Preclinical trials indicate that the secretome of cells in situ (during RIPC) as well as of transplanted cells may exhibit cardioprotective properties in the acute setting of cardiac injury. The secretome generally consists of cell-specific cytokines and extracellular vesicles (EVs) containing microRNAs (miRNAs). It is currently hypothesized that a subset of known miRNAs play a crucial part in the facilitation of cardioprotective effects. miRNAs are small non-coding RNA molecules that inhibit post-transcriptional translation of messenger RNAs (mRNAs) and play an important role in gene translation regulation. It is also known that one miRNAs usually targets multiple mRNAs. This makes predictability of pharmacokinetics and mechanism of action very difficult and could in part explain the inferior performance of various progenitor cells in clinical studies. Identification of miRNAs involved in cardioprotection and remodeling, the composition of miRNA profiles, and the exact mechanism of action are important to the design of future cell-based but also cell-free cardioprotective therapeutics. This review will give a description of miRNA with cardioprotective properties and a current overview on known mechanism of action and potential missing links. Additionally, we will give an outlook on the potential for clinical translation of miRNAs in the setting of myocardial infarction and heart failure.
Collapse
Affiliation(s)
- Timo Z Nazari-Shafti
- Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Deutsches Zentrum für Herz-und Kreislauferkrankungen, Berlin, Germany
| | - Vasileios Exarchos
- Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany.,Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Héctor Rodriguez Cetina Biefer
- Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany.,Clinic for Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nikola Cesarovic
- Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany.,Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Heike Meyborg
- Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany
| | - Volkmar Falk
- Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany.,Deutsches Zentrum für Herz-und Kreislauferkrankungen, Berlin, Germany.,Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland.,Clinic for Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maximilian Y Emmert
- Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany.,Deutsches Zentrum für Herz-und Kreislauferkrankungen, Berlin, Germany.,Clinic for Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany.,Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
193
|
Balbi C, Costa A, Barile L, Bollini S. Message in a Bottle: Upgrading Cardiac Repair into Rejuvenation. Cells 2020; 9:cells9030724. [PMID: 32183455 PMCID: PMC7140681 DOI: 10.3390/cells9030724] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Ischaemic cardiac disease is associated with a loss of cardiomyocytes and an intrinsic lack of myocardial renewal. Recent work has shown that the heart retains limited cardiomyocyte proliferation, which remains inefficient when facing pathological conditions. While broadly active in the neonatal mammalian heart, this mechanism becomes quiescent soon after birth, suggesting loss of regenerative potential with maturation into adulthood. A key question is whether this temporary regenerative window can be enhanced via appropriate stimulation and further extended. Recently the search for novel therapeutic approaches for heart disease has centred on stem cell biology. The “paracrine effect” has been proposed as a promising strategy to boost endogenous reparative and regenerative mechanisms from within the cardiac tissue by exploiting the modulatory potential of soluble stem cell-secreted factors. As such, growing interest has been specifically addressed towards stem/progenitor cell-secreted extracellular vesicles (EVs), which can be easily isolated in vitro from cell-conditioned medium. This review will provide a comprehensive overview of the current paradigm on cardiac repair and regeneration, with a specific focus on the role and mechanism(s) of paracrine action of EVs from cardiac stromal progenitors as compared to exogenous stem cells in order to discuss the optimal choice for future therapy. In addition, the challenges to overcoming translational EV biology from bench to bedside for future cardiac regenerative medicine will be discussed.
Collapse
Affiliation(s)
- Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland;
| | - Ambra Costa
- Regenerative Medicine Laboratory, Dept. of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Correspondence: (L.B.); (S.B.)
| | - Sveva Bollini
- Regenerative Medicine Laboratory, Dept. of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
- Correspondence: (L.B.); (S.B.)
| |
Collapse
|
194
|
Guo Y, Chen J, Qiu H. Novel Mechanisms of Exercise-Induced Cardioprotective Factors in Myocardial Infarction. Front Physiol 2020; 11:199. [PMID: 32210839 PMCID: PMC7076164 DOI: 10.3389/fphys.2020.00199] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Exercise training has been reported to ameliorate heart dysfunction in both humans and animals after myocardial infarction (MI). Exercise-induced cardioprotective factors have been implicated in mediating cardiac repair under pathological conditions. These protective factors secreted by or enriched in the heart could exert cardioprotective functions in an autocrine or paracrine manner. Extracellular vesicles, especially exosomes, contain key molecules and play an essential role in cell-to-cell communication via delivery of various factors, which may be a novel target to study the mechanism of exercise-induced benefits, besides traditional signaling pathways. This review is designed to demonstrate the function and underlying protective mechanism of exercise-induced cardioprotective factors in MI, with an aim to offer more potential therapeutic targets for MI.
Collapse
Affiliation(s)
- Yuan Guo
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Jingyuan Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haihua Qiu
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| |
Collapse
|
195
|
Takov K, He Z, Johnston HE, Timms JF, Guillot PV, Yellon DM, Davidson SM. Small extracellular vesicles secreted from human amniotic fluid mesenchymal stromal cells possess cardioprotective and promigratory potential. Basic Res Cardiol 2020; 115:26. [PMID: 32146560 PMCID: PMC7060967 DOI: 10.1007/s00395-020-0785-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells (MSCs) exhibit antiapoptotic and proangiogenic functions in models of myocardial infarction which may be mediated by secreted small extracellular vesicles (sEVs). However, MSCs have frequently been harvested from aged or diseased patients, while the isolated sEVs often contain high levels of impurities. Here, we studied the cardioprotective and proangiogenic activities of size-exclusion chromatography-purified sEVs secreted from human foetal amniotic fluid stem cells (SS-hAFSCs), possessing superior functional potential to that of adult MSCs. We demonstrated for the first time that highly pure (up to 1.7 × 1010 particles/µg protein) and thoroughly characterised SS-hAFSC sEVs protect rat hearts from ischaemia-reperfusion injury in vivo when administered intravenously prior to reperfusion (38 ± 9% infarct size reduction, p < 0.05). SS-hAFSC sEVs did not protect isolated primary cardiomyocytes in models of simulated ischaemia-reperfusion injury in vitro, indicative of indirect cardioprotective effects. SS-hAFSC sEVs were not proangiogenic in vitro, although they markedly stimulated endothelial cell migration. Additionally, sEVs were entirely responsible for the promigratory effects of the medium conditioned by SS-hAFSC. Mechanistically, sEV-induced chemotaxis involved phosphatidylinositol 3-kinase (PI3K) signalling, as its pharmacological inhibition in treated endothelial cells reduced migration by 54 ± 7% (p < 0.001). Together, these data indicate that SS-hAFSC sEVs have multifactorial beneficial effects in a myocardial infarction setting.
Collapse
Affiliation(s)
- Kaloyan Takov
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Zhenhe He
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Harvey E Johnston
- EGA Institute for Women's Health, University College London, London, UK
| | - John F Timms
- EGA Institute for Women's Health, University College London, London, UK
| | - Pascale V Guillot
- EGA Institute for Women's Health, University College London, London, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
196
|
Mendez-Fernandez A, Cabrera-Fuentes HA, Velmurugan B, Irei J, Boisvert WA, Lu S, Hausenloy DJ. Nanoparticle delivery of cardioprotective therapies. CONDITIONING MEDICINE 2020; 3:18-30. [PMID: 34268485 PMCID: PMC8279025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acute myocardial infarction (AMI), and the heart failure (HF) that often follows, are leading causes of death and disability worldwide. Crucially, there are currently no effective treatments, other than myocardial reperfusion, for reducing myocardial infarct (MI) size and preventing HF following AMI. Thus, there is an unmet need to discover novel cardioprotective therapies to reduce MI size, and prevent HF in AMI patients. Although a large number of therapies have been shown to reduce MI size in experimental studies, the majority have failed to benefit AMI patients. Failure to deliver cardioprotective therapy to the ischemic heart in sufficient concentrations following AMI is a major factor for the lack of success observed in previous clinical cardioprotection studies. Therefore, new strategies are needed to improve the delivery of cardioprotective therapies to the ischemic heart following AMI. In this regard, nanoparticles have emerged as drug delivery systems for improving the bioavailability, delivery, and release of cardioprotective therapies, and should result in improved efficacy in terms of reducing MI size and preventing HF. In this article, we provide a review of currently available nanoparticles, some of which have been FDA-approved, in terms of their use as drug delivery systems in cardiovascular disease and cardioprotection.
Collapse
Affiliation(s)
- Abraham Mendez-Fernandez
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
- National Heart Research Institute Singapore, National Heart Centre, Singapore
| | - Hector A Cabrera-Fuentes
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- SingHealth Duke-NUS Cardiovascular Sciences Academic Clinical Programme, Duke-National University of Singapore Medical School, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Russian Federation
- Institute of Physiology, Medical School, Justus-Liebig-University, Germany
| | - Bhaarathy Velmurugan
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Jason Irei
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, USA
| | - William A. Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, USA
| | - Shengjie Lu
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- SingHealth Duke-NUS Cardiovascular Sciences Academic Clinical Programme, Duke-National University of Singapore Medical School, Singapore
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- SingHealth Duke-NUS Cardiovascular Sciences Academic Clinical Programme, Duke-National University of Singapore Medical School, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, UK
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan
| |
Collapse
|
197
|
Fan C, Zhang E, Joshi J, Yang J, Zhang J, Zhu W. Utilization of Human Induced Pluripotent Stem Cells for Cardiac Repair. Front Cell Dev Biol 2020; 8:36. [PMID: 32117968 PMCID: PMC7025514 DOI: 10.3389/fcell.2020.00036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/15/2020] [Indexed: 12/18/2022] Open
Abstract
The paracrine effect, mediated by chemical signals that induce a physiological response on neighboring cells in the same tissue, is an important regenerative mechanism for stem cell-based therapy. Exosomes are cell-secreted nanovesicles (50–120 nm) of endosomal origin, and have been demonstrated to be a major contributor to the observed stem cell-mediated paracrine effect in the cardiac repair process. Following cardiac injury, exosomes deriving from exogenous stem cells have been shown to regulate cell apoptosis, proliferation, angiogenesis, and fibrosis in the infarcted heart. Exosomes also play a crucial role in the intercellular communication between donor and recipient cells. Human induced pluripotent stem cells (hiPSCs) are promising cell sources for autologous cell therapy in regenerative medicine. Here, we review recent advances in the field of progenitor-cell derived, exosome-based cardiac repair, with special emphasis on exosomes derived from hiPSCs.
Collapse
Affiliation(s)
- Chengming Fan
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Eric Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jyotsna Joshi
- Department of Cardiovascular Medicine, Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, United States
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Wuqiang Zhu
- Department of Cardiovascular Medicine, Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, United States
| |
Collapse
|
198
|
Haider KH, Aramini B. Mircrining the injured heart with stem cell-derived exosomes: an emerging strategy of cell-free therapy. Stem Cell Res Ther 2020; 11:23. [PMID: 31918755 PMCID: PMC6953131 DOI: 10.1186/s13287-019-1548-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/18/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) have successfully progressed to phase III clinical trials successive to an intensive in vitro and pre-clinical assessment in experimental animal models of ischemic myocardial injury. With scanty evidence regarding their cardiogenic differentiation in the recipient patients' hearts post-engraftment, paracrine secretion of bioactive molecules is being accepted as the most probable underlying mechanism to interpret the beneficial effects of cell therapy. Secretion of small non-coding microRNA (miR) constitutes an integral part of the paracrine activity of stem cells, and there is emerging interest in miRs' delivery to the heart as part of cell-free therapy to exploit their integral role in various cellular processes. MSCs also release membrane vesicles of diverse sizes loaded with a wide array of miRs as part of their paracrine secretions primarily for intercellular communication and to shuttle genetic material. Exosomes can also be loaded with miRs of interest for delivery to the organs of interest including the heart, and hence, exosome-based cell-free therapy is being assessed for cell-free therapy as an alternative to cell-based therapy. This review of literature provides an update on cell-free therapy with primary focus on exosomes derived from BM-derived MSCs for myocardial repair.
Collapse
Affiliation(s)
- Khawaja Husnain Haider
- Sulaiman Alrajhi University, Al-Qaseem, Kingdom of Saudi Arabia
- Department of Basic Sciences, Sulaiman Alrajhi University, PO Box 777, Al Bukairiyah, 51941 Kingdom of Saudi Arabia
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
199
|
Macrophages in cardiac repair: Environmental cues and therapeutic strategies. Exp Mol Med 2019; 51:1-10. [PMID: 31857583 PMCID: PMC6923399 DOI: 10.1038/s12276-019-0269-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/16/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Mammals, in contrast to urodeles and teleost fish, lose the ability to regenerate their hearts soon after birth. Central to this regenerative response are cardiac macrophages, which comprise a heterogeneous population of cells with origins from the yolk sac, fetal liver, and bone marrow. These cardiac macrophages maintain residency in the myocardium through local proliferation and partial replacement over time by circulating monocytes. The intrinsic plasticity of cardiac macrophages in the adult heart promotes dynamic phenotypic changes in response to environmental cues, which may either protect against injury or promote maladaptive remodeling. Thus, therapeutic strategies promoting myocardial repair are warranted. Adult stromal cell-derived exosomes have shown therapeutic promise by skewing macrophages toward a cardioprotective phenotype. While several key exosomal non-coding RNA have been identified, additional factors responsible for cardiomyocyte proliferation remain to be elucidated. Here I review cardiac macrophages in development and following injury, unravel environmental cues modulating macrophage activation, and assess novel approaches for targeted delivery. The human heart may be coaxed toward regeneration by modifying the activity of specialized immune cells known as macrophages. Insight from the regenerating hearts of zebrafish, newt, and neonatal mammals has revealed that macrophages are required to replace scar with functioning heart tissue. As mammals lose the ability to regenerate heart tissue, macrophages mature from a regenerative phenotype towards an immunomodulatory phenotype. By adulthood, heart macrophages comprise a mixed population of cells arising from either early embryonic development or differentiation from white blood cells. In this issue, Dr. Geoffrey de Couto from the Smidt Heart Institute at Cedars-Sinai Medical Center, reviews the role of macrophages in heart repair and therapeutic strategies to enhance their activity. Recent studies suggest that exosomes, which are naturally-released nano-sized vesicles, can re-educate adult macrophages to protect the heart from injury.
Collapse
|
200
|
Yue Y, Wang C, Benedict C, Huang G, Truongcao M, Roy R, Cimini M, Garikipati VNS, Cheng Z, Koch WJ, Kishore R. Interleukin-10 Deficiency Alters Endothelial Progenitor Cell-Derived Exosome Reparative Effect on Myocardial Repair via Integrin-Linked Kinase Enrichment. Circ Res 2019; 126:315-329. [PMID: 31815595 DOI: 10.1161/circresaha.119.315829] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rationale: Systemic inflammation compromises the reparative properties of endothelial progenitor cell (EPC) and their exosomes on myocardial repair, although the underlying mechanism of loss of function of exosomes from inflamed EPCs is still obscure. Objective: To determine the mechanisms of IL-10 (interleukin-10) deficient-EPC-derived exosome dysfunction in myocardial repair and to investigate if modification of specific exosome cargo can rescue reparative activity. Methods and Results: Using IL-10 knockout mice mimicking systemic inflammation condition, we compared therapeutic effect and protein cargo of exosomes isolated from wild-type EPC and IL-10 knockout EPC. In a mouse model of myocardial infarction (MI), wild-type EPC-derived exosome treatment significantly improved left ventricle cardiac function, inhibited cell apoptosis, reduced MI scar size, and promoted post-MI neovascularization, whereas IL-10 knockout EPC-derived exosome treatment showed diminished and opposite effects. Mass spectrometry analysis revealed wild-type EPC-derived exosome and IL-10 knockout EPC-derived exosome contain different protein expression pattern. Among differentially expressed proteins, ILK (integrin-linked kinase) was highly enriched in both IL-10 knockout EPC-derived exosome as well as TNFα (tumor necrosis factor-α)-treated mouse cardiac endothelial cell-derived exosomes (TNFα inflamed mouse cardiac endothelial cell-derived exosome). ILK-enriched exosomes activated NF-κB (nuclear factor κB) pathway and NF-κB-dependent gene transcription in recipient endothelial cells and this effect was partly attenuated through ILK knockdown in exosomes. Intriguingly, ILK knockdown in IL-10 knockout EPC-derived exosome significantly rescued their reparative dysfunction in myocardial repair, improved left ventricle cardiac function, reduced MI scar size, and enhanced post-MI neovascularization in MI mouse model. Conclusions: IL-10 deficiency/inflammation alters EPC-derived exosome function, content and therapeutic effect on myocardial repair by upregulating ILK enrichment in exosomes, and ILK-mediated activation of NF-κB pathway in recipient cells, whereas ILK knockdown in exosomes attenuates NF-κB activation and reduces inflammatory response. Our study provides new understanding of how inflammation may alter stem cell-exosome-mediated cardiac repair and identifies ILK as a target kinase for improving progenitor cell exosome-based cardiac therapies.
Collapse
Affiliation(s)
- Yujia Yue
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Chunlin Wang
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Cindy Benedict
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Grace Huang
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - May Truongcao
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Rajika Roy
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Maria Cimini
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Venkata Naga Srikanth Garikipati
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Zhongjian Cheng
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Walter J Koch
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA.,Department of Pharmacology and Medicine (W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Raj Kishore
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA.,Department of Pharmacology and Medicine (W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|