151
|
Brewster NK, Johnston GC, Singer RA. A bipartite yeast SSRP1 analog comprised of Pob3 and Nhp6 proteins modulates transcription. Mol Cell Biol 2001; 21:3491-502. [PMID: 11313475 PMCID: PMC100271 DOI: 10.1128/mcb.21.10.3491-3502.2001] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The FACT complex of vertebrate cells, comprising the Cdc68 (Spt16) and SSRP1 proteins, facilitates transcription elongation on a nucleosomal template and modulates the elongation-inhibitory effects of the DSIF complex in vitro. Genetic findings show that the related yeast (Saccharomyces cerevisiae) complex, termed CP, also mediates transcription. The CP components Cdc68 and Pob3 closely resemble the FACT components, except that the C-terminal high-mobility group (HMG) box domain of SSRP1 is not found in the yeast homolog Pob3. We show here that Nhp6a and Nhp6b, small HMG box proteins with overlapping functions in yeast, associate with the CP complex and mediate CP-related genetic effects on transcription. Absence of the Nhp6 proteins causes severe impairment in combination with mutations impairing the Swi-Snf chromatin-remodeling complex and the DSIF (Spt4 plus Spt5) elongation regulator, and sensitizes cells to 6-azauracil, characteristic of elongation effects. An artificial SSRP1-like protein, created by fusing the Pob3 and Nhp6a proteins, provides both Pob3 and Nhp6a functions for transcription, and competition experiments indicate that these functions are exerted in association with Cdc68. This particular Pob3-Nhp6a fusion protein was limited for certain Nhp6 activities, indicating that its Nhp6a function is compromised. These findings suggest that in yeast cells the Cdc68 partners may be both Pob3 and Nhp6, functioning as a bipartite analog of the vertebrate SSRP1 protein.
Collapse
Affiliation(s)
- N K Brewster
- Departments of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | |
Collapse
|
152
|
Kuo MH, vom Baur E, Struhl K, Allis CD. Gcn4 activator targets Gcn5 histone acetyltransferase to specific promoters independently of transcription. Mol Cell 2000; 6:1309-20. [PMID: 11163205 DOI: 10.1016/s1097-2765(00)00129-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Histone acetylation correlates well with transcriptional activity, and histone acetyltransferases (HATs) selectively regulate subsets of target genes by mechanisms that remain unclear. Here, we provide in vivo evidence that the yeast transcriptional activator Gcn4 recruits Gcn5 HAT complexes to selective promoters positioned in natural or ectopic locations, thereby creating local domains of histone H3 hyperacetylation and subsequent transcriptional activation. A significant portion of the Gcn4-targeted histone acetylation by Gcn5 is independent of transcriptional activity. These observations provide strong evidence for promoter-selective, targeted histone acetylation by Gcn5 that facilitates transcription in a causal fashion. In addition, Gcn5 also functions in an untargeted manner to acetylate H3 on a genome-wide scale.
Collapse
Affiliation(s)
- M H Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
153
|
Sakurai H, Fukasawa T. Functional connections between mediator components and general transcription factors of Saccharomyces cerevisiae. J Biol Chem 2000; 275:37251-6. [PMID: 10973956 DOI: 10.1074/jbc.m004364200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Gal11 protein is an important component of the Mediator complex in RNA polymerase II-directed transcription. Gal11 and the general transcription factor (TF) IIE are involved in regulation of the protein kinase activity of TFIIH that phosphorylates the carboxyl-terminal domain of RNA polymerase II. We have previously shown that Gal11 binds the small and large subunits of TFIIE at two Gal11 domains, A and B, respectively, which are important for normal function of Gal11 in vivo. Here we demonstrate that Gal11 binds directly to TFIIH through domain A in vitro. A null mutation in GAL11 caused lethality of cells when combined with temperature-sensitive mutations in the genes encoding TFIIE or the carboxyl-terminal domain kinase, indicating the presence of genetic interactions between Gal11 and these proteins. Mutational depletion of Gal11 or TFIIE caused inefficient opening of the transcription initiation region, but had no significant effect on TATA-binding protein occupancy of the TATA sequence in vivo. These results suggest that the functions of Gal11 and TFIIE are necessary after recruitment of TATA-binding protein to the TATA box presumably at the step of stable preinitiation complex formation and/or promoter melting. We illustrate genetic interactions between Gal11 and other Mediator components such as Med2 and Pgd1/Hrs1/Med3.
Collapse
Affiliation(s)
- H Sakurai
- School of Health Sciences, Faculty of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| | | |
Collapse
|
154
|
Goldmark JP, Fazzio TG, Estep PW, Church GM, Tsukiyama T. The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 2000; 103:423-33. [PMID: 11081629 DOI: 10.1016/s0092-8674(00)00134-3] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ISWI class of chromatin remodeling factors exhibits potent chromatin remodeling activities in vitro. However, the in vivo functions of this class of factors are unknown at a molecular level. We have found that S. cerevisiae Isw2 complex represses transcription of early meiotic genes during mitotic growth in a parallel pathway to Rpd3-Sin3 histone deacetylase complex. This repressor function of lsw2 complex is largely dependent upon Ume6p, which recruits the complex to target genes. Nuclease digestion analyses revealed that lsw2 complex establishes nuclease-inaccessible chromatin structure near the Ume6p binding site in vivo. Based on these findings, we propose a model for the mechanism of transcriptional repression by two distinct chromatin remodeling complexes.
Collapse
MESH Headings
- Binding Sites
- Chromatin/chemistry
- Chromatin/genetics
- Chromatin/metabolism
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Epistasis, Genetic
- Gene Expression Regulation, Fungal
- Genes, Fungal/genetics
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Macromolecular Substances
- Meiosis/genetics
- Mitosis/genetics
- Models, Genetic
- Molecular Conformation
- Mutation/genetics
- Nuclease Protection Assays
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Fungal/analysis
- RNA, Fungal/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Response Elements/genetics
- Saccharomyces cerevisiae/cytology
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- J P Goldmark
- Division of Basic Sciences, Fred Hutchinson Cancer Research Institute, Fred Hutchinson Cancer Research Center and University of Washington, Seattle 98109, USA
| | | | | | | | | |
Collapse
|
155
|
Santisteban MS, Kalashnikova T, Smith MM. Histone H2A.Z regulats transcription and is partially redundant with nucleosome remodeling complexes. Cell 2000; 103:411-22. [PMID: 11081628 DOI: 10.1016/s0092-8674(00)00133-1] [Citation(s) in RCA: 252] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nucleosomes impose a block to transcription that can be overcome in vivo by remodeling complexes such as SNF/SWI and histone modification complexes such as SAGA. Mutations in the major core histones relieve transcriptional repression and bypass the requirement for SNF/SWI and SAGA. We have found that the variant histone H2A.Z regulates gene transcription, and deletion of the gene encoding H2A.Z strongly increases the requirement for SNF/SWI and SAGA. This synthetic genetic interaction is seen at the level of single genes and acts downstream of promoter nucleosome reorganization. H2A.Z is preferentially crosslinked in vivo to intergenic DNA at the PH05 and GAL1 loci, and this association changes with transcriptional activation. These results describe a novel pathway for regulating transcription using variant histones to modulate chromatin structure.
Collapse
MESH Headings
- Adenosine Triphosphatases
- Alleles
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/physiology
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA, Intergenic/genetics
- DNA, Intergenic/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Fungal Proteins/genetics
- Fungal Proteins/physiology
- Gene Deletion
- Gene Expression Regulation, Fungal
- Genes, Essential/genetics
- Genes, Fungal/genetics
- Genes, Fungal/physiology
- Histones/chemistry
- Histones/genetics
- Histones/metabolism
- Hot Temperature
- Macromolecular Substances
- Membrane Transport Proteins/genetics
- Molecular Conformation
- Nuclear Proteins
- Nucleosomes/chemistry
- Nucleosomes/genetics
- Nucleosomes/metabolism
- Phenotype
- Phosphate Transport Proteins
- Promoter Regions, Genetic/genetics
- Protein Binding
- Protein Kinases/genetics
- Protein Kinases/physiology
- Protein Subunits
- Recombinant Fusion Proteins
- Saccharomyces cerevisiae/cytology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Suppression, Genetic/genetics
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- M S Santisteban
- Department of Microbiology and Cancer Center, University of Virginia, Charlottesville 22908, USA
| | | | | |
Collapse
|
156
|
Maillet L, Tu C, Hong YK, Shuster EO, Collart MA. The essential function of Not1 lies within the Ccr4-Not complex. J Mol Biol 2000; 303:131-43. [PMID: 11023781 DOI: 10.1006/jmbi.2000.4131] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The five Saccharomyces cerevisiae Not proteins are associated with the Ccr4 and Caf1 proteins in 1.2 MDa and 2 MDa complexes. The Not proteins have been proposed to repress transcription of promoters that do not contain a canonical TATA sequence, while the Ccr4 and Caf1 proteins are required for non-fermentative gene expression. The mechanism of transcriptional regulation by the Ccr4-Not complex is unknown and the role of its different components is unclear. Only Not1p is essential for yeast viability.Here, we show that most strains carrying combinations of two null alleles of the non-essential CCR4-NOT genes are non-viable. This would suggest that the Ccr4-Not complex is essential. We find that Not1p consists of at least two domains, a C-terminal domain that is essential for yeast viability, and a N-terminal domain that is dispensable but required for yeast wild-type growth. The essential C-terminal domain of Not1p can associate with Not5p, and both proteins are present in 1.2 and 2 MDa complexes in the absence of the N-terminal Not1p domain. In contrast, in the absence of the N-terminal domain of Not1p, Ccr4p does not efficiently associate in large complexes nor with the C-terminal domain of Not1p. Healthy growth is observed when both domains of Not1p are expressed in trans, and is correlated with their physical association, together with Ccr4p, in large complexes. These results are consistent with the essential function of Not1p lying within the Ccr4-Not complex.
Collapse
Affiliation(s)
- L Maillet
- Département de Biochimie Médicale, Centre Médical Universitaire, 1211, Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
157
|
Akhtar N, Påhlman AK, Larsson K, Corbett AH, Adler L. SGD1 encodes an essential nuclear protein of Saccharomyces cerevisiae that affects expression of the GPD1 gene for glycerol 3-phosphate dehydrogenase. FEBS Lett 2000; 483:87-92. [PMID: 11042259 DOI: 10.1016/s0014-5793(00)02087-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We here report the identification of the previously uncharacterized SGD1 gene, encoding a 102.8-kDa protein containing a leucine zipper region and a bipartite nuclear localization signal. Deletion of SGD1 results in loss of cell viability, while an increased dosage of SGD1 partially suppresses the osmosensitivity of pbs2 delta and hog1 delta mutants that are defective in the osmosignaling high osmolarity glycerol (HOG) mitogen-activated protein kinase pathway. The rescued mutants display a partially re-established transcriptional control of the osmostress-induced expression of GPD1, a target gene of the HOG pathway encoding NAD(+)-dependent glycerol 3-phosphate dehydrogenase, and a partially recovered hyperosmolarity-induced production of glycerol. Consistent with Sgd1p affecting the transcriptional control of GPD1, a functional green fluorescent protein tagged Sgd1p is localized to the cell nucleus.
Collapse
Affiliation(s)
- N Akhtar
- Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
158
|
Scott S, Abul-Hamd AT, Cooper TG. Roles of the Dal82p domains in allophanate/oxalurate-dependent gene expression in Saccharomyces cerevisiae. J Biol Chem 2000; 275:30886-93. [PMID: 10906145 PMCID: PMC4382018 DOI: 10.1074/jbc.m005624200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Allophanate/oxalurate-induced gene expression in Saccharomyces cerevisiae requires at least five transcription factors, four of which act positively (Gln3p, Gat1p, Dal81p, and Dal82p) and one negatively (Dal80p). Gln3p binds to and Gat1p is proposed to bind to single GATA sequences; Dal80p binds to pairs of specifically oriented and spaced GATA sequences, and Dal82p binds to a pathway-specific element, UIS(ALL). Dal82p consists of at least three domains as follows: (i) UIS(ALL) DNA-binding, (ii) transcriptional activation, and (iii) coiled-coil(DAL82). Here we show that the coiled-coil(DAL82) domain possesses two demonstrable functions. (i) It prevents Dal82p-mediated transcription when inducer is absent. (ii) It is a major, although not exclusive, domain through which the inducer signal is received. Supporting the latter conclusion, a 38-amino acid fragment, containing little more than the coiled-coil(DAL82) domain, supports oxalurate-inducible, Dal81p-dependent, reporter gene transcription. Dal81p is required for inducer responsiveness of LexAp-Dal82p and LexAp coiled-coil(DAL82)-mediated transcription but isn't needed for inducer-dependent activation mediated by a Dal82p containing deletions in both the coiled-coil(DAL82), UIS(ALL)-binding domains. There may be an interaction between Dal81p and the coiled-coil(DAL82) domain since (i) Dal81p is required for transcription mediated by LexA-coiled-coil(DAL82)p and (ii) a Dal81p-Dal82p complex is detected by two-hybrid assay.
Collapse
Affiliation(s)
| | | | - Terrance G. Cooper
- To whom correspondence should be addressed. Tel.: 901-448-6175; Fax: 901-448-8462;
| |
Collapse
|
159
|
Costa PJ, Arndt KM. Synthetic lethal interactions suggest a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation. Genetics 2000; 156:535-47. [PMID: 11014804 PMCID: PMC1461271 DOI: 10.1093/genetics/156.2.535] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Strong evidence indicates that transcription elongation by RNA polymerase II (pol II) is a highly regulated process. Here we present genetic results that indicate a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation. A screen for synthetic lethal mutations was carried out with an rtf1 deletion mutation to identify factors that interact with Rtf1 or regulate the same process as Rtf1. The screen uncovered mutations in SRB5, CTK1, FCP1, and POB3. These genes encode an Srb/mediator component, a CTD kinase, a CTD phosphatase, and a protein involved in the regulation of transcription by chromatin structure, respectively. All of these gene products have been directly or indirectly implicated in transcription elongation, indicating that Rtf1 may also regulate this process. In support of this view, we show that RTF1 functionally interacts with genes that encode known elongation factors, including SPT4, SPT5, SPT16, and PPR2. We also show that a deletion of RTF1 causes sensitivity to 6-azauracil and mycophenolic acid, phenotypes correlated with a transcription elongation defect. Collectively, our results suggest that Rtf1 may function as a novel transcription elongation factor in yeast.
Collapse
Affiliation(s)
- P J Costa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
160
|
DiRenzo J, Shang Y, Phelan M, Sif S, Myers M, Kingston R, Brown M. BRG-1 is recruited to estrogen-responsive promoters and cooperates with factors involved in histone acetylation. Mol Cell Biol 2000; 20:7541-9. [PMID: 11003650 PMCID: PMC86306 DOI: 10.1128/mcb.20.20.7541-7549.2000] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2000] [Accepted: 07/21/2000] [Indexed: 11/20/2022] Open
Abstract
Several factors that mediate activation by nuclear receptors also modify the chemical and structural composition of chromatin. Prominent in this diverse group is the steroid receptor coactivator 1 (SRC-1) family, which interact with agonist-bound nuclear receptors, thereby coupling them to multifunctional transcriptional coregulators such as CREB-binding protein (CBP), p300, and PCAF, all of which have potent histone acetyltransferase activity. Additionally factors including the Brahma-related gene 1 (BRG-1) that are involved in the structural remodeling of chromatin also mediate hormone-dependent transcriptional activation by nuclear receptors. Here, we provide evidence that these two distinct mechanisms of coactivation may operate in a collaborative manner. We demonstrate that transcriptional activation by the estrogen receptor (ER) requires functional BRG-1 and that the coactivation of estrogen signaling by either SRC-1 or CBP is BRG-1 dependent. We find that in response to estrogen, ER recruits BRG-1, thereby targeting BRG-1 to the promoters of estrogen-responsive genes in a manner that occurs simultaneous to histone acetylation. Finally, we demonstrate that BRG-1-mediated coactivation of ER signaling is regulated by the state of histone acetylation within a cell. Inhibition of histone deacetylation by trichostatin A dramatically increases BRG-1-mediated coactivation of ER signaling, and this increase is reversed by overexpression of histone deacetylase 1. These studies support a critical role for BRG-1 in ER action in which estrogen stimulates an ER-BRG-1 association coupling BRG-1 to regions of chromatin at the sites of estrogen-responsive promoters and promotes the activity of other recruited factors that alter the acetylation state of chromatin.
Collapse
Affiliation(s)
- J DiRenzo
- Department of Adult Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
161
|
Krebs JE, Fry CJ, Samuels ML, Peterson CL. Global role for chromatin remodeling enzymes in mitotic gene expression. Cell 2000; 102:587-98. [PMID: 11007477 DOI: 10.1016/s0092-8674(00)00081-7] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Regulation of eukaryotic gene expression requires ATP-dependent chromatin remodeling enzymes, such as SWI/SNF, and histone acetyltransferases, such as Gcn5p. Here we show that SWI/SNF remodeling controls recruitment of Gcn5p HAT activity to many genes in late mitosis and that these chromatin remodeling enzymes play a role in regulating mitotic exit. In contrast, interphase expression of GAL1, HIS3, PHO5, and PHO8 is accompanied by SWI/SNF-independent recruitment of Gcn5p HAT activity. Surprisingly, prearresting cells in late mitosis imposes a requirement for SWI/SNF in recruiting Gcn5p HAT activity to the GAL1 promoter, and GAL1 expression also becomes dependent on both chromatin remodeling enzymes. We propose that SWI/SNF and Gcn5p are globally required for mitotic gene expression due to the condensed state of mitotic chromatin.
Collapse
Affiliation(s)
- J E Krebs
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester 01605, USA
| | | | | | | |
Collapse
|
162
|
Mitsiou DJ, Stunnenberg HG. TAC, a TBP-sans-TAFs complex containing the unprocessed TFIIAalphabeta precursor and the TFIIAgamma subunit. Mol Cell 2000; 6:527-37. [PMID: 11030333 DOI: 10.1016/s1097-2765(00)00052-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Transcription of TATA box-containing genes by RNA polymerase II is mediated by TBP-containing and TBP-free multisubunit complexes consisting of common and unique components. We have identified a highly stable TBP-TFIIA-containing complex, TAC, which is detectable in embryonal carcinoma (EC) cells but not in differentiated cells. TAC contains the TFIIAgamma subunit and the unprocessed form of TFIIAalphabeta, although the processed TFIIAalpha and TFIIAbeta subunits are present in EC cells. TAC mediates transcriptional activation by RNA polymerase II in vivo, even though it does not contain classical TAFs. Formaldehyde cross-linking revealed that in EC but not in differentiated cells, association of TBP with chromatin is strongly enhanced when complexed with TFIIA in vivo. Remarkably, the TFIIAalphabeta precursor is preferentially, if not exclusively, associated with chromatin as compared to the processed subunits present in "free" TFIIA in EC cells.
Collapse
Affiliation(s)
- D J Mitsiou
- Department of Molecular Biology, University of Nijmegen, The Netherlands
| | | |
Collapse
|
163
|
Sendra R, Tse C, Hansen JC. The yeast histone acetyltransferase A2 complex, but not free Gcn5p, binds stably to nucleosomal arrays. J Biol Chem 2000; 275:24928-34. [PMID: 10825174 DOI: 10.1074/jbc.m003783200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the structural basis for the differential catalytic function of the yeast Gcn5p-containing histone acetyltransferase (HAT) A2 complex and free recombinant yeast Gcn5p (rGcn5p). HAT A2 is shown to be a unique complex that contains Gcn5p, Ada2p, and Ada3p, but not proteins specific to other related HAT A complexes, e.g. ADA, SAGA. Nevertheless, HAT A2 produces the same unique polyacetylation pattern of nucleosomal substrates reported previously for ADA and SAGA, demonstrating that proteins specific to the ADA and SAGA complexes do not influence the enzymatic activity of Gcn5p within the HAT A2 complex. To investigate the role of substrate interactions in the differential behavior of free and complexed Gcn5p, sucrose density gradient centrifugation was used to characterize the binding of HAT A2 and free rGcn5p to intact and trypsinized nucleosomal arrays, H3/H4 tetramer arrays, and nucleosome core particles. We find that HAT A2 forms stable complexes with all nucleosomal substrates tested. In distinct contrast, rGcn5p does not interact stably with nucleosomal arrays, despite being able to specifically monoacetylate the H3 N terminus of nucleosomal substrates. Our data suggest that the ability of the HAT A2 complex to bind stably to nucleosomal arrays is functionally related to both local and global acetylation by the complexed and free forms of Gcn5p.
Collapse
Affiliation(s)
- R Sendra
- Departament de Bioquimica i Biologia Molecular, Universitat de València, E-46100 València, Spain
| | | | | |
Collapse
|
164
|
Sudarsanam P, Winston F. The Swi/Snf family nucleosome-remodeling complexes and transcriptional control. Trends Genet 2000; 16:345-51. [PMID: 10904263 DOI: 10.1016/s0168-9525(00)02060-6] [Citation(s) in RCA: 262] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Swi/Snf family of nucleosome-remodeling complexes has been shown to play important roles in gene expression throughout eukaryotes. Genetic and biochemical studies previously suggested that Swi/Snf activates transcription by remodeling nucleosomes, thereby permitting increased access of transcription factors for their binding sites. Recent studies have identified additional Swi/Snf biochemical activities and have suggested possible mechanisms by which Swi/Snf is targeted to specific promoters. Surprisingly, studies have also revealed that, besides being necessary for activation, Swi/Snf is required for transcriptional repression of some genes. These analyses have transformed our understanding of the function of the Swi/Snf family of complexes and suggest that they control transcription in diverse ways.
Collapse
Affiliation(s)
- P Sudarsanam
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
165
|
Ryan MP, Stafford GA, Yu L, Morse RH. Artificially recruited TATA-binding protein fails to remodel chromatin and does not activate three promoters that require chromatin remodeling. Mol Cell Biol 2000; 20:5847-57. [PMID: 10913168 PMCID: PMC86062 DOI: 10.1128/mcb.20.16.5847-5857.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activators are believed to work in part by recruiting general transcription factors, such as TATA-binding protein (TBP) and the RNA polymerase II holoenzyme. Activation domains also contribute to remodeling of chromatin in vivo. To determine whether these two activities represent distinct functions of activation domains, we have examined transcriptional activation and chromatin remodeling accompanying artificial recruitment of TBP in yeast (Saccharomyces cerevisiae). We measured transcription of reporter genes with defined chromatin structure by artificial recruitment of TBP and found that a reporter gene whose TATA element was relatively accessible could be activated by artificially recruited TBP, whereas two promoters, GAL10 and CHA1, that have accessible activator binding sites, but nucleosomal TATA elements, could not. A third reporter gene containing the HIS4 promoter could be activated by GAL4-TBP only when a RAP1 binding site was present, although RAP1 alone could not activate the reporter, suggesting that RAP1 was needed to open the chromatin structure to allow activation. Consistent with this interpretation, artificially recruited TBP was unable to perturb nucleosome positioning via a nucleosomal binding site, in contrast to a true activator such as GAL4, or to perturb the TATA-containing nucleosome at the CHA1 promoter. Finally, we show that activation of the GAL10 promoter by GAL4, which requires chromatin remodeling, can occur even in swi gcn5 yeast, implying that remodeling pathways independent of GCN5, the SWI-SNF complex, and TFIID can operate during transcriptional activation in vivo.
Collapse
Affiliation(s)
- M P Ryan
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, Albany, New York 12201-2002, USA
| | | | | | | |
Collapse
|
166
|
Chang A, Cheang S, Espanel X, Sudol M. Rsp5 WW domains interact directly with the carboxyl-terminal domain of RNA polymerase II. J Biol Chem 2000; 275:20562-71. [PMID: 10781604 DOI: 10.1074/jbc.m002479200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RSP5 is an essential gene in Saccharomyces cerevisiae and was recently shown to form a physical and functional complex with RNA polymerase II (RNA pol II). The amino-terminal half of Rsp5 consists of four domains: a C2 domain, which binds membrane phospholipids; and three WW domains, which are protein interaction modules that bind proline-rich ligands. The carboxyl-terminal half of Rsp5 contains a HECT (homologous to E6-AP carboxyl terminus) domain that catalytically ligates ubiquitin to proteins and functionally classifies Rsp5 as an E3 ubiquitin-protein ligase. The C2 and WW domains are presumed to act as membrane localization and substrate recognition modules, respectively. We report that the second (and possibly third) Rsp5 WW domain mediates binding to the carboxyl-terminal domain (CTD) of the RNA pol II large subunit. The CTD comprises a heptamer (YSPTSPS) repeated 26 times and a PXY core that is critical for interaction with a specific group of WW domains. An analysis of synthetic peptides revealed a minimal CTD sequence that is sufficient to bind to the second Rsp5 WW domain (Rsp5 WW2) in vitro and in yeast two-hybrid assays. Furthermore, we found that specific "imperfect" CTD repeats can form a complex with Rsp5 WW2. In addition, we have shown that phosphorylation of this minimal CTD sequence on serine, threonine and tyrosine residues acts as a negative regulator of the Rsp5 WW2-CTD interaction. In view of the recent data pertaining to phosphorylation-driven interactions between the RNA pol II CTD and the WW domain of Ess1/Pin1, we suggest that CTD dephosphorylation may be a prerequisite for targeted RNA pol II degradation.
Collapse
Affiliation(s)
- A Chang
- Department of Biochemistry and Molecular Biology, New York University/Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
167
|
Lee TI, Causton HC, Holstege FC, Shen WC, Hannett N, Jennings EG, Winston F, Green MR, Young RA. Redundant roles for the TFIID and SAGA complexes in global transcription. Nature 2000; 405:701-4. [PMID: 10864329 DOI: 10.1038/35015104] [Citation(s) in RCA: 285] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transcription factors TFIID and SAGA are multi-subunit complexes involved in transcription by RNA polymerase II. TFIID and SAGA contain common TATA-binding protein (TBP)-associated factor (TAF(II)) subunits and each complex contains a subunit with histone acetyltransferase activity. These observations have raised questions about whether the functions of the two complexes in vivo are unique or overlapping. Here we use genome-wide expression analysis to investigate how expression of the yeast genome depends on both shared and unique subunits of these two complexes. We find that expression of most genes requires one or more of the common TAF(II) subunits, indicating that the functions of TFIID and SAGA are widely required for gene expression. Among the subunits shared by TFIID and SAGA are three histone-like TAF(II)s, which have been proposed to form a sub-complex and mediate a common function in global transcription. Unexpectedly, we find that the histone-like TAF(II)s have distinct roles in expression of the yeast genome. Most importantly, we show that the histone acetylase components of TFIID and SAGA (TAF(II)145 and Gcn5) are functionally redundant, indicating that expression of a large fraction of yeast genes can be regulated through the action of either complex.
Collapse
Affiliation(s)
- T I Lee
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Lo WS, Trievel RC, Rojas JR, Duggan L, Hsu JY, Allis CD, Marmorstein R, Berger SL. Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell 2000; 5:917-26. [PMID: 10911986 DOI: 10.1016/s1097-2765(00)80257-9] [Citation(s) in RCA: 439] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple covalent modifications exist in the amino-terminal tails of core histones, but whether a relationship exists between them is unknown. We examined the relationship between serine 10 phosphorylation and lysine 14 acetylation in histone H3 and have found that, in vitro, several HAT enzymes displayed increased activity on H3 peptides bearing phospho-Ser-10. This augmenting effect of Ser-10 phosphorylation on acetylation by yGcn5 was lost by substitution of alanine for arginine 164 [Gcn5(R164A)], a residue close to Ser-10 in the structure of the ternary tGcn5/CoA/histone H3 complex. Gcn5(R164A) had reduced activity in vivo at a subset of Gcn5-dependent promoters, and, strikingly, transcription of this same subset of genes was also impaired by substitution of serine 10 to alanine in the histone H3 tail. These observations suggest that transcriptional regulation occurs by multiple mechanistically linked covalent modifications of histones.
Collapse
Affiliation(s)
- W S Lo
- Molecular Genetics Program, Wistar Institute, Philadelphia, Pennsylvania 19024, USA
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Abstract
The state of chromatin (the packaging of DNA in eukaryotes) has long been recognized to have major effects on levels of gene expression, and numerous chromatin-altering strategies-including ATP-dependent remodeling and histone modification-are employed in the cell to bring about transcriptional regulation. Of these, histone acetylation is one of the best characterized, as recent years have seen the identification and further study of many histone acetyltransferase (HAT) proteins and their associated complexes. Interestingly, most of these proteins were previously shown to have coactivator or other transcription-related functions. Confirmed and putative HAT proteins have been identified from various organisms from yeast to humans, and they include Gcn5-related N-acetyltransferase (GNAT) superfamily members Gcn5, PCAF, Elp3, Hpa2, and Hat1: MYST proteins Sas2, Sas3, Esa1, MOF, Tip60, MOZ, MORF, and HBO1; global coactivators p300 and CREB-binding protein; nuclear receptor coactivators SRC-1, ACTR, and TIF2; TATA-binding protein-associated factor TAF(II)250 and its homologs; and subunits of RNA polymerase III general factor TFIIIC. The acetylation and transcriptional functions of these HATs and the native complexes containing them (such as yeast SAGA, NuA4, and possibly analogous human complexes) are discussed. In addition, some of these HATs are also known to modify certain nonhistone transcription-related proteins, including high-mobility-group chromatin proteins, activators such as p53, coactivators, and general factors. Thus, we also detail these known factor acetyltransferase (FAT) substrates and the demonstrated or potential roles of their acetylation in transcriptional processes.
Collapse
Affiliation(s)
- D E Sterner
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
170
|
Anafi M, Yang YF, Barlev NA, Govindan MV, Berger SL, Butt TR, Walfish PG. GCN5 and ADA adaptor proteins regulate triiodothyronine/GRIP1 and SRC-1 coactivator-dependent gene activation by the human thyroid hormone receptor. Mol Endocrinol 2000; 14:718-32. [PMID: 10809234 DOI: 10.1210/mend.14.5.0457] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have used yeast genetics and in vitro protein-protein interaction experiments to explore the possibility that GCN5 (general control nonrepressed protein 5) and several other ADA (alteration/deficiency in activation) adaptor proteins of the multimeric SAGA complex can regulate T3/GRIP1 (glucocorticoid receptor interacting protein 1) and SRC-1 (steroid receptor coactivator-1) coactivator-dependent activation of transcription by the human T3 receptor beta1 (hTRbeta1). Here, we show that in vivo activation of a T3/GRIP1 or SRC-1 coactivator-dependent T3 hormone response element by hTRbeta1 is dependent upon the presence of yeast GCN5, ADA2, ADA1, or ADA3 adaptor proteins and that the histone acetyltransferase (HAT) domains and bromodomain (BrD) of yGCN5 must be intact for maximal activation of transcription. We also observed that hTRbeta1 can bind directly to yeast or human GCN5 as well as hADA2, and that the hGCN5(387-837) sequence could bind directly to either GRIP1 or SRC-1 coactivator. Importantly, the T3-dependent binding of hTRbeta1 to hGCN5(387-837) could be markedly increased by the presence of GRIP1 or SRC1. Mutagenesis of GRIP1 nuclear receptor (NR) Box II and III LXXLL motifs also substantially decreased both in vivo activation of transcription and in vitro T3-dependent binding of hTRbeta1 to hGCN5. Taken together, these experiments support a multistep model of transcriptional initiation wherein the binding of T3 to hTRbeta1 initiates the recruitment of p160 coactivators and GCN5 to form a trimeric transcriptional complex that activates target genes through interactions with ADA/SAGA adaptor proteins and nucleosomal histones.
Collapse
Affiliation(s)
- M Anafi
- Samuel Lunenfeld Research Institute, University of Toronto Medical School, Mount Sinai Hospital, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
The assembly of eukaryotic DNA into folded nucleosomal arrays has drastic consequences for many nuclear processes that require access to the DNA sequence, including RNA transcription, DNA replication, recombination, and repair. Two types of highly conserved chromatin remodeling enzymes have been implicated as regulators of the repressive nature of chromatin structure: ATP-dependent remodeling complexes and nuclear histone acetyltransferases (HATs). Recent studies indicate that both types of enzymes can be recruited to chromosomal loci through either physical interactions with transcriptional activators or via the global accessibility of chromatin during S phase of the cell cycle. Here we review these recent observations and discuss the implications for gene-specific regulation by chromatin remodeling machines.
Collapse
Affiliation(s)
- C L Peterson
- Program in Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | |
Collapse
|
172
|
Yu Y, Eriksson P, Stillman DJ. Architectural transcription factors and the SAGA complex function in parallel pathways to activate transcription. Mol Cell Biol 2000; 20:2350-7. [PMID: 10713159 PMCID: PMC85404 DOI: 10.1128/mcb.20.7.2350-2357.2000] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent work has shown that transcription of the yeast HO gene involves the sequential recruitment of a series of transcription factors. We have performed a functional analysis of HO regulation by determining the ability of mutations in SIN1, SIN3, RPD3, and SIN4 negative regulators to permit HO expression in the absence of certain activators. Mutations in the SIN1 (=SPT2) gene do not affect HO regulation, in contrast to results of other studies using an HO:lacZ reporter, and our data show that the regulatory properties of an HO:lacZ reporter differ from that of the native HO gene. Mutations in SIN3 and RPD3, which encode components of a histone deacetylase complex, show the same pattern of genetic suppression, and this suppression pattern differs from that seen in a sin4 mutant. The Sin4 protein is present in two transcriptional regulatory complexes, the RNA polymerase II holoenzyme/mediator and the SAGA histone acetylase complex. Our genetic analysis allows us to conclude that Swi/Snf chromatin remodeling complex has multiple roles in HO activation, and the data suggest that the ability of the SBF transcription factor to bind to the HO promoter may be affected by the acetylation state of the HO promoter. We also demonstrate that the Nhp6 architectural transcription factor, encoded by the redundant NHP6A and NHP6B genes, is required for HO expression. Suppression analysis with sin3, rpd3, and sin4 mutations suggests that Nhp6 and Gcn5 have similar functions. A gcn5 nhp6a nhp6b triple mutant is extremely sick, suggesting that the SAGA complex and the Nhp6 architectural transcription factors function in parallel pathways to activate transcription. We find that disruption of SIN4 allows this strain to grow at a reasonable rate, indicating a critical role for Sin4 in detecting structural changes in chromatin mediated by Gcn5 and Nhp6. These studies underscore the critical role of chromatin structure in regulating HO gene expression.
Collapse
Affiliation(s)
- Y Yu
- Division of Molecular Biology and Genetics, Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
173
|
Sudarsanam P, Iyer VR, Brown PO, Winston F. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2000; 97:3364-9. [PMID: 10725359 PMCID: PMC16245 DOI: 10.1073/pnas.97.7.3364] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Saccharomyces cerevisiae Snf/Swi complex has been previously demonstrated to control transcription and chromatin structure of particular genes in vivo and to remodel nucleosomes in vitro. We have performed whole-genome expression analysis, using DNA microarrays, to study mutants deleted for a gene encoding one conserved (Snf2) or one unconserved (Swi1) Snf/Swi component. This analysis was performed on cells grown in both rich and minimal media. The microarray results, combined with Northern blot, computational, and genetic analyses, show that snf2Delta and swi1Delta mutations cause similar effects on mRNA levels, that Snf/Swi controls some genes differently in rich and minimal media, and that Snf/Swi control is exerted at the level of individual genes rather than over larger chromosomal domains. In addition, this work shows that Snf/Swi controls mRNA levels of MATalpha-specific genes, likely via controlling transcription of the regulators MATalpha1 and MCM1. Finally, we provide evidence that Snf/Swi acts both as an activator and as a repressor of transcription, and that neither mode of control is an indirect effect of the other.
Collapse
Affiliation(s)
- P Sudarsanam
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
174
|
Schiltz RL, Nakatani Y. The PCAF acetylase complex as a potential tumor suppressor. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1470:M37-53. [PMID: 10722926 DOI: 10.1016/s0304-419x(99)00037-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R L Schiltz
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, 9000 Rockville Pike, National Institutes of Health, Building 6, Room 416, Bethesda, MD, USA.
| | | |
Collapse
|
175
|
Syntichaki P, Topalidou I, Thireos G. The Gcn5 bromodomain co-ordinates nucleosome remodelling. Nature 2000; 404:414-7. [PMID: 10746732 DOI: 10.1038/35006136] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1999] [Accepted: 02/04/2000] [Indexed: 11/08/2022]
Abstract
The access of transcription factors to eukaryotic promoters often requires modification of their chromatin structure, which is accomplished by the action of two general classes of multiprotein complexes. One class contains histone acetyltransferases (HATs), such as Gcn5 in the SAGA complex, which acetylate nucleosomal histones. The second class contains ATPases, such as Swi2 in the Swi/Snf complex, which provide the energy for nucleosome remodelling. In several promoters these two complexes cooperate but their functional linkage is unknown. A protein module that is present in all nuclear HATs, the bromodomain, could provide such a link. The recently reported in vitro binding of a HAT bromodomain with acetylated lysines within H3 and H4 amino-terminal peptides indicates that this interaction may constitute a targeting step for events that follow histone acetylation. Here we use a suitable promoter to show that bromodomain residues essential for acetyl-lysine binding are not required in vivo for Gcn5-mediated histone acetylation but are fundamental for the subsequent Swi2-dependent nucleosome remodelling and consequent transcriptional activation. We show that the Gcn5 bromodomain stabilizes the Swi/Snf complex on this promoter.
Collapse
Affiliation(s)
- P Syntichaki
- Institute of Molecular Biology and Biotechnology, FORTH, and Department of Biology, University of Crete, Heraklion, Greece
| | | | | |
Collapse
|
176
|
Di Mauro E, Kendrew SG, Caserta M. Two distinct nucleosome alterations characterize chromatin remodeling at the Saccharomyces cerevisiae ADH2 promoter. J Biol Chem 2000; 275:7612-8. [PMID: 10713069 DOI: 10.1074/jbc.275.11.7612] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose depletion derepresses the Saccharomyces cerevisiae ADH2 gene; this metabolic change is accompanied by chromatin structural modifications in the promoter region. We show that the ADR6/SWI1 gene is not necessary for derepression of the wild type chromosomal ADH2, whereas the transcription factor Adr1p, which regulates several S. cerevisiae functions, plays a major role in driving nucleosome reconfiguration and ADH2 expression. When we tested the effect of individual domains of the regulatory protein Adr1p on the chromatin structure of ADH2, a remodeling consisting of at least two steps was observed. Adr1p derivatives were analyzed in derepressing conditions, showing that the Adr1p DNA binding domain alone causes an alteration in chromatin organization in the absence of transcription. This alteration differs from the remodeling observed in the presence of the Adr1p activation domain when the promoter is transcriptionally active.
Collapse
Affiliation(s)
- E Di Mauro
- Centro di Studio per gli Acidi Nucleici, Consiglio Nazionale delle Ricerche, Università "La Sapienza," P.le Aldo Moro 5, 00185 Rome, Italy
| | | | | |
Collapse
|
177
|
Lee D, Lee B, Kim J, Kim DW, Choe J. cAMP response element-binding protein-binding protein binds to human papillomavirus E2 protein and activates E2-dependent transcription. J Biol Chem 2000; 275:7045-51. [PMID: 10702269 DOI: 10.1074/jbc.275.10.7045] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
cAMP response element-binding protein-binding protein (CBP) is a eucaryotic transcriptional co-activator that contains multiple protein-protein interaction domains for association with various transcription factors, components of the basal transcriptional apparatus, and other co-activator proteins. Here, we report that CBP is also a co-activator of the human papillomavirus (HPV) E2 protein, which is a sequence-specific transcription/replication factor. We provide biochemical, genetic, and functional evidence that CBP binds directly to HPV E2 in vivo and in vitro and activates E2-dependent transcription. Mutations in an amphipathic helix within HPV-18 E2 abolish its transcriptional activation properties and its ability to bind to CBP. Furthermore, the binding of CBP to E2 was shown to be necessary for E2-dependent transcription. Interestingly, the histone acetyltransferase activity of CBP plays a role in CBP activation of E2-dependent transcription.
Collapse
Affiliation(s)
- D Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea
| | | | | | | | | |
Collapse
|
178
|
Wallberg AE, Neely KE, Hassan AH, Gustafsson JA, Workman JL, Wright AP. Recruitment of the SWI-SNF chromatin remodeling complex as a mechanism of gene activation by the glucocorticoid receptor tau1 activation domain. Mol Cell Biol 2000; 20:2004-13. [PMID: 10688647 PMCID: PMC110817 DOI: 10.1128/mcb.20.6.2004-2013.2000] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/1999] [Accepted: 12/20/1999] [Indexed: 11/20/2022] Open
Abstract
The SWI-SNF complex has been shown to alter nucleosome conformation in an ATP-dependent manner, leading to increased accessibility of nucleosomal DNA to transcription factors. In this study, we show that the SWI-SNF complex can potentiate the activity of the glucocorticoid receptor (GR) through the N-terminal transactivation domain, tau1, in both yeast and mammalian cells. GR-tau1 can directly interact with purified SWI-SNF complex, and mutations in tau1 that affect the transactivation activity in vivo also directly affect tau1 interaction with SWI-SNF. Furthermore, the SWI-SNF complex can stimulate tau1-driven transcription from chromatin templates in vitro. Taken together, these results support a model in which the GR can directly recruit the SWI-SNF complex to target promoters during glucocorticoid-dependent gene activation. We also provide evidence that the SWI-SNF and SAGA complexes represent independent pathways of tau1-mediated activation but play overlapping roles that are able to compensate for one another under some conditions.
Collapse
Affiliation(s)
- A E Wallberg
- Karolinska Institute, Department of Biosciences, NOVUM, S-14157 Huddinge, Sweden.
| | | | | | | | | | | |
Collapse
|
179
|
Affiliation(s)
- M Vignali
- Howard Hughes Medical Institute, Department of Biochemistry, The Pennsylvania State University, University Park, Pennsylvania 16802-4500, USA
| | | | | | | |
Collapse
|
180
|
Xie J, Collart M, Lemaire M, Stelzer G, Meisterernst M. A single point mutation in TFIIA suppresses NC2 requirement in vivo. EMBO J 2000; 19:672-82. [PMID: 10675336 PMCID: PMC305605 DOI: 10.1093/emboj/19.4.672] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Negative cofactor 2 (NC2) is a dimeric histone-fold complex that represses RNA polymerase II transcription through binding to TATA-box-binding protein (TBP) and inhibition of the general transcription factors TFIIA and TFIIB. Here we study molecular mechanisms of repression by human NC2 in vivo in yeast. Yeast NC2 genes are essential and can be exchanged with human NC2. The physiologically relevant regions of NC2 have been determined and shown to match the histone-fold dimerization motif. A suppressor screen based upon limiting concentrations of NC2beta yielded a cold-sensitive mutant in the yeast TFIIA subunit Toa1. The single point mutation in Toa1 alleviates the requirement for both subunits of NC2. Biochemical characterization indicated that mutant (mt)-Toa1 dimerizes well with Toa2; it supports specific recognition of the TATA box by TBP but forms less stable TBP-TFIIA-DNA complexes. Wild-type but not the mt-Toa1 can relieve NC2 effects in purified transcription systems. These data provide evidence for a dimeric NC2 complex that is in an equilibrium with TFIIA after the initial binding of TBP to promoter TATA boxes.
Collapse
Affiliation(s)
- J Xie
- Laboratorium für Molekulare Biologie-Genzentrum, der Ludwig-Maximilians-Universität, München, Feodor-Lynen-Strasse 25, D-81377 München, Germany
| | | | | | | | | |
Collapse
|
181
|
Abstract
Histone proteins and the nucleosomes they form with DNA are the fundamental building blocks of eukaryotic chromatin. A diverse array of post-translational modifications that often occur on tail domains of these proteins has been well documented. Although the function of these highly conserved modifications has remained elusive, converging biochemical and genetic evidence suggests functions in several chromatin-based processes. We propose that distinct histone modifications, on one or more tails, act sequentially or in combination to form a 'histone code' that is, read by other proteins to bring about distinct downstream events.
Collapse
Affiliation(s)
- B D Strahl
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Science Center, Charlottesville 22908, USA
| | | |
Collapse
|
182
|
Erdeniz N, Rothstein R. Rsp5, a ubiquitin-protein ligase, is involved in degradation of the single-stranded-DNA binding protein rfa1 in Saccharomyces cerevisiae. Mol Cell Biol 2000; 20:224-32. [PMID: 10594025 PMCID: PMC85078 DOI: 10.1128/mcb.20.1.224-232.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In Saccharomyces cerevisiae, RAD1 and RAD52 are required for alternate pathways of mitotic recombination. Double-mutant strains exhibit a synergistic interaction that decreases direct repeat recombination rates dramatically. A mutation in RFA1, the largest subunit of a single-stranded DNA-binding protein complex (RP-A), suppresses the recombination deficiency of rad1 rad52 strains (J. Smith and R. Rothstein, Mol. Cell. Biol. 15:1632-1641, 1995). Previously, we hypothesized that this mutation, rfa1-D228Y, causes an increase in recombinogenic lesions as well as the activation of a RAD52-independent recombination pathway. To identify gene(s) acting in this pathway, temperature-sensitive (ts) mutations were screened for those that decrease recombination levels in a rad1 rad52 rfa1-D228Y strain. Three mutants were isolated. Each segregates as a single recessive gene. Two are allelic to RSP5, which encodes an essential ubiquitin-protein ligase. One allele, rsp5-25, contains two mutations within its open reading frame. The first mutation does not alter the amino acid sequence of Rsp5, but it decreases the amount of full-length protein in vivo. The second mutation results in the substitution of a tryptophan with a leucine residue in the ubiquitination domain. In rsp5-25 mutants, the UV sensitivity of rfa1-D228Y is suppressed to the same level as in strains overexpressing Rfa1-D228Y. Measurement of the relative rate of protein turnover demonstrated that the half-life of Rfa1-D228Y in rsp5-25 mutants was extended to 65 min compared to a 35-min half-life in wild-type strains. We propose that Rsp5 is involved in the degradation of Rfa1 linking ubiquitination with the replication-recombination machinery.
Collapse
Affiliation(s)
- N Erdeniz
- Department of Genetics, College of Physicians and Surgeons, Columbia University, New York, New York 10032-2704, USA
| | | |
Collapse
|
183
|
Belotserkovskaya R, Sterner DE, Deng M, Sayre MH, Lieberman PM, Berger SL. Inhibition of TATA-binding protein function by SAGA subunits Spt3 and Spt8 at Gcn4-activated promoters. Mol Cell Biol 2000; 20:634-47. [PMID: 10611242 PMCID: PMC85153 DOI: 10.1128/mcb.20.2.634-647.2000] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SAGA is a 1.8-MDa yeast protein complex that is composed of several distinct classes of transcription-related factors, including the adaptor/acetyltransferase Gcn5, Spt proteins, and a subset of TBP-associated factors. Our results indicate that mutations that completely disrupt SAGA (deletions of SPT7 or SPT20) strongly reduce transcriptional activation at the HIS3 and TRP3 genes and that Gcn5 is required for normal HIS3 transcriptional start site selection. Surprisingly, mutations in Spt proteins involved in the SAGA-TBP interaction (Spt3 and Spt8) cause derepression of HIS3 and TRP3 transcription in the uninduced state. Consistent with this finding, wild-type SAGA inhibits TBP binding to the HIS3 promoter in vitro, while SAGA lacking Spt3 or Spt8 is not inhibitory. We detected two distinct forms of SAGA in cell extracts and, strikingly, one lacks Spt8. Conditions that induce HIS3 and TRP3 transcription result in an altered balance between these complexes strongly in favor of the form without Spt8. These results suggest that the composition of SAGA may be dynamic in vivo and may be regulated through dissociable inhibitory subunits.
Collapse
|
184
|
Gangloff YG, Werten S, Romier C, Carré L, Poch O, Moras D, Davidson I. The human TFIID components TAF(II)135 and TAF(II)20 and the yeast SAGA components ADA1 and TAF(II)68 heterodimerize to form histone-like pairs. Mol Cell Biol 2000; 20:340-51. [PMID: 10594036 PMCID: PMC85089 DOI: 10.1128/mcb.20.1.340-351.2000] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/1999] [Accepted: 09/28/1999] [Indexed: 11/20/2022] Open
Abstract
It has been previously proposed that the transcription complexes TFIID and SAGA comprise a histone octamer-like substructure formed from a heterotetramer of H4-like human hTAF(II)80 (or its Drosophila melanogaster dTAF(II)60 and yeast [Saccharomyces cerevisiae] yTAF(II)60 homologues) and H3-like hTAF(II)31 (dTAF(II)40 and yTAF(II)17) along with two homodimers of H2B-like hTAF(II)20 (dTAF(II)30alpha and yTAF(II)61/68). However, it has not been formally shown that hTAF(II)20 heterodimerizes via its histone fold. By two-hybrid analysis with yeast and biochemical characterization of complexes formed by coexpression in Escherichia coli, we showed that hTAF(II)20 does not homodimerize but heterodimerizes with hTAF(II)135. Heterodimerization requires the alpha2 and alpha3 helices of the hTAF(II)20 histone fold and is abolished by mutations in the hydrophobic face of the hTAF(II)20 alpha2 helix. Interaction with hTAF(II)20 requires a domain of hTAF(II)135 which shows sequence homology to H2A. This domain also shows homology to the yeast SAGA component ADA1, and we show that yADA1 heterodimerizes with the histone fold region of yTAF(II)61/68, the yeast hTAF(II)20 homologue. These results are indicative of a histone fold type of interaction between hTAF(II)20-hTAF(II)135 and yTAF(II)68-yADA1, which therefore constitute novel histone-like pairs in the TFIID and SAGA complexes.
Collapse
Affiliation(s)
- Y G Gangloff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch Cédex, C.U. de Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
185
|
Takechi S, Nakayama T. Sas3 is a histone acetyltransferase and requires a zinc finger motif. Biochem Biophys Res Commun 1999; 266:405-10. [PMID: 10600516 DOI: 10.1006/bbrc.1999.1836] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SAS3 was originally isolated as a gene related to SAS2, which encodes a positive regulator of transcriptional silencing in yeast. The Sas3 protein possesses an evolutionally conserved domain that is shared by a group of SAS-like factors. This conserved domain contains an atypical zinc finger motif and a putative acetyl-CoA binding motif. We showed that recombinant Sas3 exhibits histone acetyltransferase (HAT) activity toward acetylate core histones H2A, H3, and H4. This substrate specificity is similar to those of Tip60 and Esa1. Analysis of a series of deletion mutants revealed that the minimum region required for HAT activity is located within amino acid residues 241-577, including the domain conserved in the MYST family proteins. Amino acid substitution mutant analysis showed that both the acetyl-CoA binding motif and the zinc finger motif are required for HAT activity. These results suggest that SAS3 and its family members require the zinc finger motif for their activity.
Collapse
Affiliation(s)
- S Takechi
- Department of Biochemistry, Miyazaki Medical College, Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | | |
Collapse
|
186
|
Steger DJ, Workman JL. Transcriptional analysis of purified histone acetyltransferase complexes. Methods 1999; 19:410-6. [PMID: 10579936 DOI: 10.1006/meth.1999.0877] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acetylation of lysine residues within the amino-terminal tails of the core histone proteins is strongly correlated to the regulation of gene transcription in vivo. To directly study the effects of histone acetylation on transcription, we have developed a biochemical system examining the regulation of RNA polymerase II-directed transcription by native histone acetyltransferases (HATs). For the promoter sequences investigated, it has been demonstrated that HATs facilitate transcription from nucleosomal DNA templates in an acetyl-CoA-dependent fashion but do not affect transcription from histone-free templates. Here, protocols are presented describing the in vitro assembly of evenly spaced nucleosomal arrays on DNA fragments harboring gene regulatory sequences and the use of these templates with purified HAT complexes in transcription assays.
Collapse
Affiliation(s)
- D J Steger
- Department of Biochemistry and Biophysics, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, California 94143-0448, USA
| | | |
Collapse
|
187
|
Cairns BR, Schlichter A, Erdjument-Bromage H, Tempst P, Kornberg RD, Winston F. Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential AT hook, BAH, and bromodomains. Mol Cell 1999; 4:715-23. [PMID: 10619019 DOI: 10.1016/s1097-2765(00)80382-2] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
RSC is an essential 15 protein nucleosome-remodeling complex from S. cerevisiae. We have identified two closely related RSC members, Rsc1 and Rsc2. Biochemical analysis revealed Rsc1 and Rsc2 in distinct complexes, defining two forms of RSC. Genetic analysis has shown that Rsc1 and Rsc2 possess shared and unique functions. Rsc1 and Rsc2 each contain two bromodomains, a bromo-adjacent homology (BAH) domain, and an AT hook. One of the bromodomains, the BAH domain, and the AT hook are each essential for Rsc1 and Rsc2 functions, although they are not required for assembly into RSC complexes. Therefore, these domains are required for RSC function. Additional genetic analysis provides further evidence that RSC function is related to transcriptional control.
Collapse
Affiliation(s)
- B R Cairns
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City 84112, USA.
| | | | | | | | | | | |
Collapse
|
188
|
Natarajan K, Jackson BM, Zhou H, Winston F, Hinnebusch AG. Transcriptional activation by Gcn4p involves independent interactions with the SWI/SNF complex and the SRB/mediator. Mol Cell 1999; 4:657-64. [PMID: 10549298 DOI: 10.1016/s1097-2765(00)80217-8] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Mutations in three subunits of the SWI/SNF complex and in the Med2p subunit of the SRB/mediator of pol II holoenzyme impaired Gcn4p-activated transcription of HIS3 without reducing Gcn4p-independent transcription of this gene. Recombinant Gcn4p interacted with SWI/SNF and SRB/mediator subunits in cell extracts in a manner dependent on the same hydrophobic clusters in the Gcn4p activation domain; however, higher concentrations of Gcn4p were required for binding to SWI/SNF versus SRB/mediator subunits. In addition, SRB/mediator and SWI/SNF subunits did not coimmunopreciptate from the extracts. These findings, together with the fact that Gcn4p specifically interacted with purified SWI/SNF, strongly suggest that Gcn4p independently recruits SWI/SNF and holoenzyme to its target promoters in the course of activating transcription.
Collapse
Affiliation(s)
- K Natarajan
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
189
|
Neely KE, Hassan AH, Wallberg AE, Steger DJ, Cairns BR, Wright AP, Workman JL. Activation domain-mediated targeting of the SWI/SNF complex to promoters stimulates transcription from nucleosome arrays. Mol Cell 1999; 4:649-55. [PMID: 10549297 DOI: 10.1016/s1097-2765(00)80216-6] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The yeast SWI/SNF complex is required for the transcription of several yeast genes and has been shown to alter nucleosome structure in an ATP-dependent reaction. In this study, we show that the complex stimulated in vitro transcription from nucleosome templates in an activation domain-dependent manner. Transcription stimulation by SWI/SNF required an activation domain with which it directly interacts. The acidic activation domains of VP16, Gcn4, Swi5, and Hap4 interacted directly with the purified SWI/SNF complex and with the SWI/SNF complex in whole-cell extracts. The similarity of activation domain interactions and transcriptional stimulation between SWI/SNF and the SAGA histone acetyltransferase complex may account for their apparent overlapping functions in vivo.
Collapse
Affiliation(s)
- K E Neely
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park 16802, USA
| | | | | | | | | | | | | |
Collapse
|
190
|
Wallberg AE, Neely KE, Gustafsson JA, Workman JL, Wright AP, Grant PA. Histone acetyltransferase complexes can mediate transcriptional activation by the major glucocorticoid receptor activation domain. Mol Cell Biol 1999; 19:5952-9. [PMID: 10454542 PMCID: PMC84458 DOI: 10.1128/mcb.19.9.5952] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/1999] [Accepted: 06/18/1999] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that the Ada adapter proteins are important for glucocorticoid receptor (GR)-mediated gene activation in yeast. The N-terminal transactivation domain of GR, tau1, is dependent upon Ada2, Ada3, and Gcn5 for transactivation in vitro and in vivo. Using in vitro techniques, we demonstrate that the GR-tau1 interacts directly with the native Ada containing histone acetyltransferase (HAT) complex SAGA but not the related Ada complex. Mutations in tau1 that reduce tau1 transactivation activity in vivo lead to a reduced binding of tau1 to the SAGA complex and conversely, mutations increasing the transactivation activity of tau1 lead to an increased binding of tau1 to SAGA. In addition, the Ada-independent NuA4 HAT complex also interacts with tau1. GAL4-tau1-driven transcription from chromatin templates is stimulated by SAGA and NuA4 in an acetyl coenzyme A-dependent manner. Low-activity tau1 mutants reduce SAGA- and NuA4-stimulated transcription while high-activity tau1 mutants increase transcriptional activation, specifically from chromatin templates. Our results demonstrate that the targeting of native HAT complexes by the GR-tau1 activation domain mediates transcriptional stimulation from chromatin templates.
Collapse
Affiliation(s)
- A E Wallberg
- Karolinska Institute, Department of Biosciences, NOVUM, S-14157 Huddinge, Sweden.
| | | | | | | | | | | |
Collapse
|
191
|
Abstract
Mammalian counterparts of the yeast SRB/MED transcriptional 'mediator' complex have recently been identified. These complexes define a common cofactor requirement for diverse transcriptional activators and underscore the conserved nature of the transcriptional machinery among eukaryotic organisms.
Collapse
Affiliation(s)
- W H Wu
- Department of Biochemistry, Division of Nucleic Acids Enzymology, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
192
|
Trievel RC, Rojas JR, Sterner DE, Venkataramani RN, Wang L, Zhou J, Allis CD, Berger SL, Marmorstein R. Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator. Proc Natl Acad Sci U S A 1999; 96:8931-6. [PMID: 10430873 PMCID: PMC17710 DOI: 10.1073/pnas.96.16.8931] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The yeast GCN5 (yGCN5) transcriptional coactivator functions as a histone acetyltransferase (HAT) to promote transcriptional activation. Here, we present the high resolution crystal structure of the HAT domain of yGCN5 and probe the functional importance of a conserved glutamate residue. The structure reveals a central protein core associated with AcCoA binding that appears to be structurally conserved among a superfamily of N-acetyltransferases, including yeast histone acetyltransferase 1 and Serratia marcescens aminoglycoside 3-N-acetyltransferase. A pronounced cleft lying above this core, and flanked by N- and C-terminal regions that show no sequence conservation within N-acetyltransferase enzymes, is implicated by cross-species conservation and mutagenesis studies to be a site for histone substrate binding and catalysis. Located at the bottom of this cleft is a conserved glutamate residue (E173) that is in position to play an important catalytic role in histone acetylation. Functional analysis of an E173Q mutant yGCN5 protein implicates glutamate 173 to function as a general base for catalysis. Together, a correlation of the yGCN5 structure with functionally debilitating yGCN5 mutations provides a paradigm for understanding the structure/function relationships of the growing number of transcriptional regulators that function as histone acetyltransferase enzymes.
Collapse
Affiliation(s)
- R C Trievel
- The Wistar Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Roux-Rouquie M, Chauvet ML, Munnich A, Frezal J. Human genes involved in chromatin remodeling in transcription initiation, and associated diseases: An overview using the GENATLAS database. Mol Genet Metab 1999; 67:261-77. [PMID: 10444337 DOI: 10.1006/mgme.1999.2867] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromatin structure is inextricably linked to transcription regulation and differentiation. It consists of a multicomponent system, and impairments in such complex arrays may elicit dramatic biological effects and diseases. We present an overview of human genes involved in chromatin remodeling, which consist of the histone acetyltransferase/deacetylase system and the SWI/SNF-like complexes containing DNA-dependent ATPase activity. Special attention is given to the functional and physical interactions in which these components are involved, notably as transcriptional coactivators and/or corepressors of a large variety of genes. Linking seemingly distinct pathways allows integration of individual components into complex genetic and molecular processes and assessment of the underlying molecular bases of diseases. This was performed using GENATLAS (http://www.infobiogen.fr/), a gene database which compiles the information relevant to the mapping efforts from the published literature.
Collapse
Affiliation(s)
- M Roux-Rouquie
- Service de Génétique Médicale, U393 INSERM, Paris, France.
| | | | | | | |
Collapse
|
194
|
Wu M, Newcomb L, Heideman W. Regulation of gene expression by glucose in Saccharomyces cerevisiae: a role for ADA2 and ADA3/NGG1. J Bacteriol 1999; 181:4755-60. [PMID: 10438741 PMCID: PMC93958 DOI: 10.1128/jb.181.16.4755-4760.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When Saccharomyces cerevisiae cells are transferred from poor medium to fresh medium containing glucose, they rapidly increase the transcription of a large group of genes as they resume rapid growth and accelerate progress through the cell cycle. Among those genes induced by glucose is CLN3, encoding a G(1) cyclin that is thought to play a pivotal role in progression through Start. Deletion of CLN3 delays the increase in proliferation normally observed in response to glucose medium. ADA2 and ADA3/NGG1 are necessary for the rapid induction of CLN3 message levels in response to glucose. Loss of either ADA2 or ADA3/NGG1 also affects a large number of genes and inhibits the rapid global increase in transcription that occurs in response to glucose. Surprisingly, these effects are transitory, and expression of CLN3 and total poly(A)(+) RNA appear normal when ADA2 or ADA3/NGG1 deletion mutants are examined in log-phase growth. These results indicate a role for ADA2 and ADA3/NGG1 in allowing rapid transcriptional responses to environmental signals. Consistent with the role of the Ada proteins in positive regulation of CLN3, deletion of RPD3, encoding a histone deacetylase, prevented the down regulation of CLN3 mRNA in the absence of glucose.
Collapse
Affiliation(s)
- M Wu
- Program in Cell and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
195
|
Xiang Z, Lyne MH, Wood V, Rajandream MA, Barrell BG, Aves SJ. DNA sequencing and analysis of a 67.4 kb region from the right arm of Schizosaccharomyces pombe chromosome II reveals 28 open reading frames including the genes his5, pol5, ppa2, rip1, rpb8 and skb1. Yeast 1999; 15:893-901. [PMID: 10407269 DOI: 10.1002/(sici)1097-0061(199907)15:10a<893::aid-yea430>3.0.co;2-s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
67 393 bp of contiguous DNA located between markers cdc18 and cdc14 on the right arm of fission yeast chromosome II has been sequenced as part of the European Union Schizosaccharomyces pombe genome sequencing project. The complete sequence, contained in cosmid clones c15C4 and c21H7, has been determined on both strands. Sequence analysis shows that it contains 28 open reading frames capable of coding for proteins, 16 split by one or more introns, but no tRNA, rRNA or transposon sequences. The gene density is one per 2. 4 kb. Six genes have been previously described (his5, pol5, ppa2, rip1, rpb8 and skb1) and 22 are novel. Of the novel genes, 14 have significant similarity with proteins of known function, three have similarities with proteins of unknown function and five show no extensive similarities with known proteins. Sequence similarities suggest that three of the novel genes encode ATP-dependent RNA helicases, two encode transcription factor components and others encode a G-protein, a dehydrogenase, a Rab escort protein, an Abc1-like protein, a lipase, an ATP-binding transport protein, an amino acid permease, an acid phosphatase and a mannosyltransferase.
Collapse
Affiliation(s)
- Z Xiang
- School of Biological Sciences, University of Exeter, Washington Singer Laboratories, Perry Road, Exeter EX4 4QG, U.K
| | | | | | | | | | | |
Collapse
|
196
|
Abstract
A central problem in eukaryotic transcription is how proteins gain access to DNA packaged in nucleosomes. Research on the interplay between chromatin and transcription has progressed with the use of yeast genetics as a useful tool to characterize factors involved in this process. These factors have both positive and negative effects on the stability of nucleosomes, thereby controlling the role of chromatin in transcription in vivo. The negative effectors include the structural components of chromatin, the histones and non-histone chromatin associated proteins, as well as regulatory components like chromatin assembly factors and histone deacetylase complexes. The positive factors are involved in remodeling chromatin and several multiprotein complexes have been described: Swi/Snf, Srb/mediator and SAGA. The components of each of these complexes, as well as the functional relationships between them are covered by this review.
Collapse
Affiliation(s)
- J Pérez-Martín
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.
| |
Collapse
|
197
|
Struhl K, Kadosh D, Keaveney M, Kuras L, Moqtaderi Z. Activation and repression mechanisms in yeast. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:413-21. [PMID: 10384306 DOI: 10.1101/sqb.1998.63.413] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- K Struhl
- Department Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
198
|
Mizzen C, Kuo MH, Smith E, Brownell J, Zhou J, Ohba R, Wei Y, Monaco L, Sassone-Corsi P, Allis CD. Signaling to chromatin through histone modifications: how clear is the signal? COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:469-81. [PMID: 10384311 DOI: 10.1101/sqb.1998.63.469] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- C Mizzen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Winston F, Sudarsanam P. The SAGA of Spt proteins and transcriptional analysis in yeast: past, present, and future. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:553-61. [PMID: 10384320 DOI: 10.1101/sqb.1998.63.553] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- F Winston
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
200
|
Abstract
Persuasive evidence has emerged that acetyltransferases appear to truly function to acetylate both histones and transcription factors in vivo to effect gene activation. In the cell, acetyltransferases have been identified as components of large, multifunctional and evolutionarily conserved macromolecular assemblies, whose components and structures suggest complex functions. In addition, the first atomic resolution structures of HATs have revealed conserved mechanisms of acetyl-CoA interaction among the superfamily of GNATs (Gcn5-related N-acetyltransferases). Finally, enzymatic acetyltransferase activities are themselves regulated by phosphorylation and interaction with other proteins.
Collapse
Affiliation(s)
- S L Berger
- Molecular Genetics Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|