151
|
Production of sulfated oligosaccharides from the seaweed Ulva sp. using a new ulvan-degrading enzymatic bacterial crude extract. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.05.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
152
|
Ertesvåg H. Alginate-modifying enzymes: biological roles and biotechnological uses. Front Microbiol 2015; 6:523. [PMID: 26074905 PMCID: PMC4444821 DOI: 10.3389/fmicb.2015.00523] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/11/2015] [Indexed: 11/26/2022] Open
Abstract
Alginate denotes a group of industrially important 1-4-linked biopolymers composed of the C-5-epimers β-D-mannuronic acid (M) and α-L-guluronic acid (G). The polysaccharide is manufactured from brown algae where it constitutes the main structural cell wall polymer. The physical properties of a given alginate molecule, e.g., gel-strength, water-binding capacity, viscosity and biocompatibility, are determined by polymer length, the relative amount and distribution of G residues and the acetyl content, all of which are controlled by alginate modifying enzymes. Alginate has also been isolated from some bacteria belonging to the genera Pseudomonas and Azotobacter, and bacterially synthesized alginate may be O-acetylated at O-2 and/or O-3. Initially, alginate is synthesized as polymannuronic acid, and some M residues are subsequently epimerized to G residues. In bacteria a mannuronan C-5-epimerase (AlgG) and an alginate acetylase (AlgX) are integral parts of the protein complex necessary for alginate polymerization and export. All alginate-producing bacteria use periplasmic alginate lyases to remove alginate molecules aberrantly released to the periplasm. Alginate lyases are also produced by organisms that utilize alginate as carbon source. Most alginate-producing organisms encode more than one mannuronan C-5 epimerase, each introducing its specific pattern of G residues. Acetylation protects against further epimerization and from most alginate lyases. An enzyme from Pseudomonas syringae with alginate deacetylase activity has been reported. Functional and structural studies reveal that alginate lyases and epimerases have related enzyme mechanisms and catalytic sites. Alginate lyases are now utilized as tools for alginate characterization. Secreted epimerases have been shown to function well in vitro, and have been engineered further in order to obtain enzymes that can provide alginates with new and desired properties for use in medical and pharmaceutical applications.
Collapse
Affiliation(s)
- Helga Ertesvåg
- Department of Biotechnology, Norwegian University of Science and Technology Trondheim, Norway
| |
Collapse
|
153
|
Pinard D, Mizrachi E, Hefer CA, Kersting AR, Joubert F, Douglas CJ, Mansfield SD, Myburg AA. Comparative analysis of plant carbohydrate active enZymes and their role in xylogenesis. BMC Genomics 2015; 16:402. [PMID: 25994181 PMCID: PMC4440533 DOI: 10.1186/s12864-015-1571-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 04/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Carbohydrate metabolism is a key feature of vascular plant architecture, and is of particular importance in large woody species, where lignocellulosic biomass is responsible for bearing the bulk of the stem and crown. Since Carbohydrate Active enZymes (CAZymes) in plants are responsible for the synthesis, modification and degradation of carbohydrate biopolymers, the differences in gene copy number and regulation between woody and herbaceous species have been highlighted previously. There are still many unanswered questions about the role of CAZymes in land plant evolution and the formation of wood, a strong carbohydrate sink. RESULTS Here, twenty-two publically available plant genomes were used to characterize the frequency, diversity and complexity of CAZymes in plants. We find that a conserved suite of CAZymes is a feature of land plant evolution, with similar diversity and complexity regardless of growth habit and form. In addition, we compared the diversity and levels of CAZyme gene expression during wood formation in trees using mRNA-seq data from two distantly related angiosperm tree species Eucalyptus grandis and Populus trichocarpa, highlighting the major CAZyme classes involved in xylogenesis and lignocellulosic biomass production. CONCLUSIONS CAZyme domain ratio across embryophytes is maintained, and the diversity of CAZyme domains is similar in all land plants, regardless of woody habit. The stoichiometric conservation of gene expression in woody and non-woody tissues of Eucalyptus and Populus are indicative of gene balance preservation.
Collapse
Affiliation(s)
- Desre Pinard
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa.
| | - Eshchar Mizrachi
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa.
| | - Charles A Hefer
- Centre for Bioinformatics and Computational Biology, Genomics Research Institute (GRI), University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa.
| | - Anna R Kersting
- Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, Hufferstr. 1, Munster, D48149, Germany.
| | - Fourie Joubert
- Centre for Bioinformatics and Computational Biology, Genomics Research Institute (GRI), University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa.
| | - Carl J Douglas
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada.
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa.
| |
Collapse
|
154
|
Neumann AM, Balmonte JP, Berger M, Giebel HA, Arnosti C, Voget S, Simon M, Brinkhoff T, Wietz M. Different utilization of alginate and other algal polysaccharides by marine Alteromonas macleodii ecotypes. Environ Microbiol 2015; 17:3857-68. [PMID: 25847866 DOI: 10.1111/1462-2920.12862] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/29/2015] [Indexed: 10/23/2022]
Abstract
The marine bacterium Alteromonas macleodii is a copiotrophic r-strategist, but little is known about its potential to degrade polysaccharides. Here, we studied the degradation of alginate and other algal polysaccharides by A. macleodii strain 83-1 in comparison to other A. macleodii strains. Cell densities of strain 83-1 with alginate as sole carbon source were comparable to those with glucose, but the exponential phase was delayed. The genome of 83-1 was found to harbour an alginolytic system comprising five alginate lyases, whose expression was induced by alginate. The alginolytic system contains additional CAZymes, including two TonB-dependent receptors, and is part of a 24 kb genomic island unique to the A. macleodii 'surface clade' ecotype. In contrast, strains of the 'deep clade' ecotype contain only a single alginate lyase in a separate 7 kb island. This difference was reflected in an eightfold greater efficiency of surface clade strains to grow on alginate. Strain 83-1 furthermore hydrolysed laminarin, pullulan and xylan, and corresponding polysaccharide utilization loci were detected in the genome. Alteromonas macleodii alginate lyases were predominantly detected in Atlantic Ocean metagenomes. The demonstrated hydrolytic capacities are likely of ecological relevance and represent another level of adaptation among A. macleodii ecotypes.
Collapse
Affiliation(s)
- Anna M Neumann
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, 26129, Germany
| | - John P Balmonte
- Department of Marine Sciences, University of North Carolina, 3117 Venable Hall, Chapel Hill, NC, USA
| | - Martine Berger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, 26129, Germany
| | - Helge-Ansgar Giebel
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, 26129, Germany
| | - Carol Arnosti
- Department of Marine Sciences, University of North Carolina, 3117 Venable Hall, Chapel Hill, NC, USA
| | - Sonja Voget
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, 37077, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, 26129, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, 26129, Germany
| | - Matthias Wietz
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, 26129, Germany
| |
Collapse
|
155
|
Forest harvesting reduces the soil metagenomic potential for biomass decomposition. ISME JOURNAL 2015; 9:2465-76. [PMID: 25909978 DOI: 10.1038/ismej.2015.57] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/21/2015] [Accepted: 03/09/2015] [Indexed: 11/08/2022]
Abstract
Soil is the key resource that must be managed to ensure sustainable forest productivity. Soil microbial communities mediate numerous essential ecosystem functions, and recent studies show that forest harvesting alters soil community composition. From a long-term soil productivity study site in a temperate coniferous forest in British Columbia, 21 forest soil shotgun metagenomes were generated, totaling 187 Gb. A method to analyze unassembled metagenome reads from the complex community was optimized and validated. The subsequent metagenome analysis revealed that, 12 years after forest harvesting, there were 16% and 8% reductions in relative abundances of biomass decomposition genes in the organic and mineral soil layers, respectively. Organic and mineral soil layers differed markedly in genetic potential for biomass degradation, with the organic layer having greater potential and being more strongly affected by harvesting. Gene families were disproportionately affected, and we identified 41 gene families consistently affected by harvesting, including families involved in lignin, cellulose, hemicellulose and pectin degradation. The results strongly suggest that harvesting profoundly altered below-ground cycling of carbon and other nutrients at this site, with potentially important consequences for forest regeneration. Thus, it is important to determine whether these changes foreshadow long-term changes in forest productivity or resilience and whether these changes are broadly characteristic of harvested forests.
Collapse
|
156
|
Development and characterization of new enzymatic modified hybrid calcium carbonate microparticles to obtain nano-architectured surfaces for enhanced drug loading. J Colloid Interface Sci 2015; 439:76-87. [DOI: 10.1016/j.jcis.2014.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 01/09/2023]
|
157
|
Alginate lyases from alginate-degrading Vibrio splendidus 12B01 are endolytic. Appl Environ Microbiol 2015; 81:1865-73. [PMID: 25556193 DOI: 10.1128/aem.03460-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alginate lyases are enzymes that degrade alginate through β-elimination of the glycosidic bond into smaller oligomers. We investigated the alginate lyases from Vibrio splendidus 12B01, a marine bacterioplankton species that can grow on alginate as its sole carbon source. We identified, purified, and characterized four polysaccharide lyase family 7 alginates lyases, AlyA, AlyB, AlyD, and AlyE, from V. splendidus 12B01. The four lyases were found to have optimal activity between pH 7.5 and 8.5 and at 20 to 25°C, consistent with their use in a marine environment. AlyA, AlyB, AlyD, and AlyE were found to exhibit a turnover number (kcat) for alginate of 0.60 ± 0.02 s(-1), 3.7 ± 0.3 s(-1), 4.5 ± 0.5 s(-1), and 7.1 ± 0.2 s(-1), respectively. The Km values of AlyA, AlyB, AlyD, and AlyE toward alginate were 36 ± 7 μM, 22 ± 5 μM, 60 ± 2 μM, and 123 ± 6 μM, respectively. AlyA and AlyB were found principally to cleave the β-1,4 bonds between β-d-mannuronate and α-l-guluronate and subunits; AlyD and AlyE were found to principally cleave the α-1,4 bonds involving α-l-guluronate subunits. The four alginate lyases degrade alginate into longer chains of oligomers.
Collapse
|
158
|
Chen Z, Li Y, Feng Y, Chen L, Yuan Q. Enzyme activity enhancement of chondroitinase ABC I from Proteus vulgaris by site-directed mutagenesis. RSC Adv 2015. [DOI: 10.1039/c5ra15220h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Arg660 was found as a new active site and Asn795Ala and Trp818Ala mutants showed higher activities than the wild type based on molecular docking simulation analysis for the first time.
Collapse
Affiliation(s)
- Zhenya Chen
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Ye Li
- Department of Biotechnology
- Beijing Polytechnic
- Beijing 100029
- China
| | - Yue Feng
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Liang Chen
- Department of Biotechnology
- Beijing Polytechnic
- Beijing 100029
- China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
159
|
Fingerprinting of hydroxyl radical-attacked polysaccharides by N-isopropyl-2-aminoacridone labelling. Biochem J 2014; 463:225-37. [PMID: 25072268 PMCID: PMC4170706 DOI: 10.1042/bj20140678] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hydroxyl radicals (•OH) cause non-enzymic scission of polysaccharides in diverse biological systems. Such reactions can be detrimental (e.g. causing rheumatic and arthritic diseases in mammals) or beneficial (e.g. promoting the softening of ripening fruit, and biomass saccharification). Here we present a method for documenting •OH action, based on fluorescent labelling of the oxo groups that are introduced as glycosulose residues when •OH attacks polysaccharides. The method was tested on several polysaccharides, especially pectin, after treatment with Fenton reagents. 2-Aminoacridone plus cyanoborohydride reductively aminated the oxo groups in treated polysaccharides; the product was then reacted with acetone plus cyanoborohydride, forming a stable tertiary amine with the carbohydrate linked to N-isopropyl-2-aminoacridone (pAMAC). Digestion of labelled pectin with ‘Driselase’ yielded several fluorescent products which on electrophoresis and HPLC provided a useful ‘fingerprint’ indicating •OH attack. The most diagnostic product was a disaccharide conjugate of the type pAMAC·UA-GalA (UA=unspecified uronic acid), whose UA-GalA bond was Driselase-resistant (product 2A). 2A was clearly distinguishable from GalA-GalA–pAMAC (disaccharide labelled at its reducing end), which was digestible to GalA–pAMAC. The methodology is applicable, with appropriate enzymes in place of Driselase, for detecting natural and artificial •OH attack in diverse plant, animal and microbial polysaccharides. Non-enzymic scission of polysaccharides by hydroxyl radicals (•OH) may be biologically detrimental or beneficial. We present a ‘fingerprinting’ method for detecting polysaccharides that have been •OH-attacked. The method detects the glycosulose residues introduced by •OH action.
Collapse
|
160
|
Pélissier MC, Sebban-Kreuzer C, Guerlesquin F, Brannigan JA, Bourne Y, Vincent F. Structural and functional characterization of the Clostridium perfringens N-acetylmannosamine-6-phosphate 2-epimerase essential for the sialic acid salvage pathway. J Biol Chem 2014; 289:35215-24. [PMID: 25320079 DOI: 10.1074/jbc.m114.604272] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pathogenic bacteria are endowed with an arsenal of specialized enzymes to convert nutrient compounds from their cell hosts. The essential N-acetylmannosamine-6-phosphate 2-epimerase (NanE) belongs to a convergent glycolytic pathway for utilization of the three amino sugars, GlcNAc, ManNAc, and sialic acid. The crystal structure of ligand-free NanE from Clostridium perfringens reveals a modified triose-phosphate isomerase (β/α)8 barrel in which a stable dimer is formed by exchanging the C-terminal helix. By retaining catalytic activity in the crystalline state, the structure of the enzyme bound to the GlcNAc-6P product identifies the topology of the active site pocket and points to invariant residues Lys(66) as a putative single catalyst, supported by the structure of the catalytically inactive K66A mutant in complex with substrate ManNAc-6P. (1)H NMR-based time course assays of native NanE and mutated variants demonstrate the essential role of Lys(66) for the epimerization reaction with participation of neighboring Arg(43), Asp(126), and Glu(180) residues. These findings unveil a one-base catalytic mechanism of C2 deprotonation/reprotonation via an enolate intermediate and provide the structural basis for the development of new antimicrobial agents against this family of bacterial 2-epimerases.
Collapse
Affiliation(s)
- Marie-Cécile Pélissier
- From the Aix-Marseille University, AFMB UMR7257, 163 avenue de Luminy 13288 Marseille, France, the CNRS, AFMB UMR7257, 163 avenue de Luminy, 13288 Marseille, France
| | - Corinne Sebban-Kreuzer
- the Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS UMR7255, Aix-Marseille Université, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France, and
| | - Françoise Guerlesquin
- the Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS UMR7255, Aix-Marseille Université, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France, and
| | - James A Brannigan
- the Department of Chemistry, Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Yves Bourne
- From the Aix-Marseille University, AFMB UMR7257, 163 avenue de Luminy 13288 Marseille, France, the CNRS, AFMB UMR7257, 163 avenue de Luminy, 13288 Marseille, France
| | - Florence Vincent
- From the Aix-Marseille University, AFMB UMR7257, 163 avenue de Luminy 13288 Marseille, France, the CNRS, AFMB UMR7257, 163 avenue de Luminy, 13288 Marseille, France,
| |
Collapse
|
161
|
Hugouvieux-Cotte-Pattat N, Condemine G, Shevchik VE. Bacterial pectate lyases, structural and functional diversity. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:427-40. [PMID: 25646533 DOI: 10.1111/1758-2229.12166] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pectate lyases are enzymes involved in plant cell wall degradation. They cleave pectin using a β-elimination mechanism, specific for acidic polysaccharides. They are mainly produced by plant pathogens and plant-associated organisms, and only rarely by animals. Pectate lyases are also commonly produced in the bacterial world, either by bacteria living in close proximity with plants or by gut bacteria that find plant material in the digestive tract of their hosts. The role of pectate lyases is essential for plant pathogens, such as Dickeya dadantii, that use a set of pectate lyases as their main virulence factor. Symbiotic bacteria produce their own pectate lyases, but they also induce plant pectate lyases to initiate the symbiosis. Pectin degradation products may act as signals affecting the plant–bacteria interactions. Bacterial pectate lyases are also essential for using the pectin of dead or living plants as a carbon source for growth. In the animal gut, Bacteroides pectate lyases degrade the pectin of ingested food, and this is particularly important for herbivores that depend on their microflora for the digestion of pectin. Some human pathogens, such as Yersinia enterocolitica, produce a few intracellular pectate lyases that can facilitate their growth in the presence of highly pectinolytic bacteria, at the plant surface, in the soil or in the animal gut.
Collapse
|
162
|
Blackman LM, Cullerne DP, Hardham AR. Bioinformatic characterisation of genes encoding cell wall degrading enzymes in the Phytophthora parasitica genome. BMC Genomics 2014; 15:785. [PMID: 25214042 PMCID: PMC4176579 DOI: 10.1186/1471-2164-15-785] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022] Open
Abstract
Background A critical aspect of plant infection by the majority of pathogens is penetration of the plant cell wall. This process requires the production and secretion of a broad spectrum of pathogen enzymes that target and degrade the many complex polysaccharides in the plant cell wall. As a necessary framework for a study of the expression of cell wall degrading enzymes (CWDEs) produced by the broad host range phytopathogen, Phytophthora parasitica, we have conducted an in-depth bioinformatics analysis of the entire complement of genes encoding CWDEs in this pathogen’s genome. Results Our bioinformatic analysis indicates that 431 (2%) of the 20,825 predicted proteins encoded by the P. parasitica genome, are carbohydrate-active enzymes (CAZymes) involved in the degradation of cell wall polysaccharides. Of the 431 proteins, 337 contain classical N-terminal secretion signals and 67 are predicted to be targeted to the non-classical secretion pathway. Identification of CAZyme catalytic activity based on primary protein sequence is difficult, nevertheless, detailed comparisons with previously characterized enzymes has allowed us to determine likely enzyme activities and targeted substrates for many of the P. parasitica CWDEs. Some proteins (12%) contain more than one CAZyme module but, in most cases, multiple modules are from the same CAZyme family. Only 12 P. parasitica CWDEs contain both catalytically-active (glycosyl hydrolase) and non-catalytic (carbohydrate binding) modules, a situation that contrasts with that in fungal phytopathogens. Other striking differences between the complements of CWDEs in P. parasitica and fungal phytopathogens are seen in the CAZyme families that target cellulose, pectins or β-1,3-glucans (e.g. callose). About 25% of P. parasitica CAZymes are solely directed towards pectin degradation, with the majority coming from pectin lyase or carbohydrate esterase families. Fungal phytopathogens typically contain less than half the numbers of these CAZymes. The P. parasitica genome, like that of other Oomycetes, is rich in CAZymes that target β-1,3-glucans. Conclusions This detailed analysis of the full complement of P. parasitica cell wall degrading enzymes provides a framework for an in-depth study of patterns of expression of these pathogen genes during plant infection and the induction or repression of expression by selected substrates. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-785) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leila M Blackman
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra ACT 0200, Australia.
| | | | | |
Collapse
|
163
|
Garron ML, Cygler M. Uronic polysaccharide degrading enzymes. Curr Opin Struct Biol 2014; 28:87-95. [PMID: 25156747 DOI: 10.1016/j.sbi.2014.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/24/2014] [Accepted: 07/30/2014] [Indexed: 12/13/2022]
Abstract
In the past several years progress has been made in the field of structure and function of polysaccharide lyases (PLs). The number of classified polysaccharide lyase families has increased to 23 and more detailed analysis has allowed the identification of more closely related subfamilies, leading to stronger correlation between each subfamily and a unique substrate. The number of as yet unclassified polysaccharide lyases has also increased and we expect that sequencing projects will allow many of these unclassified sequences to emerge as new families. The progress in structural analysis of PLs has led to having at least one representative structure for each of the families and for two unclassified enzymes. The newly determined structures have folds observed previously in other PL families and their catalytic mechanisms follow either metal-assisted or Tyr/His mechanisms characteristic for other PL enzymes. Comparison of PLs with glycoside hydrolases (GHs) shows several folds common to both classes but only for the β-helix fold is there strong indication of divergent evolution from a common ancestor. Analysis of bacterial genomes identified gene clusters containing multiple polysaccharide cleaving enzymes, the Polysaccharides Utilization Loci (PULs), and their gene complement suggests that they are organized to process completely a specific polysaccharide.
Collapse
Affiliation(s)
- Marie-Line Garron
- Aix-Marseille University, AFMB UMR7257, 163 Avenue de Luminy, 13288 Marseille, France; CNRS, AFMB UMR7257, 163 Avenue de Luminy, 13288 Marseille, France
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
164
|
Han W, Wang W, Zhao M, Sugahara K, Li F. A novel eliminase from a marine bacterium that degrades hyaluronan and chondroitin sulfate. J Biol Chem 2014; 289:27886-98. [PMID: 25122756 DOI: 10.1074/jbc.m114.590752] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lyases cleave glycosaminoglycans (GAGs) in an eliminative mechanism and are important tools for the structural analysis and oligosaccharide preparation of GAGs. Various GAG lyases have been identified from terrestrial but not marine organisms even though marine animals are rich in GAGs with unique structures and functions. Herein we isolated a novel GAG lyase for the first time from the marine bacterium Vibrio sp. FC509 and then recombinantly expressed and characterized it. It showed strong lyase activity toward hyaluronan (HA) and chondroitin sulfate (CS) and was designated as HA and CS lyase (HCLase). It exhibited the highest activities to both substrates at pH 8.0 and 0.5 m NaCl at 30 °C. Its activity toward HA was less sensitive to pH than its CS lyase activity. As with most other marine enzymes, HCLase is a halophilic enzyme and very stable at temperatures from 0 to 40 °C for up to 24 h, but its activity is independent of divalent metal ions. The specific activity of HCLase against HA and CS reached a markedly high level of hundreds of thousands units/mg of protein under optimum conditions. The HCLase-resistant tetrasaccharide Δ(4,5)HexUAα1-3GalNAc(6-O-sulfate)β1-4GlcUA(2-O-sulfate)β1-3GalNAc(6-O-sulfate) was isolated from CS-D, the structure of which indicated that HCLase could not cleave the galactosaminidic linkage bound to 2-O-sulfated d-glucuronic acid (GlcUA) in CS chains. Site-directed mutagenesis indicated that HCLase may work via a catalytic mechanism in which Tyr-His acts as the Brønsted base and acid. Thus, the identification of HCLase provides a useful tool for HA- and CS-related research and applications.
Collapse
Affiliation(s)
- Wenjun Han
- From the National Glycoengineering Research Center, and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China and
| | - Wenshuang Wang
- From the National Glycoengineering Research Center, and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China and
| | - Mei Zhao
- From the National Glycoengineering Research Center, and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China and
| | - Kazuyuki Sugahara
- Proteoglycan Signaling and Therapeutics Research Group, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science, Sapporo 001-0021, Japan
| | - Fuchuan Li
- From the National Glycoengineering Research Center, and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China and
| |
Collapse
|
165
|
Córdula CR, Lima MA, Shinjo SK, Gesteira TF, Pol-Fachin L, Coulson-Thomas VJ, Verli H, Yates EA, Rudd TR, Pinhal MAS, Toma L, Dietrich CP, Nader HB, Tersariol ILS. On the catalytic mechanism of polysaccharide lyases: evidence of His and Tyr involvement in heparin lysis by heparinase I and the role of Ca2+. MOLECULAR BIOSYSTEMS 2014; 10:54-64. [PMID: 24232366 DOI: 10.1039/c3mb70370c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structurally diverse polysaccharide lyase enzymes are distributed from plants to animals but share common catalytic mechanisms. One, heparinase I (F. heparinum), is employed in the production of the major anticoagulant drug, low molecular weight heparin, and is a mainstay of cell surface proteoglycan analysis. We demonstrate that heparinase I specificity and efficiency depend on the cationic form of the substrate. Ca(2+)-heparin, in which α-L-iduronate-2-O-sulfate residues adopt (1)C4 conformation preferentially, is a substrate, while Na(+)-heparin is an inhibitor. His and Tyr residues are identified in the catalytic step and a model based on molecular dynamics and docking is proposed, in which deprotonated His203 initiates β-elimination by abstracting the C5 proton of the α-L-iduonate-2-O-sulfate residue in the substrate, and protonated Tyr357 provides the donor to the hexosamine leaving group.
Collapse
Affiliation(s)
- Carolina R Córdula
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Três de Maio, 100, CEP 04044-020, São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Young NM, Watson DC, Cunningham AM, MacKenzie CR. The intrinsic cysteine and histidine residues of the anti-Salmonella antibody Se155-4: a model for the introduction of new functions into antibody-binding sites. Protein Eng Des Sel 2014; 27:383-90. [DOI: 10.1093/protein/gzu018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
167
|
MacDonald LC, Berger BW. Insight into the role of substrate-binding residues in conferring substrate specificity for the multifunctional polysaccharide lyase Smlt1473. J Biol Chem 2014; 289:18022-32. [PMID: 24808176 DOI: 10.1074/jbc.m114.571299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anionic polysaccharides are of growing interest in the biotechnology industry due to their potential pharmaceutical applications in drug delivery and wound treatment. Chemical composition and polymer length strongly influence the physical and biological properties of the polysaccharide and thus its potential industrial and medical applications. One promising approach to determining monomer composition and controlling the degree of polymerization involves the use of polysaccharide lyases, which catalyze the depolymerization of anionic polysaccharides via a β-elimination mechanism. Utilization of these enzymes for the production of custom-made oligosaccharides requires a high degree of control over substrate specificity. Previously, we characterized a polysaccharide lyase (Smlt1473) from Stenotrophomonas maltophilia k279a, which exhibited significant activity against hyaluronan (HA), poly-β-d-glucuronic acid (poly-GlcUA), and poly-β-d-mannuronic acid (poly-ManA) in a pH-regulated manner. Here, we utilize a sequence structure guided approach based on a homology model of Smlt1473 to identify nine putative substrate-binding residues and examine their effect on substrate specificity via site-directed mutagenesis. Interestingly, single point mutations H221F and R312L resulted in increased activity and specificity toward poly-ManA and poly-GlcUA, respectively. Furthermore, a W171A mutant nearly eliminated HA activity, while increasing poly-ManA and poly-GlcUA activity by at least 35%. The effect of these mutations was analyzed by comparison with the high resolution structure of Sphingomonas sp. A1-III alginate lyase in complex with poly-ManA tetrasaccharide and by taking into account the structural differences between HA, poly-GlcUA, and poly-ManA. Overall, our results demonstrate that even minor changes in active site architecture have a significant effect on the substrate specificity of Smlt1473, whose structural plasticity could be applied to the design of highly active and specific polysaccharide lyases.
Collapse
Affiliation(s)
| | - Bryan W Berger
- From the Program in Bioengineering and Department of Chemical Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
| |
Collapse
|
168
|
Jongkees SAK, Yoo H, Withers SG. Mechanistic investigations of unsaturated glucuronyl hydrolase from Clostridium perfringens. J Biol Chem 2014; 289:11385-11395. [PMID: 24573682 DOI: 10.1074/jbc.m113.545293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Experiments were carried out to probe the details of the hydration-initiated hydrolysis catalyzed by the Clostridium perfringens unsaturated glucuronyl hydrolase of glycoside hydrolase family 88 in the CAZy classification system. Direct (1)H NMR monitoring of the enzymatic reaction detected no accumulated reaction intermediates in solution, suggesting that rearrangement of the initial hydration product occurs on-enzyme. An attempt at mechanism-based trapping of on-enzyme intermediates using a 1,1-difluoro-substrate was unsuccessful because the probe was too deactivated to be turned over by the enzyme. Kinetic isotope effects arising from deuterium-for-hydrogen substitution at carbons 1 and 4 provide evidence for separate first-irreversible and overall rate-determining steps in the hydration reaction, with two potential mechanisms proposed to explain these results. Based on the positioning of catalytic residues in the enzyme active site, the lack of efficient turnover of a 2-deoxy-2-fluoro-substrate, and several unsuccessful attempts at confirmation of a simpler mechanism involving a covalent glycosyl-enzyme intermediate, the most plausible mechanism is one involving an intermediate bearing an epoxide on carbons 1 and 2.
Collapse
Affiliation(s)
- Seino A K Jongkees
- Departments of Chemistry and Biochemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hayoung Yoo
- Departments of Chemistry and Biochemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Stephen G Withers
- Departments of Chemistry and Biochemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
169
|
Park D, Jagtap S, Nair SK. Structure of a PL17 family alginate lyase demonstrates functional similarities among exotype depolymerases. J Biol Chem 2014; 289:8645-55. [PMID: 24478312 DOI: 10.1074/jbc.m113.531111] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Brown macroalgae represent an ideal source for complex polysaccharides that can be utilized as precursors for cellulosic biofuels. The lack of recalcitrant lignin components in macroalgae polysaccharide reserves provides a facile route for depolymerization of constituent polysaccharides into simple monosaccharides. The most abundant sugars in macroalgae are alginate, mannitol, and glucan, and although several classes of enzymes that can catabolize the latter two have been characterized, studies of alginate-depolymerizing enzymes have lagged. Here, we present several crystal structures of Alg17c from marine bacterium Saccharophagus degradans along with structure-function characterization of active site residues that are suggested to be involved in the exolytic mechanism of alginate depolymerization. This represents the first structural and biochemical characterization of a family 17 polysaccharide lyase enzyme. Despite the lack of appreciable sequence conservation, the structure and β-elimination mechanism for glycolytic bond cleavage by Alg17c are similar to those observed for family 15 polysaccharide lyases and other lyases. This work illuminates the evolutionary relationships among enzymes within this unexplored class of polysaccharide lyases and reinforces the notion of a structure-based hierarchy in the classification of these enzymes.
Collapse
Affiliation(s)
- David Park
- From the Departments of Biochemistry and
| | | | | |
Collapse
|
170
|
Hashimoto W, Maruyama Y, Nakamichi Y, Mikami B, Murata K. Crystal structure of Pedobacter heparinus heparin lyase Hep III with the active site in a deep cleft. Biochemistry 2014; 53:777-86. [PMID: 24437462 DOI: 10.1021/bi4012463] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pedobacter heparinus (formerly known as Flavobacterium heparinum) is a typical glycosaminoglycan-degrading bacterium that produces three heparin lyases, Hep I, Hep II, and Hep III, which act on heparins with 1,4-glycoside bonds between uronate and amino sugar residues. Being different from Hep I and Hep II, Hep III is specific for heparan sulfate. Here we describe the crystal structure of Hep III with the active site located in a deep cleft. The X-ray crystallographic structure of Hep III was determined at 2.20 Å resolution using single-wavelength anomalous diffraction. This enzyme comprised an N-terminal α/α-barrel domain and a C-terminal antiparallel β-sheet domain as its basic scaffold. Overall structures of Hep II and Hep III were similar, although Hep III exhibited an open form compared with the closed form of Hep II. Superimposition of Hep III and heparin tetrasaccharide-bound Hep II suggested that an active site of Hep III was located in the deep cleft at the interface between its two domains. Three mutants (N240A, Y294F, and H424A) with mutations at the active site had significantly reduced enzyme activity. This is the first report of the structure-function relationship of P. heparinus Hep III.
Collapse
Affiliation(s)
- Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University , Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
171
|
Biswal AK, Soeno K, Gandla ML, Immerzeel P, Pattathil S, Lucenius J, Serimaa R, Hahn MG, Moritz T, Jönsson LJ, Israelsson-Nordström M, Mellerowicz EJ. Aspen pectate lyase PtxtPL1-27 mobilizes matrix polysaccharides from woody tissues and improves saccharification yield. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:11. [PMID: 24450583 PMCID: PMC3909318 DOI: 10.1186/1754-6834-7-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/07/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Wood cell walls are rich in cellulose, hemicellulose and lignin. Hence, they are important sources of renewable biomass for producing energy and green chemicals. However, extracting desired constituents from wood efficiently poses significant challenges because these polymers are highly cross-linked in cell walls and are not easily accessible to enzymes and chemicals. RESULTS We show that aspen pectate lyase PL1-27, which degrades homogalacturonan and is expressed at the onset of secondary wall formation, can increase the solubility of wood matrix polysaccharides. Overexpression of this enzyme in aspen increased solubility of not only pectins but also xylans and other hemicelluloses, indicating that homogalacturonan limits the solubility of major wood cell wall components. Enzymatic saccharification of wood obtained from PL1-27-overexpressing trees gave higher yields of pentoses and hexoses than similar treatment of wood from wild-type trees, even after acid pretreatment. CONCLUSIONS Thus, the modification of pectins may constitute an important biotechnological target for improved wood processing despite their low abundance in woody biomass.
Collapse
Affiliation(s)
- Ajaya K Biswal
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S901 83 Umeå, Sweden
- Complex Carbohydrate Research Center, BioEnergy Science Center (BESC), University of Georgia, 315 Riverbend Rd, Athens, GA30602-4712 USA
| | - Kazuo Soeno
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S901 83 Umeå, Sweden
- Present address: National Agricultural Research Center for Western Region, National Agriculture and Food Research Organization (NARO), Zentsuji, Kagawa 765-8508 Japan
| | | | - Peter Immerzeel
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S901 83 Umeå, Sweden
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, BioEnergy Science Center (BESC), University of Georgia, 315 Riverbend Rd, Athens, GA30602-4712 USA
| | - Jessica Lucenius
- Department of Physics, University of Helsinki, POB. 64FI-00014 Helsinki, Finland
| | - Ritva Serimaa
- Department of Physics, University of Helsinki, POB. 64FI-00014 Helsinki, Finland
| | - Michael G Hahn
- Complex Carbohydrate Research Center, BioEnergy Science Center (BESC), University of Georgia, 315 Riverbend Rd, Athens, GA30602-4712 USA
| | - Thomas Moritz
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S901 83 Umeå, Sweden
| | - Leif J Jönsson
- Department of Chemistry, Umeå University, S901 87 Umeå, Sweden
| | - Maria Israelsson-Nordström
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S901 83 Umeå, Sweden
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S901 83 Umeå, Sweden
| |
Collapse
|
172
|
Abstract
Over the sixty years since Koshland initially formulated the classical mechanisms for retaining and inverting glycosidases, researchers have assembled a large body of supporting evidence and have documented variations of these mechanisms. Recently, however, researchers have uncovered a number of completely distinct mechanisms for enzymatic cleavage of glycosides involving elimination and/or hydration steps. In family GH4 and GH109 glycosidases, the reaction proceeds via transient NAD(+)-mediated oxidation at C3, thereby acidifying the proton at C2 and allowing for elimination across the C1-C2 bond. Subsequent Michael-type addition of water followed by reduction at C3 generates the hydrolyzed product. Enzymes employing this mechanism can hydrolyze thioglycosides as well as both anomers of activated substrates. Sialidases employ a conventional retaining mechanism in which a tyrosine functions as the nucleophile, but in some cases researchers have observed off-path elimination end products. These reactions occur via the normal covalent intermediate, but instead of an attack by water on the anomeric center, the catalytic acid/base residue abstracts an adjacent proton. These enzymes can also catalyze hydration of the enol ether via the reverse pathway. Reactions of α-(1,4)-glucan lyases also proceed through a covalent intermediate with subsequent abstraction of an adjacent proton to give elimination. However, in this case, the departing carboxylate "nucleophile" serves as the base in a concerted but asynchronous syn-elimination process. These enzymes perform only elimination reactions. Polysaccharide lyases, which act on uronic acid-containing substrates, also catalyze only elimination reactions. Substrate binding neutralizes the charge on the carboxylate, which allows for abstraction of the proton on C5 and leads to an elimination reaction via an E1cb mechanism. These enzymes can also cleave thioglycosides, albeit slowly. The unsaturated product of polysaccharide lyases can then serve as a substrate for a hydration reaction carried out by unsaturated glucuronyl hydrolases. This hydration is initiated by protonation at C4 and proceeds in a Markovnikov fashion rather than undergoing a Michael-type addition, giving a hemiketal at C5. This hemiketal then undergoes a rearrangement that results in cleavage of the anomeric bond. These enzymes can also hydrolyze thioglycosides efficiently and slowly turn over substrates with inverted anomeric configuration. The mechanisms discussed in this Account proceed through transition states that involve either positive or negative charges, unlike the exclusively cationic transition states of the classical Koshland retaining and inverting glycosidases. In addition, the distribution of this charge throughout the substrate can vary substantially. The nature of these mechanisms and their transition states means that any inhibitors or inactivators of these unusual enzymes probably differ from those presently used for Koshland retaining or inverting glycosidases.
Collapse
Affiliation(s)
- Seino A. K. Jongkees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
173
|
Collén PN, Jeudy A, Sassi JF, Groisillier A, Czjzek M, Coutinho PM, Helbert W. A novel unsaturated β-glucuronyl hydrolase involved in ulvan degradation unveils the versatility of stereochemistry requirements in family GH105. J Biol Chem 2014; 289:6199-211. [PMID: 24407291 DOI: 10.1074/jbc.m113.537480] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ulvans are cell wall matrix polysaccharides in green algae belonging to the genus Ulva. Enzymatic degradation of the polysaccharide by ulvan lyases leads to the production of oligosaccharides with an unsaturated β-glucuronyl residue located at the non-reducing end. Exploration of the genomic environment around the Nonlabens ulvanivorans (previously Percicivirga ulvanivorans) ulvan lyase revealed a gene highly similar to known unsaturated uronyl hydrolases classified in the CAZy glycoside hydrolase family 105. The gene was cloned, the protein was overexpressed in Escherichia coli, and enzymology experiments demonstrated its unsaturated β-glucuronyl activity. Kinetic analysis of purified oligo-ulvans incubated with the new enzyme showed that the full substrate specificity is attained by three subsites that preferentially bind anionic residues (sulfated rhamnose, glucuronic/iduronic acid). The three-dimensional crystal structure of the native enzyme reveals that a trimeric organization is required for substrate binding and recognition at the +2 binding subsite. This novel unsaturated β-glucuronyl hydrolase is part of a previously uncharacterized subgroup of GH105 members and exhibits only a very limited sequence similarity to known unsaturated β-glucuronyl sequences previously found only in family GH88. Clan-O formed by families GH88 and GH105 was singular in the fact that it covered families acting on both axial and equatorial glycosidic linkages, respectively. The overall comparison of active site structures between enzymes from these two families highlights how that within family GH105, and unlike for classical glycoside hydrolysis, the hydrolysis of vinyl ether groups from unsaturated saccharides occurs independently of the α or β configuration of the cleaved linkage.
Collapse
Affiliation(s)
- Pi Nyvall Collén
- From the CNRS, Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7139 "Marine Plants and Biomolecules," Station Biologique, F-29682 Roscoff Cedex, France
| | | | | | | | | | | | | |
Collapse
|
174
|
Wolfram F, Kitova EN, Robinson H, Walvoort MTC, Codée JDC, Klassen JS, Howell PL. Catalytic mechanism and mode of action of the periplasmic alginate epimerase AlgG. J Biol Chem 2014; 289:6006-19. [PMID: 24398681 DOI: 10.1074/jbc.m113.533158] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that forms chronic biofilm infections in the lungs of cystic fibrosis patients. A major component of the biofilm during these infections is the exopolysaccharide alginate, which is synthesized at the inner membrane as a homopolymer of 1-4-linked β-D-mannuronate. As the polymer passages through the periplasm, 22-44% of the mannuronate residues are converted to α-L-guluronate by the C5-epimerase AlgG to produce a polymer of alternating β-D-mannuronate and α-L-guluronate blocks and stretches of polymannuronate. To understand the molecular basis of alginate epimerization, the structure of Pseudomonas syringae AlgG has been determined at 2.1-Å resolution, and the protein was functionally characterized. The structure reveals that AlgG is a long right-handed parallel β-helix with an elaborate lid structure. Functional analysis of AlgG mutants suggests that His(319) acts as the catalytic base and that Arg(345) neutralizes the acidic group during the epimerase reaction. Water is the likely catalytic acid. Electrostatic surface potential and residue conservation analyses in conjunction with activity and substrate docking studies suggest that a conserved electropositive groove facilitates polymannuronate binding and contains at least nine substrate binding subsites. These subsites likely align the polymer in the correct register for catalysis to occur. The presence of multiple subsites, the electropositive groove, and the non-random distribution of guluronate in the alginate polymer suggest that AlgG is a processive enzyme. Moreover, comparison of AlgG and the extracellular alginate epimerase AlgE4 of Azotobacter vinelandii provides a structural rationale for the differences in their Ca(2+) dependence.
Collapse
Affiliation(s)
- Francis Wolfram
- From the Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
175
|
MacDonald LC, Berger BW. A polysaccharide lyase from Stenotrophomonas maltophilia with a unique, pH-regulated substrate specificity. J Biol Chem 2013; 289:312-25. [PMID: 24257754 DOI: 10.1074/jbc.m113.489195] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polysaccharide lyases (PLs) catalyze the depolymerization of anionic polysaccharides via a β-elimination mechanism. PLs also play important roles in microbial pathogenesis, participating in bacterial invasion and toxin spread into the host tissue via degradation of the host extracellular matrix, or in microbial biofilm formation often associated with enhanced drug resistance. Stenotrophomonas maltophilia is a Gram-negative bacterium that is among the emerging multidrug-resistant organisms associated with chronic lung infections as well as with cystic fibrosis patients. A putative alginate lyase (Smlt1473) from S. maltophilia was heterologously expressed in Escherichia coli, purified in a one-step fashion via affinity chromatography, and activity as well as specificity determined for a range of polysaccharides. Interestingly, Smlt1473 catalyzed the degradation of not only alginate, but poly-β-D-glucuronic acid and hyaluronic acid as well. Furthermore, the pH optimum for enzymatic activity is substrate-dependent, with optimal hyaluronic acid degradation at pH 5, poly-β-D-glucuronic acid degradation at pH 7, and alginate degradation at pH 9. Analysis of the degradation products revealed that each substrate was cleaved endolytically into oligomers comprised predominantly of even numbers of sugar groups, with lower accumulation of trimers and pentamers. Collectively, these results imply that Smlt1473 is a multifunctional PL that exhibits broad substrate specificity, but utilizes pH as a mechanism to achieve selectivity.
Collapse
|
176
|
Jongkees SAK, Yoo H, Withers SG. Mechanistic Insights from Substrate Preference in Unsaturated Glucuronyl Hydrolase. Chembiochem 2013; 15:124-34. [PMID: 24227702 DOI: 10.1002/cbic.201300547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Seino A K Jongkees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1 (Canada)
| | | | | |
Collapse
|
177
|
Kawaguchi Y, Sugiura N, Kimata K, Kimura M, Kakuta Y. The crystal structure of novel chondroitin lyase ODV-E66, a baculovirus envelope protein. FEBS Lett 2013; 587:S0014-5793(13)00778-3. [PMID: 24512853 DOI: 10.1016/j.febslet.2013.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/01/2013] [Accepted: 10/15/2013] [Indexed: 11/28/2022]
Abstract
Chondroitin lyases have been known as pathogenic bacterial enzymes that degrade chondroitin. Recently, baculovirus envelope protein ODV-E66 was identified as the first reported viral chondroitin lyase. ODV-E66 has low sequence identity with bacterial lyases at <12%, and unique characteristics reflecting the life cycle of baculovirus. To understand ODV-E66's structural basis, the crystal structure was determined and it was found that the structural fold resembled that of polysaccharide lyase 8 proteins and that the catalytic residues were also conserved. This structure enabled discussion of the unique substrate specificity and the stability of ODV-E66 as well as the host specificity of baculovirus.
Collapse
Affiliation(s)
- Yoshirou Kawaguchi
- Laboratory of Structural Biology, Graduate School of System Life Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Koji Kimata
- Research Complex for the Medicine Frontiers, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Makoto Kimura
- Laboratory of Structural Biology, Graduate School of System Life Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan; Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Yoshimitu Kakuta
- Laboratory of Structural Biology, Graduate School of System Life Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan; Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan.
| |
Collapse
|
178
|
Abbott DW, Thomas D, Pluvinage B, Boraston AB. An ancestral member of the polysaccharide lyase family 2 displays endolytic activity and magnesium dependence. Appl Biochem Biotechnol 2013; 171:1911-23. [PMID: 24013861 DOI: 10.1007/s12010-013-0483-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
Polysaccharide lyases (PLs) are enzymes that cleave glycosidic linkages in hexuronate polysaccharides, such as homogalacturonan (HG), using a β-elimination mechanism. Traditionally, PL activities on HG have been associated with catalytic calcium cofactors, unusually high pH optima, and arginine Brønstead bases. Recently, however, PL families that harness transition metal cofactors, utilize lysine and histidine Brønstead bases, and display more neutral pH optima have been described. One such family is PL2, which has members found primarily in phytopathogenic (e.g., Dickeya spp. and Pectobacterium spp.) or enteropathogenic (e.g., Yersinia spp.) bacterial species. PL2 is divided into two major subfamilies that are correlated with either an endolytic or exolytic activity. This study has focused on the activity of a PL2 member, which is not classified within either subfamily and helps to illuminate the origin of enzyme activities within the family. In addition, the role of Mg(2+) as a preferential catalytic metal for an intracellular PL2 (PaePL2) is described. The implications for the relationship between catalytic metal selectivity and the cellular location of pectate lyase-mediated catalysis are discussed.
Collapse
Affiliation(s)
- D Wade Abbott
- Lethbridge Research Station, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB, T1J 4B1, Canada,
| | | | | | | |
Collapse
|
179
|
Zheng M, Xu D. Catalytic Mechanism of Hyaluronate Lyase from Spectrococcus pneumonia: Quantum Mechanical/Molecular Mechanical and Density Functional Theory Studies. J Phys Chem B 2013; 117:10161-72. [DOI: 10.1021/jp406206s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Min Zheng
- MOE Key Laboratory of Green
Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Dingguo Xu
- MOE Key Laboratory of Green
Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| |
Collapse
|
180
|
Suits MD, Boraston AB. Structure of the Streptococcus pneumoniae surface protein and adhesin PfbA. PLoS One 2013; 8:e67190. [PMID: 23894284 PMCID: PMC3718772 DOI: 10.1371/journal.pone.0067190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/16/2013] [Indexed: 12/29/2022] Open
Abstract
PfbA (plasmin- and fibronectin-binding protein A) is an extracellular Streptococcus pneumoniae cell-wall attached surface protein that binds to fibronectin, plasmin, and plasminogen. Here we present a structural analysis of the surface exposed domains of PfbA using a combined approach of X-ray crystallography and small-angle X-ray scattering (SAXS). The crystal structure of the PfbA core domain, here called PfbAβ, determined to 2.28 Å resolution revealed an elongated 12-stranded parallel β-helix fold, which structure-based comparisons reveal is most similar to proteins with carbohydrate modifying activity. A notable feature of the PfbAβ is an extensive cleft on one face of the protein with electrochemical and spatial features that are analogous to structurally similar carbohydrate-active enzymes utilizing this feature for substrate accommodation. Though this cleft displays a combination of basic amino acid residues and solvent exposed aromatic amino acids that are distinct features for recognition of carbohydrates, no obvious arrangement of amino acid side chains that would constitute catalytic machinery is evident. The pseudo-atomic SAXS model of a larger fragment of PfbA suggests that it has a relatively well-ordered structure with the N-terminal and core domains of PfbA adopting an extend organization and reveals a novel structural class of surface exposed pneumococcal matrix molecule adhesins.
Collapse
Affiliation(s)
- Michael D. Suits
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Alisdair B. Boraston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail:
| |
Collapse
|
181
|
Tang Q, Liu YP, Ren ZG, Yan XX, Zhang LQ. 1.37 Å crystal structure of pathogenic factor pectate lyase from Acidovorax citrulli. Proteins 2013; 81:1485-90. [PMID: 23568384 DOI: 10.1002/prot.24298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 11/11/2022]
Abstract
Pectates lyase (Pel) plays an important role in bacteria pathogenicity. The crystal structure of Pel from Acidovorax citrulli (AcPel) has been solved to 1.37 Å resolution. AcPel belongs to the polysaccharide lyase family 1 (PL1), which has a characteristic right-handed β-helix fold. AcPel is similar with other Pels in the PL1 family, but also shows some differences at the substrate binding site.
Collapse
Affiliation(s)
- Qun Tang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
182
|
PelN is a new pectate lyase of Dickeya dadantii with unusual characteristics. J Bacteriol 2013; 195:2197-206. [PMID: 23475966 DOI: 10.1128/jb.02118-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The plant-pathogenic bacterium Dickeya dadantii produces several pectinolytic enzymes that play a major role in the soft-rot disease. Eight characterized endopectate lyases are secreted in the extracellular medium by the type II secretion system, Out. They cleave internal glycosidic bonds of pectin, leading to plant tissue maceration. The D. dadantii pectate lyases belong to different families, namely, PL1, PL2, PL3, and PL9. Analysis of the D. dadantii 3937 genome revealed a gene encoding a new protein of the PL9 family, which already includes the secreted endopectate lyase PelL and the periplasmic exopectate lyase PelX. We demonstrated that PelN is an additional extracellular protein secreted by the Out system. However, PelN has some unusual characteristics. Although most pectate lyases require a very alkaline pH and Ca²⁺ for their activity, the PelN activity is optimal at pH 7.4 and in the presence of Fe²⁺ as a cofactor. PelN is only weakly affected by the degree of pectin methyl esterification. The PelN structural model, constructed on the basis of the PelL structure, suggests that the PelL global topology and its catalytic amino acids are conserved in PelN. Notable differences concern the presence of additional loops at the PelN surface, and the replacement of PelL charged residues, involved in substrate binding, by aromatic residues in PelN. The pelN expression is affected by different environmental conditions, such as pH, osmolarity, and temperature. It is controlled by the repressors KdgR and PecS and by the activator GacA, three regulators of D. dadantii pectinase genes. Since a pelN mutant had reduced virulence on chicory leaves, the PelN enzyme plays a role in plant infection, despite its low specific activity and its unusual cofactor requirement.
Collapse
|
183
|
α-Galacturonidase(s): a new class of Family 4 glycoside hydrolases with strict specificity and a unique CHEV active site motif. FEBS Lett 2013; 587:799-803. [PMID: 23416295 DOI: 10.1016/j.febslet.2013.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 01/18/2013] [Accepted: 02/01/2013] [Indexed: 11/20/2022]
Abstract
The catalytic activity of the Family 4 glycosidase LplD protein, whose active site motif is CHEV, is unknown despite its crystal structure having been determined in 2008. Here we identify that activity as being an α-galacturonidase whose natural substrate is probably α-1,4-di-galacturonate (GalUA2). Phylogenetic analysis shows that LplD belongs to a monophyletic clade of CHEV Family 4 enzymes, of which four other members are also shown to be galacturonidases. Family GH 4 enzymes catalyze the cleavage of the glycosidic bond, via a non-canonical redox-assisted mechanism that contrasts with Koshland's double-displacement mechanism.
Collapse
|
184
|
Farrell EK, Tipton PA. Functional characterization of AlgL, an alginate lyase from Pseudomonas aeruginosa. Biochemistry 2012; 51:10259-66. [PMID: 23215237 DOI: 10.1021/bi301425r] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alginate lyase (AlgL) catalyzes the cleavage of the polysaccharide alginate through a β-elimination reaction. In Pseudomonas aeruginosa, algL is part of the alginate biosynthetic operon, and although it is required for alginate biosynthesis, it is not clear why. Steady-state kinetic studies were performed to characterize its substrate specificity and revealed that AlgL operates preferentially on nonacetylated alginate or its precursor mannuronan. Mature alginate is secreted as a partially acetylated polysaccharide, so this observation is consistent with suggestions that AlgL serves to degrade mislocalized alginate that is trapped in the periplasmic space. The k(cat)/K(m) for the reaction increased linearly with the number of residues in the substrate, from 2.1 × 10(5) M(-1) s(-1) for the substrate containing 16 residues to 7.9 × 10(6) M(-1) s(-1) for the substrate with 280 residues. Over the same substrate size range, k(cat) varied between 10 and 30 s(-1). The variation in k(cat)/K(m) with substrate length suggests that AlgL operates in a processive manner. AlgL displayed a surprising lack of stereospecificity, in that it was able to catalyze cleavage adjacent to either mannuronate or guluronate residues in alginate. Thus, the enzyme is able to remove the C5 proton from both mannuronate and guluronate, which are C5 epimers. Exhaustive digestion of alginate by AlgL generated dimeric and trimeric products, which were characterized by (1)H nuclear magnetic resonance spectroscopy and mass spectrometry. Rapid-mixing chemical quench studies revealed that there was no lag in dimer or trimer production, indicating that AlgL operates as an exopolysaccharide lyase.
Collapse
Affiliation(s)
- Emma K Farrell
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
185
|
Yip VLY, Withers SG. Identification of Tyr241 as a key catalytic base in the family 4 glycoside hydrolase BglT from Thermotoga maritima. Biochemistry 2012; 51:8464-74. [PMID: 23025815 DOI: 10.1021/bi301021u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While the vast majority of glycosidases catalyze glycoside hydrolysis via oxocarbenium ion-like transition states and typically employ carboxylic acid residues as acid/base or nucleophile catalysts, two subfamilies of these enzymes (GH4 and GH109 in the CAZY classification) conduct hydrolysis via a redox-assisted mechanism involving anionic transition states. While good evidence of this mechanism has been obtained, the identities of the catalytic residues involved have not yet been confirmed. Mechanistic analyses of mutants of the 6-phospho-β-glucosidase from Thermotoga maritima (BglT), in which the active site tyrosine residue (Tyr 241) has been replaced with Phe and Ala, provide support for its role as a catalytic base. The pH dependence of k(cat) and k(cat)/K(m), particularly of the acidic limb corresponding to the base, is shifted relative to that of the wild-type enzyme. Kinetic isotope effects for hydrolysis of substrates deuterated at C1, C2, and C3 by the Tyr 241 mutants are strongly pH-dependent, with essentially full primary kinetic isotope effects being observed for the 2-deutero substrate at low pH with the Tyr241Ala mutant. This is consistent with a slowing of the deprotonation step upon removal of the base.
Collapse
Affiliation(s)
- Vivian L Y Yip
- 2036 Main Mall, Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | | |
Collapse
|
186
|
O'Leary TR, Xu Y, Liu J. Investigation of the substrate specificity of K5 lyase A from K5A bacteriophage. Glycobiology 2012; 23:132-41. [PMID: 23019155 DOI: 10.1093/glycob/cws136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
K5 lyase A (KflA) is a tailspike protein from the K5A phage that catalyzes the degradation of the capsule polysaccharide of K5 strains of Escherichia coli. The K5 E. coli capsule polysaccharide, also known as heparosan, is composed of the disaccharide repeating unit of [-4)-GlcA-β(1,4)-GlcNAc-α(1-] and therefore identical to the biological precursor of heparin and heparan sulfate (HS). KflA could supplement the heparin lyases for heparin and HS analysis. The first part of this study aimed to clarify ambiguity resulting from the revision of the KflA amino acid sequence in 2010 from that published in 2000. We found that only the expression of the updated sequence gave a soluble active enzyme, which produced heparosan degradation products similar to those of previous studies. Next, we examined the specificity of KflA toward heparosan oligosaccharides of varying sizes, all containing a single N-sulfated glucosamine (GlcNS) residue. The presence of GlcNS in an octasaccharide and a nonasaccharide chain directed cleavage by KflA to a single position at the reducing end of the substrate. However, an N-sulfated decasaccharide exhibited extensive cleavage at the nonreducing end of the chain, illustrating a distinct change in the cleavage pattern of KflA toward substrates of differing sizes. Because KflA is able to cleave a substrate containing isolated GlcNS residues, this enzyme could be used for the analysis of low-sulfate content HS domains.
Collapse
Affiliation(s)
- Timothy R O'Leary
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
187
|
Zheng M, Zhang H, Xu D. Initial events in the degradation of hyaluronan catalyzed by hyaluronate lyase from Streptococcus [corrected] pneumoniae: QM/MM simulation. J Phys Chem B 2012; 116:11166-72. [PMID: 22916709 DOI: 10.1021/jp306754a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hyaluronate lyase from Spectrococcus pneumonia can degrade hyaluronic acid, which is one of the major components in the extracellular matrix. The major functions of hyaluronan are to regulate water balance and osmotic pressure and act as an ion-exchange resin. In this work, we focus on the prerequisite issue of the enzymatic reaction, i.e., the initial reactive conformer. Based on the quantum mechanical and molecular mechanical molecular dynamic simulations and free energy profiles, a near attack conformer was obtained for the degradation of hyaluronan catalyzed by the hyaluronate lyase. Along with the substrate binding, the phenylhydroxyl hydrogen atom of Tyr408 will transfer to nearby His399 via a near barrierless transition state, which results in a negatively charged Tyr408 and positively charged His399. The Tyr408, rather than the previously proposed His399, was suggested to act as the general base for the subsequent β-elimination reaction. The His399 was suggested to have the function of neutralizing the C5-carboxyl group.
Collapse
Affiliation(s)
- Min Zheng
- MOE Key Laboratory of Green Chemistry, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064 PR China
| | | | | |
Collapse
|
188
|
Mikami B, Ban M, Suzuki S, Yoon HJ, Miyake O, Yamasaki M, Ogura K, Maruyama Y, Hashimoto W, Murata K. Induced-fit motion of a lid loop involved in catalysis in alginate lyase A1-III. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1207-16. [PMID: 22948922 DOI: 10.1107/s090744491202495x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 05/31/2012] [Indexed: 11/11/2022]
Abstract
The structures of two mutants (H192A and Y246F) of a mannuronate-specific alginate lyase, A1-III, from Sphingomonas species A1 complexed with a tetrasaccharide substrate [4-deoxy-L-erythro-hex-4-ene-pyranosyluronate-(mannuronate)(2)-mannuronic acid] were determined by X-ray crystallography at around 2.2 Å resolution together with the apo form of the H192A mutant. The final models of the complex forms, which comprised two monomers (of 353 amino-acid residues each), 268-287 water molecules and two tetrasaccharide substrates, had R factors of around 0.17. A large conformational change occurred in the position of the lid loop (residues 64-85) in holo H192A and Y246F compared with that in apo H192A. The lid loop migrated about 14 Å from an open form to a closed form to interact with the bound tetrasaccharide and a catalytic residue. The tetrasaccharide was bound in the active cleft at subsites -3 to +1 as a substrate form in which the glycosidic linkage to be cleaved existed between subsites -1 and +1. In particular, the O(η) atom of Tyr68 in the closed lid loop forms a hydrogen bond to the side chain of a presumed catalytic residue, O(η) of Tyr246, which acts both as an acid and a base catalyst in a syn mechanism.
Collapse
Affiliation(s)
- Bunzo Mikami
- Department of Applied Life Science, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Nishitani Y, Maruyama Y, Itoh T, Mikami B, Hashimoto W, Murata K. Recognition of heteropolysaccharide alginate by periplasmic solute-binding proteins of a bacterial ABC transporter. Biochemistry 2012; 51:3622-33. [PMID: 22486720 DOI: 10.1021/bi300194f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alginate is a heteropolysaccharide that consists of β-D-mannuronate (M) and α-L-guluronate (G). The Gram-negative bacterium Sphingomonas sp. A1 directly incorporates alginate into the cytoplasm through the periplasmic solute-binding protein (AlgQ1 and AlgQ2)-dependent ABC transporter (AlgM1-AlgM2/AlgS-AlgS). Two binding proteins with at least four subsites strongly recognize the nonreducing terminal residue of alginate at subsite 1. Here, we show the broad substrate preference of strain A1 solute-binding proteins for M and G present in alginate and demonstrate the structural determinants in binding proteins for heteropolysaccharide recognition through X-ray crystallography of four AlgQ1 structures in complex with saturated and unsaturated alginate oligosaccharides. Alginates with different M/G ratios were assimilated by strain A1 cells and bound to AlgQ1 and AlgQ2. Crystal structures of oligosaccharide-bound forms revealed that in addition to interaction between AlgQ1 and unsaturated oligosaccharides, the binding protein binds through hydrogen bonds to the C4 hydroxyl group of the saturated nonreducing terminal residue at subsite 1. The M residue of saturated oligosaccharides is predominantly accommodated at subsite 1 because of the strict binding of Ser-273 to the carboxyl group of the residue. In unsaturated trisaccharide (ΔGGG or ΔMMM)-bound AlgQ1, the protein interacts appropriately with substrate hydroxyl groups at subsites 2 and 3 to accommodate M or G, while substrate carboxyl groups are strictly recognized by the specific residues Tyr-129 at subsite 2 and Lys-22 at subsite 3. Because of this substrate recognition mechanism, strain A1 solute-binding proteins can bind heteropolysaccharide alginate with different M/G ratios.
Collapse
Affiliation(s)
- Yu Nishitani
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
190
|
Kim HT, Chung JH, Wang D, Lee J, Woo HC, Choi IG, Kim KH. Depolymerization of alginate into a monomeric sugar acid using Alg17C, an exo-oligoalginate lyase cloned from Saccharophagus degradans 2-40. Appl Microbiol Biotechnol 2012; 93:2233-9. [DOI: 10.1007/s00253-012-3882-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 12/28/2011] [Accepted: 12/30/2011] [Indexed: 10/14/2022]
|
191
|
Nyvall Collén P, Sassi JF, Rogniaux H, Marfaing H, Helbert W. Ulvan lyases isolated from the Flavobacteria Persicivirga ulvanivorans are the first members of a new polysaccharide lyase family. J Biol Chem 2011; 286:42063-42071. [PMID: 22009751 PMCID: PMC3234910 DOI: 10.1074/jbc.m111.271825] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 10/06/2011] [Indexed: 11/06/2022] Open
Abstract
Ulvans are complex sulfated polysaccharides found in the cell walls of green algae belonging to the genus Ulva. These polysaccharides are composed of disaccharide repetition moieties made up of sulfated rhamnose linked to either glucuronic acid, iduronic acid, or xylose. Two ulvan lyases of 30 and 46 kDa were purified from the culture supernatant of Persicivirga ulvanivorans. Based on peptide sequencing, the gene encoding the 46-kDa ulvan lyase was cloned. Sequence analysis revealed that the protein is modular and possesses a catalytic module similar to that of the 30-kDa ulvan lyase along with a module of unknown function. The ulvan-degrading function of the gene was confirmed by expression of the catalytic module in a heterologous system. The gene encoding the catalytic module has no sequence homolog in sequence databases and is likely to be the first member of a novel polysaccharide lyase family. Analysis of degradation products showed that both the 30- and 46-kDa ulvan lyases are endolytic and cleave the glycosidic bond between the sulfated rhamnose and a glucuronic or iduronic acid.
Collapse
Affiliation(s)
- Pi Nyvall Collén
- CNRS, Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7139 "Marine Plants and Biomolecules," Station Biologique, F-29682 Roscoff Cedex, France
| | - Jean-François Sassi
- Centre d'Etudes et de Valorisation des Algues, Presqu'île de Pen Lan, BP3, 22610 Pleubian, France
| | - Hélène Rogniaux
- UR1268 Biopolymères Interactions Assemblages, Institut National de la Recherche Agronomique, Plate-forme Biopolymères Biologie Structurale, Rue de la Géraudière, BP 71627, 44316 Nantes, France
| | - Hélène Marfaing
- Centre d'Etudes et de Valorisation des Algues, Presqu'île de Pen Lan, BP3, 22610 Pleubian, France
| | - William Helbert
- CNRS, Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche 7139 "Marine Plants and Biomolecules," Station Biologique, F-29682 Roscoff Cedex, France.
| |
Collapse
|
192
|
|
193
|
Abstract
Carbohydrate-active enzymes face huge substrate diversity in a highly selective manner using only a limited number of available folds. They are therefore subjected to multiple divergent and convergent evolutionary events. This and their frequent modularity render their functional annotation in genomes difficult in a number of cases. In the present paper, a classification of polysaccharide lyases (the enzymes that cleave polysaccharides using an elimination instead of a hydrolytic mechanism) is shown thoroughly for the first time. Based on the analysis of a large panel of experimentally characterized polysaccharide lyases, we examined the correlation of various enzyme properties with the three levels of the classification: fold, family and subfamily. The resulting hierarchical classification, which should help annotate relevant genes in genomic efforts, is available and constantly updated at the Carbohydrate-Active Enzymes Database (http://www.cazy.org).
Collapse
|