151
|
McEwen JR, Vamosi JC, Rogers SM. Natural selection and neutral evolution jointly drive population divergence between alpine and lowland ecotypes of the allopolyploid plant Anemone multifida (Ranunculaceae). PLoS One 2013; 8:e68889. [PMID: 23874801 PMCID: PMC3715535 DOI: 10.1371/journal.pone.0068889] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 06/02/2013] [Indexed: 11/18/2022] Open
Abstract
Population differentiation can be driven in large part by natural selection, but selectively neutral evolution can play a prominent role in shaping patters of population divergence. The decomposition of the evolutionary history of populations into the relative effects of natural selection and selectively neutral evolution enables an understanding of the causes of population divergence and adaptation. In this study, we examined heterogeneous genomic divergence between alpine and lowland ecotypes of the allopolyploid plant, Anemone multifida. Using peak height and dominant AFLP data, we quantified population differentiation at non-outlier (neutral) and outlier loci to determine the potential contribution of natural selection and selectively neutral evolution to population divergence. We found 13 candidate loci, corresponding to 2.7% of loci, with signatures of divergent natural selection between alpine and lowland populations and between alpine populations (Fst = 0.074-0.445 at outlier loci), but neutral population differentiation was also evident between alpine populations (FST = 0.041-0.095 at neutral loci). By examining population structure at both neutral and outlier loci, we determined that the combined effects of selection and neutral evolution are associated with the divergence of alpine populations, which may be linked to extreme abiotic conditions and isolation between alpine sites. The presence of outlier levels of genetic variation in structured populations underscores the importance of separately analyzing neutral and outlier loci to infer the relative role of divergent natural selection and neutral evolution in population divergence.
Collapse
Affiliation(s)
- Jamie R McEwen
- University of British Columbia, Department of Botany, Vancouver, BC, Canada.
| | | | | |
Collapse
|
152
|
Fournier E, Gladieux P, Giraud T. The 'Dr Jekyll and Mr Hyde fungus': noble rot versus gray mold symptoms of Botrytis cinerea on grapes. Evol Appl 2013; 6:960-9. [PMID: 24062804 PMCID: PMC3779096 DOI: 10.1111/eva.12079] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 04/08/2013] [Indexed: 11/29/2022] Open
Abstract
Many cryptic species have recently been discovered in fungi, especially in fungal plant pathogens. Cryptic fungal species co-occurring in sympatry may occupy slightly different ecological niches, for example infecting the same crop plant but specialized on different organs or having different phenologies. Identifying cryptic species in fungal pathogens of crops and determining their ecological specialization are therefore crucial for disease management. Here, we addressed this question in the ascomycete Botrytis cinerea, the agent of gray mold on a wide range of plants. On grape, B. cinerea causes severe damage but is also responsible for noble rot used for processing sweet wines. We used microsatellite genotyping and clustering methods to elucidate whether isolates sampled on gray mold versus noble rot symptoms in three French regions belong to genetically differentiated populations. The inferred population structure matched geography rather than the type of symptom. Noble rot symptoms therefore do not seem to be caused by a specific B. cinerea population but instead seem to depend essentially on microclimatic conditions, which has applied consequences for the production of sweet wines.
Collapse
Affiliation(s)
- Elisabeth Fournier
- Biologie et Génétique des Interactions Plante-Parasite, INRA-CIRAD-SupAgro Montpellier Cedex 5, France
| | | | | |
Collapse
|
153
|
Stewart JE, Thomas KA, Lawrence CB, Dang H, Pryor BM, Timmer LMP, Peever TL. Signatures of recombination in clonal lineages of the citrus brown spot pathogen, Alternaria alternata sensu lato. PHYTOPATHOLOGY 2013; 103:741-749. [PMID: 23441968 DOI: 10.1094/phyto-08-12-0211-r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Most Alternaria spp. are considered asexual but recent molecular evolution analyses of Alternaria mating-type genes show that the mating locus is under strong purifying selection, indicating a possible role in sexual reproduction. The objective of this study was to determine the mode of reproduction of an Alternaria alternata sensu lato population causing citrus brown spot in central Florida. Mating type of each isolate was determined, and isolates were sequenced at six putatively unlinked loci. Three genetically distinct subpopulations (SH1, SH4A, and SH4B) were identified using network and Bayesian population structure analyses. Results demonstrate that most subpopulations of A. alternata associated with citrus are clonal but some have the ability to extensively recombine through a cryptic sexual cycle or parasexual cycle. Although isolates were sampled in close physical proximity (≈2,500-m² area), we were able to reject a random mating model using multilocus gametic disequilibrium tests for two subpopulations, SH1 and SH4B, suggesting that these subpopulations were predominantly asexual. However, three recombination events were identified in SH1 and SH4B and localized to individuals of opposite mating type, possibly indicating meiotic recombination. In contrast, in the third subpopulation (SH4A), where only one mating type was present, extensive reticulation was evident in network analyses, and multilocus gametic disequilibrium tests were consistent with recombination. Recombination among isolates of the same mating type suggests that a nonmeiotic mechanism of recombination such as the parasexual cycle may be operating in this subpopulation. The level of gene flow detected among subpopulations does not appear to be sufficient to prevent differentiation, and perhaps future speciation, of these A. alternata subpopulations.
Collapse
Affiliation(s)
- Jane E Stewart
- Department of Plant Pathology, Washington State University, Pullman, USA.
| | | | | | | | | | | | | |
Collapse
|
154
|
Cerda-Flores RM, Rivera-Prieto RA, Pereyra-Alférez B, Calderón-Garcidueñas AL, Barrera-Saldaña HA, Gallardo-Blanco HL, Ortiz-López R, Flores-Peña Y, Cárdenas-Villarreal VM, Rivas F, Figueroa A, Kshatriya G. Genetic structure of Mexican Mestizos with type 2 diabetes mellitus based on three STR loci. Gene 2013; 525:41-6. [PMID: 23664978 DOI: 10.1016/j.gene.2013.04.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 04/09/2013] [Accepted: 04/20/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND The aims of this population genetics study were: 1) to ascertain whether Mexicans with type 2 diabetes mellitus (DM) were genetically homogeneous and 2) to compare the genetic structure of this selected population with the previously reported data of four random populations (Nuevo León, Hispanics, Chihuahua, and Central Region of Mexico). METHODS A sample of 103 unrelated individuals with DM and whose 4 grandparents were born in five zones of Mexico was interviewed in 32 Medical Units in the Mexican Institute of Social Security (IMSS). The non-coding STRs D16S539, D7S820, and D13S317 were analyzed. RESULTS Genotype distribution was in agreement with Hardy-Weinberg expectations for all three markers. Allele frequencies were found to be similar between the selected population and the four random populations. Gene diversity analysis suggested that more than 99.57% of the total gene diversity could be attributed to variation between individuals within the population and 0.43% between the populations. CONCLUSIONS According to the present and previous studies using molecular and non-molecular nuclear DNA markers not associated with any disease, the Mexican Mestizo population is found to be genetically homogeneous and therefore the genetic causes of DM are less heterogeneous, thereby simplifying genetic epidemiological studies as has been found in a previous study with the same design in Mexican women with breast cancer.
Collapse
|
155
|
Brown EM, McTaggart LR, Zhang SX, Low DE, Stevens DA, Richardson SE. Phylogenetic analysis reveals a cryptic species Blastomyces gilchristii, sp. nov. within the human pathogenic fungus Blastomyces dermatitidis. PLoS One 2013; 8:e59237. [PMID: 23533607 PMCID: PMC3606480 DOI: 10.1371/journal.pone.0059237] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 02/14/2013] [Indexed: 11/18/2022] Open
Abstract
Background Analysis of the population genetic structure of microbial species is of fundamental importance to many scientific disciplines because it can identify cryptic species, reveal reproductive mode, and elucidate processes that contribute to pathogen evolution. Here, we examined the population genetic structure and geographic differentiation of the sexual, dimorphic fungus Blastomyces dermatitidis, the causative agent of blastomycosis. Methodology/Principal Findings Criteria for Genealogical Concordance Phylogenetic Species Recognition (GCPSR) applied to seven nuclear loci (arf6, chs2, drk1, fads, pyrF, tub1, and its-2) from 78 clinical and environmental isolates identified two previously unrecognized phylogenetic species. Four of seven single gene phylogenies examined (chs2, drk1, pyrF, and its-2) supported the separation of Phylogenetic Species 1 (PS1) and Phylogenetic Species 2 (PS2) which were also well differentiated in the concatenated chs2-drk1-fads-pyrF-tub1-arf6-its2 genealogy with all isolates falling into one of two evolutionarily independent lineages. Phylogenetic species were genetically distinct with interspecific divergence 4-fold greater than intraspecific divergence and a high Fst value (0.772, P<0.001) indicative of restricted gene flow between PS1 and PS2. Whereas panmixia expected of a single freely recombining population was not observed, recombination was detected when PS1 and PS2 were assessed separately, suggesting reproductive isolation. Random mating among PS1 isolates, which were distributed across North America, was only detected after partitioning isolates into six geographic regions. The PS2 population, found predominantly in the hyper-endemic regions of northwestern Ontario, Wisconsin, and Minnesota, contained a substantial clonal component with random mating detected only among unique genotypes in the population. Conclusions/Significance These analyses provide evidence for a genetically divergent clade within Blastomyces dermatitidis, which we use to describe a novel species, Blastomyces gilchristii sp. nov. In addition, we discuss the value of population genetic and phylogenetic analyses as a foundation for disease surveillance, understanding pathogen evolution, and discerning phenotypic differences between phylogenetic species.
Collapse
Affiliation(s)
- Elizabeth M. Brown
- Public Health Laboratories Toronto, Public Health Ontario, Toronto, Ontario, Canada
- Department of Microbiology, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Lisa R. McTaggart
- Public Health Laboratories Toronto, Public Health Ontario, Toronto, Ontario, Canada
- * E-mail:
| | - Sean X. Zhang
- Department of Pathology, Division of Medical Microbiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Donald E. Low
- Public Health Laboratories Toronto, Public Health Ontario, Toronto, Ontario, Canada
- Department of Microbiology, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - David A. Stevens
- Division of Infectious Diseases, Department of Medicine, Santa Clara Valley Medical Center, San Jose, California, United States of America
| | - Susan E. Richardson
- Public Health Laboratories Toronto, Public Health Ontario, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Microbiology, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
156
|
Le May C, Guibert M, Leclerc A, Andrivon D, Tivoli B. A single, plastic population of Mycosphaerella pinodes causes ascochyta blight on winter and spring peas (Pisum sativum) in France. Appl Environ Microbiol 2012; 78:8431-40. [PMID: 23023742 PMCID: PMC3497390 DOI: 10.1128/aem.01543-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/19/2012] [Indexed: 11/20/2022] Open
Abstract
Plant diseases are caused by pathogen populations continuously subjected to evolutionary forces (genetic flow, selection, and recombination). Ascochyta blight, caused by Mycosphaerella pinodes, is one of the most damaging necrotrophic pathogens of field peas worldwide. In France, both winter and spring peas are cultivated. Although these crops overlap by about 4 months (March to June), primary Ascochyta blight infections are not synchronous on the two crops. This suggests that the disease could be due to two different M. pinodes populations, specialized on either winter or spring pea. To test this hypothesis, 144 pathogen isolates were collected in the field during the winter and spring growing seasons in Rennes (western France), and all the isolates were genotyped using amplified fragment length polymorphism (AFLP) markers. Furthermore, the pathogenicities of 33 isolates randomly chosen within the collection were tested on four pea genotypes (2 winter and 2 spring types) grown under three climatic regimes, simulating winter, late winter, and spring conditions. M. pinodes isolates from winter and spring peas were genetically polymorphic but not differentiated according to the type of cultivars. Isolates from winter pea were more pathogenic than isolates from spring pea on hosts raised under winter conditions, while isolates from spring pea were more pathogenic than those from winter pea on plants raised under spring conditions. These results show that disease developed on winter and spring peas was initiated by a single population of M. pinodes whose pathogenicity is a plastic trait modulated by the physiological status of the host plant.
Collapse
|
157
|
Brewer MT, Frenkel O, Milgroom MG. Linkage disequilibrium and spatial aggregation of genotypes in sexually reproducing populations of Erysiphe necator. PHYTOPATHOLOGY 2012; 102:997-1005. [PMID: 22755546 DOI: 10.1094/phyto-11-11-0321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Random mating and recombination in heterothallic ascomycetes should result in high genotypic diversity, 1:1 mating-type ratios, and random associations of alleles, or linkage equilibrium, at different loci. To test for random mating in populations of the grape powdery mildew fungus Erysiphe necator, we sampled isolates from vineyards of Vitis vinifera in Burdett, NY (NY09) and Winchester, VA (VA09) at the end of the epidemic in fall 2009. We also sampled isolates from the same Winchester, VA vineyard in spring 2010 at the onset of the next epidemic. Isolates were genotyped for mating type and 11 microsatellite markers. In the spring sample, which originated from ascospore infections, nearly every isolate had a unique genotype. In contrast, fall populations were less diverse. In all, 9 of 45 total genotypes in VA09 were represented by two or more isolates; 3 of 40 total genotypes in NY09 were represented by two or more isolates, with 1 genotype represented by 20 isolates. After clone correction, mating-type ratios in the three populations did not deviate from 1:1. However, even with clone correction, we detected significant linkage disequilibrium (LD) in all populations. Mantel tests detected positive correlations between genetic and physical distances within vineyards. Spatial autocorrelation showed aggregations up to 42 and 3 m in VA09 and NY09, respectively. Spatial autocorrelation most likely results from short dispersal distances. Overall, these results suggest that spatial genetic aggregation and clonal genotypes that arise during the asexual phase of the epidemic contribute to persistent LD even though populations undergo sexual reproduction annually.
Collapse
Affiliation(s)
- Marin Talbot Brewer
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | | | | |
Collapse
|
158
|
Xu J, Zhang Y, Pun N. Mitochondrial recombination in natural populations of the button mushroom Agaricus bisporus. Fungal Genet Biol 2012; 55:92-7. [PMID: 23000308 DOI: 10.1016/j.fgb.2012.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/04/2012] [Accepted: 09/11/2012] [Indexed: 10/27/2022]
Abstract
In the majority of sexual eukaryotes, the mitochondrial genomes are inherited uniparentally and have predominantly clonal population structures. In clonally evolving genomes, alleles at different loci will be in significant linkage disequilibrium. In this study, the associations among alleles at nine mitochondrial loci were analyzed for 379 isolates in four natural populations of the button mushroom Agaricus bisporus. The results indicated that the mitochondrial genome in the Desert California population was not significantly different from random recombination. In contrast, the three other populations all showed predominantly clonal mitochondrial population structure. While no evidence of recombination was found in the Alberta, Canada A. bisporus population, signatures of recombination were evident in the Coastal Californian and the French populations. We discuss the potential mechanisms that could have contributed to the observed mitochondrial recombination and to the differences in allelic associations among the geographic populations in this economically important mushroom.
Collapse
Affiliation(s)
- Jianping Xu
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, PR China.
| | | | | |
Collapse
|
159
|
Rieux A, De Lapeyre De Bellaire L, Zapater MF, Ravigne V, Carlier J. Recent range expansion and agricultural landscape heterogeneity have only minimal effect on the spatial genetic structure of the plant pathogenic fungus Mycosphaerella fijiensis. Heredity (Edinb) 2012; 110:29-38. [PMID: 22990310 DOI: 10.1038/hdy.2012.55] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Understanding how geographical and environmental features affect genetic variation at both the population and individual levels is crucial in biology, especially in the case of pathogens. However, distinguishing between these factors and the effects of historical range expansion on spatial genetic structure remains challenging. In the present study, we investigated the case of Mycosphaerella fijiensis-a plant pathogenic fungus that has recently colonized an agricultural landscape characterized by the presence of potential barriers to gene flow, including several commercial plantations in which disease control practises such as the use of fungicides are applied frequently, and low host density areas. We first genotyped 300 isolates sampled at a global scale on untreated plants in two dimensions over a 50 × 80-km area. Using two different clustering algorithms, no genetic structure was detected in the studied area, suggesting expansion of large populations and/or no influence of potential barriers. Second, we investigated the potential effect of disease control practises on M. fijiensis diversity by comparing populations sampled in commercial vs food-crop plantations. At this local scale, we detected significantly higher allelic richness inside commercial plantations compared with the surrounding food-crop plantation populations. Analysis of molecular variance indicated that 99% of the total genetic variance occurred within populations. We discuss the suggestion that high population size and/or high migration rate between populations might be responsible for the absence of any effect of disease control practises on genetic diversity and differentiation.
Collapse
Affiliation(s)
- A Rieux
- CIRAD, UMR BGPI, TA A-54K, Campus International de Baillarguet, Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
160
|
Wang T, Chen G, Zan Q, Wang C, Su YJ. AFLP genome scan to detect genetic structure and candidate loci under selection for local adaptation of the invasive weed Mikania micrantha. PLoS One 2012; 7:e41310. [PMID: 22829939 PMCID: PMC3400595 DOI: 10.1371/journal.pone.0041310] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 06/25/2012] [Indexed: 11/18/2022] Open
Abstract
Why some species become successful invaders is an important issue in invasive biology. However, limited genomic resources make it very difficult for identifying candidate genes involved in invasiveness. Mikania micrantha H.B.K. (Asteraceae), one of the world's most invasive weeds, has adapted rapidly in response to novel environments since its introduction to southern China. In its genome, we expect to find outlier loci under selection for local adaptation, critical to dissecting the molecular mechanisms of invasiveness. An explorative amplified fragment length polymorphism (AFLP) genome scan was used to detect candidate loci under selection in 28 M. micrantha populations across its entire introduced range in southern China. We also estimated population genetic parameters, bottleneck signatures, and linkage disequilibrium. In binary characters, such as presence or absence of AFLP bands, if all four character combinations are present, it is referred to as a character incompatibility. Since character incompatibility is deemed to be rare in populations with extensive asexual reproduction, a character incompatibility analysis was also performed in order to infer the predominant mating system in the introduced M. micrantha populations. Out of 483 AFLP loci examined using stringent significance criteria, 14 highly credible outlier loci were identified by Dfdist and Bayescan. Moreover, remarkable genetic variation, multiple introductions, substantial bottlenecks and character compatibility were found to occur in M. micrantha. Thus local adaptation at the genome level indeed exists in M. micrantha, and may represent a major evolutionary mechanism of successful invasion. Interactions between genetic diversity, multiple introductions, and reproductive modes contribute to increase the capacity of adaptive evolution.
Collapse
Affiliation(s)
- Ting Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Guopei Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qijie Zan
- Shenzhen Wildlife Rescue and Rehabilitation Center, Shenzhen, China
| | - Chunbo Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying-juan Su
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
161
|
Rodriguez M, Rau D, O'Sullivan D, Brown AHD, Papa R, Attene G. Genetic structure and linkage disequilibrium in landrace populations of barley in Sardinia. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:171-84. [PMID: 22411093 DOI: 10.1007/s00122-012-1824-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 02/11/2012] [Indexed: 05/14/2023]
Abstract
Multilocus digenic linkage disequilibria (LD) and their population structure were investigated in eleven landrace populations of barley (Hordeum vulgare ssp. vulgare L.) in Sardinia, using 134 dominant simple-sequence amplified polymorphism markers. The analysis of molecular variance for these markers indicated that the populations were partially differentiated (F(ST) = 0.18), and clustered into three geographic areas. Consistent with this population pattern, STRUCTURE analysis allocated individuals from a bulk of all populations into four genetic groups, and these groups also showed geographic patterns. In agreement with other molecular studies in barley, the general level of LD was low (13% of locus pairs, with P < 0.01) in the bulk of 337 lines, and decayed steeply with map distance between markers. The partitioning of multilocus associations into various components indicated that genetic drift and founder effects played a major role in determining the overall genetic makeup of the diversity in these landrace populations, but that epistatic homogenising or diversifying selection was also present. Notably, the variance of the disequilibrium component was relatively high, which implies caution in the pooling of barley lines for association studies. Finally, we compared the analyses of multilocus structure in barley landrace populations with parallel analyses in both composite crosses of barley on the one hand and in natural populations of wild barley on the other. Neither of these serves as suitable mimics of landraces in barley, which require their own study. Overall, the results suggest that these populations can be exploited for LD mapping if population structure is controlled.
Collapse
Affiliation(s)
- Monica Rodriguez
- Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale, Università degli Studi di Sassari, Via E. de Nicola, 07100, Sassari, Italy.
| | | | | | | | | | | |
Collapse
|
162
|
DILMAGHANI A, GLADIEUX P, GOUT L, GIRAUD T, BRUNNER PC, STACHOWIAK A, BALESDENT MH, ROUXEL T. Migration patterns and changes in population biology associated with the worldwide spread of the oilseed rape pathogenLeptosphaeria maculans. Mol Ecol 2012; 21:2519-33. [DOI: 10.1111/j.1365-294x.2012.05535.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
163
|
Travadon R, Smith ME, Fujiyoshi P, Douhan GW, Rizzo DM, Baumgartner K. Inferring dispersal patterns of the generalist root fungus Armillaria mellea. THE NEW PHYTOLOGIST 2012; 193:959-969. [PMID: 22211298 DOI: 10.1111/j.1469-8137.2011.04015.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Investigating the dispersal of the root-pathogenic fungus Armillaria mellea is necessary to understand its population biology. Such an investigation is complicated by both its subterranean habit and the persistence of genotypes over successive host generations. As such, host colonization by resident mycelia is thought to outcompete spore infections. We evaluated the contributions of mycelium and spores to host colonization by examining a site in which hosts pre-date A. mellea. Golden Gate Park (San Francisco, CA, USA) was established in 1872 primarily on sand dunes that supported no resident mycelia. Genotypes were identified by microsatellite markers and somatic incompatibility pairings. Spatial autocorrelation analyses of kinship coefficients were used to infer spore dispersal distance. The largest genotypes measured 322 and 343 m in length, and 61 of the 90 total genotypes were recovered from only one tree. The absence of multilocus linkage disequilibrium and the high proportion of unique genotypes suggest that spore dispersal is an important part of the ecology and establishment of A. mellea in this ornamental landscape. Spatial autocorrelations indicated a significant spatial population structure consistent with limited spore dispersal. This isolation-by-distance pattern suggests that most spores disperse over a few meters, which is consistent with recent, direct estimates based on spore trapping data.
Collapse
Affiliation(s)
- Renaud Travadon
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Phillip Fujiyoshi
- United States Department of Agriculture - Agricultural Research Service, Davis, CA 95616, USA
| | - Greg W Douhan
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
| | - David M Rizzo
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Kendra Baumgartner
- United States Department of Agriculture - Agricultural Research Service, Davis, CA 95616, USA
| |
Collapse
|
164
|
GUPTA BHAVNA, SRIVASTAVA NALINI, DAS APARUP. Inferring the evolutionary history of IndianPlasmodium vivaxfrom population genetic analyses of multilocus nuclear DNA fragments. Mol Ecol 2012; 21:1597-616. [DOI: 10.1111/j.1365-294x.2012.05480.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
165
|
Wang T, Chen G, Zan Q, Wang C, Su YJ. AFLP genome scan to detect genetic structure and candidate loci under selection for local adaptation of the invasive weed Mikania micrantha. PLoS One 2012. [PMID: 22829939 DOI: 10.1371/journal.pone.0041310e41310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
Why some species become successful invaders is an important issue in invasive biology. However, limited genomic resources make it very difficult for identifying candidate genes involved in invasiveness. Mikania micrantha H.B.K. (Asteraceae), one of the world's most invasive weeds, has adapted rapidly in response to novel environments since its introduction to southern China. In its genome, we expect to find outlier loci under selection for local adaptation, critical to dissecting the molecular mechanisms of invasiveness. An explorative amplified fragment length polymorphism (AFLP) genome scan was used to detect candidate loci under selection in 28 M. micrantha populations across its entire introduced range in southern China. We also estimated population genetic parameters, bottleneck signatures, and linkage disequilibrium. In binary characters, such as presence or absence of AFLP bands, if all four character combinations are present, it is referred to as a character incompatibility. Since character incompatibility is deemed to be rare in populations with extensive asexual reproduction, a character incompatibility analysis was also performed in order to infer the predominant mating system in the introduced M. micrantha populations. Out of 483 AFLP loci examined using stringent significance criteria, 14 highly credible outlier loci were identified by Dfdist and Bayescan. Moreover, remarkable genetic variation, multiple introductions, substantial bottlenecks and character compatibility were found to occur in M. micrantha. Thus local adaptation at the genome level indeed exists in M. micrantha, and may represent a major evolutionary mechanism of successful invasion. Interactions between genetic diversity, multiple introductions, and reproductive modes contribute to increase the capacity of adaptive evolution.
Collapse
Affiliation(s)
- Ting Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | |
Collapse
|
166
|
Phenotypical plasticity and homoplasy complicate species delimitation in the Cladonia gracilis group (Cladoniaceae, Ascomycota). ORG DIVERS EVOL 2011. [DOI: 10.1007/s13127-011-0062-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
167
|
Valdez GU, Douhan GW. Geographic structure of a bolete-infecting cryptic species within the Hypomyces microspermus species complex in California. Mycologia 2011; 104:14-21. [PMID: 21933925 DOI: 10.3852/09-272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fungi in the genus Hypomyces are mycoparasites of various fungal groups. Studies within this genus have dealt primarily with taxonomic descriptions, and no studies have been published on the population biology of these fungi in natural ecosystems. In this study, genetic structure within and among six California (CA) bolete-infecting H. microspermus populations were analyzed with amplified fragment length polymorphism (AFLP). Four of the populations were collected south of the transverse mountain ranges of southern CA, whereas the other populations were from the central coast of CA (Pismo Beach) and from northern CA (Humboldt County). Thirty-nine genotypes were found among 68 isolates based on 30 AFLP markers. This was a higher degree of genotypic diversity than expected because no sexual fruiting bodies were observed in the field, suggesting that sexual reproduction occurs infrequently. These observations were also supported by multilocus disequilibrium analyses. Overall the populations were significantly differentiated (θ = 0.321, P < 0.001), and most population pairwise F(st) values were also significantly different. The populations sampled also fit an isolation by distance model based on a Mantel test (P < 0.001). The overall results suggest that this pathogen has a primarily clonal population genetic structure and that spore dispersal was restricted across the sampled populations.
Collapse
|
168
|
Han B, Zhao M. Genetic comparisons between seed bank and Stipa krylovii plant populations. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411080084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
169
|
HERRERA CM, POZO MI, BAZAGA P. Clonality, genetic diversity and support for the diversifying selection hypothesis in natural populations of a flower-living yeast. Mol Ecol 2011; 20:4395-407. [DOI: 10.1111/j.1365-294x.2011.05217.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
170
|
The covariance of heterozygosity as a measure of linkage disequilibrium between blocks of linked and unlinked sites in Hapmap. Genet Res (Camb) 2011; 93:285-90. [PMID: 21767460 DOI: 10.1017/s0016672311000255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The covariance of heterozygosity serves as a measure of linkage disequilibrium (LD) between genes at two loci, although one that does not have as much information as a parameter such as r2. However, it may be extended to blocks of loci (single nucleotide polymorphisms, SNPs) along a chromosome. This has two advantages when searching for significant associations between different chromosomal regions. Calculations for a data set such as Hapmap are complicated by the large number of pairs of loci (SNPs) that need to be considered. For example, a search for significant associations between SNPs on different chromosomes involves around 1012 calculations for a single population. Furthermore, this may not be an efficient way of detecting associations since r2 values calculated from neighbouring pairs will not be independent of each other. The covariance of heterozygosity provides an average measure of association between blocks of any size, and reduces the number of calculations by a factor of b2, where b is the block size. Unlike the calculation of r2, the covariance of heterozygosity uses just diploid data and is not biased by sample size. Calculations using a block size of 50 have been used to look for associations in the Hapmap data set between regions within and between chromosomes. Within chromosomes, a signal is detected up to around 10 cM. No obviously significant associations have been detected between regions on different chromosomes, although there is a low level of association consistent with departures from random mating.
Collapse
|
171
|
Chowdhary A, Hiremath SS, Sun S, Kowshik T, Randhawa HS, Xu J. Genetic differentiation, recombination and clonal expansion in environmental populations of Cryptococcus gattii in India. Environ Microbiol 2011; 13:1875-88. [PMID: 21631689 DOI: 10.1111/j.1462-2920.2011.02510.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cryptococcus gattii is a ubiquitous eukaryotic pathogen capable of causing life-threatening infections in a wide variety of hosts, including both immunocompromised and immunocompetent humans. Since infections by C. gattii are predominantly obtained from environmental exposures, understanding environmental populations of this pathogen is critical, especially in countries like India with a large population and with environmental conditions conducive for the growth of C. gattii. In this study, we analysed 109 isolates of C. gattii obtained from hollows of nine tree species from eight geographic locations in India. Multilocus sequence typing was conducted for all isolates using nine gene fragments. All 109 isolates belonged to the VGI group and were mating type α. Population genetic analyses revealed limited evidence of recombination but unambiguous evidence for clonal reproduction and expansion. However, the observed clonal expansion has not obscured the significant genetic differentiation among populations from either different geographic areas or different host tree species. A positive correlation was observed between genetic distance and geographic distance. The results obtained here for environmental populations of C. gattii showed both similarities and differences with those of the closely related Cryptococcus neoformans var. grubii from similar locations and host tree species in India.
Collapse
Affiliation(s)
- Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | | | | | | | | | | |
Collapse
|
172
|
Dixit J, Srivastava H, Singh O, Saksena D, Das A. Multilocus nuclear DNA markers and genetic parameters in an Indian Anopheles minimus population. INFECTION GENETICS AND EVOLUTION 2011; 11:572-9. [DOI: 10.1016/j.meegid.2011.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 01/03/2011] [Accepted: 01/06/2011] [Indexed: 01/26/2023]
|
173
|
Simwami SP, Khayhan K, Henk DA, Aanensen DM, Boekhout T, Hagen F, Brouwer AE, Harrison TS, Donnelly CA, Fisher MC. Low diversity Cryptococcus neoformans variety grubii multilocus sequence types from Thailand are consistent with an ancestral African origin. PLoS Pathog 2011; 7:e1001343. [PMID: 21573144 PMCID: PMC3089418 DOI: 10.1371/journal.ppat.1001343] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 04/15/2011] [Indexed: 12/19/2022] Open
Abstract
The global burden of HIV-associated cryptococcal meningitis is estimated at nearly one million cases per year, causing up to a third of all AIDS-related deaths. Molecular epidemiology constitutes the main methodology for understanding the factors underpinning the emergence of this understudied, yet increasingly important, group of pathogenic fungi. Cryptococcus species are notable in the degree that virulence differs amongst lineages, and highly-virulent emerging lineages are changing patterns of human disease both temporally and spatially. Cryptococcus neoformans variety grubii (Cng, serotype A) constitutes the most ubiquitous cause of cryptococcal meningitis worldwide, however patterns of molecular diversity are understudied across some regions experiencing significant burdens of disease. We compared 183 clinical and environmental isolates of Cng from one such region, Thailand, Southeast Asia, against a global MLST database of 77 Cng isolates. Population genetic analyses showed that Thailand isolates from 11 provinces were highly homogenous, consisting of the same genetic background (globally known as VNI) and exhibiting only ten nearly identical sequence types (STs), with three (STs 44, 45 and 46) dominating our sample. This population contains significantly less diversity when compared against the global population of Cng, specifically Africa. Genetic diversity in Cng was significantly subdivided at the continental level with nearly half (47%) of the global STs unique to a genetically diverse and recombining population in Botswana. These patterns of diversity, when combined with evidence from haplotypic networks and coalescent analyses of global populations, are highly suggestive of an expansion of the Cng VNI clade out of Africa, leading to a limited number of genotypes founding the Asian populations. Divergence time testing estimates the time to the most common ancestor between the African and Asian populations to be 6,920 years ago (95% HPD 122.96 - 27,177.76). Further high-density sampling of global Cng STs is now necessary to resolve the temporal sequence underlying the global emergence of this human pathogen.
Collapse
Affiliation(s)
- Sitali P. Simwami
- Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Kantarawee Khayhan
- CBS Fungal Biodiversity Centre, Utrecht, The Netherlands
- Department of Microbiology and Parasitology, School of Medical Science, Naresuan University Phayao, Phayao, Thailand
| | - Daniel A. Henk
- Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - David M. Aanensen
- Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Teun Boekhout
- CBS Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Ferry Hagen
- CBS Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Annemarie E. Brouwer
- Department of General Internal Medicine and Nijmegen University Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- St. Elisabeth Hospital, Tilburg, The Netherlands
| | - Thomas S. Harrison
- Department of Infectious Diseases, St George's Hospital Medical School, London, United Kingdom
| | - Christl A. Donnelly
- Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Matthew C. Fisher
- Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
174
|
Rieux A, Halkett F, de Lapeyre de Bellaire L, Zapater MF, Rousset F, Ravigne V, Carlier J. Inferences on pathogenic fungus population structures from microsatellite data: new insights from spatial genetics approaches. Mol Ecol 2011; 20:1661-74. [PMID: 21410575 DOI: 10.1111/j.1365-294x.2011.05053.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Landscape genetics, which combines population genetics, landscape ecology and spatial statistics, has emerged recently as a new discipline that can be used to assess how landscape features or environmental variables can influence gene flow and spatial genetic variation. We applied this approach to the invasive plant pathogenic fungus Mycosphaerella fijiensis, which causes black leaf streak disease of banana. Around 880 isolates were sampled within a 50 × 50 km area located in a fragmented banana production zone in Cameroon that includes several potential physical barriers to gene flow. Two clustering algorithms and a new F(ST) -based procedure were applied to define the number of genetic entities and their spatial domain without a priori assumptions. Two populations were clearly delineated, and the genetic discontinuity appeared sharp but asymmetric. Interestingly, no landscape features matched this genetic discontinuity, and no isolation by distance (IBD) was found within populations. Our results suggest that the genetic structure observed in this production area reflects the recent history of M. fijiensis expansion in Cameroon rather than resulting from contemporary gene flow. Finally, we discuss the influence of the suspected high effective population size for such an organism on (i) the absence of an IBD signal, (ii) the characterization of contemporary gene-flow events through assignation methods of analysis and (iii) the evolution of the genetic discontinuity detected in this study.
Collapse
Affiliation(s)
- A Rieux
- CIRAD, UMR BGPI, Campus international de Baillarguet, TA A-54K, F-34398 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
175
|
Barcelos QL, Souza EA, Damasceno e Silva KJ. Vegetative compatibility and genetic analysis of Colletotrichum lindemuthianum isolates from Brazil. GENETICS AND MOLECULAR RESEARCH 2011; 10:230-42. [PMID: 21341215 DOI: 10.4238/vol10-1gmr907] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The causal agent of common bean anthracnose, Colletotrichum lindemuthianum, has considerable genetic and pathogenic variability, which makes the development of resistant cultivars difficult. We examined variability within and between Brazilian pathotypes of C. lindemuthianum through the identification of vegetative compatibility groups (VCGs) and by RAPD analysis. Two hundred and ninety-five nit mutants were obtained from 47 isolates of various pathotypes of the fungus collected from different regions, host cultivars and years. In complementation tests, 45 VCGs were identified. Eighteen RAPD primers were employed in the molecular analyses, producing 111 polymorphic bands. Estimates of genetic similarities, determined from the Sorence-Dice coefficient, ranged from 0.42 to 0.97; the dendrogram obtained by cluster analysis revealed 18 groups of isolates. RAPD and VCG markers presented high genotypic diversity. The number of significant associations (P=0.05) between RAPD, VCG and pathogenicity markers ranged from 0 (VCG) to 80% (pathogenicity). The test of multilocus association (rd) for RAPD markers was significantly different from zero (P<0.001), suggesting linkage disequilibrium. However, the results for VCG markers show the presence of recombination mechanisms. In conclusion, RAPD markers and VCGs were useful for detecting genetic variability among isolates of C. lindemuthianum. We found considerable diversity among isolates from the same geographic origin within a short interval; this suggests rapid evolution. There is a need for further studies to elucidate the population structure of this pathogen in agro-ecosystems.
Collapse
Affiliation(s)
- Q L Barcelos
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG, Brasil
| | | | | |
Collapse
|
176
|
Gauniyal M, Aggarwal A, Kshatriya GK. Genomic Structure of the Immigrant Siddis of East Africa to Southern India: A Study of 20 Autosomal DNA Markers. Biochem Genet 2011; 49:427-42. [DOI: 10.1007/s10528-011-9419-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 10/14/2010] [Indexed: 11/29/2022]
|
177
|
Dale AL, Lewis KJ, Murray BW. Sexual reproduction and gene flow in the pine pathogen Dothistroma septosporum in British Columbia. PHYTOPATHOLOGY 2011; 101:68-76. [PMID: 20795853 DOI: 10.1094/phyto-04-10-0121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Dothistroma septosporum has caused a serious needle blight epidemic in the lodgepole pine forests in northwest British Columbia over the past several years. Although ascocarps had been observed in British Columbia, nothing was known about the contribution of sexual reproduction, gene flow and long-distance dispersal to the epidemic. Amplified fragment length polymorphism and mating-type markers in 19 sites were used to generate population and reproductive data. Overall, evidence suggests a mixed mode of reproduction. Haplotypic diversity was high, with 79 unique and 56 shared haplotypes (possible clones) identified from 192 fungal isolates. Overall, mating-type segregation did not differ significantly from 1:1; however, random mating was rejected in most populations in the index of association and parsimony tree-length permutation analyses using the full data set and, when using clone-corrected data sets, more of the smaller populations showed random mating. Two of the smaller populations consistently showed random mating for both tests using both clone-corrected and noncorrected data. High gene flow is suggested by no differentiation between 14 of the 19 sites, several of which came from young plantations where the pathogen was not likely present prior to the current outbreak. The remaining five sites showed some level of divergence, possibly due to historic separation and endemic pathogen populations. Results indicate a high evolutionary potential and long-distance dispersal in this pathogen, important to consider in future forest management.
Collapse
Affiliation(s)
- A L Dale
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada.
| | | | | |
Collapse
|
178
|
Douhan GW, de la Cerda KA, Huryn KL, Greer CA, Wong FP. Contrasting genetic structure between Magnaporthe grisea populations associated with the golf course turfgrasses Lolium perenne (perennial ryegrass) and Pennisetum clandestinum (kikuyugrass). PHYTOPATHOLOGY 2011; 101:85-91. [PMID: 21142782 DOI: 10.1094/phyto-08-10-0205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Gray leaf spot (GLS) disease of perennial ryegrass (Lolium perenne) and kikuyugrass (Pennisetum clandestinum) in golf courses in California was first noted in 2001 and 2003, respectively, and within 5 years had become well established. The causal agent of the disease is the fungus Magnaporthe grisea, which is known to consist primarily of clonal lineages that are highly host specific. Therefore, our objective was to investigate host specificity and population dynamics among isolates associated primarily from perennial ryegrass and kikuyugrass since the disease emerged at similar times in California. We also obtained isolates from additional hosts (tall fescue, St. Augustinegrass, weeping lovegrass, and rice) and from the eastern United States for comparative purposes. A total of 38 polymorphic amplified fragment length polymorphism makers were scored from 450 isolates which clustered by host with high bootstrap support (71 to 100%). Genetic structure between kikuyugrass and perennial ryegrass isolates differed significantly. Isolates from kikuyugrass were genotypically diverse (n = 34), possessed both mating types, and some tests for random mating could not be rejected, whereas isolates from perennial ryegrass were less genotypically diverse (n = 10) and only consisted of a single mating type. Low genotypic diversity was also found among the other host specific isolates which also only consisted of a single mating type. This is the first study to document evidence for the potential of sexual reproduction to occur in M. grisea isolates not associated with rice (Oryza sativa). Moreover, given the significant host specificity and contrasting genetic structures between turfgrass-associated isolates, the recent emergence of GLS on various grass hosts in California suggests that potential cultural practices or environmental changes have become conducive for the disease and that the primary inoculum may have already been present in the state, despite the fact that two genotypes associated with perennial ryegrass and St. Augustinegrass in California were the same as isolates collected from the eastern United States.
Collapse
Affiliation(s)
- Greg W Douhan
- Department of Plant Pathology and Microbiology, University of California, Riverside 92521, USA.
| | | | | | | | | |
Collapse
|
179
|
Bogacki P, Keiper FJ, Oldach KH. Genetic structure of South Australian Pyrenophora teres populations as revealed by microsatellite analyses. Fungal Biol 2010; 114:834-41. [DOI: 10.1016/j.funbio.2010.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 06/17/2010] [Accepted: 08/01/2010] [Indexed: 10/19/2022]
|
180
|
Souza EA, Camargo OA, Pinto JMA. Sexual recombination in Colletotrichum lindemuthianum occurs on a fine scale. GENETICS AND MOLECULAR RESEARCH 2010; 9:1759-69. [PMID: 20830667 DOI: 10.4238/vol9-3gmr863] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Glomerella cingulata f. sp phaseoli is the sexual phase of the fungus Colletotrichum lindemuthianum, the causal agent of common bean anthracnose. This fungus is of great concern, because it causes large economic losses in common bean crops. RAPD markers of five populations of G. cingulata f. sp phaseoli from two Brazilian states were analyzed to determine if this population possesses the sexual reproductive potential to generate the genetic variation that is observed in this phytopathogen. We identified 128 polymorphic bands, amplified by 28 random primers. The estimates of genetic similarity in this analysis ranged from 0.43 to 1.00, and the dendrogram generated from analysis of all genotypes displayed five principal groups, coinciding with the five populations. Genetic differentiation was observed between the populations (GST=0.6455); 69% of the overall observed genetic variation was between individual populations and 31% of the variance was within the sub-populations. We identified significant levels of linkage disequilibrium in all populations. However, the values of the disequilibrium ranged from low to moderate, indicating that this pathogen maintains a genetic structure consistent with sexual reproduction. The mean contribution of sexual reproduction was determined by comparison of the amplitudes of genetic similarity of isolates from sexual and asexual phases. These results support the hypothesis that recombination plays an important role in determining the amplitude of variability in this pathogen population and that this determination occurs on a fine scale.
Collapse
Affiliation(s)
- E A Souza
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG, Brazil.
| | | | | |
Collapse
|
181
|
Sommerhalder RJ, McDonald BA, Mascher F, Zhan J. Sexual recombinants make a significant contribution to epidemics caused by the wheat pathogen Phaeosphaeria nodorum. PHYTOPATHOLOGY 2010; 100:855-862. [PMID: 20701482 DOI: 10.1094/phyto-100-9-0855] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We conducted a 2-year mark-release-recapture field experiment to quantify the relative contributions of immigration and sexual and asexual reproduction to epidemics of Stagonospora nodorum blotch caused by Phaeosphaeria nodorum. The epidemic was initiated using nine genetically distinct P. nodorum isolates. Infected plants were sampled four times across two growing seasons. In total, 1,286 isolates were recovered and assayed with 10 microsatellite markers and 1 minisatellite marker. The proportion of isolates having multilocus haplotypes (MLHTs) identical to the inoculated isolates decreased steadily from 86% in the first collection to 25% in the fourth collection. The novel isolates that had different MLHTs compared with the marked inoculants originated through immigration and sexual recombination. By the end of the experiment, nearly three-quarters of the novel isolates originated from sexual recombination. Our results indicate that recombinant offspring and airborne immigrant ascospores can make significant contributions to epidemics of Stagonospora nodorum blotch during a growing season.
Collapse
Affiliation(s)
- Rubik J Sommerhalder
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, LFW, Universitaetstrasse, Zürich, Switzerland
| | | | | | | |
Collapse
|
182
|
Single nucleotide polymorphisms, putatively neutral DNA markers and population genetic parameters in Indian Plasmodium vivax isolates. Parasitology 2010; 137:1721-30. [DOI: 10.1017/s0031182010000533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SUMMARYWith a view to developing putatively neutral markers based on Single Nucleotide Polymorphisms (SNPs) in the human malaria parasite, Plasmodium vivax, we utilized the published whole genome sequence information of P. falciparum and P. vivax to find a ~200 kb conserved syntenic region between these two species. We have selected 27 non-coding DNA fragments (in introns and intergenic regions) of variable length (300–750 bp) in P. vivax in this syntenic region. PCR of P. vivax isolates of a population sample from India could successfully amplify 17 fragments. Subsequently, DNA sequencing and sequence analysis confirmed the polymorphic status of only 11 fragments. Altogether, 18 SNPs were detected and 2 different measures of nucleotide diversity showed variable patterns across different fragments; in general, introns were less variable than the intergenic regions. All 11 polymorphic fragments were found to be evolving according to a neutral equilibrium model and thus could be utilized as putatively neutral markers for population genetic studies in P. vivax. Different molecular population genetics parameters were also estimated, providing initial insight into the population genetics of Indian P. vivax.
Collapse
|
183
|
Baumgartner K, Travadon R, Bruhn J, Bergemann SE. Contrasting patterns of genetic diversity and population structure of Armillaria mellea sensu stricto in the eastern and western United States. PHYTOPATHOLOGY 2010; 100:708-718. [PMID: 20528189 DOI: 10.1094/phyto-100-7-0708] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
ABSTRACT Armillaria mellea infects hundreds of plant species in natural and managed ecosystems throughout the Northern hemisphere. Previously reported nuclear genetic divergence between eastern and western U.S. isolates is consistent with the disjunct range of A. mellea in North America, which is restricted mainly to both coasts of the United States. We investigated patterns of population structure and genetic diversity of the eastern (northern and southern Appalachians, Ozarks, and western Great Lakes) and western (Berkeley, Los Angeles, St. Helena, and San Jose, CA) regions of the United States. In total, 156 diploid isolates were genotyped using 12 microsatellite loci. Absence of genetic differentiation within either eastern subpopulations (theta(ST) = -0.002, P = 0.5 ) or western subpopulations (theta(ST) = 0.004, P = 0.3 ) suggests that spore dispersal within each region is sufficient to prevent geographic differentiation. In contrast to the western United States, our finding of more than one genetic cluster of isolates within the eastern United States (K = 3), revealed by Bayesian assignment of multilocus genotypes in STRUCTURE and confirmed by genetic multivariate analyses, suggests that eastern subpopulations are derived from multiple founder sources. The existence of amplifiable and nonamplifiable loci and contrasting patterns of genetic diversity between the two regions demonstrate that there are two geographically isolated, divergent genetic pools of A. mellea in the United States.
Collapse
Affiliation(s)
- Kendra Baumgartner
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Department of Plant Pathology, University of California, One Shields Avenue, Davis 95616, USA
| | | | | | | |
Collapse
|
184
|
Brown AH, Feldman MW. Population structure of multilocus associations. Proc Natl Acad Sci U S A 2010; 78:5913-6. [PMID: 16593092 PMCID: PMC348906 DOI: 10.1073/pnas.78.9.5913] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A method of analysis is presented whereby the structure of multilocus associations among and within several populations can be partitioned into its components. The components are measured by their contributions to the variance in the number of heterozygous loci in two randomly chosen gametes. The singlelocus components are the average and the variation among populations in gene diversity and the variance among populations in allele frequency. The two-locus components include the mean and variance of disequilibria, the covariance of allele frequencies over populations, and various interactions. When applied to allozyme data from populations of wild (Hordeum spontaneum) and cultivated barley (H. vulgare), the analysis highlighted the repetitive pattern of the multilocus associations in the composite crosses whereas it emphasized the regionally localized and geographically variable pattern present in the natural populations of the wild species. The analysis is flexible and applicable to multilocus gametic data from any set of populations, without regard to the number of alleles per locus or the reproductive method of the organism.
Collapse
Affiliation(s)
- A H Brown
- Commonwealth Scientific and Industrial Research Organization, Division of Plant Industry, P.O. Box 1600, Canberra City, A.C.T. Australia
| | | |
Collapse
|
185
|
Mallik S, Virdi JS. Genetic relationships between clinical and non-clinical strains of Yersinia enterocolitica biovar 1A as revealed by multilocus enzyme electrophoresis and multilocus restriction typing. BMC Microbiol 2010; 10:158. [PMID: 20509911 PMCID: PMC2889952 DOI: 10.1186/1471-2180-10-158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 05/28/2010] [Indexed: 11/10/2022] Open
Abstract
Background Genetic relationships among 81 strains of Y. enterocolitica biovar 1A isolated from clinical and non-clinical sources were discerned by multilocus enzyme electrophoresis (MLEE) and multilocus restriction typing (MLRT) using six loci each. Such studies may reveal associations between the genotypes of the strains and their sources of isolation. Results All loci were polymorphic and generated 62 electrophoretic types (ETs) and 12 restriction types (RTs). The mean genetic diversity (H) of the strains by MLEE and MLRT was 0.566 and 0.441 respectively. MLEE (DI = 0.98) was more discriminatory and clustered Y. enterocolitica biovar 1A strains into four groups, while MLRT (DI = 0.77) identified two distinct groups. BURST (Based Upon Related Sequence Types) analysis of the MLRT data suggested aquatic serotype O:6,30-6,31 isolates to be the ancestral strains from which, clinical O:6,30-6,31 strains might have originated by host adaptation and genetic change. Conclusion MLEE revealed greater genetic diversity among strains of Y. enterocolitica biovar 1A and clustered strains in four groups, while MLRT grouped the strains into two groups. BURST analysis of MLRT data nevertheless provided newer insights into the probable evolution of clinical strains from aquatic strains.
Collapse
Affiliation(s)
- Sarita Mallik
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | | |
Collapse
|
186
|
Vandepitte K, Roldán-Ruiz I, Jacquemyn H, Honnay O. Extremely low genotypic diversity and sexual reproduction in isolated populations of the self-incompatible lily-of-the-valley (Convallaria majalis) and the role of the local forest environment. ANNALS OF BOTANY 2010; 105:769-776. [PMID: 20228091 PMCID: PMC2859916 DOI: 10.1093/aob/mcq042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 01/19/2010] [Accepted: 02/03/2010] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS Clonal growth is a common phenomenon in plants and allows them to persist when sexual life-cycle completion is impeded. Very low levels of recruitment from seed will ultimately result in low levels of genotypic diversity. The situation can be expected to be exacerbated in spatially isolated populations of obligated allogamous species, as low genotypic diversities will result in low availability of compatible genotypes and low reproductive success. Populations of the self-incompatible forest herb lily-of-the-valley (Convallaria majalis) were studied with the aim of inferring the relative importance of sexual and asexual recruitment. Then the aim was to establish a relationship between genotypic diversity, sexual reproduction and the local forest environment. METHODS Highly polymorphic microsatellite markers were used to investigate clonal diversities and population genetic structure of 20 populations of C. majalis in central Belgium. KEY RESULTS Most of the populations studied consisted of a single genotype and linkage disequilibrium within populations was high, manifesting clonal growth as the main mode of reproduction. A population consisting of multiple genotypes mainly occurred in locations with a thin litter layer and high soil phosphorus levels, suggesting environment-mediated sporadic recruitment from seed. Highly significant genetic differentiation indicated that populations are reproductively isolated. In agreement with the self-incompatibility of C. majalis, monoclonal populations showed very low or even absent fruit set. CONCLUSIONS Lack of sexual recruitment in spatially isolated C. majalis populations has resulted in almost monoclonal populations with reduced or absent sexual reproduction, potentially constraining their long-term persistence. The local forest environment may play an important role in mediating sexual recruitment in clonal forest plant species.
Collapse
Affiliation(s)
- Katrien Vandepitte
- Laboratory of Plant Ecology, University of Leuven, Arenbergpark 31, 3001 Heverlee, Belgium.
| | | | | | | |
Collapse
|
187
|
Marshall WL, Berbee ML. Population-level analyses indirectly reveal cryptic sex and life history traits of Pseudoperkinsus tapetis (Ichthyosporea, Opisthokonta): a unicellular relative of the animals. Mol Biol Evol 2010; 27:2014-26. [PMID: 20360212 DOI: 10.1093/molbev/msq078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We use population genetics to detect the molecular footprint of a sexual cycle, of a haploid vegetative state, and of lack of host specificity in Pseudoperkinsus tapetis, a marine unicellular relative of the animals. Prior to this study, complete life cycles were not known for any of the unicellular lineages sharing common ancestry with multicellular animals and fungi. We established the first collection of conspecific cultures of any member from the unicellular opisthokont lineage ichthyosporea, isolating 126 cultures of P. tapetis from guts of marine invertebrates ranging from clams to sea cucumbers. We sequenced fragments of the elongation factor alpha-like (EFL) and heat-shock protein 70 (HSP70) genes for a subset of our isolates. Absence of heterozygotes from the EFL locus in 52 isolates provided evidence for haploidy. Phylogenetic incongruence and a lack of support for linkage between two loci from 34 sequenced isolates signified a history of recombination consistent with a sexual cycle. Shared haplotypes in different invertebrate species showed that P. tapetis was not host specific. Based on estimates of the frequency of sex and on observations of cultures, we propose that P. tapetis is transmitted between hosts via asexual endospores. New protists are continually being discovered, and, as this study illustrates, analysis of culturable collections from natural habitats can transform a species from a near unknown to a model system for better understanding the evolution of life histories.
Collapse
Affiliation(s)
- Wyth L Marshall
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
188
|
Linde CC, Liles JA, Thrall PH. Expansion of genetic diversity in randomly mating founder populations of Alternaria brassicicola infecting Cakile maritima in Australia. Appl Environ Microbiol 2010; 76:1946-54. [PMID: 20097819 PMCID: PMC2837991 DOI: 10.1128/aem.01594-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 01/06/2010] [Indexed: 11/20/2022] Open
Abstract
Founder populations of fungal plant pathogens are expected to have low levels of genetic diversity coupled with further genetic drift due to, e.g., limited host availability, which should result in additional population bottlenecks. This study used microsatellite markers in the interaction between Cakile maritima and the fungal pathogen Alternaria brassicicola to explore genetic expectations associated with such situations. The host, C. maritima, was introduced into Australia approximately 100 years ago, but it is unknown whether the pathogen was already present in Australia, as it has a wide occurrence, or whether it was introduced to Australia on brassicaceous hosts. Eleven A. brassicicola populations were studied, and all showed moderate levels of gene and genotypic diversity. Chi-square tests of the frequencies of mating type alleles, a large number of genotypes, and linkage equilibrium among microsatellite loci all suggest A. brassicicola reproduces sexually. Significant genetic differentiation was found among populations, but there was no evidence for isolation by distance effects. Bayesian analyses identified eight clusters where the inferred clusters did not represent geographical populations but instead consisted of individuals admixed from all populations. Further analysis indicated that fungal populations were more likely to have experienced a recent population expansion than a population bottleneck. It is suggested that A. brassicicola has been introduced into Australia multiple times, potentially increasing the diversity and size of any A. brassicola populations already present there. Combined with its ability to reproduce sexually, such processes appear to have increased the evolutionary potential of the pathogen through recent population expansions.
Collapse
Affiliation(s)
- C C Linde
- Evolution, Ecology and Genetics, Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Building 116, Daley Road, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
189
|
González-Vera AD, Bernardes-de-Assis J, Zala M, McDonald BA, Correa-Victoria F, Graterol-Matute EJ, Ceresini PC. Divergence between sympatric rice- and maize-infecting populations of Rhizoctonia solani AG-1 IA from Latin America. PHYTOPATHOLOGY 2010; 100:172-82. [PMID: 20055651 DOI: 10.1094/phyto-100-2-0172] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
ABSTRACT The basidiomycetous fungus Rhizoctonia solani anastomosis group (AG)-1 IA is a major pathogen in Latin America causing sheath blight (SB) of rice. Particularly in Venezuela, the fungus also causes banded leaf and sheath blight (BLSB) on maize, which is considered an emerging disease problem where maize replaced traditional rice-cropping areas or is now planted in adjacent fields. Our goals in this study were to elucidate (i) the effects of host specialization on gene flow between sympatric and allopatric rice and maize-infecting fungal populations and (ii) the reproductive mode of the fungus, looking for evidence of recombination. In total, 375 isolates of R. solani AG1 IA sampled from three sympatric rice and maize fields in Venezuela (Portuguesa State) and two allopatric rice fields from Colombia (Meta State) and Panama (Chiriquí State) were genotyped using 10 microsatellite loci. Allopatric populations from Venezuela, Colombia, and Panama were significantly differentiated (Phi(ST) of 0.16 to 0.34). Partitioning of the genetic diversity indicated differentiation between sympatric populations from different host species, with 17% of the total genetic variation distributed between hosts while only 3 to 6% was distributed geographically among the sympatric Venezuelan fields. We detected symmetrical historical migration between the rice- and the maize-infecting populations from Venezuela. Rice- and maize-derived isolates were able to infect both rice and maize but were more aggressive on their original hosts, consistent with host specialization. Because the maize- and rice-infecting populations are still cross-pathogenic, we postulate that the genetic differentiation was relatively recent and mediated via a host shift. An isolation with migration analysis indicated that the maize-infecting population diverged from the rice-infecting population between 40 and 240 years ago. Our findings also suggest that maize-infecting populations have a mainly recombining reproductive system whereas the rice-infecting populations have a mixed reproductive system in Latin America.
Collapse
Affiliation(s)
- A D González-Vera
- DANAC--Fundación para la Investigación Agrícola, Laboratorio de Protección Vegetal, San Javier, Yaracuy/Universidad Central de Venezuela, Facultad de Agronomía, Maracay, Aragua, Venezuela
| | | | | | | | | | | | | |
Collapse
|
190
|
Maydan JS, Lorch A, Edgley ML, Flibotte S, Moerman DG. Copy number variation in the genomes of twelve natural isolates of Caenorhabditis elegans. BMC Genomics 2010; 11:62. [PMID: 20100350 PMCID: PMC2822765 DOI: 10.1186/1471-2164-11-62] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 01/25/2010] [Indexed: 11/23/2022] Open
Abstract
Background Copy number variation is an important component of genetic variation in higher eukaryotes. The extent of natural copy number variation in C. elegans is unknown outside of 2 highly divergent wild isolates and the canonical N2 Bristol strain. Results We have used array comparative genomic hybridization (aCGH) to detect copy number variation in the genomes of 12 natural isolates of Caenorhabditis elegans. Deletions relative to the canonical N2 strain are more common in these isolates than duplications, and indels are enriched in multigene families on the autosome arms. Among the strains in our study, the Hawaiian and Madeiran strains (CB4856 and JU258) carry the largest number of deletions, followed by the Vancouver strain (KR314). Overall we detected 510 different deletions affecting 1136 genes, or over 5% of the genes in the canonical N2 genome. The indels we identified had a median length of 2.7 kb. Since many deletions are found in multiple isolates, deletion loci were used as markers to derive an unrooted tree to estimate genetic relatedness among the strains. Conclusion Copy number variation is extensive in C. elegans, affecting over 5% of the genes in the genome. The deletions we have detected in natural isolates of C. elegans contribute significantly to the number of deletion alleles available to researchers. The relationships between strains are complex and different regions of the genome possess different genealogies due to recombination throughout the natural history of the species, which may not be apparent in studies utilizing smaller numbers of genetic markers.
Collapse
Affiliation(s)
- Jason S Maydan
- Department of Zoology, University of British Columbia, British Columbia, Canada
| | | | | | | | | |
Collapse
|
191
|
Gladieux P, Caffier V, Devaux M, Le Cam B. Host-specific differentiation among populations of Venturia inaequalis causing scab on apple, pyracantha and loquat. Fungal Genet Biol 2010; 47:511-21. [PMID: 20060485 DOI: 10.1016/j.fgb.2009.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 12/14/2009] [Accepted: 12/16/2009] [Indexed: 10/20/2022]
Abstract
Patterns of multilocus DNA sequence variation within and between closely related taxa can provide insights into the history of divergence. Here, we report on DNA polymorphism and divergence at six nuclear loci in globally distributed samples of the ascomycete Venturia inaequalis, responsible for scab on apple, loquat, and pyracantha. Isolates from different hosts were differentiated but did not form diagnosable distinct phylogenetic species. Parameters of an Isolation-with-Migration model estimated from the data suggested that the large amount of variation shared among groups more likely resulted from recent splitting than from extensive genetic exchanges. Inferred levels of gene flow among groups were low and more concentrated toward recent times, and we identified two potentially recent one-off shifters from apple and pyracantha to loquat. These findings support a scenario of recent divergence in allopatry followed by introgression through secondary contact, with groups from loquat and pyracantha being the most recently differentiated.
Collapse
Affiliation(s)
- P Gladieux
- INRA, UMR 077, 42 rue George Morel, Beaucouzé, France.
| | | | | | | |
Collapse
|
192
|
Grubisha LC, Cotty PJ. Genetic isolation among sympatric vegetative compatibility groups of the aflatoxin-producing fungus Aspergillus flavus. Mol Ecol 2009; 19:269-80. [PMID: 20025654 DOI: 10.1111/j.1365-294x.2009.04467.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aspergillus flavus, a fungal pathogen of animals and both wild and economically important plants, is most recognized for producing aflatoxin, a cancer-causing secondary metabolite that contaminates food and animal feed globally. Aspergillus flavus has two self/nonself recognition systems, a sexual compatibility system and a vegetative incompatibility system, and both play a role in directing gene flow in populations. Aspergillus flavus reproduces clonally in wild and agricultural settings, but whether a cryptic sexual stage exists in nature is currently unknown. We investigated the distribution of genetic variation in 243 samples collected over 4 years from three common vegetative compatibility groups (VCGs) in Arizona and Texas from cotton using 24 microsatellite loci and the mating type locus (MAT) to assess population structure and potential gene flow among A. flavus VCGs in sympatric populations. All isolates within a VCG had the same mating type with OD02 having MAT1-2 and both CG136 and MR17 having MAT1-1. Our results support the hypothesis that these three A. flavus VCGs are genetically isolated. We found high levels of genetic differentiation and no evidence of gene flow between VCGs, including VCGs of opposite mating-type. Our results suggest that these VCGs diverged before domestication of agricultural hosts (>10,000 yr bp).
Collapse
Affiliation(s)
- L C Grubisha
- United States Department of Agriculture, Agriculture Research Service, School of Plant Sciences, The University of Arizona, PO Box 210036, Tucson, AZ 85721-0036, USA
| | | |
Collapse
|
193
|
Dutech C, Fabreguettes O, Capdevielle X, Robin C. Multiple introductions of divergent genetic lineages in an invasive fungal pathogen, Cryphonectria parasitica, in France. Heredity (Edinb) 2009; 105:220-8. [PMID: 19997121 DOI: 10.1038/hdy.2009.164] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The occurrence of multiple introductions may be a crucial factor in the successful establishment of invasive species, but few studies focus on the introduction of fungal pathogens, despite their significant effect on invaded habitats. Although Cryphonectria parasitica, the chestnut blight fungus introduced in North America and Europe from Asia during the 20th century, caused dramatic changes in its new range, the history of its introduction is not well retraced in Europe. Using 10 microsatellite loci, we investigated the genetic diversity of 583 isolates in France, where several introductions have been hypothesized. Our analyses showed that the seven most frequent multilocus genotypes belonged to three genetic lineages, which had a different and geographically limited distribution. These results suggest that different introduction events occurred in France. Genetic recombination was low among these lineages, despite the presence of the two mating types in each chestnut stand analysed. The spatial distribution of lineages suggests that the history of introductions in France associated with the slow expansion of the disease has contributed to the low observed rate of recombination among the divergent lineages. However, we discuss the possibility that environmental conditions or viral interactions could locally reduce recombination among genotypes.
Collapse
Affiliation(s)
- C Dutech
- INRA, UMR 1202 BIOGECO, Equipe de Pathologie Forestière, Domaine de Pierroton, Cestas, France.
| | | | | | | |
Collapse
|
194
|
Bernardes-de-Assis J, Storari M, Zala M, Wang W, Jiang D, Shidong L, Jin M, McDonald BA, Ceresini PC. Genetic structure of populations of the rice-infecting pathogen Rhizoctonia solani AG-1 IA from China. PHYTOPATHOLOGY 2009; 99:1090-9. [PMID: 19671012 DOI: 10.1094/phyto-99-9-1090] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
ABSTRACT Sheath blight disease (SBD) on rice, caused by Rhizoctonia solani AG-1 IA, is one of the most devastating rice diseases on a global basis, including China (in Eastern Asia), the world's largest rice-growing country. We analyzed the population genetics of nine rice-infecting populations from China using nine microsatellite loci. One allopatric population from India (Southern Asia) was included in the analyses. In total, 300 different multilocus genotypes were found among 572 fungal isolates. Clonal fractions within rice fields were 16 to 95%, suggesting that sclerotia were a major source of primary inoculum in some fields. Global Phi(ST) statistics (Phi(ST) = 42.49; P </= 0.001) were consistent with a relatively high level of differentiation among populations overall; however, pairwise comparisons gave nonsignificant R(ST) values, consistent with contemporary gene flow among five of the populations. Four of these populations were located along the Yangtze River tributary network. Gene flow followed an isolation-by-distance model consistent with restricted long-distance migration. Historical migration rates were reconstructed and yielded values that explained the current levels of population subdivision. Except for one population which appeared to be strictly clonal, all populations showed evidence of a mixed reproductive mode, including both asexual and sexual reproduction. One population had a strictly recombining structure (all loci were in Hardy-Weinberg equilibrium) but the remaining populations from China and the one from India exhibited varying degrees of sexual reproduction. Six populations showed significant F(IS) values consistent with inbreeding.
Collapse
Affiliation(s)
- Joana Bernardes-de-Assis
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitaetstr. 2, LFW B28, 8092 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Rossi M, Bitocchi E, Bellucci E, Nanni L, Rau D, Attene G, Papa R. Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L. Evol Appl 2009; 2:504-22. [PMID: 25567895 PMCID: PMC3352449 DOI: 10.1111/j.1752-4571.2009.00082.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 05/24/2009] [Indexed: 01/07/2023] Open
Abstract
Together with the knowledge of the population structure, a critical aspect for the planning of association and/or population genomics studies is the level of linkage disequilibrium (LD) that characterizes the species and the population used for such an analysis. We have analyzed the population structure and LD in wild and domesticated populations of Phaseolus vulgaris L. using amplified fragment length polymorphism markers, most of which were genetically mapped in two recombinant inbred populations. Our results reflect the previous knowledge of the occurrence of two major wild gene pools of P. vulgaris, from which two independent domestication events originated, one in the Andes and one in Mesoamerica. The high level of LD in the whole sample was mostly due to the gene pool structure, with a much higher LD in domesticated compared to wild populations. In relation to association studies, our results also suggest that whole-genome-scan approaches are feasible in the common bean. Interestingly, an excess of inter-chromosomal LD was found in the domesticated populations, which suggests an important role for epistatic selection during domestication. Moreover, our results indicate the occurrence of a strong bottleneck in the Andean wild population before domestication, suggesting a Mesoamerican origin of P. vulgaris. Finally, our data support the occurrence of a single domestication event in Mesoamerica, and the same scenario in the Andes.
Collapse
Affiliation(s)
- Monica Rossi
- Scienze Ambientali e delle Produzioni Vegetali, Università Politecnica delle Marche Ancona, Italy
| | - Elena Bitocchi
- Scienze Ambientali e delle Produzioni Vegetali, Università Politecnica delle Marche Ancona, Italy
| | - Elisa Bellucci
- Scienze Ambientali e delle Produzioni Vegetali, Università Politecnica delle Marche Ancona, Italy
| | - Laura Nanni
- Scienze Ambientali e delle Produzioni Vegetali, Università Politecnica delle Marche Ancona, Italy
| | - Domenico Rau
- Scienze Agronomiche e Genetica Vegetale Agraria, Università degli Studi di Sassari Sassari, Italy
| | - Giovanna Attene
- Scienze Agronomiche e Genetica Vegetale Agraria, Università degli Studi di Sassari Sassari, Italy
| | - Roberto Papa
- Scienze Ambientali e delle Produzioni Vegetali, Università Politecnica delle Marche Ancona, Italy
| |
Collapse
|
196
|
Angioi SA, Desiderio F, Rau D, Bitocchi E, Attene G, Papa R. Development and use of chloroplast microsatellites in Phaseolus spp. and other legumes. PLANT BIOLOGY (STUTTGART, GERMANY) 2009; 11:598-612. [PMID: 19538398 DOI: 10.1111/j.1438-8677.2008.00143.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chloroplast microsatellites (cpSSRs) provide a powerful tool to study the genetic variation and evolution of plants. We have investigated the usefulness of 39 primer pairs tagging cpSSR loci on a set of eight different genera of Leguminosae (Papilionoideae subfamily) and five species belonging to the genus Phaseolus. Thirty-six 'universal' primer pairs were retrieved from the literature, one was re-designed and a further two were designed de novo. The cpSSR loci analysed were highly polymorphic across the individuals examined. Twenty-seven primer pairs were polymorphic in the overall sample, 18 within Phaseolus, and 16 in both P. vulgaris and P. coccineus. Analysis of the plastome sequences of four Leguminosae species (obtained from GenBank) showed that in the loci targeted by universal primer pairs: (i) the originally tagged cpSSRs can be lost; (ii) other cpSSRs can be present; and (iii) polymorphism arises not only from differences in the numbers of cpSSR repeats, but often from other insertion/deletion events. Multilocus linkage disequilibrium analysis suggests that homoplasy is not a major problem in our dataset, and principal component analysis indicates intelligible relationships among the species considered. Our study demonstrates that this set of chloroplast markers provides a useful tool to study the diversity and the evolution of several legumes, and particularly P. vulgaris and P. coccineus.
Collapse
Affiliation(s)
- S A Angioi
- Dipartimento di Scienze Agronomiche e Genetica Vegetale Agraria, Università degli Studi di Sassari, Sassari, Italy
| | | | | | | | | | | |
Collapse
|
197
|
Molecular evidence for recent founder populations and human-mediated migration in the barley scald pathogen Rhynchosporium secalis. Mol Phylogenet Evol 2009; 51:454-64. [DOI: 10.1016/j.ympev.2009.03.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 02/22/2009] [Accepted: 03/06/2009] [Indexed: 11/23/2022]
|
198
|
FERRUCHO RL, ZALA M, ZHANG Z, CUBETA MA, GARCIA-DOMINGUEZ C, CERESINI PC. Highly polymorphicin silico-derived microsatellite loci in the potato-infecting fungal pathogenRhizoctonia solanianastomosis group 3 from the Colombian Andes. Mol Ecol Resour 2009; 9:1013-6. [DOI: 10.1111/j.1755-0998.2009.02553.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
199
|
O'Brien HE, Miadlikowska J, Lutzoni F. Assessing reproductive isolation in highly diverse communities of the lichen-forming fungal genus peltigera. Evolution 2009; 63:2076-86. [PMID: 19453383 DOI: 10.1111/j.1558-5646.2009.00685.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The lichen-forming fungal genus Peltigera includes a number of species that are extremely widespread, both geographically and ecologically. However, morphological variability has lead to doubts about the distinctness of some species, and it has been suggested that hybridization is common in nature. We examined species boundaries by looking for evidence of hybridization and gene flow among seven described species collected at five sites in British Columbia, Canada. We found no evidence of gene flow or hybridization between described species, with fixed differences between species for two or more of the three loci examined. Reproductive isolation did not reflect a solely clonal mode of reproduction as there was evidence of ongoing gene flow within species. In addition, we found five undescribed species that were reproductively isolated, although there was evidence of ongoing or historical gene flow between two of the new species. These results indicate that the genus Peltigera is more diverse in western North America than originally perceived, and that morphological variability is due largely to the presence of undescribed species rather than hybridization or intraspecific variation.
Collapse
Affiliation(s)
- Heath E O'Brien
- Department of Biology, Duke University, Durham, North Carolina, USA.
| | | | | |
Collapse
|
200
|
Bernardes de Assis J, Peyer P, Rush MC, Zala M, McDonald BA, Ceresini PC. Divergence between sympatric rice- and soybean-infecting populations of Rhizoctonia solani anastomosis group-1 IA. PHYTOPATHOLOGY 2008; 98:1326-33. [PMID: 19000008 DOI: 10.1094/phyto-98-12-1326] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Rhizoctonia solani anastomosis group (AG)-1 IA causes soybean foliar blighting (aerial blight) and rice sheath blight diseases. Although taxonomically related within the AG-1 complex, sister populations of R. solani AG-1 IA infecting Poaceae (rice) and Fabaceae (soybean) are genetically distinct based on internal transcribed spacer rDNA. However, there is currently no information available regarding the extent of genetic differentiation and host specialization between rice- and soybean-infecting populations of R. solani AG-1 IA. We used 10 microsatellite loci to compare sympatric R. solani AG-1 IA populations infecting rice and soybeans in Louisiana and one allopatric rice-infecting population from Texas. None of the 154 multilocus genotypes found among the 223 isolates were shared among the three populations. Partitioning of genetic diversity showed significant differentiation among sympatric populations from different host species (Phi(ST) = 0.39 to 0.41). Historical migration patterns between sympatric rice- and soybean-infecting populations from Louisiana were asymmetrical. Rice- and soybean-derived isolates of R. solani AG-1 IA were able to infect both rice and soybean, but were significantly more aggressive on their host of origin, consistent with host specialization. The soybean-infecting population from Louisiana was more clonal than the sympatric rice-infecting population. Most of the loci in the soybean-infecting populations were out of Hardy-Weinberg equilibrium (HWE), but the sympatric rice-infecting population from Louisiana was mainly in HWE. All populations presented evidence for a mixed reproductive system.
Collapse
|