151
|
Sabbbia V, Romero H, Musto H, Naya H. Composition Profile of the Human Genome at the Chromosome Level. J Biomol Struct Dyn 2009; 27:361-70. [DOI: 10.1080/07391102.2009.10507322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
152
|
Hughes S, Jenkins V, Dar MJ, Engelman A, Cherepanov P. Transcriptional co-activator LEDGF interacts with Cdc7-activator of S-phase kinase (ASK) and stimulates its enzymatic activity. J Biol Chem 2009; 285:541-54. [PMID: 19864417 DOI: 10.1074/jbc.m109.036491] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Lens epithelium-derived growth factor (LEDGF) is an important co-factor of human immunodeficiency virus DNA integration; however, its cellular functions are poorly characterized. We now report identification of the Cdc7-activator of S-phase kinase (ASK) heterodimer as a novel interactor of LEDGF. Both kinase subunits co-immunoprecipitated with endogenous LEDGF from human cell extracts. Truncation analyses identified the integrase-binding domain of LEDGF as essential and minimally sufficient for the interaction with Cdc7-ASK. Reciprocally, the interaction required autophosphorylation of the kinase and the presence of 50 C-terminal residues of ASK. The kinase phosphorylated LEDGF in vitro, with Ser-206 being the major target, and LEDGF phosphorylated at this residue could be detected during S phase of the cell cycle. LEDGF potently stimulated the enzymatic activity of Cdc7-ASK, increasing phosphorylation of MCM2 in vitro by more than 10-fold. This enzymatic stimulation as well as phosphorylation of LEDGF depended on the protein-protein interaction. Intriguingly, removing the C-terminal region of ASK, involved in the interaction with LEDGF, resulted in a hyperactive kinase. Our results indicate that the interaction with LEDGF relieves autoinhibition of Cdc7-ASK kinase, imposed by the C terminus of ASK.
Collapse
Affiliation(s)
- Siobhan Hughes
- Division of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, United Kingdom and
| | | | | | | | | |
Collapse
|
153
|
Abstract
Eukaryotic cells follow a temporal program to duplicate their genomes. Chromosomes are divided into domains with a specific DNA replication timing (RT), not dictated by DNA sequence alone, which is conserved from one cell cycle to the next. Timing of replication correlates with gene density, transcriptional activity, chromatin structure and nuclear position, making it an intriguing epigenetic mark. The differentiation from embryonic stem cells to specialized cell types is accompanied by global changes in the RT program. This review covers our current understanding of the mechanisms that determine RT in mammalian cells, its possible biological significance and how unscheduled alterations of the RT program may predispose to human disease.
Collapse
Affiliation(s)
- Juan Méndez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
154
|
Rampakakis E, Di Paola D, Chan MK, Zannis-Hadjopoulos M. Dynamic changes in chromatin structure through post-translational modifications of histone H3 during replication origin activation. J Cell Biochem 2009; 108:400-7. [PMID: 19585526 DOI: 10.1002/jcb.22266] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genome duplication relies on the timely activation of multiple replication origins throughout the genome during S phase. Each origin is marked by the assembly of a multiprotein pre-replication complex (pre-RC) and the recruitment of the replicative machinery, which can gain access to replication origins on the DNA through the barrier of specific chromatin structures. Inheritance of the genetic information is further accompanied by maintenance and inheritance of the epigenetic marks, which are accomplished by the activity of histone and DNA modifying enzymes traveling with the replisome. Here, we studied the changes in the chromatin structure at the loci of three replication origins, the early activated human lamin B2 (LB2) and monkey Ors8 (mOrs8) origins and the late-activated human homologue of the latter (hOrs8), during their activation, by measuring the abundance of post-translationally modified histone H3. The data show that dynamic changes in the levels of acetylated, methylated and phosphorylated histone H3 occur during the initiation of DNA replication at these three origin loci, which differ between early- and late-firing origins as well as between human- and monkey-derived cell lines. These results suggest that specific histone modifications are associated with origin firing, temporal activation and replication fork progression and underscore the importance of species specificity.
Collapse
Affiliation(s)
- E Rampakakis
- Rosalind and Morris Goodman Cancer Center, Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3A 1A3
| | | | | | | |
Collapse
|
155
|
Desprat R, Thierry-Mieg D, Lailler N, Lajugie J, Schildkraut C, Thierry-Mieg J, Bouhassira EE. Predictable dynamic program of timing of DNA replication in human cells. Genome Res 2009; 19:2288-99. [PMID: 19767418 DOI: 10.1101/gr.094060.109] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The organization of mammalian DNA replication is poorly understood. We have produced high-resolution dynamic maps of the timing of replication in human erythroid, mesenchymal, and embryonic stem (ES) cells using TimEX, a method that relies on gaussian convolution of massive, highly redundant determinations of DNA copy-number variations during S phase to produce replication timing profiles. We first obtained timing maps of 3% of the genome using high-density oligonucleotide tiling arrays and then extended the TimEX method genome-wide using massively parallel sequencing. We show that in untransformed human cells, timing of replication is highly regulated and highly synchronous, and that many genomic segments are replicated in temporal transition regions devoid of initiation, where replication forks progress unidirectionally from origins that can be hundreds of kilobases away. Absence of initiation in one transition region is shown at the molecular level by single molecule analysis of replicated DNA (SMARD). Comparison of ES and erythroid cells replication patterns revealed that these cells replicate about 20% of their genome in different quarters of S phase. Importantly, we detected a strong inverse relationship between timing of replication and distance to the closest expressed gene. This relationship can be used to predict tissue-specific timing of replication profiles from expression data and genomic annotations. We also provide evidence that early origins of replication are preferentially located near highly expressed genes, that mid-firing origins are located near moderately expressed genes, and that late-firing origins are located far from genes.
Collapse
Affiliation(s)
- Romain Desprat
- Department of Medicine and Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
156
|
Lande-Diner L, Zhang J, Cedar H. Shifts in replication timing actively affect histone acetylation during nucleosome reassembly. Mol Cell 2009; 34:767-74. [PMID: 19560427 DOI: 10.1016/j.molcel.2009.05.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 12/30/2008] [Accepted: 05/28/2009] [Indexed: 01/11/2023]
Abstract
The entire genome is replicated in a programmed manner, with specific regions undergoing DNA synthesis at different times in S phase. Active genes generally replicate in early S phase, while repressed genes replicate late, and for some loci this process is developmentally regulated. Using a nuclear microinjection system, we demonstrate that DNA sequences originally packaged into nucleosomes containing deacetylated histones during late S become reassembled with acetylated histones after undergoing replication in early S. Conversely, a change from early to late replication timing is accompanied by repackaging into nucleosomes containing deacetylated histones. This is carried out by differential cell-cycle-controlled acetylation and deacetylation of histones H3 and H4. These studies provide strong evidence that switches in replication timing may play a role in the regulation of nucleosome structure during development.
Collapse
Affiliation(s)
- Laura Lande-Diner
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Ein Kerem, Jerusalem 91120, Israel
| | | | | |
Collapse
|
157
|
H3 k36 methylation helps determine the timing of cdc45 association with replication origins. PLoS One 2009; 4:e5882. [PMID: 19521516 PMCID: PMC2690658 DOI: 10.1371/journal.pone.0005882] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 04/27/2009] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Replication origins fire at different times during S-phase. Such timing is determined by the chromosomal context, which includes the activity of nearby genes, telomeric position effects and chromatin structure, such as the acetylation state of the surrounding chromatin. Activation of replication origins involves the conversion of a pre-replicative complex to a replicative complex. A pivotal step during this conversion is the binding of the replication factor Cdc45, which associates with replication origins at approximately their time of activation in a manner partially controlled by histone acetylation. METHODOLOGY/PRINCIPAL FINDINGS Here we identify histone H3 K36 methylation (H3 K36me) by Set2 as a novel regulator of the time of Cdc45 association with replication origins. Deletion of SET2 abolishes all forms of H3 K36 methylation. This causes a delay in Cdc45 binding to origins and renders the dynamics of this interaction insensitive to the state of histone acetylation of the surrounding chromosomal region. Furthermore, a decrease in H3 K36me3 and a concomitant increase in H3 K36me1 around the time of Cdc45 binding to replication origins suggests opposing functions for these two methylation states. Indeed, we find K36me3 depleted from early firing origins when compared to late origins genomewide, supporting a delaying effect of this histone modification for the association of replication factors with origins. CONCLUSIONS/SIGNIFICANCE We propose a model in which K36me1 together with histone acetylation advance, while K36me3 and histone deacetylation delay, the time of Cdc45 association with replication origins. The involvement of the transcriptionally induced H3 K36 methylation mark in regulating the timing of Cdc45 binding to replication origins provides a novel means of how gene expression may affect origin dynamics during S-phase.
Collapse
|
158
|
Universal temporal profile of replication origin activation in eukaryotes. PLoS One 2009; 4:e5899. [PMID: 19521533 PMCID: PMC2690853 DOI: 10.1371/journal.pone.0005899] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 05/20/2009] [Indexed: 01/25/2023] Open
Abstract
Although replication proteins are conserved among eukaryotes, the sequence requirements for replication initiation differ between species. In all species, however, replication origins fire asynchronously throughout S phase. The temporal program of origin firing is reproducible in cell populations but largely probabilistic at the single-cell level. The mechanisms and the significance of this program are unclear. Replication timing has been correlated with gene activity in metazoans but not in yeast. One potential role for a temporal regulation of origin firing is to minimize fluctuations in replication end time and avoid persistence of unreplicated DNA in mitosis. Here, we have extracted the population-averaged temporal profiles of replication initiation rates for S. cerevisiae, S. pombe, D. melanogaster, X. laevis and H. sapiens from genome-wide replication timing and DNA combing data. All the profiles have a strikingly similar shape, increasing during the first half of S phase then decreasing before its end. A previously proposed minimal model of stochastic initiation modulated by accumulation of a recyclable, limiting replication-fork factor and fork-promoted initiation of new origins, quantitatively described the observed profiles without requiring new implementations. The selective pressure for timely completion of genome replication and optimal usage of replication proteins that must be imported into the cell nucleus can explain the generic shape of the profiles. We have identified a universal behavior of eukaryotic replication initiation that transcends the mechanisms of origin specification. The population-averaged efficiency of replication origin usage changes during S phase in a strikingly similar manner in a highly diverse set of eukaryotes. The quantitative model previously proposed for origin activation in X. laevis can be generalized to explain this evolutionary conservation.
Collapse
|
159
|
Rampakakis E, Arvanitis DN, Di Paola D, Zannis-Hadjopoulos M. Metazoan origins of DNA replication: regulation through dynamic chromatin structure. J Cell Biochem 2009; 106:512-20. [PMID: 19173303 DOI: 10.1002/jcb.22070] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA replication in eukaryotes is initiated at multiple replication origins distributed over the entire genome, which are normally activated once per cell cycle. Due to the complexity of the metazoan genome, the study of metazoan replication origins and their activity profiles has been less advanced than in simpler genome systems. DNA replication in eukaryotes involves many protein-protein and protein-DNA interactions, occurring in multiple stages. As in prokaryotes, control over the timing and frequency of initiation is exerted at the initiation site. A prerequisite for understanding the regulatory mechanisms of eukaryotic DNA replication is the identification and characterization of the cis-acting sequences that serve as replication origins and the trans-acting factors (proteins) that interact with them. Furthermore, in order to understand how DNA replication may become deregulated in malignant cells, the distinguishing features between normal and malignant origins of DNA replication as well as the proteins that interact with them must be determined. Based on advances that were made using simple genome model systems, several proteins involved in DNA replication have been identified. This review summarizes the current findings about metazoan origins of DNA replication and their interacting proteins as well as the role of chromatin structure in their regulation. Furthermore, progress in origin identification and isolation procedures as well as potential mechanisms to inhibit their activation in cancer development and progression are discussed.
Collapse
Affiliation(s)
- E Rampakakis
- Department of Biochemistry, Goodman Cancer Centre, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
160
|
Expansión clónica y caracterización genómica del proceso de integración del virus linfotrópico humano tipo I en la leucemia/linfoma de células T en adultos. BIOMEDICA 2009. [DOI: 10.7705/biomedica.v29i2.24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
161
|
Transcription initiation activity sets replication origin efficiency in mammalian cells. PLoS Genet 2009; 5:e1000446. [PMID: 19360092 PMCID: PMC2661365 DOI: 10.1371/journal.pgen.1000446] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 03/04/2009] [Indexed: 12/24/2022] Open
Abstract
Genomic mapping of DNA replication origins (ORIs) in mammals provides a powerful means for understanding the regulatory complexity of our genome. Here we combine a genome-wide approach to identify preferential sites of DNA replication initiation at 0.4% of the mouse genome with detailed molecular analysis at distinct classes of ORIs according to their location relative to the genes. Our study reveals that 85% of the replication initiation sites in mouse embryonic stem (ES) cells are associated with transcriptional units. Nearly half of the identified ORIs map at promoter regions and, interestingly, ORI density strongly correlates with promoter density, reflecting the coordinated organisation of replication and transcription in the mouse genome. Detailed analysis of ORI activity showed that CpG island promoter-ORIs are the most efficient ORIs in ES cells and both ORI specification and firing efficiency are maintained across cell types. Remarkably, the distribution of replication initiation sites at promoter-ORIs exactly parallels that of transcription start sites (TSS), suggesting a co-evolution of the regulatory regions driving replication and transcription. Moreover, we found that promoter-ORIs are significantly enriched in CAGE tags derived from early embryos relative to all promoters. This association implies that transcription initiation early in development sets the probability of ORI activation, unveiling a new hallmark in ORI efficiency regulation in mammalian cells. The duplication of the genetic information of a cell starts from specific sites on the chromosomes called DNA replication origins. Their number varies from a few hundred in yeast cells to several thousands in human cells, distributed along the genome at comparable distances in both systems. An important question in the field is to understand how origins of replication are specified and regulated in the mammalian genome, as neither their location nor their activity can be directly inferred from the DNA sequence. Previous studies at individual origins and, more recently, at large scale across 1% of the human genome, have revealed that most origins overlap with transcriptional regulatory elements, and specifically with gene promoters. To gain insight into the nature of the relationship between active transcription and origin specification we have combined a genomic mapping of origins at 0.4% of the mouse genome with detailed studies of activation efficiency. The data identify two types of origins with distinct regulatory properties: highly efficient origins map at CpG island-promoters and low efficient origins locate elsewhere in association with transcriptional units. We also find a remarkable parallel organisation of the replication initiation sites and transcription start sites at efficient promoter-origins that suggests a prominent role of transcription initiation in setting the efficiency of replication origin activation.
Collapse
|
162
|
Hiratani I, Takebayashi SI, Lu J, Gilbert DM. Replication timing and transcriptional control: beyond cause and effect--part II. Curr Opin Genet Dev 2009; 19:142-9. [PMID: 19345088 DOI: 10.1016/j.gde.2009.02.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/10/2009] [Accepted: 02/16/2009] [Indexed: 11/15/2022]
Abstract
Replication timing is frequently discussed superficially in terms of its relationship to transcriptional activity via chromatin structure. However, so little is known about what regulates where and when replication initiates that it has been impossible to identify mechanistic and causal relationships. Moreover, much of our knowledge base has been anecdotal, derived from analyses of a few genes in unrelated cell lines. Recent studies have revisited long-standing hypotheses using genome-wide approaches. In particular, the foundation of this field was recently shored up with incontrovertible evidence that cellular differentiation is accompanied by coordinated changes in replication timing and transcription. These changes accompany subnuclear repositioning, and take place at the level of megabase-sized domains that transcend localized changes in chromatin structure or transcription. Inferring from these results, we propose that there exists a key transition during the middle of S-phase and that changes in replication timing traversing this period are associated with subnuclear repositioning and changes in the activity of certain classes of promoters.
Collapse
Affiliation(s)
- Ichiro Hiratani
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
163
|
Stamatoyannopoulos JA, Adzhubei I, Thurman RE, Kryukov GV, Mirkin SM, Sunyaev SR. Human mutation rate associated with DNA replication timing. Nat Genet 2009; 41:393-5. [PMID: 19287383 DOI: 10.1038/ng.363] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 02/24/2009] [Indexed: 11/09/2022]
Abstract
Eukaryotic DNA replication is highly stratified, with different genomic regions shown to replicate at characteristic times during S phase. Here we observe that mutation rate, as reflected in recent evolutionary divergence and human nucleotide diversity, is markedly increased in later-replicating regions of the human genome. All classes of substitutions are affected, suggesting a generalized mechanism involving replication time-dependent DNA damage. This correlation between mutation rate and regionally stratified replication timing may have substantial evolutionary implications.
Collapse
|
164
|
Yeshaya J, Amir I, Rimon A, Freedman J, Shohat M, Avivi L. Microdeletion syndromes disclose replication timing alterations of genes unrelated to the missing DNA. Mol Cytogenet 2009; 2:11. [PMID: 19284877 PMCID: PMC2660353 DOI: 10.1186/1755-8166-2-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 03/14/2009] [Indexed: 11/26/2022] Open
Abstract
Background The temporal order of allelic replication is interrelated to the epigenomic profile. A significant epigenetic marker is the asynchronous replication of monoallelically-expressed genes versus the synchronous replication of biallelically-expressed genes. The present study sought to determine whether a microdeletion in the genome affects epigenetic profiles of genes unrelated to the missing segment. In order to test this hypothesis, we checked the replication patterns of two genes – SNRPN, a normally monoallelically expressed gene (assigned to 15q11.13), and the RB1, an archetypic biallelically expressed gene (assigned to 13.q14) in the genomes of patients carrying the 22q11.2 deletion (DiGeorge/Velocardiofacial syndrome) and those carrying the 7q11.23 deletion (Williams syndrome). Results The allelic replication timing was determined by fluorescence in situ hybridization (FISH) technology performed on peripheral blood cells. As expected, in the cells of normal subjects the frequency of cells showing asynchronous replication for SNRPN was significantly (P < 10-12) higher than the corresponding value for RB1. In contrast, cells of the deletion-carrying patients exhibited a reversal in this replication pattern: there was a significantly lower frequency of cells engaging in asynchronous replication for SNRPN than for RB1 (P < 10-4 and P < 10-3 for DiGeorge/Velocardiofacial and Williams syndromes, respectively). Accordingly, the significantly lower frequency of cells showing asynchronous replication for SNRPN than for RB1 is a new epigenetic marker distinguishing these deletion syndrome genotypes from normal ones. Conclusion In cell samples of each deletion-carrying individual, an aberrant, reversed pattern of replication is delineated, namely, where a monoallelic gene replicates more synchronously than a biallelic gene. This inverted pattern, which appears to be non-deletion-specific, clearly distinguishes cells of deletion-carriers from normal ones. As such, it offers a potential epigenetic marker for suspecting a hidden microdeletion that is too small to be detected by conventional karyotyping methods.
Collapse
Affiliation(s)
- Josepha Yeshaya
- Raphael Recanati Genetic Institute, Rabin Medical Center Beilinson Campus, Petah-Tikva, Israel
| | - Itay Amir
- Raphael Recanati Genetic Institute, Rabin Medical Center Beilinson Campus, Petah-Tikva, Israel.,Department of Human Molecular Genetics & Biochemistry, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ayelet Rimon
- Raphael Recanati Genetic Institute, Rabin Medical Center Beilinson Campus, Petah-Tikva, Israel
| | - Jane Freedman
- Raphael Recanati Genetic Institute, Rabin Medical Center Beilinson Campus, Petah-Tikva, Israel
| | - Mordechai Shohat
- Raphael Recanati Genetic Institute, Rabin Medical Center Beilinson Campus, Petah-Tikva, Israel.,Department of Human Molecular Genetics & Biochemistry, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Pediatrics C, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Lydia Avivi
- Department of Human Molecular Genetics & Biochemistry, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
165
|
Zeitz MJ, Marella NV, Malyavantham KS, Goetze S, Bode J, Raska I, Berezney R. Organization of the amplified type I interferon gene cluster and associated chromosome regions in the interphase nucleus of human osteosarcoma cells. Chromosome Res 2009; 17:305-19. [PMID: 19283497 DOI: 10.1007/s10577-009-9023-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 12/01/2008] [Accepted: 12/01/2008] [Indexed: 12/13/2022]
Abstract
The organization of the amplified type I interferon (IFN) gene cluster and surrounding chromosomal regions was studied in the interphase cell nucleus of the human osteosarcoma cell line MG63. Rather than being arranged in a linear ladder-like array as in mitotic chromosomes, a cluster of approximately 15 foci was detected that was preferentially associated along the periphery of both the cell nucleus and a chromosome territory containing components of chromosomes 4, 8, and 9. Interspersed within the IFN gene foci were corresponding foci derived from amplified centromere 4 and 9 sequences. Other copies of chromosomes 4 and 8 were frequently detected in pairs or higher-order arrays lacking discrete borders between the chromosomes. In contrast, while chromosomes 4 and 8 in normal WI38 human fibroblast and osteoblast cells were occasionally found to associate closely, discrete boundaries were always detected between the two. DNA replication timing of the IFN gene cluster in early- to mid-S phase of WI38 cells was conserved in the amplified IFN gene cluster of MG63. Quantitative RT-PCR demonstrated a approximately 3-fold increase in IFN beta transcripts in MG63 compared with WI38 and RNA/DNA FISH experiments revealed 1-5 foci of IFN beta transcripts per cell with only approximately 5% of the cells showing foci within the highly amplified IFN gene cluster.
Collapse
Affiliation(s)
- Michael J Zeitz
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | | | | | | | | | | | | |
Collapse
|
166
|
Schwaiger M, Stadler MB, Bell O, Kohler H, Oakeley EJ, Schübeler D. Chromatin state marks cell-type- and gender-specific replication of the Drosophila genome. Genes Dev 2009; 23:589-601. [PMID: 19270159 DOI: 10.1101/gad.511809] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Duplication of eukaryotic genomes during S phase is coordinated in space and time. In order to identify zones of initiation and cell-type- as well as gender-specific plasticity of DNA replication, we profiled replication timing, histone acetylation, and transcription throughout the Drosophila genome. We observed two waves of replication initiation with many distinct zones firing in early-S phase and multiple, less defined peaks at the end of S phase, suggesting that initiation becomes more promiscuous in late-S phase. A comparison of different cell types revealed widespread plasticity of replication timing on autosomes. Most occur in large regions, but only half coincide with local differences in transcription. In contrast to confined autosomal differences, a global shift in replication timing occurs throughout the single male X chromosome. Unlike in females, the dosage-compensated X chromosome replicates almost exclusively early. This difference occurs at sites that are not transcriptionally hyperactivated, but show increased acetylation of Lys 16 of histone H4 (H4K16ac). This suggests a transcription-independent, yet chromosome-wide process related to chromatin. Importantly, H4K16ac is also enriched at initiation zones as well as early replicating regions on autosomes during S phase. Together, our study reveals novel organizational principles of DNA replication of the Drosophila genome and suggests that H4K16ac is more closely correlated with replication timing than is transcription.
Collapse
Affiliation(s)
- Michaela Schwaiger
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
167
|
Abstract
Although early replication has long been associated with accessible chromatin, replication timing is not included in most discussions of epigenetic marks. This is partly due to a lack of understanding of the mechanisms behind this association but the issue has also been confounded by studies concluding that there are very few changes in replication timing during development. Recently, the first genome-wide study of replication timing during the course of differentiation revealed extensive changes that were strongly associated with changes in transcriptional activity and subnuclear organization. Domains of temporally coordinate replication delineate discrete units of chromosome structure and function that are characteristic of particular differentiation states. Hence, although we are still a long way from understanding the functional significance of replication timing, it is clear that replication timing is a distinct epigenetic signature of cell differentiation state.
Collapse
Affiliation(s)
- Ichiro Hiratani
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | |
Collapse
|
168
|
Klochkov DB, Gavrilov AA, Vassetzky YS, Razin SV. Early replication timing of the chicken alpha-globin gene domain correlates with its open chromatin state in cells of different lineages. Genomics 2009; 93:481-6. [PMID: 19187796 DOI: 10.1016/j.ygeno.2009.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 12/10/2008] [Accepted: 01/06/2009] [Indexed: 10/21/2022]
Abstract
The vertebrate alpha-globin gene domain is an open chromatin domain overlapping a neighboring house-keeping gene. The tissue-specific cluster of alpha-globin genes and the overlapping housekeeping gene share the same replication origin. We have studied the replication timing of chicken alpha-globin genes in cells of different lineages using the FISH-based approach and found that alpha-globin genes replicate early both in erythroid and in non-erythroid cells, i.e. regardless of their transcriptional activity. Early replication timing of chicken alpha-globin genes in cells of different lineages was in good correlation with the open chromatin configuration of the alpha-globin gene domain in both erythroid and non-erythroid cells. We propose that active transcription of the housekeeping gene overlapping the alpha-globin gene domain enables an access of Origin Recognition Complex (ORC) proteins to the replication origin resulting in early replication of alpha-globin genes even in non-erythroid cells.
Collapse
Affiliation(s)
- Denis B Klochkov
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 34/5, 119334 Moscow, Russia
| | | | | | | |
Collapse
|
169
|
Necsulea A, Guillet C, Cadoret JC, Prioleau MN, Duret L. The relationship between DNA replication and human genome organization. Mol Biol Evol 2009; 26:729-41. [PMID: 19126867 DOI: 10.1093/molbev/msn303] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Assessment of the impact of DNA replication on genome architecture in Eukaryotes has long been hampered by the scarcity of experimental data. Recent work, relying on computational predictions of origins of replication, suggested that replication might be a major determinant of gene organization in human (Huvet et al. 2007. Human gene organization driven by the coordination of replication and transcription. Genome Res. 17:1278-1285). Here, we address this question by analyzing the first large-scale data set of experimentally determined origins of replication in human: 283 origins identified in HeLa cells, in 1% of the genome covered by ENCODE regions (Cadoret et al. 2008. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc Natl Acad Sci USA. 105:15837-15842). We show that origins of replication are not randomly distributed as they display significant overlap with promoter regions and CpG islands. The hypothesis of a selective pressure to avoid frontal collisions between replication and transcription polymerases is not supported by experimental data as we find no evidence for gene orientation bias in the proximity of origins of replication. The lack of a significant orientation bias remains manifest even when considering only genes expressed at a high rate, or in a wide number of tissues, and is not affected by the regional replication timing. Gene expression breadth does not appear to be correlated with the distance from the origins of replication. We conclude that the impact of DNA replication on human genome organization is considerably weaker than previously proposed.
Collapse
|
170
|
Abstract
Although all of the DNA in an eukaryotic cell replicates during the S-phase of cell cycle, there is a significant difference in the actual time in S-phase when a given chromosomal segment replicates. Methods are described here for generation of high-resolution temporal maps of DNA replication in synchronized human cells. This method does not require amplification of DNA before microarray hybridization and so avoids errors introduced during PCR. A major advantage of using this procedure is that it facilitates finer dissection of replication time in S-phase. Also, it helps delineate chromosomal regions that undergo biallelic or asynchronous replication, which otherwise are difficult to detect at a genome-wide scale by existing methods. The continuous TR50 (time of completion of 50% replication) maps of replication across chromosomal segments identify regions that undergo acute transitions in replication timing. These transition zones can play a significant role in identifying insulators that separate chromosomal domains with different chromatin modifications.
Collapse
Affiliation(s)
- Neerja Karnani
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | | | | |
Collapse
|
171
|
Weddington N, Stuy A, Hiratani I, Ryba T, Yokochi T, Gilbert DM. ReplicationDomain: a visualization tool and comparative database for genome-wide replication timing data. BMC Bioinformatics 2008; 9:530. [PMID: 19077204 PMCID: PMC2636809 DOI: 10.1186/1471-2105-9-530] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 12/10/2008] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Eukaryotic DNA replication is regulated at the level of large chromosomal domains (0.5-5 megabases in mammals) within which replicons are activated relatively synchronously. These domains replicate in a specific temporal order during S-phase and our genome-wide analyses of replication timing have demonstrated that this temporal order of domain replication is a stable property of specific cell types. RESULTS We have developed ReplicationDomain http://www.replicationdomain.org as a web-based database for analysis of genome-wide replication timing maps (replication profiles) from various cell lines and species. This database also provides comparative information of transcriptional expression and is configured to display any genome-wide property (for instance, ChIP-Chip or ChIP-Seq data) via an interactive web interface. Our published microarray data sets are publicly available. Users may graphically display these data sets for a selected genomic region and download the data displayed as text files, or alternatively, download complete genome-wide data sets. Furthermore, we have implemented a user registration system that allows registered users to upload their own data sets. Upon uploading, registered users may choose to: (1) view their data sets privately without sharing; (2) share with other registered users; or (3) make their published or "in press" data sets publicly available, which can fulfill journal and funding agencies' requirements for data sharing. CONCLUSION ReplicationDomain is a novel and powerful tool to facilitate the comparative visualization of replication timing in various cell types as well as other genome-wide chromatin features and is considerably faster and more convenient than existing browsers when viewing multi-megabase segments of chromosomes. Furthermore, the data upload function with the option of private viewing or sharing of data sets between registered users should be a valuable resource for the scientific community.
Collapse
Affiliation(s)
- Nodin Weddington
- Department of Biological Sciences, Florida State University, Tallahassee, Florida 32306, USA.
| | | | | | | | | | | |
Collapse
|
172
|
Hiratani I, Ryba T, Itoh M, Yokochi T, Schwaiger M, Chang CW, Lyou Y, Townes TM, Schübeler D, Gilbert DM. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol 2008; 6:e245. [PMID: 18842067 PMCID: PMC2561079 DOI: 10.1371/journal.pbio.0060245] [Citation(s) in RCA: 420] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 08/27/2008] [Indexed: 01/20/2023] Open
Abstract
DNA replication in mammals is regulated via the coordinate firing of clusters of replicons that duplicate megabase-sized chromosome segments at specific times during S-phase. Cytogenetic studies show that these “replicon clusters” coalesce as subchromosomal units that persist through multiple cell generations, but the molecular boundaries of such units have remained elusive. Moreover, the extent to which changes in replication timing occur during differentiation and their relationship to transcription changes has not been rigorously investigated. We have constructed high-resolution replication-timing profiles in mouse embryonic stem cells (mESCs) before and after differentiation to neural precursor cells. We demonstrate that chromosomes can be segmented into multimegabase domains of coordinate replication, which we call “replication domains,” separated by transition regions whose replication kinetics are consistent with large originless segments. The molecular boundaries of replication domains are remarkably well conserved between distantly related ESC lines and induced pluripotent stem cells. Unexpectedly, ESC differentiation was accompanied by the consolidation of smaller differentially replicating domains into larger coordinately replicated units whose replication time was more aligned to isochore GC content and the density of LINE-1 transposable elements, but not gene density. Replication-timing changes were coordinated with transcription changes for weak promoters more than strong promoters, and were accompanied by rearrangements in subnuclear position. We conclude that replication profiles are cell-type specific, and changes in these profiles reveal chromosome segments that undergo large changes in organization during differentiation. Moreover, smaller replication domains and a higher density of timing transition regions that interrupt isochore replication timing define a novel characteristic of the pluripotent state. Microscopy studies have suggested that chromosomal DNA is composed of multiple, megabase-sized segments, each replicated at different times during S-phase of the cell cycle. However, a molecular definition of these coordinately replicated sequences and the stability of the boundaries between them has not been established. We constructed genome-wide replication-timing maps in mouse embryonic stem cells, identifying multimegabase coordinately replicated chromosome segments—“replication domains”—separated by remarkably distinct temporal boundaries. These domain boundaries were shared between several unrelated embryonic stem cell lines, including somatic cells reprogrammed to pluripotency (so-called induced pluripotent stem cells). However, upon differentiation to neural precursor cells, domains encompassing approximately 20% of the genome changed their replication timing, temporally consolidating into fewer, larger replication domains that were conserved between different neural precursor cell lines. Domains that changed replication timing showed a unique sequence composition, a strongly biased directionality for changes in resident gene expression, and altered radial positioning within the three-dimensional space in the cell nucleus, suggesting that changes in replication timing are related to the reorganization of higher-order chromosome structure and function during differentiation. Moreover, the property of smaller discordantly replicating domains may define a novel characteristic of pluripotency. Analyzing the temporal order of DNA replication across the genome during embryonic stem cell differentiation reveals stable boundaries between coordinately replicated regions that consolidate into fewer, larger domains during differentiation.
Collapse
Affiliation(s)
- Ichiro Hiratani
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Tyrone Ryba
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Mari Itoh
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Tomoki Yokochi
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Michaela Schwaiger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Chia-Wei Chang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, Birmingham, Alabama, United States of America
| | - Yung Lyou
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Tim M Townes
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, Birmingham, Alabama, United States of America
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
173
|
de Wit E, van Steensel B. Chromatin domains in higher eukaryotes: insights from genome-wide mapping studies. Chromosoma 2008; 118:25-36. [PMID: 18853173 DOI: 10.1007/s00412-008-0186-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 09/22/2008] [Accepted: 09/23/2008] [Indexed: 01/22/2023]
Abstract
In genomes of higher eukaryotes, adjacent genes often show coordinated regulation of their expression. Compartmentalization of multiple neighboring genes into a shared chromatin environment can facilitate this coordinated expression. New mapping techniques have begun to reveal that such multigene chromatin domains are a common feature of fly and mammalian genomes. Many different types of chromatin domains have been identified based on the genomic binding patterns of various proteins and histone modifications. In addition, maps of genome-nuclear lamina associations and of looping interactions between loci provide the first systematic views of the three-dimensional folding of interphase chromosomes. These genome-wide datasets uncover new architectural principles of eukaryotic genomes and indicate that multigene chromatin domains are prevalent and important regulatory units.
Collapse
Affiliation(s)
- Elzo de Wit
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
174
|
Farkash-Amar S, Lipson D, Polten A, Goren A, Helmstetter C, Yakhini Z, Simon I. Global organization of replication time zones of the mouse genome. Genome Res 2008; 18:1562-70. [PMID: 18669478 DOI: 10.1101/gr.079566.108] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The division of genomes into distinct replication time zones has long been established. However, an in-depth understanding of their organization and their relationship to transcription is incomplete. Taking advantage of a novel synchronization method ("baby machine") and of genomic DNA microarrays, we have, for the first time, mapped replication times of the entire mouse genome at a high temporal resolution. Our data revealed that although most of the genome has a distinct time of replication either early, middle, or late S phase, a significant portion of the genome is replicated asynchronously. Analysis of the replication map revealed the genomic scale organization of the replication time zones. We found that the genomic regions between early and late replication time zones often consist of extremely large replicons. Analysis of the relationship between replication and transcription revealed that early replication is frequently correlated with the transcription potential of a gene and not necessarily with its actual transcriptional activity. These findings, along with the strong conservation found between replication timing in human and mouse genomes, emphasize the importance of replication timing in transcription regulation.
Collapse
Affiliation(s)
- Shlomit Farkash-Amar
- Department of Molecular Biology, Hebrew University Medical School Jerusalem 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
175
|
Spatio-temporal dynamics of replication and transcription sites in the mammalian cell nucleus. Chromosoma 2008; 117:553-67. [PMID: 18600338 DOI: 10.1007/s00412-008-0172-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/22/2008] [Accepted: 05/23/2008] [Indexed: 12/16/2022]
Abstract
To study when and where active genes replicated in early S phase are transcribed, a series of pulse-chase experiments are performed to label replicating chromatin domains (RS) in early S phase and subsequently transcription sites (TS) after chase periods of 0 to 24 h. Surprisingly, transcription activity throughout these chase periods did not show significant colocalization with early RS chromatin domains. Application of novel image segmentation and proximity algorithms, however, revealed close proximity of TS with the labeled chromatin domains independent of chase time. In addition, RNA polymerase II was highly proximal and showed significant colocalization with both TS and the chromatin domains. Based on these findings, we propose that chromatin activated for transcription dynamically unfolds or "loops out" of early RS chromatin domains where it can interact with RNA polymerase II and other components of the transcriptional machinery. Our results further suggest that the early RS chromatin domains are transcribing genes throughout the cell cycle and that multiple chromatin domains are organized around the same transcription factory.
Collapse
|
176
|
Antezana MA, Jordan IK. Highly conserved regimes of neighbor-base-dependent mutation generated the background primary-structural heterogeneities along vertebrate chromosomes. PLoS One 2008; 3:e2145. [PMID: 18478116 PMCID: PMC2366069 DOI: 10.1371/journal.pone.0002145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 03/17/2008] [Indexed: 01/01/2023] Open
Abstract
The content of guanine+cytosine varies markedly along the chromosomes of homeotherms and great effort has been devoted to studying this heterogeneity and its biological implications. Already before the DNA-sequencing era, however, it was established that the dinucleotides in the DNA of mammals in particular, and of most organisms in general, show striking over- and under-representations that cannot be explained by the base composition. Here we show that in the coding regions of vertebrates both GC content and codon occurrences are strongly correlated with such "motif preferences" even though we quantify the latter using an index that is not affected by the base composition, codon usage, and protein-sequence encoding. These correlations are likely to be the result of the long-term shaping of the primary structure of genic and non-genic DNA by a regime of mutation of which central features have been maintained by natural selection. We find indeed that these preferences are conserved in vertebrates even more rigidly than codon occurrences and we show that the occurrence-preference correlations are stronger in intronic and non-genic DNA, with the R(2)s reaching 99% when GC content is approximately 0.5. The mutation regime appears to be characterized by rates that depend markedly on the bases present at the site preceding and at that following each mutating site, because when we estimate such rates of neighbor-base-dependent mutation (NBDM) from substitutions retrieved from alignments of coding, intronic, and non-genic mammalian DNA sorted and grouped by GC content, they suffice to simulate DNA sequences in which motif occurrences and preferences as well as the correlations of motif preferences with GC content and with motif occurrences, are very similar to the mammalian ones. The best fit, however, is obtained with NBDM regimes lacking strand effects, which indicates that over the long term NBDM switches strands in the germline as one would expect for effects due to loosely contained background transcription. Finally, we show that human coding regions are less mutable under the estimated NBDM regimes than under matched context-independent mutation and that this entails marked differences between the spectra of amino-acid mutations that either mutation regime should generate. In the Discussion we examine the mechanisms likely to underlie NBDM heterogeneity along chromosomes and propose that it reflects how the diversity and activity of lesion-bypass polymerases (LBPs) track the landscapes of scheduled and non-scheduled genome repair, replication, and transcription during the cell cycle. We conclude that the primary structure of vertebrate genic DNA at and below the trinucleotide level has been governed over the long term by highly conserved regimes of NBDM which should be under direct natural selection because they alter drastically missense-mutation rates and hence the somatic and the germline mutational loads. Therefore, the non-coding DNA of vertebrates may have been shaped by NBDM only epiphenomenally, with non-genic DNA being affected mainly when found in the proximity of genes.
Collapse
Affiliation(s)
- Marcos A Antezana
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America.
| | | |
Collapse
|
177
|
Grasser F, Neusser M, Fiegler H, Thormeyer T, Cremer M, Carter NP, Cremer T, Müller S. Replication-timing-correlated spatial chromatin arrangements in cancer and in primate interphase nuclei. J Cell Sci 2008; 121:1876-86. [PMID: 18477608 DOI: 10.1242/jcs.026989] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Using published high-resolution data on S-phase replication timing, we determined the three-dimensional (3D) nuclear arrangement of 33 very-early-replicating and 31 very-late-replicating loci. We analyzed diploid human, non-human primate and rearranged tumor cells by 3D fluorescence in situ hybridization with the aim of investigating the impact of chromosomal structural changes on the nuclear organization of these loci. Overall, their topology was found to be largely conserved between cell types, species and in tumor cells. Early-replicating loci were localized in the nuclear interior, whereas late-replicating loci showed a broader distribution with a higher preference for the periphery than for late-BrdU-incorporation foci. However, differences in the spatial arrangement of early and late loci of chromosome 2, as compared with those from chromosome 5, 7 and 17, argue against replication timing as a major driving force for the 3D radial genome organization in human lymphoblastoid cell nuclei. Instead, genomic properties, and local gene density in particular, were identified as the decisive parameters. Further detailed comparisons of chromosome 7 loci in primate and tumor cells suggest that the inversions analyzed influence nuclear topology to a greater extent than the translocations, thus pointing to geometrical constraints in the 3D conformation of a chromosome territory.
Collapse
Affiliation(s)
- Florian Grasser
- Department of Biology II, Human Genetics, Ludwig-Maximilians University Munich, Planegg-Martinsreid, Germany
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Tyekucheva S, Makova KD, Karro JE, Hardison RC, Miller W, Chiaromonte F. Human-macaque comparisons illuminate variation in neutral substitution rates. Genome Biol 2008; 9:R76. [PMID: 18447906 PMCID: PMC2643947 DOI: 10.1186/gb-2008-9-4-r76] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/04/2008] [Accepted: 04/30/2008] [Indexed: 11/10/2022] Open
Abstract
The evolutionary distance between human and macaque is particularly attractive for investigating neutral substitution rates, which were calculated as a function of a number of genomic parameters. Background The evolutionary distance between human and macaque is particularly attractive for investigating local variation in neutral substitution rates, because substitutions can be inferred more reliably than in comparisons with rodents and are less influenced by the effects of current and ancient diversity than in comparisons with closer primates. Here we investigate the human-macaque neutral substitution rate as a function of a number of genomic parameters. Results Using regression analyses we find that male mutation bias, male (but not female) recombination rate, distance to telomeres and substitution rates computed from orthologous regions in mouse-rat and dog-cow comparisons are prominent predictors of the neutral rate. Additionally, we demonstrate that the previously observed biphasic relationship between neutral rate and GC content can be accounted for by properly combining rates at CpG and non-CpG sites. Finally, we find the neutral rate to be negatively correlated with the densities of several classes of computationally predicted functional elements, and less so with the densities of certain classes of experimentally verified functional elements. Conclusion Our results suggest that while female recombination may be mainly responsible for driving evolution in GC content, male recombination may be mutagenic, and that other mutagenic mechanisms acting near telomeres, and mechanisms whose effects are shared across mammalian genomes, play significant roles. We also have evidence that the nonlinear increase in rates at high GC levels may be largely due to hyper-mutability of CpG dinucleotides. Finally, our results suggest that the performance of conservation-based prediction methods can be improved by accounting for neutral rates.
Collapse
Affiliation(s)
- Svitlana Tyekucheva
- Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
179
|
Frum RA, Chastain PD, Qu P, Cohen SM, Kaufman DG. DNA replication in early S phase pauses near newly activated origins. Cell Cycle 2008; 7:1440-8. [PMID: 18418075 DOI: 10.4161/cc.7.10.5879] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During the S phase of the cell cycle, the entire genome is replicated. There is a high level of orderliness to this process through the temporally and topologically coordinated activation of many replication origins situated along chromosomes. We investigated the program of replication from origins initiating in early S phase by labeling synchronized normal human fibroblasts (NHF1) with nucleotide analogs for various pulse times and measuring labeled tracks in combed DNA fibers. Our analysis showed that replication forks progress 9-35 kilobases from newly initiated origins, followed by a pause in synthesis before replication resumes. Pausing was not observed near origins that initiated in the middle of S phase. No evidence for pausing near origins was found at the beginning of the S phase in glioblastoma T98G cells. Treatment with the S phase checkpoint inhibitor caffeine abrogated pausing in NHF1 cells in early S phase. This suggests that pausing may comprise a novel aspect of the intra-S phase checkpoint pathway or a related new early S checkpoint. Further, it is possible that the loss of this regulatory process in cancer cells such as T98G could be a contributing factor in the genetic instability that typifies cancers.
Collapse
Affiliation(s)
- Rebecca A Frum
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7525, USA
| | | | | | | | | |
Collapse
|
180
|
Abstract
In higher eukaryotes there is a link between time of replication and transcription. It is generally accepted that genes that are actively transcribed are replicated in the first half of S phase while inactive genes replicate in the second half of S phase. We have recently reported that in normal human fibroblasts there are some functionally related genes that replicate at the same time in S phase. This had been previously reported for functionally related genes that are located in clusters, for example the alpha- and beta-globin complexes. We have shown, however, that this also occurs with some functionally related genes that are not organized in a cluster, but rather are distributed throughout the genome. For example, using GOstat analysis of data from our and other groups, we found an overrepresentation of genes involved in the apoptotic process among sequences that are replicated very early (approximately in the first hour of S phase) in both fibroblasts and lymphoblastoid cells. This finding leads us to question how and why the replication of genes in the apoptotic pathway is temporally organized in this manner. Here we discuss the possible explanations and implications of this observation.
Collapse
Affiliation(s)
- Stephanie M Cohen
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7525, USA
| | | | | |
Collapse
|
181
|
Higgs DR, Vernimmen D, Hughes J, Gibbons R. Using genomics to study how chromatin influences gene expression. Annu Rev Genomics Hum Genet 2007; 8:299-325. [PMID: 17506662 DOI: 10.1146/annurev.genom.8.080706.092323] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A postgenome challenge is to understand how the code in DNA is converted into the biological processes underlying various cell fates. By establishing the appropriate technical tools, we are moving from an era in which such questions have been asked by studying individual genes to one in which large domains, whole chromosomes, and the entire human genome can be investigated. These developments will allow us to study in parallel the transcriptional program and components of the epigenetic program (nuclear position, timing of replication, chromatin structure and modification, DNA methylation) to determine the hierarchy and order of events required to switch genes on and off during differentiation and development.
Collapse
Affiliation(s)
- Douglas R Higgs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, United Kingdom.
| | | | | | | |
Collapse
|
182
|
Audit B, Nicolay S, Huvet M, Touchon M, d'Aubenton-Carafa Y, Thermes C, Arneodo A. DNA replication timing data corroborate in silico human replication origin predictions. PHYSICAL REVIEW LETTERS 2007; 99:248102. [PMID: 18233493 DOI: 10.1103/physrevlett.99.248102] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Indexed: 05/25/2023]
Abstract
We develop a wavelet-based multiscale pattern recognition methodology to disentangle the replication- from the transcription-associated compositional strand asymmetries observed in the human genome. Comparing replication skew profiles to recent high-resolution replication timing data reveals that most of the putative replication origins that border the so-identified replication domains are replicated earlier than their surroundings whereas the central regions replicate late in the S phase. We discuss the implications of this first experimental confirmation of these replication origin predictions that are likely to be early replicating and active in most tissues.
Collapse
Affiliation(s)
- B Audit
- Laboratoire Joliot-Curie, ENS-Lyon, CNRS, France
| | | | | | | | | | | | | |
Collapse
|
183
|
Kang MI, Kim HS, Jung YC, Kim YH, Hong SJ, Kim MK, Baek KH, Kim CC, Rhyu MG. Transitional CpG methylation between promoters and retroelements of tissue-specific genes during human mesenchymal cell differentiation. J Cell Biochem 2007; 102:224-39. [PMID: 17352407 DOI: 10.1002/jcb.21291] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In general, methylation of the promoter regions is inversely correlated with gene expression. The transitional CpG area between the promoter-associated CpG islands and the nearby retroelements is often methylated in a tissue-specific manner. This study analyzed the relationship between gene expression and the methylation of the transitional CpGs in two human stromal cells derived from the bone marrow (BMSC) and adipose tissue (ATSC), both of which have a multilineage differentiation potential. The transitional CpGs of the osteoblast-specific (RUNX2 and BGLAP), adipocyte-specific (PPARgamma2), housekeeping (CDKN2A and MLH1), and mesenchyme-unrelated (RUNX3) genes were examined by methylation-specific PCR. The expression of each gene was measured using reverse-transcription PCR analysis. The RUNX2, BGLAP, and CDKN2A genes in the BMSC, and the PPARgamma2 gene in the ATSC exhibited hypomethylation of the transitional CpGs along with the strong expression. The CpG island of RUNX3 gene not expressed in both BMSC and ATSC was hypermethylated. Transitional hypomethylation of the MLH1 gene was accompanied by the higher expression in the BMSC than in the ATSC. The weakly methylated CpGs of the PPARgamma2 gene in the BMSC became hypomethylated along with the strong expression during the osteoblastic differentiation. There were no notable changes in the transitional methylation and expression of the genes other than PPARgamma2 after the differentiation. Therefore, the transitional methylation and gene expression established in mesenchymal cells tend to be consistently preserved under the induction of differentiation. Weak transitional methylation of the PPARgamma2 gene in the BMSC suggests a methylation-dependent mechanism underlying the adiopogenesis of bone marrow.
Collapse
Affiliation(s)
- Moo-Il Kang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Czajkowsky DM, Liu J, Hamlin JL, Shao Z. DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI. J Mol Biol 2007; 375:12-9. [PMID: 17999930 DOI: 10.1016/j.jmb.2007.10.046] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 10/05/2007] [Accepted: 10/16/2007] [Indexed: 01/24/2023]
Abstract
It is generally believed that DNA replication in most eukaryotes proceeds according to a precise program in which there is a defined temporal order by which each chromosomal region is duplicated. However, the regularity of this program at the level of individual chromosomes, in terms of both the relative timing and the size of the DNA domain, has not been addressed. Here, the replication of chromosome VI from synchronized budding yeast was studied at a resolution of approximately 1 kb with DNA combing and fluorescence microscopy. Contrary to what would be expected from cells following a rigorous temporal program, no two molecules exhibited the same replication pattern. Moreover, a direct evaluation of the extent to which the replication of distant chromosomal segments was coordinated indicates that the overwhelming majority of these segments were replicated independently. Importantly, averaging the patterns of all the fibers examined recapitulates the ensemble-averaged patterns obtained from population studies of the replication of chromosome VI. Thus, rather than an absolutely defined temporal order of replication, replication timing appears to be essentially probabilistic within individual cells, exhibiting only temporal tendencies within extended domains.
Collapse
Affiliation(s)
- Daniel M Czajkowsky
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
185
|
Bénard M, Maric C, Pierron G. Low rate of replication fork progression lengthens the replication timing of a locus containing an early firing origin. Nucleic Acids Res 2007; 35:5763-74. [PMID: 17717000 PMCID: PMC2034475 DOI: 10.1093/nar/gkm586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Invariance of temporal order of genome replication in eukaryotic cells and its correlation with gene activity has been well-documented. However, recent data suggest a relax control of replication timing. To evaluate replication schedule accuracy, we detailed the replicational organization of the developmentally regulated php locus that we previously found to be lately replicated, even though php gene is highly transcribed in naturally synchronous plasmodia of Physarum. Unexpectedly, bi-dimensional agarose gel electrophoreses of DNA samples prepared at specific time points of S phase showed that replication of the locus actually begins at the onset of S phase but it proceeds through the first half of S phase, so that complete replication of php-containing DNA fragments occurs in late S phase. Origin mapping located replication initiation upstream php coding region. This proximity and rapid fork progression through the coding region result in an early replication of php gene. We demonstrated that afterwards an unusually low fork rate and unidirectional fork pausing prolong complete replication of php locus, and we excluded random replication timing. Importantly, we evidenced that the origin linked to php gene in plasmodium is not fired in amoebae when php expression dramatically reduced, further illustrating replication-transcription coupling in Physarum.
Collapse
Affiliation(s)
- Marianne Bénard
- CNRS-FRE 2937, Institut André Lwoff, BP8, 94800 Villejuif, France.
| | | | | |
Collapse
|
186
|
Stallings RL, Yoon K, Kwek S, Ko D. The origin of chromosome imbalances in neuroblastoma. ACTA ACUST UNITED AC 2007; 176:28-34. [PMID: 17574961 DOI: 10.1016/j.cancergencyto.2007.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
Many recurrent large-scale chromosome abnormalities associated with poor clinical outcomes have been identified in neuroblastoma, a pediatric tumor that accounts for 15% of childhood cancer deaths. We have previously used high-resolution oligonucleotide array comparative genomic hybridization to map 461 chromosome breakpoints leading to large-scale chromosome imbalances in 56 primary neuroblastoma tumors and cell lines. Here, we analyze the distribution of DNA sequence elements and genomic landmarks found within these breakpoint intervals and in 15,800 randomly generated intervals of similar size. The most consistent finding was that neuroblastoma chromosome breakpoints occur preferentially in GC-rich regions of the genome. It is not unsurprising that these regions have fewer (AT)(n) microsatellite repeat sequences. In addition, chromosome breakpoints occurring in neuroblastoma also appeared to be preferentially associated with ancestral chromosome breakpoint regions on several chromosomes, suggesting that such sites also act as hotspots for chromosome rearrangement in somatic cells. Very little evidence for the enrichment of Alu and other types of repeats in breakpoint intervals was obtained. Overall, our results are consistent with a mechanistic model involving nonhomologous end joining of DNA double-strand breaks that have been generated in a nonrandom manner.
Collapse
Affiliation(s)
- Raymond L Stallings
- Children's Cancer Research Institute and Department of Pediatrics, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, MC 7784, San Antonio, TX 78229-3900, USA.
| | | | | | | |
Collapse
|
187
|
Karnani N, Taylor C, Malhotra A, Dutta A. Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas. Genome Res 2007; 17:865-76. [PMID: 17568004 PMCID: PMC1891345 DOI: 10.1101/gr.5427007] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In eukaryotes, accurate control of replication time is required for the efficient completion of S phase and maintenance of genome stability. We present a high-resolution genome-tiling array-based profile of replication timing for approximately 1% of the human genome studied by The ENCODE Project Consortium. Twenty percent of the investigated segments replicate asynchronously (pan-S). These areas are rich in genes and CpG islands, features they share with early-replicating loci. Interphase FISH showed that pan-S replication is a consequence of interallelic variation in replication time and is not an artifact derived from a specific cell cycle synchronization method or from aneuploidy. The interallelic variation in replication time is likely due to interallelic variation in chromatin environment, because while the early- or late-replicating areas were exclusively enriched in activating or repressing histone modifications, respectively, the pan-S areas had both types of histone modification. The replication profile of the chromosomes identified contiguous chromosomal segments of hundreds of kilobases separated by smaller segments where the replication time underwent an acute transition. Close examination of one such segment demonstrated that the delay of replication time was accompanied by a decrease in level of gene expression and appearance of repressive chromatin marks, suggesting that the transition segments are boundary elements separating chromosomal domains with different chromatin environments.
Collapse
Affiliation(s)
- Neerja Karnani
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Christopher Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
- Department of Computer Science, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Ankit Malhotra
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
- Department of Computer Science, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
- Corresponding author.E-mail ; fax (434) 924-5069
| |
Collapse
|
188
|
A macaque's-eye view of human insertions and deletions: differences in mechanisms. PLoS Comput Biol 2007; 3:1772-82. [PMID: 17941704 PMCID: PMC1976337 DOI: 10.1371/journal.pcbi.0030176] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 07/26/2007] [Indexed: 11/19/2022] Open
Abstract
Insertions and deletions (indels) cause numerous genetic diseases and lead to pronounced evolutionary differences among genomes. The macaque sequences provide an opportunity to gain insights into the mechanisms generating these mutations on a genome-wide scale by establishing the polarity of indels occurring in the human lineage since its divergence from the chimpanzee. Here we apply novel regression techniques and multiscale analyses to demonstrate an extensive regional indel rate variation stemming from local fluctuations in divergence, GC content, male and female recombination rates, proximity to telomeres, and other genomic factors. We find that both replication and, surprisingly, recombination are significantly associated with the occurrence of small indels. Intriguingly, the relative inputs of replication versus recombination differ between insertions and deletions, thus the two types of mutations are likely guided in part by distinct mechanisms. Namely, insertions are more strongly associated with factors linked to recombination, while deletions are mostly associated with replication-related features. Indel as a term misleadingly groups the two types of mutations together by their effect on a sequence alignment. However, here we establish that the correct identification of a small gap as an insertion or a deletion (by use of an outgroup) is crucial to determining its mechanism of origin. In addition to providing novel insights into insertion and deletion mutagenesis, these results will assist in gap penalty modeling and eventually lead to more reliable genomic alignments.
Collapse
|
189
|
Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, Kuehn MS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum JA, Andrews RM, Flicek P, Boyle PJ, Cao H, Carter NP, Clelland GK, Davis S, Day N, Dhami P, Dillon SC, Dorschner MO, Fiegler H, Giresi PG, Goldy J, Hawrylycz M, Haydock A, Humbert R, James KD, Johnson BE, Johnson EM, Frum TT, Rosenzweig ER, Karnani N, Lee K, Lefebvre GC, Navas PA, Neri F, Parker SCJ, Sabo PJ, Sandstrom R, Shafer A, Vetrie D, Weaver M, Wilcox S, Yu M, Collins FS, Dekker J, Lieb JD, Tullius TD, Crawford GE, Sunyaev S, Noble WS, Dunham I, Denoeud F, Reymond A, Kapranov P, Rozowsky J, Zheng D, Castelo R, Frankish A, Harrow J, Ghosh S, Sandelin A, Hofacker IL, Baertsch R, Keefe D, Dike S, Cheng J, Hirsch HA, Sekinger EA, Lagarde J, Abril JF, Shahab A, Flamm C, Fried C, Hackermüller J, Hertel J, Lindemeyer M, Missal K, Tanzer A, Washietl S, Korbel J, Emanuelsson O, Pedersen JS, Holroyd N, Taylor R, Swarbreck D, Matthews N, Dickson MC, Thomas DJ, Weirauch MT, Gilbert J, et alBirney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, Kuehn MS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum JA, Andrews RM, Flicek P, Boyle PJ, Cao H, Carter NP, Clelland GK, Davis S, Day N, Dhami P, Dillon SC, Dorschner MO, Fiegler H, Giresi PG, Goldy J, Hawrylycz M, Haydock A, Humbert R, James KD, Johnson BE, Johnson EM, Frum TT, Rosenzweig ER, Karnani N, Lee K, Lefebvre GC, Navas PA, Neri F, Parker SCJ, Sabo PJ, Sandstrom R, Shafer A, Vetrie D, Weaver M, Wilcox S, Yu M, Collins FS, Dekker J, Lieb JD, Tullius TD, Crawford GE, Sunyaev S, Noble WS, Dunham I, Denoeud F, Reymond A, Kapranov P, Rozowsky J, Zheng D, Castelo R, Frankish A, Harrow J, Ghosh S, Sandelin A, Hofacker IL, Baertsch R, Keefe D, Dike S, Cheng J, Hirsch HA, Sekinger EA, Lagarde J, Abril JF, Shahab A, Flamm C, Fried C, Hackermüller J, Hertel J, Lindemeyer M, Missal K, Tanzer A, Washietl S, Korbel J, Emanuelsson O, Pedersen JS, Holroyd N, Taylor R, Swarbreck D, Matthews N, Dickson MC, Thomas DJ, Weirauch MT, Gilbert J, Drenkow J, Bell I, Zhao X, Srinivasan KG, Sung WK, Ooi HS, Chiu KP, Foissac S, Alioto T, Brent M, Pachter L, Tress ML, Valencia A, Choo SW, Choo CY, Ucla C, Manzano C, Wyss C, Cheung E, Clark TG, Brown JB, Ganesh M, Patel S, Tammana H, Chrast J, Henrichsen CN, Kai C, Kawai J, Nagalakshmi U, Wu J, Lian Z, Lian J, Newburger P, Zhang X, Bickel P, Mattick JS, Carninci P, Hayashizaki Y, Weissman S, Hubbard T, Myers RM, Rogers J, Stadler PF, Lowe TM, Wei CL, Ruan Y, Struhl K, Gerstein M, Antonarakis SE, Fu Y, Green ED, Karaöz U, Siepel A, Taylor J, Liefer LA, Wetterstrand KA, Good PJ, Feingold EA, Guyer MS, Cooper GM, Asimenos G, Dewey CN, Hou M, Nikolaev S, Montoya-Burgos JI, Löytynoja A, Whelan S, Pardi F, Massingham T, Huang H, Zhang NR, Holmes I, Mullikin JC, Ureta-Vidal A, Paten B, Seringhaus M, Church D, Rosenbloom K, Kent WJ, Stone EA, Batzoglou S, Goldman N, Hardison RC, Haussler D, Miller W, Sidow A, Trinklein ND, Zhang ZD, Barrera L, Stuart R, King DC, Ameur A, Enroth S, Bieda MC, Kim J, Bhinge AA, Jiang N, Liu J, Yao F, Vega VB, Lee CWH, Ng P, Shahab A, Yang A, Moqtaderi Z, Zhu Z, Xu X, Squazzo S, Oberley MJ, Inman D, Singer MA, Richmond TA, Munn KJ, Rada-Iglesias A, Wallerman O, Komorowski J, Fowler JC, Couttet P, Bruce AW, Dovey OM, Ellis PD, Langford CF, Nix DA, Euskirchen G, Hartman S, Urban AE, Kraus P, Van Calcar S, Heintzman N, Kim TH, Wang K, Qu C, Hon G, Luna R, Glass CK, Rosenfeld MG, Aldred SF, Cooper SJ, Halees A, Lin JM, Shulha HP, Zhang X, Xu M, Haidar JNS, Yu Y, Ruan Y, Iyer VR, Green RD, Wadelius C, Farnham PJ, Ren B, Harte RA, Hinrichs AS, Trumbower H, Clawson H, Hillman-Jackson J, Zweig AS, Smith K, Thakkapallayil A, Barber G, Kuhn RM, Karolchik D, Armengol L, Bird CP, de Bakker PIW, Kern AD, Lopez-Bigas N, Martin JD, Stranger BE, Woodroffe A, Davydov E, Dimas A, Eyras E, Hallgrímsdóttir IB, Huppert J, Zody MC, Abecasis GR, Estivill X, Bouffard GG, Guan X, Hansen NF, Idol JR, Maduro VVB, Maskeri B, McDowell JC, Park M, Thomas PJ, Young AC, Blakesley RW, Muzny DM, Sodergren E, Wheeler DA, Worley KC, Jiang H, Weinstock GM, Gibbs RA, Graves T, Fulton R, Mardis ER, Wilson RK, Clamp M, Cuff J, Gnerre S, Jaffe DB, Chang JL, Lindblad-Toh K, Lander ES, Koriabine M, Nefedov M, Osoegawa K, Yoshinaga Y, Zhu B, de Jong PJ. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007; 447:799-816. [PMID: 17571346 PMCID: PMC2212820 DOI: 10.1038/nature05874] [Show More Authors] [Citation(s) in RCA: 3865] [Impact Index Per Article: 214.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
Collapse
|
190
|
Küpper K, Kölbl A, Biener D, Dittrich S, von Hase J, Thormeyer T, Fiegler H, Carter NP, Speicher MR, Cremer T, Cremer M. Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma 2007; 116:285-306. [PMID: 17333233 PMCID: PMC2688818 DOI: 10.1007/s00412-007-0098-4] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/19/2007] [Accepted: 01/19/2007] [Indexed: 01/01/2023]
Abstract
G- and R-bands of metaphase chromosomes are characterized by profound differences in gene density, CG content, replication timing, and chromatin compaction. The preferential localization of gene-dense, transcriptionally active, and early replicating chromatin in the nuclear interior and of gene-poor, later replicating chromatin at the nuclear envelope has been demonstrated to be evolutionary-conserved in various cell types. Yet, the impact of different local chromatin features on the radial nuclear arrangement of chromatin is still not well understood. In particular, it is not known whether radial chromatin positioning is preferentially shaped by local gene density per se or by other related parameters such as replication timing or transcriptional activity. The interdependence of these distinct chromatin features on the linear deoxyribonucleic acid (DNA) sequence precludes a simple dissection of these parameters with respect to their importance for the reorganization of the linear DNA organization into the distinct radial chromatin arrangements observed in the nuclear space. To analyze this problem, we generated probe sets of pooled bacterial artificial chromosome (BAC) clones from HSA 11, 12, 18, and 19 representing R/G-band-assigned chromatin, segments with different gene density and gene loci with different expression levels. Using multicolor 3D flourescent in situ hybridization (FISH) and 3D image analysis, we determined their localization in the nucleus and their positions within or outside the corresponding chromosome territory (CT). For each BAC data on local gene density within 2- and 10-Mb windows, as well as GC (guanine and cytosine) content, replication timing and expression levels were determined. A correlation analysis of these parameters with nuclear positioning revealed regional gene density as the decisive parameter determining the radial positioning of chromatin in the nucleus in contrast to band assignment, replication timing, and transcriptional activity. We demonstrate a polarized distribution of gene-dense vs gene-poor chromatin within CTs with respect to the nuclear border. Whereas we confirm previous reports that a particular gene-dense and transcriptionally highly active region of about 2 Mb on 11p15.5 often loops out from the territory surface, gene-dense and highly expressed sequences were not generally found preferentially at the CT surface as previously suggested.
Collapse
Affiliation(s)
- Katrin Küpper
- Department of Biology II, Anthropology and Human Genetics, Ludwig Maximilians University, Munich, Germany
| | - Alexandra Kölbl
- Department of Biology II, Anthropology and Human Genetics, Ludwig Maximilians University, Munich, Germany
| | - Dorothee Biener
- Department of Biology II, Anthropology and Human Genetics, Ludwig Maximilians University, Munich, Germany
| | - Sandra Dittrich
- Department of Biology II, Anthropology and Human Genetics, Ludwig Maximilians University, Munich, Germany
| | - Johann von Hase
- Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany
| | - Tobias Thormeyer
- Department of Biology II, Anthropology and Human Genetics, Ludwig Maximilians University, Munich, Germany
| | - Heike Fiegler
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Nigel P. Carter
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Michael R. Speicher
- Institute of Medical Biology and Human Genetics, Medical University of Graz, Graz, Austria
| | - Thomas Cremer
- Department of Biology II, Anthropology and Human Genetics, Ludwig Maximilians University, Munich, Germany
| | - Marion Cremer
- Department of Biology II, Anthropology and Human Genetics, Ludwig Maximilians University, Munich, Germany, e-mail:
| |
Collapse
|
191
|
Wilson ND, Ross LJN, Close J, Mott R, Crow TJ, Volpi EV. Replication profile of PCDH11X and PCDH11Y, a gene pair located in the non-pseudoautosomal homologous region Xq21.3/Yp11.2. Chromosome Res 2007; 15:485-98. [PMID: 17671842 PMCID: PMC2779385 DOI: 10.1007/s10577-007-1153-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Revised: 04/15/2007] [Accepted: 04/15/2007] [Indexed: 01/06/2023]
Abstract
In order to investigate the replication timing properties of PCDH11X and PCDH11Y, a pair of protocadherin genes located in the hominid-specific non-pseudoautosomal homologous region Xq21.3/Yp11.2, we conducted a FISH-based comparative study in different human and non-human primate (Gorilla gorilla) cell types. The replication profiles of three genes from different regions of chromosome X (ZFX, XIST and ATRX) were used as terms of reference. Particular emphasis was given to the evaluation of allelic replication asynchrony in relation to the inactivation status of each gene. The human cell types analysed include neuronal cells and ICF syndrome cells, considered to be a model system for the study of X inactivation. PCDH11 appeared to be generally characterized by replication asynchrony in both male and female cells, and no significant differences were observed between human and gorilla, in which this gene lacks X-Y homologous status. However, in differentiated human neuroblastoma and cerebral cortical cells PCDH11X replication profile showed a significant shift towards allelic synchrony. Our data are relevant to the complex relationship between X-inactivation, as a chromosome-wide phenomenon, and asynchrony of replication and expression status of single genes on chromosome X.
Collapse
Affiliation(s)
- N. D. Wilson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
| | - L. J. N. Ross
- Prince of Wales International Centre for SANE Research, Warneford Hospital, Oxford, UK
| | - J. Close
- Prince of Wales International Centre for SANE Research, Warneford Hospital, Oxford, UK
| | - R. Mott
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
| | - T. J. Crow
- Prince of Wales International Centre for SANE Research, Warneford Hospital, Oxford, UK
| | - E. V. Volpi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
| |
Collapse
|
192
|
Hupé P, La Rosa P, Liva S, Lair S, Servant N, Barillot E. ACTuDB, a new database for the integrated analysis of array-CGH and clinical data for tumors. Oncogene 2007; 26:6641-52. [PMID: 17496932 DOI: 10.1038/sj.onc.1210488] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In recent years, an increasing number of projects have investigated tumor genome structure, using microarray-based techniques like array comparative genomic hybridization (array-CGH) or single nucleotide polymorphism (SNP) arrays. The forthcoming studies have to integrate these former results and compare their findings to the existing sets of copy number data for validation. These sets also form the basis from which many comparative retrospective analyses can be carried out. Nevertheless, exploitation of this mass of data relies on a homogeneous preparation of copy number data, which will make it possible to compare them together, and their integration into a unified bioinformatics environment with ad hoc analysis tools and interfaces. To our knowledge, no such data integration has been proposed yet. Therefore the biologists and clinicians involved in cancer research urgently need such an integrative tool, which motivated us to undertake the construction of a database for array-CGH and other DNA copy number data for tumors (ACTuDB). When available, the associated clinical, transcriptome and loss of heterozygosity data were also integrated into ACTuDB. ACTuDB contains currently about 1500 genomic profiles for tumors and cell lines for the bladder, brain, breast, colon, liver, lymphoma, neuroblastoma, mouth and pancreas, together with data for replication timing experiments. The CGH array data were processed, using ad hoc algorithms (probe mapping, breakpoint detection, gain or loss status assignment and visualization) developed at Institut Curie. The database is available from http://bioinfo.curie.fr/actudb/ and can be browsed with a user-friendly interface. This database will be a useful resource for the genomic profiling of tumors, a field of highly active research. We invite research groups involved in tumor genome profiling to submit their data to ACTuDB.
Collapse
Affiliation(s)
- P Hupé
- Institut Curie, Service Bioinformatique, Paris, France.
| | | | | | | | | | | |
Collapse
|
193
|
Goetze S, Mateos-Langerak J, Gierman HJ, de Leeuw W, Giromus O, Indemans MHG, Koster J, Ondrej V, Versteeg R, van Driel R. The three-dimensional structure of human interphase chromosomes is related to the transcriptome map. Mol Cell Biol 2007; 27:4475-87. [PMID: 17420274 PMCID: PMC1900058 DOI: 10.1128/mcb.00208-07] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The three-dimensional (3D) organization of the chromosomal fiber in the human interphase nucleus is an important but poorly understood aspect of gene regulation. Here we quantitatively analyze and compare the 3D structures of two types of genomic domains as defined by the human transcriptome map. While ridges are gene dense and show high expression levels, antiridges, on the other hand, are gene poor and carry genes that are expressed at low levels. We show that ridges are in general less condensed, more irregularly shaped, and located more closely to the nuclear center than antiridges. Six human cell lines that display different gene expression patterns and karyotypes share these structural parameters of chromatin. This shows that the chromatin structures of these two types of genomic domains are largely independent of tissue-specific variations in gene expression and differentiation state. Moreover, we show that there is remarkably little intermingling of chromatin from different parts of the same chromosome in a chromosome territory, neither from adjacent nor from distant parts. This suggests that the chromosomal fiber has a compact structure that sterically suppresses intermingling. Together, our results reveal novel general aspects of 3D chromosome architecture that are related to genome structure and function.
Collapse
Affiliation(s)
- Sandra Goetze
- Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Schmegner C, Hameister H, Vogel W, Assum G. Isochores and replication time zones: a perfect match. Cytogenet Genome Res 2007; 116:167-72. [PMID: 17317955 DOI: 10.1159/000098182] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 11/10/2006] [Indexed: 11/19/2022] Open
Abstract
The mammalian genome is not a random sequence but shows a specific, evolutionarily conserved structure that becomes manifest in its isochore pattern. Isochores, i.e. stretches of DNA with a distinct sequence composition and thus a specific GC content, cause the chromosomal banding pattern. This fundamental level of genome organization is related to several functional features like the replication timing of a DNA sequence. GC richness of genomic regions generally corresponds to an early replication time during S phase. Recently, we demonstrated this interdependency on a molecular level for an abrupt transition from a GC-poor isochore to a GC-rich one in the NF1 gene region; this isochore boundary also separates late from early replicating chromatin. Now, we analyzed another genomic region containing four isochores separated by three sharp isochore transitions. Again, the GC-rich isochores were found to be replicating early, the GC-poor isochores late in S phase; one of the replication time zones was discovered to consist of one single replicon. At the boundaries between isochores, that all show no special sequence elements, the replication machinery stopped for several hours. Thus, our results emphasize the importance of isochores as functional genomic units, and of isochore transitions as genomic landmarks with a key function for chromosome organization and basic biological properties.
Collapse
Affiliation(s)
- C Schmegner
- Institut fur Humangenetik, Universitat Ulm, Ulm, Germany.
| | | | | | | |
Collapse
|
195
|
Hayashi M, Katou Y, Itoh T, Tazumi M, Yamada Y, Takahashi T, Nakagawa T, Shirahige K, Masukata H. Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO J 2007; 26:1327-39. [PMID: 17304213 PMCID: PMC1817633 DOI: 10.1038/sj.emboj.7601585] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 01/08/2007] [Indexed: 12/11/2022] Open
Abstract
DNA replication of eukaryotic chromosomes initiates at a number of discrete loci, called replication origins. Distribution and regulation of origins are important for complete duplication of the genome. Here, we determined locations of Orc1 and Mcm6, components of pre-replicative complex (pre-RC), on the whole genome of Schizosaccharomyces pombe using a high-resolution tiling array. Pre-RC sites were identified in 460 intergenic regions, where Orc1 and Mcm6 colocalized. By mapping of 5-bromo-2'-deoxyuridine (BrdU)-incorporated DNA in the presence of hydroxyurea (HU), 307 pre-RC sites were identified as early-firing origins. In contrast, 153 pre-RC sites without BrdU incorporation were considered to be late and/or inefficient origins. Inactivation of replication checkpoint by Cds1 deletion resulted in BrdU incorporation with HU specifically at the late origins. Early and late origins tend to distribute separately in large chromosome regions. Interestingly, pericentromeric heterochromatin and the silent mating-type locus replicated in the presence of HU, whereas the inner centromere or subtelomeric heterochromatin did not. Notably, MCM did not bind to inner centromeres where origin recognition complex was located. Thus, replication is differentially regulated in chromosome domains.
Collapse
Affiliation(s)
- Makoto Hayashi
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Yuki Katou
- Riken Genomic Science Center, Human Genome Research Group, Genome Informatics Team, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Takehiko Itoh
- Research Center for Advanced Science and Technology, Mitsubishi Research Institute Inc., Chiyoda-ku, Tokyo, Japan
| | - Mitsutoshi Tazumi
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Yoshiki Yamada
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Tatsuro Takahashi
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takuro Nakagawa
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Katsuhiko Shirahige
- Riken Genomic Science Center, Human Genome Research Group, Genome Informatics Team, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Center for Biological Resources and Informatics, Division of Gene Research, and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Hisao Masukata
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Department of Biology, Graduate School of Science, Osaka University, 1-1, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan. Tel.: +81 6 6850 5432; Fax: +81 6 6850 5440; E-mail:
| |
Collapse
|
196
|
Abstract
Regions of metazoan genomes replicate at defined times within S phase. This observation suggests that replication origins fire with a defined timing pattern that remains the same from cycle to cycle. However, an alterative model based on the stochastic firing of origins may also explain replication timing. This model assumes varying origin efficiency instead of a strict origin-timing programme. Here, we discuss the evidence for both models.
Collapse
Affiliation(s)
- Nicholas Rhind
- Biochemistry and Molecular Pharmacology Department, University of Massachusetts Medical School, 364 Plantation Street, LRB904, Worcester, MA 01605, USA.
| |
Collapse
|
197
|
Gibcus JH, Kok K, Menkema L, Hermsen MA, Mastik M, Kluin PM, van der Wal JE, Schuuring E. High-resolution mapping identifies a commonly amplified 11q13.3 region containing multiple genes flanked by segmental duplications. Hum Genet 2006; 121:187-201. [PMID: 17171571 DOI: 10.1007/s00439-006-0299-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 11/09/2006] [Indexed: 11/28/2022]
Abstract
DNA amplification of the 11q13 region is observed frequently in many carcinomas. Within the amplified region several candidate oncogenes have been mapped, including cyclin D1, TAOS1 and cortactin. Yet, it is unknown which gene(s) is/are responsible for the selective pressure enabling amplicon formation. This is probably due to the use of low-resolution detection methods. Furthermore, the size and structure of the amplified 11q13 region is complex and consists of multiple amplicon cores that differ between different tumor types. We set out to test whether the borders of the 11q13 amplicon are restricted to regions that enable DNA breakage and subsequent amplification. A high-resolution array of the 11q13 region was generated to study the structure of the 11q13 amplicon and analyzed 29 laryngeal and pharyngeal carcinomas and nine cell lines with 11q13 amplification. We found that boundaries of the commonly amplified region were restricted to four segments. Three boundaries coincided with a syntenic breakpoint. Such regions have been suggested to be putatively fragile. Sequence comparisons revealed that the amplicon was flanked by two large low copy repeats known as segmental duplications. These segmental duplications might be responsible for the typical structure and size of the 11q13 amplicon. We hypothesize that the selection for genes through amplification of the 11q13.3 region is determined by the ability to form DNA breaks within specific regions and, consequently, results in large amplicons containing multiple genes.
Collapse
Affiliation(s)
- Johan H Gibcus
- Department of Pathology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Abstract
PURPOSE OF REVIEW Cytogenetic analysis has for a long time relied on chromosome banding by karyotyping for whole-genome analysis of structural and numerical chromosomal anomalies. Conceptual and technical developments in molecular cytogenetics are rapidly changing the way the human genome is being analyzed by enhancing the resolving power from the megabase to the kilobase level. This review describes the various genomic microarray approaches that have been developed for molecular cytogenetic purposes and their implementation in a routine clinical diagnostic setting. RECENT FINDINGS Genomic microarray approaches such as array-based comparative genomic hybridization have recently been shown to identify causative submicroscopic copy number alterations in a significant proportion of patients with mental retardation. These alterations occur throughout the human genome and the majority of these alterations reported thus far are unique. Next to these causative alterations, a large number of inherited submicroscopic copy number variations without immediate clinical consequences have been detected by these methods. SUMMARY Genome profiling by genomic microarrays is becoming an important diagnostic tool, either in addition to or replacing conventional chromosome banding, depending on the expected diagnostic yield and the costs involved.
Collapse
Affiliation(s)
- Joris A Veltman
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
199
|
Cohen SM, Furey TS, Doggett NA, Kaufman DG. Genome-wide sequence and functional analysis of early replicating DNA in normal human fibroblasts. BMC Genomics 2006; 7:301. [PMID: 17134498 PMCID: PMC1702361 DOI: 10.1186/1471-2164-7-301] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 11/29/2006] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The replication of mammalian genomic DNA during the S phase is a highly coordinated process that occurs in a programmed manner. Recent studies have begun to elucidate the pattern of replication timing on a genomic scale. Using a combination of experimental and computational techniques, we identified a genome-wide set of the earliest replicating sequences. This was accomplished by first creating a cosmid library containing DNA enriched in sequences that replicate early in the S phase of normal human fibroblasts. Clone ends were then sequenced and aligned to the human genome. RESULTS By clustering adjacent or overlapping early replicating clones, we identified 1759 "islands" averaging 100 kb in length, allowing us to perform the most detailed analysis to date of DNA characteristics and genes contained within early replicating DNA. Islands are enriched in open chromatin, transcription related elements, and Alu repetitive elements, with an underrepresentation of LINE elements. In addition, we found a paucity of LTR retroposons, DNA transposon sequences, and an enrichment in all classes of tandem repeats, except for dinucleotides. CONCLUSION An analysis of genes associated with islands revealed that nearly half of all genes in the WNT family, and a number of genes in the base excision repair pathway, including four of ten DNA glycosylases, were associated with island sequences. Also, we found an overrepresentation of members of apoptosis-associated genes in very early replicating sequences from both fibroblast and lymphoblastoid cells. These data suggest that there is a temporal pattern of replication for some functionally related genes.
Collapse
Affiliation(s)
- Stephanie M Cohen
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Terrence S Furey
- Institute for Genome Sciences and Policy, Duke University, Durham, NC, 27708, USA
| | - Norman A Doggett
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - David G Kaufman
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
200
|
Schmegner C, Hoegel J, Vogel W, Assum G. The rate, not the spectrum, of base pair substitutions changes at a GC-content transition in the human NF1 gene region: implications for the evolution of the mammalian genome structure. Genetics 2006; 175:421-8. [PMID: 17057231 PMCID: PMC1775011 DOI: 10.1534/genetics.106.064386] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human genome is composed of long stretches of DNA with distinct GC contents, called isochores or GC-content domains. A boundary between two GC-content domains in the human NF1 gene region is also a boundary between domains of early- and late-replicating sequences and of regions with high and low recombination frequencies. The perfect conservation of the GC-content distribution in this region between human and mouse demonstrates that GC-content stabilizing forces must act regionally on a fine scale at this locus. To further elucidate the nature of these forces, we report here on the spectrum of human SNPs and base pair substitutions between human and chimpanzee. The results show that the mutation rate changes exactly at the GC-content transition zone from low values in the GC-poor sequences to high values in GC-rich ones. The GC content of the GC-poor sequences can be explained by a bias in favor of GC > AT mutations, whereas the GC content of the GC-rich segment may result from a fixation bias in favor of AT > GC substitutions. This fixation bias may be explained by direct selection by the GC content or by biased gene conversion.
Collapse
|