151
|
Wichter T, Milberg P, Wichter HD, Dechering DG. Pregnancy in arrhythmogenic cardiomyopathy. Herzschrittmacherther Elektrophysiol 2021; 32:186-198. [PMID: 34032905 PMCID: PMC8166670 DOI: 10.1007/s00399-021-00770-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Arrhythmogenic cardiomyopathy (AC) is a rare heart muscle disease with a genetic background and autosomal dominant mode of transmission. The clinical manifestation is characterized by ventricular arrhythmias (VA), heart failure (HF) and the risk of sudden cardiac death (SCD). Pregnancy in young female patients with AC represents a challenging condition for the life and family planning of young affected women. In addition to genetic mechanisms that influence the complex pathophysiology of AC, experimental and clinical data have confirmed the pathogenetic role of strenuous exercise and competitive sports in the early onset and rapid progression of AC symptoms and complications. Pregnancy and exercise share a number of physiological aspects of adaptation. In AC, both result in ventricular volume overload and myocardial stretch. Therefore, pregnancy has been postulated as a potential risk factor for HF, VA, SCD, and pregnancy-related obstetric complications in patients with AC. However, the available evidence on pregnancy in AC does not confirm this hypothesis. In most women with AC, pregnancies are well tolerated, uneventful, and follow a benign course. Pregnancy-related symptoms (VA, syncope, HF) and mortality, as well as obstetric complications, are uncommon in AC patients and range in the order of background populations and cohorts with AC and no pregnancy. The number of completed pregnancies is not associated with an acceleration of AC pathology or an increased risk of VA or HF during pregnancy and follow-up. Accordingly, there is no medical indication to advise against pregnancy in patients with AC. Preconditions include stability of rhythm and hemodynamics at baseline, as well as clinical follow-ups and the availability of multidisciplinary expert consultation during pregnancy and postpartum. Genetic counseling is recommended prior to pregnancy for all couples and their families affected by AC.
Collapse
Affiliation(s)
- Thomas Wichter
- Klinik für Innere Medizin / Kardiologie, Niels-Stensen-Kliniken, Marienhospital Osnabrück, Herzzentrum Osnabrück/Bad Rothenfelde, Bischofsstr. 1, 49074, Osnabrück, Germany.
| | | | | | | |
Collapse
|
152
|
Lao N, Laiq Z, Courson J, Al-Quthami A. Left-dominant arrhythmogenic cardiomyopathy: an association with desmoglein-2 gene mutation-a case report. Eur Heart J Case Rep 2021; 5:ytab213. [PMID: 34263121 PMCID: PMC8274644 DOI: 10.1093/ehjcr/ytab213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/13/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Desmosomes are specialized intercellular adhesive junctions of cardiac and epithelial cells that provide intercellular mechanical coupling through glycoproteins, one of which is desmoglein (DSG). DSG-2 mutations are frequently associated with biventricular arrhythmogenic cardiomyopathy (ACM). We report a case of left-dominant ACM in a patient who initially was misclassified as dilated cardiomyopathy (DCM). CASE SUMMARY A 28-year-old-woman was found to have a moderately reduced left ventricular (LV) systolic function and frequent premature ventricular contractions (PVCs). Targeted genetic testing revealed a heterozygous likely pathogenic variant associated with ACM in exon 15 of the DSG-2 gene (c.3059_3062del; p.Glu1020Alafs*18). Subsequent cardiac magnetic resonance (CMR) imaging showed epicardial and mid-myocardial fatty infiltration involving multiple LV wall segments, multiple areas of mid-myocardial fibrosis/scar, regional dyskinesis involving both ventricles, and an overall reduced left ventricular ejection fraction. The patient's right ventricular (RV) cavity size and overall RV systolic function were normal. Based on the patient's frequent PVCs, family history, fibrofatty myocardial replacement in multiple LV segments, and dyskinetic motion of multiple ventricular wall segments (predominantly affecting the LV), the patient was diagnosed with left-dominant ACM. DISCUSSION Identifying a likely pathogenic mutation associated with ACM in a patient with ventricular arrhythmias and a family history of sudden cardiac death increased the possibility of ACM. Subsequent CMR imaging confirmed the diagnosis of left-dominant ACM by demonstrating regional biventricular dyskinesia and a characteristic pattern of fibrofatty myocardial replacement. Our case highlights the importance of targeted genetic testing and advanced cardiac imaging in distinguishing left-dominant ACM from DCM.
Collapse
Affiliation(s)
- Nicole Lao
- Department of Internal Medicine, Cleveland Clinic Akron General, Akron, 1 Akron General Ave, Akron, OH, USA 44307, USA
| | - Zenab Laiq
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Akron General, Akron, 1 Akron General Ave, Akron, OH, USA 44307, USA
| | - Jeffrey Courson
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Akron General, Akron, 1 Akron General Ave, Akron, OH, USA 44307, USA
| | - Adeeb Al-Quthami
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Akron General, Akron, 1 Akron General Ave, Akron, OH, USA 44307, USA
| |
Collapse
|
153
|
Hagiwara H, Watanabe M, Kamada R, Koya T, Nakao M, Anzai T. Epsilon wave disappearance by catheter ablation for ventricular arrhythmia from the left ventricular outflow tract. HeartRhythm Case Rep 2021; 7:343-346. [PMID: 34026529 PMCID: PMC8134790 DOI: 10.1016/j.hrcr.2021.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Hikaru Hagiwara
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaya Watanabe
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Rui Kamada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taro Koya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Motoki Nakao
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
154
|
Mattesi G, Cipriani A, Bauce B, Rigato I, Zorzi A, Corrado D. Arrhythmogenic Left Ventricular Cardiomyopathy: Genotype-Phenotype Correlations and New Diagnostic Criteria. J Clin Med 2021; 10:jcm10102212. [PMID: 34065276 PMCID: PMC8160676 DOI: 10.3390/jcm10102212] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disease characterized by loss of ventricular myocardium and fibrofatty replacement, which predisposes to scar-related ventricular arrhythmias and sudden cardiac death, particularly in the young and athletes. Although in its original description the disease was characterized by an exclusive or at least predominant right ventricle (RV) involvement, it has been demonstrated that the fibrofatty scar can also localize in the left ventricle (LV), with the LV lesion that can equalize or even overcome that of the RV. While the right-dominant form is typically associated with mutations in genes encoding for desmosomal proteins, other (non-desmosomal) mutations have been showed to cause the biventricular and left-dominant variants. This has led to a critical evaluation of the 2010 International Task Force criteria, which exclusively addressed the right phenotypic manifestations of ACM. An International Expert consensus document has been recently developed to provide upgraded criteria (“the Padua Criteria”) for the diagnosis of the whole spectrum of ACM phenotypes, particularly left-dominant forms, highlighting the use of cardiac magnetic resonance. This review aims to offer an overview of the current knowledge on the genetic basis, the phenotypic expressions, and the diagnosis of left-sided variants, both biventricular and left-dominant, of ACM.
Collapse
|
155
|
Krasic S, Vukomanovic V, Putnik S, Kosutic J, Ninic S, Popovic S, Cerovic I, Prijic S. A Novel Mutation of the Plakophilin-2 Gene in a Child with Early Onset Arrhythmogenic Right Ventricular Cardiomyopathy and Intractable Arrhythmia. Indian J Pediatr 2021; 88:504. [PMID: 33570704 DOI: 10.1007/s12098-021-03679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/21/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Stasa Krasic
- Department of Cardiology, Mother and Child Health Care Institute of Serbia "Dr Vukan Cupic", R. Dakica St. 6-8, Belgrade, 11070, Serbia
| | - Vladislav Vukomanovic
- Department of Cardiology, Mother and Child Health Care Institute of Serbia "Dr Vukan Cupic", R. Dakica St. 6-8, Belgrade, 11070, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Svetozar Putnik
- School of Medicine, University of Belgrade, Belgrade, Serbia.,Department of Cardiac Surgery, Clinical Center of Serbia, Belgrade, Serbia
| | - Jovan Kosutic
- Department of Cardiology, Mother and Child Health Care Institute of Serbia "Dr Vukan Cupic", R. Dakica St. 6-8, Belgrade, 11070, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanja Ninic
- Department of Cardiology, Mother and Child Health Care Institute of Serbia "Dr Vukan Cupic", R. Dakica St. 6-8, Belgrade, 11070, Serbia
| | - Sasa Popovic
- Department of Cardiology, Mother and Child Health Care Institute of Serbia "Dr Vukan Cupic", R. Dakica St. 6-8, Belgrade, 11070, Serbia
| | - Ivana Cerovic
- Department of Cardiology, Mother and Child Health Care Institute of Serbia "Dr Vukan Cupic", R. Dakica St. 6-8, Belgrade, 11070, Serbia
| | - Sergej Prijic
- Department of Cardiology, Mother and Child Health Care Institute of Serbia "Dr Vukan Cupic", R. Dakica St. 6-8, Belgrade, 11070, Serbia. .,School of Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
156
|
Arrhythmogenic Cardiomyopathy Is a Multicellular Disease Affecting Cardiac and Bone Marrow Mesenchymal Stromal Cells. J Clin Med 2021; 10:jcm10091871. [PMID: 33925921 PMCID: PMC8123444 DOI: 10.3390/jcm10091871] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a familial cardiac disorder at high risk of arrhythmic sudden death in the young and athletes. AC is hallmarked by myocardial replacement with fibro-fatty tissue, favoring life-threatening cardiac arrhythmias and contractile dysfunction. The AC pathogenesis is unclear, and the disease urgently needs mechanism-driven therapies. Current AC research is mainly focused on ‘desmosome-carrying’ cardiomyocytes, but desmosomal proteins are also expressed by non-myocyte cells, which also harbor AC variants, including mesenchymal stromal cells (MSCs). Consistently, cardiac-MSCs contribute to adipose tissue in human AC hearts. We thus approached AC as a multicellular disorder, hypothesizing that it also affects extra-cardiac bone marrow (BM)-MSCs. Our results show changes in the desmosomal protein profile of both cardiac- and BM- MSCs, from desmoglein-2 (Dsg2)-mutant mice, accompanied with profound alterations in cytoskeletal organization, which are directly caused by AC-linked DSG2 downregulation. In addition, AC BM-MSCs display increased proliferation rate, both in vitro and in vivo, and, by using the principle of the competition homing assay, we demonstrated that mutant circulating BM-MSCs have increased propensity to migrate to the AC heart. Taken altogether, our results indicate that cardiac- and BM- MSCs are additional cell types affected in Dsg2-linked AC, warranting the novel classification of AC as a multicellular and multiorgan disease.
Collapse
|
157
|
Grassi S, Campuzano O, Coll M, Cazzato F, Sarquella-Brugada G, Rossi R, Arena V, Brugada J, Brugada R, Oliva A. Update on the Diagnostic Pitfalls of Autopsy and Post-Mortem Genetic Testing in Cardiomyopathies. Int J Mol Sci 2021; 22:4124. [PMID: 33923560 PMCID: PMC8074148 DOI: 10.3390/ijms22084124] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023] Open
Abstract
Inherited cardiomyopathies are frequent causes of sudden cardiac death (SCD), especially in young patients. Despite at the autopsy they usually have distinctive microscopic and/or macroscopic diagnostic features, their phenotypes may be mild or ambiguous, possibly leading to misdiagnoses or missed diagnoses. In this review, the main differential diagnoses of hypertrophic cardiomyopathy (e.g., athlete's heart, idiopathic left ventricular hypertrophy), arrhythmogenic cardiomyopathy (e.g., adipositas cordis, myocarditis) and dilated cardiomyopathy (e.g., acquired forms of dilated cardiomyopathy, left ventricular noncompaction) are discussed. Moreover, the diagnostic issues in SCD victims affected by phenotype-negative hypertrophic cardiomyopathy and the relationship between myocardial bridging and hypertrophic cardiomyopathy are analyzed. Finally, the applications/limits of virtopsy and post-mortem genetic testing in this field are discussed, with particular attention to the issues related to the assessment of the significance of the genetic variants.
Collapse
Affiliation(s)
- Simone Grassi
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.C.); (R.R.); (A.O.)
| | - Oscar Campuzano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (O.C.); (M.C.); (J.B.); (R.B.)
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica Girona (IDIBGI), University of Girona, 17190 Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain;
| | - Mònica Coll
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (O.C.); (M.C.); (J.B.); (R.B.)
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica Girona (IDIBGI), University of Girona, 17190 Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain;
| | - Francesca Cazzato
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.C.); (R.R.); (A.O.)
| | - Georgia Sarquella-Brugada
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain;
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain
| | - Riccardo Rossi
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.C.); (R.R.); (A.O.)
| | - Vincenzo Arena
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00147 Rome, Italy;
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Josep Brugada
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (O.C.); (M.C.); (J.B.); (R.B.)
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ramon Brugada
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (O.C.); (M.C.); (J.B.); (R.B.)
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica Girona (IDIBGI), University of Girona, 17190 Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain;
| | - Antonio Oliva
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.C.); (R.R.); (A.O.)
| |
Collapse
|
158
|
James CA, Jongbloed JDH, Hershberger RE, Morales A, Judge DP, Syrris P, Pilichou K, Domingo AM, Murray B, Cadrin-Tourigny J, Lekanne Deprez R, Celeghin R, Protonotarios A, Asatryan B, Brown E, Jordan E, McGlaughon J, Thaxton C, Kurtz CL, van Tintelen JP. International Evidence Based Reappraisal of Genes Associated With Arrhythmogenic Right Ventricular Cardiomyopathy Using the Clinical Genome Resource Framework. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003273. [PMID: 33831308 PMCID: PMC8205996 DOI: 10.1161/circgen.120.003273] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited disease characterized by ventricular arrhythmias and progressive ventricular dysfunction. Genetic testing is recommended, and a pathogenic variant in an ARVC-associated gene is a major criterion for diagnosis according to the 2010 Task Force Criteria. As incorrect attribution of a gene to ARVC can contribute to misdiagnosis, we assembled an international multidisciplinary ARVC Clinical Genome Resource Gene Curation Expert Panel to reappraise all reported ARVC genes. METHODS Following a comprehensive literature search, six 2-member teams conducted blinded independent curation of reported ARVC genes using the semiquantitative Clinical Genome Resource framework. RESULTS Of 26 reported ARVC genes, only 6 (PKP2, DSP, DSG2, DSC2, JUP, and TMEM43) had strong evidence and were classified as definitive for ARVC causation. There was moderate evidence for 2 genes, DES and PLN. The remaining 18 genes had limited or no evidence. RYR2 was refuted as an ARVC gene since clinical data and model systems exhibited a catecholaminergic polymorphic ventricular tachycardia phenotype. In ClinVar, only 5 pathogenic/likely pathogenic variants (1.1%) in limited evidence genes had been reported in ARVC cases in contrast to 450 desmosome gene variants (97.4%). CONCLUSIONS Using the Clinical Genome Resource approach to gene-disease curation, only 8 genes (PKP2, DSP, DSG2, DSC2, JUP, TMEM43, PLN, and DES) had definitive or moderate evidence for ARVC, and these genes accounted for nearly all pathogenic/likely pathogenic ARVC variants in ClinVar. Therefore, only pathogenic/likely pathogenic variants in these 8 genes should yield a major criterion for ARVC diagnosis. Pathogenic/likely pathogenic variants identified in other genes in a patient should prompt further phenotyping as variants in many of these genes are associated with other cardiovascular conditions.
Collapse
Affiliation(s)
- Cynthia A James
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD (C.A.J., B.M., E.B.)
| | - Jan D H Jongbloed
- Department of Genetics, University of Groningen, University Medical Center Groningen, the Netherlands (J.D.H.J.)
| | - Ray E Hershberger
- Division of Cardiovascular Medicine, Department of Internal Medicine (R.E.H., E.J.), Ohio State University, Columbus.,Division of Human Genetics, Department of Internal Medicine (R.E.H., A.M.), Ohio State University, Columbus
| | - Ana Morales
- Division of Human Genetics, Department of Internal Medicine (R.E.H., A.M.), Ohio State University, Columbus
| | - Daniel P Judge
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston (D.P.J.)
| | - Petros Syrris
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, United Kingdom (P.S., A.P.)
| | - Kalliopi Pilichou
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padua, Italy (K.P., R.C.)
| | - Argelia Medeiros Domingo
- Department for Cardiology, Inselspital, Bern University Hospital, University of Bern, Switzerland (A.M.D., B.A.)
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD (C.A.J., B.M., E.B.)
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Centre, Montreal Heart Institute, Université de Montréal, Canada (J.C.-T.)
| | - Ronald Lekanne Deprez
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, the Netherlands (R.L.D., J.P.v.T.)
| | - Rudy Celeghin
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padua, Italy (K.P., R.C.)
| | - Alexandros Protonotarios
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, United Kingdom (P.S., A.P.)
| | - Babken Asatryan
- Department for Cardiology, Inselspital, Bern University Hospital, University of Bern, Switzerland (A.M.D., B.A.)
| | - Emily Brown
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD (C.A.J., B.M., E.B.)
| | - Elizabeth Jordan
- Division of Cardiovascular Medicine, Department of Internal Medicine (R.E.H., E.J.), Ohio State University, Columbus
| | - Jennifer McGlaughon
- Department of Genetics, University of North Carolina, Chapel Hill (J.M., C.T., C.L.K.)
| | - Courtney Thaxton
- Department of Genetics, University of North Carolina, Chapel Hill (J.M., C.T., C.L.K.)
| | - C Lisa Kurtz
- Department of Genetics, University of North Carolina, Chapel Hill (J.M., C.T., C.L.K.)
| | - J Peter van Tintelen
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, the Netherlands (R.L.D., J.P.v.T.).,Department of Genetics, University of Utrecht, University Medical Center Utrecht, the Netherlands (J.P.v.T.)
| |
Collapse
|
159
|
Lie ØH, Chivulescu M, Rootwelt-Norberg C, Ribe M, Bogsrud MP, Lyseggen E, Beitnes JO, Almaas V, Haugaa KH. Left Ventricular Dysfunction in Arrhythmogenic Cardiomyopathy: Association With Exercise Exposure, Genetic Basis, and Prognosis. J Am Heart Assoc 2021; 10:e018680. [PMID: 33821670 PMCID: PMC8174162 DOI: 10.1161/jaha.120.018680] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Arrhythmogenic cardiomyopathy (AC) is characterized by biventricular dysfunction, exercise intolerance, and high risk of ventricular tachyarrhythmias and sudden death. Predisposing factors for left ventricular (LV) disease manifestation and its prognostic implication in AC are poorly described. We aimed to assess the associations of exercise exposure and genotype with LV dysfunction in AC, and to explore the impact of LV disease progression on adverse arrhythmic outcome. Methods and Results We included 168 patients with AC (50% probands, 45% women, 40±16 years old) with 715 echocardiographic exams (4.1±1.7 exams/patient, follow‐up 7.6 [interquartile range (IQR), 5.4–10.9] years) and complete exercise and genetic data in a longitudinal study. LV function by global longitudinal strain was −18.8% [IQR, −19.2% to −18.3%] at presentation and was worse in patients with greater exercise exposure (global longitudinal strain worsening, 0.09% [IQR, 0.01%–0.17%] per 5 MET‐hours/week, P=0.02). LV function by global longitudinal strain worsened, with 0.08% [IQR, 0.05%–0.12%] per year; (P<0.001), and progression was most evident in patients with desmoplakin genotype (P for interaction <0.001). Deterioration of LV function predicted incident ventricular tachyarrhythmia (aborted cardiac arrest, sustained ventricular tachycardia, or implantable cardioverter defibrillator shock) (adjusted odds ratio, 1.1 [IQR, 1.0–1.3] per 1% worsening by global longitudinal strain; P=0.02, adjusted for time and previous arrhythmic events). Conclusions Greater exercise exposure was associated with worse LV function at first visit of patients with AC but did not significantly affect the rate of LV progression during follow‐up. Progression of LV dysfunction was most pronounced in patients with desmoplakin genotypes. Deterioration of LV function during follow‐up predicted subsequent ventricular tachyarrhythmia and should be considered in risk stratification.
Collapse
Affiliation(s)
- Øyvind H Lie
- Department of Cardiology Oslo University Hospital, Rikshospitalet Norway.,Faculty of Medicine Institute of Clinical MedicineUniversity of Oslo Norway
| | - Monica Chivulescu
- Department of Cardiology Oslo University Hospital, Rikshospitalet Norway.,Faculty of Medicine Institute of Clinical MedicineUniversity of Oslo Norway
| | - Christine Rootwelt-Norberg
- Department of Cardiology Oslo University Hospital, Rikshospitalet Norway.,Faculty of Medicine Institute of Clinical MedicineUniversity of Oslo Norway
| | - Margareth Ribe
- Department of Cardiology Oslo University Hospital, Rikshospitalet Norway
| | | | - Erik Lyseggen
- Department of Cardiology Oslo University Hospital, Rikshospitalet Norway
| | - Jan Otto Beitnes
- Department of Cardiology Oslo University Hospital, Rikshospitalet Norway
| | - Vibeke Almaas
- Department of Cardiology Oslo University Hospital, Rikshospitalet Norway
| | - Kristina H Haugaa
- Department of Cardiology Oslo University Hospital, Rikshospitalet Norway.,Faculty of Medicine Institute of Clinical MedicineUniversity of Oslo Norway
| |
Collapse
|
160
|
Ren J, Tsilafakis K, Chen L, Lekkos K, Kostavasili I, Varela A, Cokkinos DV, Davos CH, Sun X, Song J, Mavroidis M. Crosstalk between coagulation and complement activation promotes cardiac dysfunction in arrhythmogenic right ventricular cardiomyopathy. Theranostics 2021; 11:5939-5954. [PMID: 33897891 PMCID: PMC8058736 DOI: 10.7150/thno.58160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Aims: We previously found that complement components are upregulated in the myocardium of patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), and inhibiting the complement receptor C5aR reduces disease severity in desmin knockout (Des-/- ) mice, a model for ARVC. Here, we examined the mechanism underlying complement activation in ARVC, revealing a potential new therapeutic target. Methods: First, immunostaining, RT-PCR and western blot were used to detect the expression levels of complement and coagulation factors. Second, we knocked out the central complement component C3 in Des-/- mice (ARVC model) by crossing Des-/- mice with C3-/- mice to explore whether complement system activation occurs independently of the conventional pathway. Then, we evaluated whether a targeted intervention to coagulation system is effective to reduce myocardium injury. Finally, the plasma sC5b9 level was assessed to investigate the role in predicting adverse cardiac events in the ARVC cohort. Results: The complement system is activated in the myocardium in ARVC. Autoantibodies against myocardial proteins provided a possible mechanism underlying. Moreover, we found increased levels of myocardial C5 and the serum C5a in Des-/-C3-/- mice compared to wild-type mice, indicating that C5 is activated independently from the conventional pathway, presumably via the coagulation system. Crosstalk between the complement and coagulation systems exacerbated the myocardial injury in ARVC mice, and this injury was reduced by using the thrombin inhibitor lepirudin. In addition, we found significantly elevated plasma levels of sC5b9 and thrombin in patients, and this increase was correlated with all-cause mortality. Conclusions: These results suggest that crosstalk between the coagulation and complement systems plays a pathogenic role in cardiac dysfunction in ARVC. Thus, understanding this crosstalk may have important clinical implications with respect to diagnosing and treating ARVC.
Collapse
Affiliation(s)
- Jie Ren
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | | | - Liang Chen
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Konstantinos Lekkos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Ioanna Kostavasili
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Aimilia Varela
- Clinical, Experimental Surgery & Translational Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Dennis V. Cokkinos
- Clinical, Experimental Surgery & Translational Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Constantinos H. Davos
- Clinical, Experimental Surgery & Translational Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Xiaogang Sun
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Jiangping Song
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
161
|
Zoppo F, Gagno G, Perazza L, Cocciolo A, Mugnai G, Vaccari D, Calzolari V. Electroanatomic voltage mapping and characterisation imaging for "right ventricle arrhythmic syndromes" beyond the arrhythmia definition: a comprehensive review. Int J Cardiovasc Imaging 2021; 37:2347-2357. [PMID: 33761057 DOI: 10.1007/s10554-021-02221-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022]
Abstract
Three-dimensional (3D) reconstruction by means of electroanatomic mapping (EAM) systems, allows for the understanding of the mechanism of focal or re-entrant arrhythmic circuits along with pacing techniques. However, besides this conventional use, EAM may offer helpful anatomical and functional information. Data regarding electromechanical scar detection in ischaemic (and nonischaemic) cardiomyopathy are mostly consolidated, while emerging results are becoming available in contexts such as arrhythmogenic right ventricular dysplasia (ARVC/D) definition and Brugada syndrome. As part of an invasive procedure, EAM has not yet been widely adopted as a stand-alone tool in the diagnostic path. We aim to review the current literature regarding the use of 3D EAM systems for right ventricle (RV) functional characterisation beyond the definition of arrhythmia.
Collapse
Affiliation(s)
- Franco Zoppo
- Elettrofisiologia, U.O.C. Di Cardiologia, Ospedale Civile Gorizia, Gorizia, Italy.
| | - Giulia Gagno
- Azienda Sanitaria Universitaria Giuliano Isontina - Dipartimento di Cardiologia Trieste, Trieste, Italy
| | - Luca Perazza
- Elettrofisiologia, U.O.C. Di Cardiologia, Ospedale Civile Gorizia, Gorizia, Italy
| | - Andrea Cocciolo
- Elettrofisiologia, U.O.C. Di Cardiologia, Ospedale Civile Gorizia, Gorizia, Italy
| | - Giacomo Mugnai
- Elettrofisiologia, U.O.C Di Cardiologia, Ospedale Civile Arzignano, Vicenza, Italy
| | - Diego Vaccari
- Elettrofisiologia, U.O.C Di Cardiologia, Ospedale Civile Feltre, Belluno, Italy
| | - Vittorio Calzolari
- Elettrofisiologia, U.O.C Di Cardiologia, Ospedale Civile Treviso, Treviso, Italy
| |
Collapse
|
162
|
Volani C, Rainer J, Hernandes VV, Meraviglia V, Pramstaller PP, Smárason SV, Pompilio G, Casella M, Sommariva E, Paglia G, Rossini A. Metabolic Signature of Arrhythmogenic Cardiomyopathy. Metabolites 2021; 11:metabo11040195. [PMID: 33805952 PMCID: PMC8064316 DOI: 10.3390/metabo11040195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/06/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic-based cardiac disease accompanied by severe ventricular arrhythmias and a progressive substitution of the myocardium with fibro-fatty tissue. ACM is often associated with sudden cardiac death. Due to the reduced penetrance and variable expressivity, the presence of a genetic defect is not conclusive, thus complicating the diagnosis of ACM. Recent studies on human induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) obtained from ACM individuals showed a dysregulated metabolic status, leading to the hypothesis that ACM pathology is characterized by an impairment in the energy metabolism. However, despite efforts having been made for the identification of ACM specific biomarkers, there is still a substantial lack of information regarding the whole metabolomic profile of ACM patients. The aim of the present study was to investigate the metabolic profiles of ACM patients compared to healthy controls (CTRLs). The targeted Biocrates AbsoluteIDQ® p180 assay was used on plasma samples. Our analysis showed that ACM patients have a different metabolome compared to CTRLs, and that the pathways mainly affected include tryptophan metabolism, arginine and proline metabolism and beta oxidation of fatty acids. Altogether, our data indicated that the plasma metabolomes of arrhythmogenic cardiomyopathy patients show signs of endothelium damage and impaired nitric oxide (NO), fat, and energy metabolism.
Collapse
Affiliation(s)
- Chiara Volani
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy; (J.R.); (V.V.H.); (V.M.); (P.P.P.); (S.V.S.); (A.R.)
- Correspondence:
| | - Johannes Rainer
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy; (J.R.); (V.V.H.); (V.M.); (P.P.P.); (S.V.S.); (A.R.)
| | - Vinicius Veri Hernandes
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy; (J.R.); (V.V.H.); (V.M.); (P.P.P.); (S.V.S.); (A.R.)
| | - Viviana Meraviglia
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy; (J.R.); (V.V.H.); (V.M.); (P.P.P.); (S.V.S.); (A.R.)
| | - Peter Paul Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy; (J.R.); (V.V.H.); (V.M.); (P.P.P.); (S.V.S.); (A.R.)
| | - Sigurður Vidir Smárason
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy; (J.R.); (V.V.H.); (V.M.); (P.P.P.); (S.V.S.); (A.R.)
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138 Milan, Italy; (G.P.); (E.S.)
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20138 Milan, Italy
| | - Michela Casella
- Heart Rhythm Center, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy;
- Cardiology and Arrhythmology Clinic, University Hospital Ospedali Riuniti Umberto I-Lancisi-Salesi, 60126 Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Marche Polytechnic University, 60126 Ancona, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138 Milan, Italy; (G.P.); (E.S.)
| | - Giuseppe Paglia
- School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, 20854 Vedano al Lambro, Italy;
| | - Alessandra Rossini
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy; (J.R.); (V.V.H.); (V.M.); (P.P.P.); (S.V.S.); (A.R.)
| |
Collapse
|
163
|
Kamińska H, Małek ŁA, Barczuk-Falęcka M, Bartoszek M, Strzałkowska-Kominiak E, Marszałek M, Brzezik E, Brzewski M, Werner B. The Role of Cardiac Magnetic Resonance in Evaluation of Idiopathic Ventricular Arrhythmia in Children. J Clin Med 2021; 10:jcm10071335. [PMID: 33804813 PMCID: PMC8036515 DOI: 10.3390/jcm10071335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 11/18/2022] Open
Abstract
The aim of the study was to assess the role of cardiovascular magnetic resonance (CMR) in the diagnosis of idiopathic VA in children. This retrospective single-centre study included a total of 80 patients with idiopathic ventricular arrhythmia that underwent routine CMR imaging between 2016 and 2020 at our institution. All patients underwent a 3.0 T scan involving balanced steady-state free precession cine images as well as dark-blood T2W images and assessment of late gadolinium enhancement (LGE). In 26% of patients (n = 21) CMR revealed cardiac abnormalities, in 20% (n = 16) not suspected on prior echocardiography. The main findings included: non-ischemic ventricular scars (n = 8), arrhythmogenic right ventricular cardiomyopathy (n = 6), left ventricular clefts (n = 4) and active myocarditis (n = 3). LGE was present in 57% of patients with abnormal findings. Univariate predictors of abnormal CMR result included abnormalities in echocardiography and severe VA (combination of >10% of 24 h VA burden and/or presence of ventricular tachycardia and/or polymorphic VA). CMR provides valuable clinical information in many cases of idiopathic ventricular arrhythmia in children, mainly due to its advanced tissue characterization capabilities and potential to assess the right ventricle.
Collapse
Affiliation(s)
- Halszka Kamińska
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, 02-091 Warsaw, Poland; (H.K.); (B.W.)
| | - Łukasz A. Małek
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, 04-635 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-815-65-56 (ext. 4861)
| | - Marzena Barczuk-Falęcka
- Department of Pediatric Radiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.B.-F.); (M.B.); (E.B.); (M.B.)
| | - Marta Bartoszek
- Department of Pediatric Radiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.B.-F.); (M.B.); (E.B.); (M.B.)
| | - Ewa Strzałkowska-Kominiak
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland;
| | - Mikołaj Marszałek
- English Division, Medical University of Warsaw, 02-109 Warsaw, Poland;
| | - Ewa Brzezik
- Department of Pediatric Radiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.B.-F.); (M.B.); (E.B.); (M.B.)
| | - Michał Brzewski
- Department of Pediatric Radiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.B.-F.); (M.B.); (E.B.); (M.B.)
| | - Bożena Werner
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, 02-091 Warsaw, Poland; (H.K.); (B.W.)
| |
Collapse
|
164
|
Tokodi M, Staub L, Budai Á, Lakatos BK, Csákvári M, Suhai FI, Szabó L, Fábián A, Vágó H, Tősér Z, Merkely B, Kovács A. Partitioning the Right Ventricle Into 15 Segments and Decomposing Its Motion Using 3D Echocardiography-Based Models: The Updated ReVISION Method. Front Cardiovasc Med 2021; 8:622118. [PMID: 33763458 PMCID: PMC7982839 DOI: 10.3389/fcvm.2021.622118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/08/2021] [Indexed: 12/30/2022] Open
Abstract
Three main mechanisms contribute to global right ventricular (RV) function: longitudinal shortening, radial displacement of the RV free wall (bellows effect), and anteroposterior shortening (as a consequence of left ventricular contraction). Since the importance of these mechanisms may vary in different cardiac conditions, a technology being able to assess their relative influence on the global RV pump function could help to clarify the pathophysiology and the mechanical adaptation of the chamber. Previously, we have introduced our 3D echocardiography (3DE)-based solution-the Right VentrIcular Separate wall motIon quantificatiON (ReVISION) method-for the quantification of the relative contribution of the three aforementioned mechanisms to global RV ejection fraction (EF). Since then, our approach has been applied in several clinical scenarios, and its strengths have been demonstrated in the in-depth characterization of RV mechanical pattern and the prognostication of patients even in the face of maintained RV EF. Recently, various new features have been implemented in our software solution to enable the convenient, standardized, and more comprehensive analysis of RV function. Accordingly, in our current technical paper, we aim to provide a detailed description of the latest version of the ReVISION method with special regards to the volumetric partitioning of the RV and the calculation of longitudinal, circumferential, and area strains using 3DE datasets. We also report the results of the comparison between 3DE- and cardiac magnetic resonance imaging-derived RV parameters, where we found a robust agreement in our advanced 3D metrics between the two modalities. In conclusion, the ReVISION method may provide novel insights into global and also segmental RV function by defining parameters that are potentially more sensitive and predictive compared to conventional echocardiographic measurements in the context of different cardiac diseases.
Collapse
Affiliation(s)
- Márton Tokodi
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | - Ádám Budai
- Department of Automation and Applied Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | | | | | | | - Liliána Szabó
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Alexandra Fábián
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Hajnalka Vágó
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Zoltán Tősér
- Argus Cognitive, Inc., Lebanon, NH, United States
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Attila Kovács
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
165
|
Ghidoni A, Elliott PM, Syrris P, Calkins H, James CA, Judge DP, Murray B, Barc J, Probst V, Schott JJ, Song JP, Hauer RNW, Hoorntje ET, van Tintelen JP, Schulze-Bahr E, Hamilton RM, Mittal K, Semsarian C, Behr ER, Ackerman MJ, Basso C, Parati G, Gentilini D, Kotta MC, Mayosi BM, Schwartz PJ, Crotti L. Cadherin 2-Related Arrhythmogenic Cardiomyopathy: Prevalence and Clinical Features. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003097. [PMID: 33566628 DOI: 10.1161/circgen.120.003097] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disease characterized by fibrofatty replacement of the right and left ventricle, often causing ventricular dysfunction and life-threatening arrhythmias. Variants in desmosomal genes account for up to 60% of cases. Our objective was to establish the prevalence and clinical features of ACM stemming from pathogenic variants in the nondesmosomal cadherin 2 (CDH2), a novel genetic substrate of ACM. METHODS A cohort of 500 unrelated patients with a definite diagnosis of ACM and no disease-causing variants in the main ACM genes was assembled. Genetic screening of CDH2 was performed through next-generation or Sanger sequencing. Whenever possible, cascade screening was initiated in the families of CDH2-positive probands, and clinical evaluation was performed. RESULTS Genetic screening of CDH2 led to the identification of 7 rare variants: 5, identified in 6 probands, were classified as pathogenic or likely pathogenic. The previously established p.D407N pathogenic variant was detected in 2 additional probands. Probands and family members with pathogenic/likely pathogenic variants in CDH2 were clinically evaluated, and along with previously published cases, altogether contributed to the identification of gene-specific features (13 cases from this cohort and 11 previously published, for a total of 9 probands and 15 family members). Ventricular arrhythmic events occurred in most CDH2-positive subjects (20/24, 83%), while the occurrence of heart failure was rare (2/24, 8.3%). Among probands, sustained ventricular tachycardia and sudden cardiac death occurred in 5/9 (56%). CONCLUSIONS In this worldwide cohort of previously genotype-negative ACM patients, the prevalence of probands with CDH2 pathogenic/likely pathogenic variants was 1.2% (6/500). Our data show that this cohort of CDH2-ACM patients has a high incidence of ventricular arrhythmias, while evolution toward heart failure is rare.
Collapse
Affiliation(s)
- Alice Ghidoni
- Center for Cardiac Arrhythmias of Genetic Origin (A.G., M.-C.K., P.J.S., L.C.), Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Perry M Elliott
- Center for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, United Kingdom (P.M.E., P.S.)
| | - Petros Syrris
- Center for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, United Kingdom (P.M.E., P.S.)
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (H.C., C.A.J., B.M.)
| | - Cynthia A James
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (H.C., C.A.J., B.M.)
| | - Daniel P Judge
- Medical University of South Carolina, Charleston, SC (D.P.J.)
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (H.C., C.A.J., B.M.)
| | - Julien Barc
- Université de Nantes (J.B.), CNRS, Inserm, l'Institut du Thorax, France
| | - Vincent Probst
- Université de Nantes, CHU Nantes (V.P., J.J.S.), CNRS, Inserm, l'Institut du Thorax, France.,Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart (V.P., E.S.-B., E.R.B., C.B., P.J.S., L.C.)
| | - Jean Jacques Schott
- Université de Nantes, CHU Nantes (V.P., J.J.S.), CNRS, Inserm, l'Institut du Thorax, France
| | - Jiang-Ping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.-P.S.)
| | - Richard N W Hauer
- Netherlands Heart Institute (R.N.W.H., E.T.H., J.P.v.T.), University Medical Center Utrecht.,Department of Cardiology (R.N.W.H.), University Medical Center Utrecht
| | - Edgar T Hoorntje
- Netherlands Heart Institute (R.N.W.H., E.T.H., J.P.v.T.), University Medical Center Utrecht.,Department of Genetics, University Medical Center Groningen, University of Groningen, the Netherlands (E.T.H.)
| | - J Peter van Tintelen
- Netherlands Heart Institute (R.N.W.H., E.T.H., J.P.v.T.), University Medical Center Utrecht.,Department of Genetics (J.P.v.T.), University Medical Center Utrecht
| | - Eric Schulze-Bahr
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart (V.P., E.S.-B., E.R.B., C.B., P.J.S., L.C.).,Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Germany (E.S.-B.)
| | | | - Kirti Mittal
- Hospital for Sick Children, Toronto, ON, Canada (R.M.H., K.M.)
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, NSW, Australia (C.S.)
| | - Elijah R Behr
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart (V.P., E.S.-B., E.R.B., C.B., P.J.S., L.C.).,Cardiology Clinical Academic Group, Institute of Molecular and Clinical Sciences, St George's University of London, St George's University Hospitals NHS Foundation Trust, London, United Kingdom (E.R.B.)
| | - Michael J Ackerman
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN (M.J.A.)
| | - Cristina Basso
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart (V.P., E.S.-B., E.R.B., C.B., P.J.S., L.C.).,Cardiovascular Pathology Unit, Department of Cardiac, Thoracic and Vascular Sciences, University and Hospital of Padua, Italy (C.B.)
| | - Gianfranco Parati
- Istituto Auxologico Italiano, IRCCS, Cardiomyopathies Unit, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan (G.P., L.C.).,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (G.P., L.C.)
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit (D.G.), Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Italy (D.G.)
| | - Maria-Christina Kotta
- Center for Cardiac Arrhythmias of Genetic Origin (A.G., M.-C.K., P.J.S., L.C.), Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Bongani M Mayosi
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa, Groote Schuur Hospital and Division of Cardiology, Faculty of Health Sciences, University of Cape Town, South Africa (B.M.M.)
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin (A.G., M.-C.K., P.J.S., L.C.), Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart (V.P., E.S.-B., E.R.B., C.B., P.J.S., L.C.)
| | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin (A.G., M.-C.K., P.J.S., L.C.), Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart (V.P., E.S.-B., E.R.B., C.B., P.J.S., L.C.).,Istituto Auxologico Italiano, IRCCS, Cardiomyopathies Unit, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan (G.P., L.C.).,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (G.P., L.C.)
| |
Collapse
|
166
|
Cardiac magnetic resonance in patients with ARVC and family members: the potential role of native T1 mapping. Int J Cardiovasc Imaging 2021; 37:2037-2047. [PMID: 33550486 PMCID: PMC8255264 DOI: 10.1007/s10554-021-02166-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Left ventricular (LV) involvement in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) is not evaluated in the revised Task Force Criteria, possibly leading to underdiagnosis. This study explored the diagnostic role of myocardial native T1 mapping in patients with ARVC and their first-degree relatives. Thirty ARVC patients (47% males, mean age 45 ± 27 years) and 59 first-degree relatives not meeting diagnostic criteria underwent CMR with native T1 mapping. C MR was abnormal in 26 (87%) patients with ARVC. The right ventricle was affected in isolation in 13 (43%) patients. Prior to T1 mapping assessment, 2 (7%) patients exhibited isolated LV involvement and 11 (36%) patients showed features of biventricular disease. Left ventricular involvement was manifest as detectable LV late gadolinium enhancement (LGE) in 12 out of 13 cases. According to pre-specified inter-ventricular septal (IVS) T1 mapping thresholds, 11 (37%) patients revealed raised native T1 values including 5 out of the 17 patients who would otherwise have been classified as exhibiting a normal LV by conventional imaging parameters. Native septal T1 values were elevated in 22 (37%) of the 59 first-degree relatives included. Biventricular involvement is commonly observed in ARVC; native myocardial T1 values are raised in more than one third of patients, including a significant proportion of cases that would have been otherwise classified as exhibiting a normal LV using conventional CMR techniques. The significance of abnormal T1 values in first-degree relatives at risk will need validation through longitudinal studies.
Collapse
|
167
|
Crescenzi C, Zorzi A, Vessella T, Martino A, Panattoni G, Cipriani A, De Lazzari M, Perazzolo Marra M, Fusco A, Sciarra L, Sperandii F, Guerra E, Tranchita E, Fossati C, Pigozzi F, Sarto P, Calò L, Corrado D. Predictors of Left Ventricular Scar Using Cardiac Magnetic Resonance in Athletes With Apparently Idiopathic Ventricular Arrhythmias. J Am Heart Assoc 2020; 10:e018206. [PMID: 33381977 PMCID: PMC7955495 DOI: 10.1161/jaha.120.018206] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background In athletes with ventricular arrhythmias (VA) and otherwise unremarkable clinical findings, cardiac magnetic resonance (CMR) may reveal concealed pathological substrates. The aim of this multicenter study was to evaluate which VA characteristics predicted CMR abnormalities. Methods and Results We enrolled 251 consecutive competitive athletes (74% males, median age 25 [17‐39] years) who underwent CMR for evaluation of VA. We included athletes with >100 premature ventricular beats/24 h or ≥1 repetitive VA (couplets, triplets, or nonsustained ventricular tachycardia) on 12‐lead 24‐hour ambulatory ECG monitoring and negative family history, ECG, and echocardiogram. Features of VA that were evaluated included number, morphology, repetitivity, and response to exercise testing. Left‐ventricular late gadolinium‐enhancement was documented by CMR in 28 (11%) athletes, mostly (n=25) with a subepicardial/midmyocardial stria pattern. On 24‐hour ECG monitoring, premature ventricular beats with multiple morphologies or with right‐bundle‐branch‐block and intermediate/superior axis configuration were documented in 25 (89%) athletes with versus 58 (26%) without late gadolinium‐enhancement (P<0.001). More than 3300 premature ventricular beats were recorded in 4 (14%) athletes with versus 117 (53%) without positive CMR (P<0.001). At exercise testing, nonsustained ventricular tachycardia occurred at peak of exercise in 8 (29%) athletes with late gadolinium‐enhancement (polymorphic in 6/8, 75%) versus 17 athletes (8%) without late gadolinium‐enhancement (P=0.002), (P<0.0001). At multivariable analysis, all 3 parameters independently correlated with CMR abnormalities. Conclusions In athletes with apparently idiopathic VA, simple characteristics such as number and morphology of premature ventricular beats on 12‐lead 24‐hour ambulatory ECG monitoring and response to exercise testing predicted the presence of concealed myocardial abnormalities on CMR. These findings may help cost‐effective CMR prescription.
Collapse
Affiliation(s)
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | | | | | | | - Alberto Cipriani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Manuel De Lazzari
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Armando Fusco
- Department of Radiology Policlinico Casilino Rome Italy
| | - Luigi Sciarra
- Division of Cardiology Policlinico Casilino Rome Italy
| | - Fabio Sperandii
- Division of Cardiology Policlinico Casilino Rome Italy.,Department of Movement, Human and Health Sciences University of Rome 'Foro Italico' Rome Italy
| | - Emanuele Guerra
- Division of Cardiology Policlinico Casilino Rome Italy.,Department of Movement, Human and Health Sciences University of Rome 'Foro Italico' Rome Italy
| | - Eliana Tranchita
- Department of Movement, Human and Health Sciences University of Rome 'Foro Italico' Rome Italy
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences University of Rome 'Foro Italico' Rome Italy
| | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences University of Rome 'Foro Italico' Rome Italy.,Villa Stuart Sport Clinic FIFA Medical Centre of Excellence Rome Italy
| | - Patrizio Sarto
- Center for Sports Medicine ULSS2 Marca Trevigiana Treviso Italy
| | - Leonardo Calò
- Division of Cardiology Policlinico Casilino Rome Italy.,Villa Stuart Sport Clinic FIFA Medical Centre of Excellence Rome Italy
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| |
Collapse
|
168
|
Vahidnezhad H, Youssefian L, Faghankhani M, Mozafari N, Saeidian AH, Niaziorimi F, Abdollahimajd F, Sotoudeh S, Rajabi F, Mirsafaei L, Sani ZA, Liu L, Guy A, Zeinali S, Kariminejad A, Ho RT, McGrath JA, Uitto J. Arrhythmogenic right ventricular cardiomyopathy in patients with biallelic JUP-associated skin fragility. Sci Rep 2020; 10:21622. [PMID: 33303784 PMCID: PMC7729882 DOI: 10.1038/s41598-020-78344-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/09/2020] [Indexed: 12/04/2022] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC), with skin manifestations, has been associated with mutations in JUP encoding plakoglobin. Genotype–phenotype correlations regarding the penetrance of cardiac involvement, and age of onset have not been well established. We examined a cohort of 362 families with skin fragility to screen for genetic mutations with next-generation sequencing-based methods. In two unrelated families, a previously unreported biallelic mutation, JUP: c.201delC; p.Ser68Alafs*92, was disclosed. The consequences of this mutation were determined by expression profiling both at tissue and ultrastructural levels, and the patients were evaluated by cardiac and cutaneous work-up. Whole-transcriptome sequencing by RNA-Seq revealed JUP as the most down-regulated gene among 21 skin fragility-associated genes. Immunofluorescence showed the lack of plakoglobin in the epidermis. Two probands, 2.5 and 22-year-old, with the same homozygous mutation, allowed us to study the cross-sectional progression of cardiac involvements in relation to age. The older patient had anterior T wave inversions, prolonged terminal activation duration (TAD), and RV enlargement by echocardiogram, and together with JUP mutation met definite ARVC diagnosis. The younger patient had no evidence of cardiac disease, but met possible ARVC diagnosis with one major criterion (the JUP mutation). In conclusion, we identified the same biallelic homozygous JUP mutation in two unrelated families with skin fragility, but cardiac findings highlighted age-dependent penetrance of ARVC. Thus, young, phenotypically normal patients with biallelic JUP mutations should be monitored for development of ARVC.
Collapse
Affiliation(s)
- Hassan Vahidnezhad
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S. 10th Street, Suite 450 BLSB, Philadelphia, PA, 19107, USA.,Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Youssefian
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S. 10th Street, Suite 450 BLSB, Philadelphia, PA, 19107, USA.,Genetics, Genomics and Cancer Biology PhD Program, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Faghankhani
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S. 10th Street, Suite 450 BLSB, Philadelphia, PA, 19107, USA
| | - Nikoo Mozafari
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Saeidian
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S. 10th Street, Suite 450 BLSB, Philadelphia, PA, 19107, USA.,Genetics, Genomics and Cancer Biology PhD Program, Thomas Jefferson University, Philadelphia, PA, USA
| | - Fatemeh Niaziorimi
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S. 10th Street, Suite 450 BLSB, Philadelphia, PA, 19107, USA
| | | | - Soheila Sotoudeh
- Department of Dermatology, Children's Medical Center, Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Rajabi
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Liaosadat Mirsafaei
- Cardiology Ward, Imam Sajjad Hospital, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Zahra Alizadeh Sani
- CMR Department, Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Lu Liu
- Viapath, St Thomas' Hospital, London, UK
| | - Alyson Guy
- Viapath, St Thomas' Hospital, London, UK
| | - Sirous Zeinali
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Kawsar Human Genetics Research Center, Tehran, Iran
| | | | - Reginald T Ho
- Division of Cardiology, Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, Guy's Campus, London, UK
| | - Jouni Uitto
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA. .,Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S. 10th Street, Suite 450 BLSB, Philadelphia, PA, 19107, USA.
| |
Collapse
|
169
|
Beffagna G, Sommariva E, Bellin M. Mechanotransduction and Adrenergic Stimulation in Arrhythmogenic Cardiomyopathy: An Overview of in vitro and in vivo Models. Front Physiol 2020; 11:568535. [PMID: 33281612 PMCID: PMC7689294 DOI: 10.3389/fphys.2020.568535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023] Open
Abstract
Arrhythmogenic Cardiomyopathy (AC) is a rare inherited heart disease, manifesting with progressive myocardium degeneration and dysfunction, and life-threatening arrhythmic events that lead to sudden cardiac death. Despite genetic determinants, most of AC patients admitted to hospital are athletes or very physically active people, implying the existence of other disease-causing factors. It is recognized that AC phenotypes are enhanced and triggered by strenuous physical activity, while excessive mechanical stretch and load, and repetitive adrenergic stimulation are mechanisms influencing disease penetrance. Different approaches have been undertaken to recapitulate and study both mechanotransduction and adrenergic signaling in AC, including the use of in vitro cellular and tissue models, and the development of in vivo models (particularly rodents but more recently also zebrafish). However, it remains challenging to reproduce mechanical load stimuli and physical activity in laboratory experimental settings. Thus, more work to drive the innovation of advanced AC models is needed to recapitulate these subtle physiological influences. Here, we review the state-of-the-art in this field both in clinical and laboratory-based modeling scenarios. Specific attention will be focused on highlighting gaps in the knowledge and how they may be resolved by utilizing novel research methodology.
Collapse
Affiliation(s)
- Giorgia Beffagna
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy.,Department of Biology, University of Padua, Padua, Italy
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Milena Bellin
- Department of Biology, University of Padua, Padua, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy.,Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
170
|
Weisbrod D. Small and Intermediate Calcium Activated Potassium Channels in the Heart: Role and Strategies in the Treatment of Cardiovascular Diseases. Front Physiol 2020; 11:590534. [PMID: 33329039 PMCID: PMC7719780 DOI: 10.3389/fphys.2020.590534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Calcium-activated potassium channels are a heterogeneous family of channels that, despite their different biophysical characteristics, structures, and pharmacological signatures, play a role of transducer between the ubiquitous intracellular calcium signaling and the electric variations of the membrane. Although this family of channels was extensively described in various excitable and non-excitable tissues, an increasing amount of evidences shows their functional role in the heart. This review aims to focus on the physiological role and the contribution of the small and intermediate calcium-activated potassium channels in cardiac pathologies.
Collapse
|
171
|
Abstract
Cardiac magnetic resonance (CMR) imaging is an effective method for noninvasively imaging the heart which in the last two decades impressively enhanced spatial and temporal resolution and imaging speed, broadening its spectrum of applications in cardiovascular disease. CMR imaging techniques are designed to noninvasively assess cardiovascular morphology, ventricular function, myocardial perfusion, tissue characterization, flow quantification and coronary artery disease. These intrinsic features yield CMR suitable for diagnosis, follow-up and longitudinal monitoring after treatment of cardiovascular diseases. The aim of this paper is to review the technical basis of CMR, from cardiac imaging planes to cardiac imaging sequences.
Collapse
|
172
|
Segre EM, Hellwig LD, Turner C, Dobson CP, Haigney MC. Exercise Dose Associated With Military Service: Implications for the Clinical Management of Inherited Risk for Arrhythmogenic Right Ventricular Cardiomyopathy. Mil Med 2020; 185:e1447-e1452. [PMID: 32666089 DOI: 10.1093/milmed/usaa185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION High levels of aerobic exercise in individuals who have a gene mutation associated with arrhythmogenic right ventricular cardiomyopathy (ARVC) are associated with clinical disease progression. Guidelines consequently restrict patients from competitive athletics. However, there is minimal literature to guide the safe dosing of physical activity outside of the setting of competitive athletics. Patients may be physically active pursuant to a variety of careers, including military service. This study aimed to define a therapeutic window for exercise for ARVC gene-positive individuals that are compatible with continuing military service and general health while maintaining a level of exercise below that which risks disease progression. MATERIALS AND METHODS Using standard metabolic equations, we calculated the minimum VO2 max (amount of oxygen utilized at peak exercise capacity) required to pass the physical fitness tests for each branch. We then developed a sample exercise prescription to maintain this level of fitness. We compared the prescribed exercise load with the physical activity levels associated with non-inferior clinical outcomes in ARVC gene-positive individuals. Additionally, we determined the physical activity exposure sustained by service members based on self-report data and compared these values with the upper limit of safe exercise exposure. RESULTS Based on a review of the currently available literature, aerobic exercise exposure less than 700 to 1,100 MET-hours/year (metabolic equivalent-hours per year) is not associated with inferior clinical outcomes for gene-positive individuals. A military service member needs 600 to 700 MET-hours/year to minimally pass the physical fitness test. However, many military members are exercising in excess of this minimum, with typical exposures between 900 and 2,400 MET-hours/year. CONCLUSIONS A therapeutic window of aerobic exercise may exist for ARVC gene-positive individuals which would allow continuation of military service while maintaining levels of exercise restriction associated with non-inferior clinical outcomes.
Collapse
Affiliation(s)
- Elena M Segre
- Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, MD 20889
| | - Lydia D Hellwig
- Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr, Bethesda, MD 20817
| | - Clesson Turner
- Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, MD 20889
| | - Craig P Dobson
- Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, MD 20889.,Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| | - Mark C Haigney
- Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| |
Collapse
|
173
|
Patel V, Asatryan B, Siripanthong B, Munroe PB, Tiku-Owens A, Lopes LR, Khanji MY, Protonotarios A, Santangeli P, Muser D, Marchlinski FE, Brady PA, Chahal CAA. State of the Art Review on Genetics and Precision Medicine in Arrhythmogenic Cardiomyopathy. Int J Mol Sci 2020; 21:E6615. [PMID: 32927679 PMCID: PMC7554944 DOI: 10.3390/ijms21186615] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy characterised by ventricular arrhythmia and an increased risk of sudden cardiac death (SCD). Numerous genetic determinants and phenotypic manifestations have been discovered in ACM, posing a significant clinical challenge. Further to this, wider evaluation of family members has revealed incomplete penetrance and variable expressivity in ACM, suggesting a complex genotype-phenotype relationship. This review details the genetic basis of ACM with specific genotype-phenotype associations, providing the reader with a nuanced perspective of this condition; whilst also proposing a future roadmap to delivering precision medicine-based management in ACM.
Collapse
Affiliation(s)
- Viraj Patel
- Department of Cardiology, Royal Papworth Hospital, Cambridge CB2 0AY, UK;
| | - Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | | | - Patricia B. Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Anjali Tiku-Owens
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.T.-O.); (P.S.); (D.M.); (F.E.M.)
| | - Luis R. Lopes
- Department of Cardiology, St Bartholomew’s Hospital, London EC1A 7BE, UK; (L.R.L.); (M.Y.K.); (A.P.)
- Centre for Heart Muscle Disease, UCL Institute of Cardiovascular Science, London WC1E 6BT, UK
| | - Mohammed Y. Khanji
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Department of Cardiology, St Bartholomew’s Hospital, London EC1A 7BE, UK; (L.R.L.); (M.Y.K.); (A.P.)
| | - Alexandros Protonotarios
- Department of Cardiology, St Bartholomew’s Hospital, London EC1A 7BE, UK; (L.R.L.); (M.Y.K.); (A.P.)
- Centre for Heart Muscle Disease, UCL Institute of Cardiovascular Science, London WC1E 6BT, UK
| | - Pasquale Santangeli
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.T.-O.); (P.S.); (D.M.); (F.E.M.)
| | - Daniele Muser
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.T.-O.); (P.S.); (D.M.); (F.E.M.)
| | - Francis E. Marchlinski
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.T.-O.); (P.S.); (D.M.); (F.E.M.)
| | - Peter A. Brady
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Division of Cardiology, Department of Medicine, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA
| | - C. Anwar A. Chahal
- Department of Cardiology, Royal Papworth Hospital, Cambridge CB2 0AY, UK;
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.T.-O.); (P.S.); (D.M.); (F.E.M.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
174
|
The Role of MicroRNAs in Arrhythmogenic Cardiomyopathy: Biomarkers or Innocent Bystanders of Disease Progression? Int J Mol Sci 2020; 21:ijms21176434. [PMID: 32899376 PMCID: PMC7504260 DOI: 10.3390/ijms21176434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is an inherited cardiac disease characterized by a progressive fibro-fatty replacement of the working myocardium and by life-threatening arrhythmias and risk of sudden cardiac death. Pathogenic variants are identified in nearly 50% of affected patients mostly in genes encoding for desmosomal proteins. AC incomplete penetrance and phenotypic variability advocate that other factors than genetics may modulate the disease, such as microRNAs (miRNAs). MiRNAs are small noncoding RNAs with a primary role in gene expression regulation and network of cellular processes. The implication of miRNAs in AC pathogenesis and their role as biomarkers for early disease detection or differential diagnosis has been the objective of multiple studies employing diverse designs and methodologies to detect miRNAs and measure their expression levels. Here we summarize experiments, evidence, and flaws of the different studies and hitherto knowledge of the implication of miRNAs in AC pathogenesis and diagnosis.
Collapse
|
175
|
Branco MA, Cabral JM, Diogo MM. From Human Pluripotent Stem Cells to 3D Cardiac Microtissues: Progress, Applications and Challenges. Bioengineering (Basel) 2020; 7:E92. [PMID: 32785039 PMCID: PMC7552661 DOI: 10.3390/bioengineering7030092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
The knowledge acquired throughout the years concerning the in vivo regulation of cardiac development has promoted the establishment of directed differentiation protocols to obtain cardiomyocytes (CMs) and other cardiac cells from human pluripotent stem cells (hPSCs), which play a crucial role in the function and homeostasis of the heart. Among other developments in the field, the transition from homogeneous cultures of CMs to more complex multicellular cardiac microtissues (MTs) has increased the potential of these models for studying cardiac disorders in vitro and for clinically relevant applications such as drug screening and cardiotoxicity tests. This review addresses the state of the art of the generation of different cardiac cells from hPSCs and the impact of transitioning CM differentiation from 2D culture to a 3D environment. Additionally, current methods that may be employed to generate 3D cardiac MTs are reviewed and, finally, the adoption of these models for in vitro applications and their adaptation to medium- to high-throughput screening settings are also highlighted.
Collapse
Affiliation(s)
| | | | - Maria Margarida Diogo
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (M.A.B.); (J.M.S.C.)
| |
Collapse
|
176
|
Arrhythmogenic Cardiomyopathy: Molecular Insights for Improved Therapeutic Design. J Cardiovasc Dev Dis 2020; 7:jcdd7020021. [PMID: 32466575 PMCID: PMC7345706 DOI: 10.3390/jcdd7020021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder characterized by structural and electrical cardiac abnormalities, including myocardial fibro-fatty replacement. Its pathological ventricular substrate predisposes subjects to an increased risk of sudden cardiac death (SCD). ACM is a notorious cause of SCD in young athletes, and exercise has been documented to accelerate its progression. Although the genetic culprits are not exclusively limited to the intercalated disc, the majority of ACM-linked variants reside within desmosomal genes and are transmitted via Mendelian inheritance patterns; however, penetrance is highly variable. Its natural history features an initial “concealed phase” that results in patients being vulnerable to malignant arrhythmias prior to the onset of structural changes. Lack of effective therapies that target its pathophysiology renders management of patients challenging due to its progressive nature, and has highlighted a critical need to improve our understanding of its underlying mechanistic basis. In vitro and in vivo studies have begun to unravel the molecular consequences associated with disease causing variants, including altered Wnt/β-catenin signaling. Characterization of ACM mouse models has facilitated the evaluation of new therapeutic approaches. Improved molecular insight into the condition promises to usher in novel forms of therapy that will lead to improved care at the clinical bedside.
Collapse
|
177
|
Maestrini V, Torlasco C, Hughes R, Moon JC. Cardiovascular Magnetic Resonance and Sport Cardiology: a Growing Role in Clinical Dilemmas. J Cardiovasc Transl Res 2020; 13:296-305. [PMID: 32436168 PMCID: PMC7360536 DOI: 10.1007/s12265-020-10022-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022]
Abstract
Exercise training induces morphological and functional cardiovascular adaptation known as the "athlete's heart" with changes including dilatation, hypertrophy, and increased stroke volume. These changes may overlap with pathological appearances. Distinguishing athletic cardiac remodelling from cardiomyopathy is important and is a frequent medical dilemma. Cardiac magnetic resonance (CMR) has a role in clinical care as it can refine discrimination of health from a disease where ECG and echocardiography alone have left or generated uncertainty. CMR can more precisely assess cardiac structure and function as well as characterise the myocardium detecting key changes including myocardial scar and diffuse fibrosis. In this review, we will review the role of CMR in sports cardiology.
Collapse
Affiliation(s)
- Viviana Maestrini
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Camilla Torlasco
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Department of Cardiovascular, Neural and Metabolic Sciences, S.Luca Hospital, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Rebecca Hughes
- Institute of Cardiovascular Science, University College London, Gower Street, London, UK
- Barts Heart Centre, Advanced Cardiac Imaging and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - James C Moon
- Institute of Cardiovascular Science, University College London, Gower Street, London, UK.
- Barts Heart Centre, Advanced Cardiac Imaging and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK.
| |
Collapse
|
178
|
Limongelli G, Nunziato M, Mazzaccara C, Intrieri M, D’Argenio V, Esposito MV, Monda E, Di Maggio F, Frisso G, Salvatore F. Genotype-Phenotype Correlation: A Triple DNA Mutational Event in a Boy Entering Sport Conveys an Additional Pathogenicity Risk. Genes (Basel) 2020; 11:genes11050524. [PMID: 32397162 PMCID: PMC7288460 DOI: 10.3390/genes11050524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
The purpose of this paper is to present a clinical and laboratory study of a family, in which a 12-year-old boy was examined to assess his health status before starting competitive sports. A variety of clinical and instrumental tests were used to evaluate the status of the heart and its functions. Using Sanger sequencing (SS), we sequenced six related genes to verify suspected arrhythmogenic right ventricular cardiomyopathy (ARVC) hypothesized at the cardiac assessment and, subsequently, by a next-generation sequencing (NGS)-based multi-gene panel for more paramount genetic risk of sudden cardiac death (SCD) assessment. SS revealed two variants in the PKP2 gene, one was inherited from the father and the other from the mother. The analysis on a large panel of genes (n = 138), putatively associated with sudden cardiac death, revealed, in the proband, a third variant in a different gene (DES) that encodes the protein desmin. Our results indicate that: i) NGS revealed a mutational event in a gene not conventionally screened as a first-line test in the presence of clinical suspicion of the arrhythmic disease; ii) a plurality of variants in different genes in the same subject (the proband) may increase the risk of heart disease; iii) in silico analysis with various methodological software and bioinformatic prediction tools indicates that the cumulative effects of the three variants in the same subject constitute an additional risk factor. This case report indicates that more pathogenic variants or likely pathogenic variants can contribute to the clinical phenotype of an individual, thereby contributing to the diagnosis and prognosis of inherited heart diseases.
Collapse
Affiliation(s)
- Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, AO Colli-Monaldi Hospital, Via Leonardo Bianchi, 80131 Naples, Italy;
- Correspondence: (G.L.); (F.S.); Tel.: +39-0817064050 (G.L.); +39-0813737826 (F.S.)
| | - Marcella Nunziato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini, 5, 80131 Naples, Italy; (M.N.); (C.M.); (M.V.E.); (F.D.M.); (G.F.)
- CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy;
| | - Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini, 5, 80131 Naples, Italy; (M.N.); (C.M.); (M.V.E.); (F.D.M.); (G.F.)
- CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy;
| | - Mariano Intrieri
- Department of Medicine and Health Sciences “Vincenzo Tiberio” and University of Molise, Campobasso, Via de Sanctis, 86100 Campobasso, Italy;
| | - Valeria D’Argenio
- CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy;
- San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Maria Valeria Esposito
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini, 5, 80131 Naples, Italy; (M.N.); (C.M.); (M.V.E.); (F.D.M.); (G.F.)
- CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy;
| | - Emanuele Monda
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, AO Colli-Monaldi Hospital, Via Leonardo Bianchi, 80131 Naples, Italy;
| | - Federica Di Maggio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini, 5, 80131 Naples, Italy; (M.N.); (C.M.); (M.V.E.); (F.D.M.); (G.F.)
- CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy;
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini, 5, 80131 Naples, Italy; (M.N.); (C.M.); (M.V.E.); (F.D.M.); (G.F.)
- CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy;
| | - Francesco Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini, 5, 80131 Naples, Italy; (M.N.); (C.M.); (M.V.E.); (F.D.M.); (G.F.)
- CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy;
- Correspondence: (G.L.); (F.S.); Tel.: +39-0817064050 (G.L.); +39-0813737826 (F.S.)
| |
Collapse
|
179
|
Smith ED, Lakdawala NK, Papoutsidakis N, Aubert G, Mazzanti A, McCanta AC, Agarwal PP, Arscott P, Dellefave-Castillo LM, Vorovich EE, Nutakki K, Wilsbacher LD, Priori SG, Jacoby DL, McNally EM, Helms AS. Desmoplakin Cardiomyopathy, a Fibrotic and Inflammatory Form of Cardiomyopathy Distinct From Typical Dilated or Arrhythmogenic Right Ventricular Cardiomyopathy. Circulation 2020; 141:1872-1884. [PMID: 32372669 DOI: 10.1161/circulationaha.119.044934] [Citation(s) in RCA: 282] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Mutations in desmoplakin (DSP), the primary force transducer between cardiac desmosomes and intermediate filaments, cause an arrhythmogenic form of cardiomyopathy that has been variably associated with arrhythmogenic right ventricular cardiomyopathy. Clinical correlates of DSP cardiomyopathy have been limited to small case series. METHODS Clinical and genetic data were collected on 107 patients with pathogenic DSP mutations and 81 patients with pathogenic plakophilin 2 (PKP2) mutations as a comparison cohort. A composite outcome of severe ventricular arrhythmia was assessed. RESULTS DSP and PKP2 cohorts included similar proportions of probands (41% versus 42%) and patients with truncating mutations (98% versus 100%). Left ventricular (LV) predominant cardiomyopathy was exclusively present among patients with DSP (55% versus 0% for PKP2, P<0.001), whereas right ventricular cardiomyopathy was present in only 14% of patients with DSP versus 40% for PKP2 (P<0.001). Arrhythmogenic right ventricular cardiomyopathy diagnostic criteria had poor sensitivity for DSP cardiomyopathy. LV late gadolinium enhancement was present in a primarily subepicardial distribution in 40% of patients with DSP (23/57 with magnetic resonance images). LV late gadolinium enhancement occurred with normal LV systolic function in 35% (8/23) of patients with DSP. Episodes of acute myocardial injury (chest pain with troponin elevation and normal coronary angiography) occurred in 15% of patients with DSP and were strongly associated with LV late gadolinium enhancement (90%), even in cases of acute myocardial injury with normal ventricular function (4/5, 80% with late gadolinium enhancement). In 4 DSP cases with 18F-fluorodeoxyglucose positron emission tomography scans, acute LV myocardial injury was associated with myocardial inflammation misdiagnosed initially as cardiac sarcoidosis or myocarditis. Left ventricle ejection fraction <55% was strongly associated with severe ventricular arrhythmias for DSP cases (P<0.001, sensitivity 85%, specificity 53%). Right ventricular ejection fraction <45% was associated with severe arrhythmias for PKP2 cases (P<0.001) but was poorly associated for DSP cases (P=0.8). Frequent premature ventricular contractions were common among patients with severe arrhythmias for both DSP (80%) and PKP2 (91%) groups (P=non-significant). CONCLUSIONS DSP cardiomyopathy is a distinct form of arrhythmogenic cardiomyopathy characterized by episodic myocardial injury, left ventricular fibrosis that precedes systolic dysfunction, and a high incidence of ventricular arrhythmias. A genotype-specific approach for diagnosis and risk stratification should be used.
Collapse
Affiliation(s)
- Eric D Smith
- Department of Internal Medicine, Division of Cardiovascular Medicine (E.D.S., P.A., A.S.H.), University of Michigan, Ann Arbor
| | - Neal K Lakdawala
- Cardiovascular Genetics Program, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.K.L., K.N.)
| | - Nikolaos Papoutsidakis
- Inherited Cardiomyopathy Program, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT (N.P., D.L.J.)
| | - Gregory Aubert
- Center for Genetic Medicine (G.A.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Andrea Mazzanti
- Department of Molecular Cardiology, Istituto di Ricovero e Cura a Carattere Scientifico Instituti Clinici Scientifici Maugeri, Pavia, Italy (A.M., S.G.P.)
| | - Anthony C McCanta
- Department of Pediatric Cardiology, University of California-Irvine and Children's Hospital of Orange County, Orange (A.C.M.)
| | - Prachi P Agarwal
- Division of Cardiothoracic Radiology, Department of Radiology (P.P.A.), University of Michigan, Ann Arbor
| | - Patricia Arscott
- Department of Internal Medicine, Division of Cardiovascular Medicine (E.D.S., P.A., A.S.H.), University of Michigan, Ann Arbor
| | - Lisa M Dellefave-Castillo
- Feinberg Cardiovascular Research Institute (L.M.D.-C., L.D.W., E.M.M.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Esther E Vorovich
- Division of Cardiology (E.E.V.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Kavitha Nutakki
- Cardiovascular Genetics Program, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.K.L., K.N.)
| | - Lisa D Wilsbacher
- Feinberg Cardiovascular Research Institute (L.M.D.-C., L.D.W., E.M.M.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Silvia G Priori
- Department of Molecular Cardiology, Istituto di Ricovero e Cura a Carattere Scientifico Instituti Clinici Scientifici Maugeri, Pavia, Italy (A.M., S.G.P.)
| | - Daniel L Jacoby
- Inherited Cardiomyopathy Program, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT (N.P., D.L.J.)
| | - Elizabeth M McNally
- Feinberg Cardiovascular Research Institute (L.M.D.-C., L.D.W., E.M.M.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Adam S Helms
- Department of Internal Medicine, Division of Cardiovascular Medicine (E.D.S., P.A., A.S.H.), University of Michigan, Ann Arbor
| |
Collapse
|
180
|
Piriou N, Marteau L, Kyndt F, Serfaty JM, Toquet C, Le Gloan L, Warin-Fresse K, Guijarro D, Le Tourneau T, Conan E, Thollet A, Probst V, Trochu JN. Familial screening in case of acute myocarditis reveals inherited arrhythmogenic left ventricular cardiomyopathies. ESC Heart Fail 2020; 7:1520-1533. [PMID: 32356610 PMCID: PMC7373927 DOI: 10.1002/ehf2.12686] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/23/2020] [Accepted: 03/08/2020] [Indexed: 12/29/2022] Open
Abstract
Aims Several data suggest that acute myocarditis could be related to genetic variants involved in familial cardiomyopathies, particularly arrhythmogenic cardiomyopathy, but the management of patients with acute myocarditis and their families regarding their risk for having an associated inherited cardiomyopathy is unclear. Methods and results Families with at least one individual with a documented episode of acute myocarditis and at least one individual with a cardiomyopathy or a history of sudden death were included in the study. Comprehensive pedigree, including genetic testing, and history of these families were analysed. Six families were included. Genetic analysis revealed a variant in desmosomal proteins genes in all the probands [five in desmoplakin (DSP) gene and one in desmoglein 2 gene]. In the five families identified with a DSP variant, genetic testing was triggered by the association of an acute myocarditis with a single case of apparently isolated dilated cardiomyopathy or sudden death. Familial screening identified 28 DSP variant carriers; 39% had an arrhythmogenic left ventricular (LV) cardiomyopathy phenotype. Familial histories of sudden death were frequent, and a remarkable phenotype of isolated LV late gadolinium enhancement on contrast‐enhanced cardiac magnetic resonance without any other structural abnormality was found in 38% of asymptomatic mutation carriers. None of the DSP variant carriers had imaging characteristics of right ventricle involvement meeting current Task Force criteria for arrhythmogenic right ventricular cardiomyopathy. Conclusions Comprehensive familial screening including genetic testing in case of acute myocarditis associated with a family history of cardiomyopathy or sudden death revealed unknown or misdiagnosed arrhythmogenic variant carriers with left‐dominant phenotypes that frequently evade arrhythmogenic right ventricular cardiomyopathy Task Force criteria. In view of our results, acute myocarditis should be considered as an additional criterion for arrhythmogenic cardiomyopathy, and genetic testing should be advised in patients who experience acute myocarditis and have a family history of cardiomyopathy or sudden death.
Collapse
Affiliation(s)
- Nicolas Piriou
- l'Institut du Thorax, CHU de Nantes, 44093 Nantes Cedex 1, Nantes, France
| | - Lara Marteau
- l'Institut du Thorax, CHU de Nantes, 44093 Nantes Cedex 1, Nantes, France
| | - Florence Kyndt
- l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | | | - Claire Toquet
- Pathology Department, Nantes University Hospital, Nantes, France
| | - Laurianne Le Gloan
- l'Institut du Thorax, CHU de Nantes, 44093 Nantes Cedex 1, Nantes, France
| | | | - Damien Guijarro
- Groupe Hospitalier Mutualiste, Institut Cardio-Vasculaire, Grenoble, France
| | | | - Emilie Conan
- l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Aurélie Thollet
- l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Vincent Probst
- l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Jean-Noël Trochu
- l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| |
Collapse
|
181
|
Kissopoulou A, Fernlund E, Holmgren C, Isaksson E, Karlsson JE, Green H, Jonasson J, Ellegård R, Årstrand HK, Svensson A, Gunnarsson C. Monozygotic twins with myocarditis and a novel likely pathogenic desmoplakin gene variant. ESC Heart Fail 2020; 7:1210-1216. [PMID: 32301586 PMCID: PMC7261567 DOI: 10.1002/ehf2.12658] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/23/2020] [Accepted: 02/06/2020] [Indexed: 12/26/2022] Open
Abstract
Myocarditis most often affects otherwise healthy athletes and is one of the leading causes of sudden death in children and young adults. Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetically determined heart muscle disorder with increased risk for paroxysmal ventricular arrhythmias and sudden cardiac death. The clinical picture of myocarditis and ARVC may overlap during the early stages of cardiomyopathy, which may lead to misdiagnosis. In the literature, we found several cases that presented with episodes of myocarditis and ended up with a diagnosis of arrhythmogenic cardiomyopathy, mostly of the left predominant type. The aim of this case presentation is to shed light upon a possible link between myocarditis, a desmoplakin (DSP) gene variant, and ARVC by describing a case of male monozygotic twins who presented with symptoms and signs of myocarditis at 17 and 18 years of age, respectively. One of them also had a recurrent episode of myocarditis. The twins and their family were extensively examined including electrocardiograms (ECG), biochemistry, multimodal cardiac imaging, myocardial biopsy, genetic analysis, repeated cardiac magnetic resonance (CMR) and echocardiography over time. Both twins presented with chest pain, ECG with slight ST-T elevation, and increased troponin T levels. CMR demonstrated an affected left ventricle with comprehensive inflammatory, subepicardial changes consistent with myocarditis. The right ventricle did not appear to have any abnormalities. Genotype analysis revealed a nonsense heterozygous variant in the desmoplakin (DSP) gene [NM_004415.2:c.2521_2522del (p.Gln841Aspfs*9)] that is considered likely pathogenic and presumably ARVC related. There was no previous family history of heart disease. There might be a common pathophysiology of ARVC, associated with desmosomal dysfunction, and myocarditis. In our case, both twins have an affected left ventricle without any right ventricular involvement, and they are carriers of a novel DSP variant that is likely associated with ARVC. The extensive inflammation of the LV that was apparent in the CMR may or may not be the primary event of ARVC. Nevertheless, our data suggest that irrespective of a possible link here to ARVC, genetic testing for arrhythmogenic cardiomyopathy might be advisable for patients with recurrent myocarditis associated with a family history of myocarditis.
Collapse
Affiliation(s)
- Antheia Kissopoulou
- Department of Internal Medicine, County Council of Jönköping, Jönköping, Sweden.,Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Eva Fernlund
- Crown Princess Victoria Children's Hospital, Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping University Hospital, Linköping, Sweden.,Department of Clinical Sciences Lund, Pediatric Heart Center, Lund University, Skane University Hospital, Lund, Sweden
| | - Christina Holmgren
- Department of Internal Medicine, County Council of Jönköping, Jönköping, Sweden.,Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Eira Isaksson
- Department of Internal Medicine, County Council of Jönköping, Jönköping, Sweden.,Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Jan-Erik Karlsson
- Department of Internal Medicine, County Council of Jönköping, Jönköping, Sweden.,Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Henrik Green
- Division of Drug Research, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Jon Jonasson
- Department of Clinical Genetics and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Rada Ellegård
- Department of Clinical Genetics and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hanna Klang Årstrand
- Department of Clinical Genetics and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anneli Svensson
- Department of Cardiology, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Cecilia Gunnarsson
- Department of Clinical Genetics and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Centre for Rare Diseases in South East Region of Sweden, Linköping University, Linköping, Sweden
| |
Collapse
|
182
|
Rella V, Parati G, Crotti L. Sudden Cardiac Death in Children Affected by Cardiomyopathies: An Update on Risk Factors and Indications at Transvenous or Subcutaneous Implantable Defibrillators. Front Pediatr 2020; 8:139. [PMID: 32318526 PMCID: PMC7146705 DOI: 10.3389/fped.2020.00139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/11/2020] [Indexed: 12/19/2022] Open
Abstract
In the present paper, we will discuss the main cardiomyopathies affecting children with a specific focus on risk stratification and prevention of sudden cardiac death (SCD). We will discuss the main clinical features of hypertrophic cardiomyopathy (HCM), dilated and restrictive cardiomyopathies, left ventricular non-compaction (LVNC) and arrhythmogenic cardiomyopathy (AC), always highlighting their peculiarities in the pediatric age. Since sudden cardiac death may be the first manifestation of the disease, even in children, the identification of the specific underlying condition and of risk factors are pivotal to carry out the appropriate preventing strategies. ICD recommendations in children are similar to adults, but supporting evidences are not so solid, being based on registries or single center studies. Furthermore, children and young patients are most likely to manifest long term complications related to an implanted ICD, and this should be taken into account when evaluating the risk benefit ratio. In this perspective, subcutaneous ICDs (S-ICDs) could carry an advantage; however, they cannot be considered in small children for technical reasons. Data on effectiveness and safety of S-ICDs in a pediatric population is still lacking, although some limited experiences are reported and will be discussed in the current review.
Collapse
Affiliation(s)
- Valeria Rella
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Gianfranco Parati
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Milan, Italy
- Istituto Auxologico Italiano, IRCCS, Laboratory of Cardiovascular Genetics, Milan, Italy
| |
Collapse
|
183
|
Mattesi G, Zorzi A, Corrado D, Cipriani A. Natural History of Arrhythmogenic Cardiomyopathy. J Clin Med 2020; 9:jcm9030878. [PMID: 32210158 PMCID: PMC7141540 DOI: 10.3390/jcm9030878] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/07/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a heart muscle disease characterized by a scarred ventricular myocardium with a distinctive propensity to ventricular arrhythmias (VAs) and sudden cardiac death, especially in young athletes. Arrhythmogenic right ventricular cardiomyopathy (ARVC) represents the best characterized variant of AC, with a peculiar genetic background, established diagnostic criteria and management guidelines; however, the identification of nongenetic causes of the disease, combined with the common demonstration of biventricular and left-dominant forms, has led to coin the term of “arrhythmogenic cardiomyopathy”, to better define the broad spectrum of the disease phenotypic expressions. The genetic basis of AC are pathogenic mutations in genes encoding the cardiac desmosomes, but also non-desmosomal and nongenetic variants were reported in patients with AC, some of which showing overlapping phenotypes with other non-ischemic diseases. The natural history of AC is characterized by VAs and progressive deterioration of cardiac performance. Different phases of the disease are recognized, each characterized by pathological and clinical features. Arrhythmic manifestations are age-related: Ventricular fibrillation and SCD are more frequent in young people, while sustained ventricular tachycardia is more common in the elderly, depending on the different nature of the myocardial lesions. This review aims to address the genetic basis, the clinical course and the phenotypic variants of AC.
Collapse
|
184
|
D'Ascenzi F, Zorzi A, Sciaccaluga C, Berrettini U, Mondillo S, Brignole M. Syncope in the Young Adult and in the Athlete: Causes and Clinical Work-up to Exclude a Life-Threatening Cardiac Disease. J Cardiovasc Transl Res 2020; 13:322-330. [PMID: 32198700 DOI: 10.1007/s12265-020-09989-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/11/2020] [Indexed: 12/28/2022]
Abstract
Syncope is defined as a transient loss of consciousness due to cerebral hypoperfusion, characterized by a rapid onset, short duration, and spontaneous complete recovery. It is usually a benign event, but sometimes it may represent the initial presentation of several cardiac disorders associated with sudden cardiac death during physical activity. A careful evaluation is essential particularly in young adults and in competitive athletes in order to exclude the presence of an underlying life-threatening cardiovascular disease. The present review analyzes the main non-cardiac and cardiac causes of syncope and the contribution of the available tools for differential diagnosis. Clinical work-up of the athlete with syncope occurring in extreme environments and management in terms of sports eligibility and disqualification are also discussed.
Collapse
Affiliation(s)
- Flavio D'Ascenzi
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale M. Bracci, 16 53100, Siena, Italy.
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Carlotta Sciaccaluga
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale M. Bracci, 16 53100, Siena, Italy
| | | | - Sergio Mondillo
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale M. Bracci, 16 53100, Siena, Italy
| | - Michele Brignole
- Faint&Fall Programme, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
185
|
|
186
|
Cipriani A, Bauce B, De Lazzari M, Rigato I, Bariani R, Meneghin S, Pilichou K, Motta R, Aliberti C, Thiene G, McKenna WJ, Zorzi A, Iliceto S, Basso C, Perazzolo Marra M, Corrado D. Arrhythmogenic Right Ventricular Cardiomyopathy: Characterization of Left Ventricular Phenotype and Differential Diagnosis With Dilated Cardiomyopathy. J Am Heart Assoc 2020; 9:e014628. [PMID: 32114891 PMCID: PMC7335583 DOI: 10.1161/jaha.119.014628] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background This study assessed the prevalence of left ventricular (LV) involvement and characterized the clinical, electrocardiographic, and imaging features of LV phenotype in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC). Differential diagnosis between ARVC‐LV phenotype and dilated cardiomyopathy (DCM) was evaluated. Methods and Results The study population included 87 ARVC patients (median age 34 years) and 153 DCM patients (median age 51 years). All underwent cardiac magnetic resonance with quantitative tissue characterization. Fifty‐eight ARVC patients (67%) had LV involvement, with both LV systolic dysfunction and LV late gadolinium enhancement (LGE) in 41/58 (71%) and LV‐LGE in isolation in 17 (29%). Compared with DCM, the ARVC‐LV phenotype was statistically significantly more often characterized by low QRS voltages in limb leads, T‐wave inversion in the inferolateral leads and major ventricular arrhythmias. LV‐LGE was found in all ARVC patients with LV systolic dysfunction and in 69/153 (45%) of DCM patients. Patients with ARVC and LV systolic dysfunction had a greater amount of LV‐LGE (25% versus 13% of LV mass; P<0.01), mostly localized in the subepicardial LV wall layers. An LV‐LGE ≥20% had a 100% specificity for diagnosis of ARVC‐LV phenotype. An inverse correlation between LV ejection fraction and LV‐LGE extent was found in the ARVC‐LV phenotype (r=−0.63; P<0.01), but not in DCM (r=−0.01; P=0.94). Conclusions LV involvement in ARVC is common and characterized by clinical and cardiac magnetic resonance features which differ from those seen in DCM. The most distinctive feature of ARVC‐LV phenotype is the large amount of LV‐LGE/fibrosis, which impacts directly and negatively on the LV systolic function.
Collapse
Affiliation(s)
- Alberto Cipriani
- Department of Cardio-Thoraco-Vascular Sciences and Public Health University of Padua Italy
| | - Barbara Bauce
- Department of Cardio-Thoraco-Vascular Sciences and Public Health University of Padua Italy
| | - Manuel De Lazzari
- Department of Cardio-Thoraco-Vascular Sciences and Public Health University of Padua Italy
| | - Ilaria Rigato
- Department of Cardio-Thoraco-Vascular Sciences and Public Health University of Padua Italy
| | - Riccardo Bariani
- Department of Cardio-Thoraco-Vascular Sciences and Public Health University of Padua Italy
| | - Samuele Meneghin
- Department of Cardio-Thoraco-Vascular Sciences and Public Health University of Padua Italy
| | - Kalliopi Pilichou
- Department of Cardio-Thoraco-Vascular Sciences and Public Health University of Padua Italy
| | - Raffaella Motta
- Department of Medicine Institute of Radiology University of Padua Italy
| | - Camillo Aliberti
- Department of Medicine Institute of Radiology University of Padua Italy
| | - Gaetano Thiene
- Department of Cardio-Thoraco-Vascular Sciences and Public Health University of Padua Italy
| | - William J McKenna
- Institute of Cardiovascular Science University College London London United Kingdom
| | - Alessandro Zorzi
- Department of Cardio-Thoraco-Vascular Sciences and Public Health University of Padua Italy
| | - Sabino Iliceto
- Department of Cardio-Thoraco-Vascular Sciences and Public Health University of Padua Italy
| | - Cristina Basso
- Department of Cardio-Thoraco-Vascular Sciences and Public Health University of Padua Italy
| | | | - Domenico Corrado
- Department of Cardio-Thoraco-Vascular Sciences and Public Health University of Padua Italy
| |
Collapse
|