151
|
Yablonski D, Weiss A. Mechanisms of signaling by the hematopoietic-specific adaptor proteins, SLP-76 and LAT and their B cell counterpart, BLNK/SLP-65. Adv Immunol 2002; 79:93-128. [PMID: 11680012 DOI: 10.1016/s0065-2776(01)79003-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Adaptor proteins lack catalytic activity and contain only protein-protein interaction domains. They have been shown to interact with an ever-growing number of signaling proteins and to play essential roles in many signaling pathways. SLP-76 and LAT are cell-type-specific adaptor proteins expressed in T cells, NK cells, platelets, and mast cells. In these cell types, SLP-76 and LAT are required for signaling by immunoreceptor tyrosine-based activation motif(ITAM)-containing receptors, including the T cell receptor (TCR), the pre-TCR, the high-affinity Fc epsilon receptor, and the platelet GPVI collagen receptor. In B cells, an analogous adaptor, BLNK/SLP-65, is required for signaling by the ITAM-containing B cell receptor. This review summarizes recent research on SLP-76, LAT, and BLNK. A major challenge in understanding adaptor protein function has been to sort out the many interactions mediated by adaptor proteins and to define the mechanisms by which adaptors mediate critical signaling events. In the case of LAT, SLP-76, and BLNK, the availability of tractable genetic systems, deficient in expression of each of these adaptor proteins, has facilitated in-depth investigation of their signaling functions and mechanisms of action. The picture that has emerged is one in which multiple adaptor proteins cooperate to bring about the formation of a large signaling complex, localized to specialized lipid microdomains within the cell membrane and known as GEMs. Adaptors not only recruit signaling proteins, but also play an active role in regulating the conformation and activation of many of the proteins recruited to the complex. In particular, recent research has shed light on the mechanisms by which multiple adaptor proteins cooperate to bring about the recruitment and activation of phospholipase C gamma in response to the activation of ITAM-containing receptors.
Collapse
Affiliation(s)
- D Yablonski
- Department of Pharmacology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa 31096, Israel
| | | |
Collapse
|
152
|
Iwashima M, Takamatsu M, Yamagishi H, Hatanaka Y, Huang YY, McGinty C, Yamasaki S, Koike T. Genetic evidence for Shc requirement in TCR-induced c-Rel nuclear translocation and IL-2 expression. Proc Natl Acad Sci U S A 2002; 99:4544-9. [PMID: 11917142 PMCID: PMC123684 DOI: 10.1073/pnas.082647499] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2001] [Indexed: 01/20/2023] Open
Abstract
Shc, a prototypic adapter molecule, has been implicated in T cell receptor (TCR) signal transduction, but its role has not been identified clearly. Here we report that Shc is essential for TCR-induced IL-2 production but is dispensable for CD69 or CD25 expression. Engagement of TCR in mutant Jurkat T cells lacking Shc fails to produce IL-2 because of impaired mitogen-activated protein kinase activation. Activation of c-Rel, a transcription factor essential for IL-2 expression, was impaired also. In contrast, activation of nuclear factor of activated T cell and expression of CD69/CD25 were comparable between the mutant and wild-type Jurkat cells. These defects were rescued by expression of exogenous Shc. Activation of c-Rel using the estrogen receptor fusion protein restored the activation of the IL-2 promoter in an estrogen-dependent manner. These results show that Shc plays an essential role in the TCR-induced activation of c-Rel and the IL-2 promoter.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Antigens, CD/genetics
- Antigens, Differentiation, T-Lymphocyte/genetics
- Biological Transport
- Cell Nucleus/metabolism
- DNA-Binding Proteins/metabolism
- Humans
- Interleukin-2/biosynthesis
- Interleukin-2/genetics
- Jurkat Cells
- Lectins, C-Type
- Mitogen-Activated Protein Kinases/physiology
- NF-kappa B/metabolism
- NFATC Transcription Factors
- Nuclear Proteins
- Promoter Regions, Genetic
- Proteins/physiology
- Proto-Oncogene Proteins c-rel/metabolism
- Receptors, Antigen, T-Cell/physiology
- Receptors, Interleukin-2/genetics
- Shc Signaling Adaptor Proteins
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Transcription Factor AP-1/metabolism
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Makio Iwashima
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912-2600, USA.
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Schade AE, Levine AD. Lipid raft heterogeneity in human peripheral blood T lymphoblasts: a mechanism for regulating the initiation of TCR signal transduction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2233-9. [PMID: 11859110 DOI: 10.4049/jimmunol.168.5.2233] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lateral mobility and spatial organization of proteins within the plasma membrane are likely to mediate the initial events coordinating T cell activation. Lipid rafts, distinct cholesterol/sphingolipid-rich membrane microdomains, provide a mechanism for this regulation by concentrating or excluding signaling proteins. We demonstrate in peripheral blood T cell lymphoblasts that immediate early phosphotyrosine signal transduction through the TCR complex is functionally dependent on a distinct population of lipid rafts. Specifically, cholesterol extraction destabilizes the membrane microdomains containing Lck, while the rafts containing the adapter protein linker for activation of T cells remain intact. Heterogeneity in the partitioning of these proteins in resting cells was confirmed by immunoelectron microscopy. After T cell activation, both Lck and the linker for activation of T cells colocalize to 50-100 nm microdomains in the plasma membrane, indicating that sequestration of these proteins into distinct lipid rafts may function to regulate the initiation of T cell signal transduction.
Collapse
Affiliation(s)
- Andrew E Schade
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | |
Collapse
|
154
|
Teixeiro E, Fuentes P, Galocha B, Alarcon B, Bragado R. T cell receptor-mediated signal transduction controlled by the beta chain transmembrane domain: apoptosis-deficient cells display unbalanced mitogen-activated protein kinases activities upon T cell receptor engagement. J Biol Chem 2002; 277:3993-4002. [PMID: 11724779 DOI: 10.1074/jbc.m107797200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bases that support the versatility of the T cell receptor (TCR) to generate distinct T cell responses remain unclear. We have previously shown that mutant cells in the transmembrane domain of TCRbeta chain are impaired in TCR-induced apoptosis but are not affected in other functions. Here we describe the biochemical mechanisms by which this mutant receptor supports some T cell responses but fails to induce apoptosis. Extracellular signal-regulated protein kinase (ERK) is activated at higher and more sustained levels in TCRbeta-mutated than in wild type cells. Conversely, activation of both c-Jun N-terminal kinase and p38 mitogen-activated protein kinase is severely reduced in mutant cells. By attempting to link this unbalanced induction to altered upstream events, we found that ZAP-70 is normally activated. However, although SLP-76 phosphorylation is normally induced, TCR engagement of mutant cells results in lower tyrosine phosphorylation of LAT but in higher tyrosine phosphorylation of Vav than in wild type cells. The results suggest that an altered signaling cascade leading to an imbalance in mitogen-activated protein kinase activities is involved in the selective impairment of apoptosis in these mutant cells. Furthermore, they also provide new insights in the contribution of TCR to decipher the signals that mediate apoptosis distinctly from proliferation.
Collapse
MESH Headings
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Apoptosis
- Humans
- Jurkat Cells
- Lectins, C-Type
- Mitogen-Activated Protein Kinases/metabolism
- Mutation
- Phosphorylation
- Precipitin Tests
- Protein Kinase C/metabolism
- Protein Transport
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/physiology
- Signal Transduction/physiology
- Tyrosine/metabolism
- ZAP-70 Protein-Tyrosine Kinase
Collapse
Affiliation(s)
- Emma Teixeiro
- Department of Immunology, Fundación Jiménez Diaz, Avenida. Reyes Católicos 2, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
155
|
Montoya MC, Sancho D, Bonello G, Collette Y, Langlet C, He HT, Aparicio P, Alcover A, Olive D, Sánchez-Madrid F. Role of ICAM-3 in the initial interaction of T lymphocytes and APCs. Nat Immunol 2002; 3:159-68. [PMID: 11812993 DOI: 10.1038/ni753] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antigen-independent adhesive interactions between T lymphocytes and antigen-presenting cells (APCs) are essential for scanning for specific antigens on the APC surface and for initiating the immune response. Here we show, through time-lapse imaging of live cells, that the intercellular adhesion molecule 3 (ICAM-3, also known as CD50) is clustered specifically at the region of the T lymphocyte surface that initiates contact with APCs. We describe the role of ICAM-3 in T cell-APC conjugate formation before antigen recognition, in early intracellular signaling and in cytoskeletal rearrangement. Our data indicate that ICAM-3 is important in the initial scanning of the APC surface by T cells and, therefore, in generating the immune response.
Collapse
Affiliation(s)
- María C Montoya
- Servicio de Inmunología, Hospital de la Princesa, C/ Diego de León 62, Universidad Autónoma de Madrid, 28006 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Zubiaur M, Fernández O, Ferrero E, Salmerón J, Malissen B, Malavasi F, Sancho J. CD38 is associated with lipid rafts and upon receptor stimulation leads to Akt/protein kinase B and Erk activation in the absence of the CD3-zeta immune receptor tyrosine-based activation motifs. J Biol Chem 2002; 277:13-22. [PMID: 11689561 DOI: 10.1074/jbc.m107474200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
T lymphocytes can be activated via the T cell receptor (TCR) or by triggering through a number of other cell surface structures, including the CD38 co-receptor molecule. Here, we show that in TCR+ T cells that express a CD3-zeta lacking the cytoplasmic domain, cross-linking with CD38- or CD3-specific monoclonal antibodies induces tyrosine phosphorylation of CD3-epsilon, zeta-associated protein-70, linker for activation of T cells, and Shc. Moreover, in these cells, anti-CD38 or anti-CD3 stimulation leads to protein kinase B/Akt and Erk activation, suggesting that the CD3-zeta-immunoreceptor tyrosine-based activation motifs are not required for CD38 signaling in T cells. Interestingly, in unstimulated T cells, lipid rafts are highly enriched in CD38, including the T cells lacking the cytoplasmic tail of CD3-zeta. Moreover, CD38 clustering by extensive cross-linking with an anti-CD38 monoclonal antibody and a secondary antibody leads to an increased resistance of CD38 to detergent solubilization, suggesting that CD38 is constitutively associated with membrane rafts. Consistent with this, cholesterol depletion with methyl-beta-cyclodextrin substantially reduces CD38-mediated Akt activation while enhancing CD38-mediated Erk activation. CD38/raft association may improve the signaling capabilities of CD38 via formation of protein/lipid domains to which signaling-competent molecules, such as immunoreceptor tyrosine-based activation motif-bearing CD3 molecules and protein-tyrosine kinases, are recruited.
Collapse
|
157
|
Affiliation(s)
- Liping Geng
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
158
|
Gringhuis SI, Papendrecht-van der Voort EAM, Leow A, Nivine Levarht EW, Breedveld FC, Verweij CL. Effect of redox balance alterations on cellular localization of LAT and downstream T-cell receptor signaling pathways. Mol Cell Biol 2002; 22:400-11. [PMID: 11756537 PMCID: PMC139732 DOI: 10.1128/mcb.22.2.400-411.2002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integral membrane protein linker for activation of T cells (LAT) is a central adapter protein in the T-cell receptor (TCR)-mediated signaling pathways. The cellular localization of LAT is extremely sensitive to intracellular redox balance alterations. Reduced intracellular levels of the antioxidant glutathione (GSH), a hallmark of chronic oxidative stress, resulted in the membrane displacement of LAT, abrogated TCR-mediated signaling and consequently hyporesponsiveness of T lymphocytes. The membrane displacement of LAT is accompanied by a considerable difference in the mobility of LAT upon native and nonreducing denaturing polyacrylamide gel electrophoresis analysis, a finding indicative of a conformational change. Targeted mutation of redox-sensitive cysteine residues within LAT created LAT mutants which remain membrane anchored under conditions of chronic oxidative stress. The expression of redox-insensitive LAT mutants allows for restoration of TCR-mediated signal transduction, whereas CD28-mediated signaling pathways remained impaired. These results are indicative that the membrane displacement of LAT as a result of redox balance alterations is a consequence of a conformational change interfering with the insertion of LAT into the plasma membrane. Conclusively, the data suggest a role for LAT as a crucial intermediate in the sensitivity of TCR signaling and hence T lymphocytes toward chronic oxidative stress.
Collapse
Affiliation(s)
- Sonja I Gringhuis
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
159
|
Torgersen KM, Vang T, Abrahamsen H, Yaqub S, Taskén K. Molecular mechanisms for protein kinase A-mediated modulation of immune function. Cell Signal 2002; 14:1-9. [PMID: 11747983 DOI: 10.1016/s0898-6568(01)00214-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein kinase A (PKA) is a serine/threonine kinase that regulates a number of cellular processes important for immune activation and control. Modulation of signal transduction by PKA is a complex and diverse process, and differential isozyme expression, holoenzyme composition and subcellular localization contribute specificity to the PKA signalling pathway. In lymphocytes, phosphorylation by PKA has been demonstrated to regulate antigen receptor-induced signalling both by altering protein-protein interactions and by changing the enzymatic activity of target proteins. PKA substrates involved in immune activation include transcription factors, members of the MAP kinase pathway and phospholipases. The ability of PKA type I to regulate activation of signalling components important for formation of the immunological synapse, demonstrates that the cAMP signalling pathway can directly modulate proximal events in lymphocyte activation. Furthermore, the recent discovery that PKA regulates Src kinases through modulation of Csk, supports the notion that PKA is involved in the fine-tuning of immune receptor signalling in lipid rafts.
Collapse
Affiliation(s)
- Knut Martin Torgersen
- Department of Medical Biochemistry, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1112, Blindern, N-0317 Oslo, Norway
| | | | | | | | | |
Collapse
|
160
|
Martelli MP, Boomer J, Bu M, Bierer BE. T cell regulation of p62(dok) (Dok1) association with Crk-L. J Biol Chem 2001; 276:45654-61. [PMID: 11553620 DOI: 10.1074/jbc.m105777200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In addition to engagement of the T cell receptor-CD3 complex, T lymphocytes can be activated by a variety of cell surface molecules including the approximately 50-kDa surface receptor CD2. While the majority of biochemical signaling elements are triggered by either CD2 or TcR-CD3 receptors, a small number of proteins are engaged by only one receptor. Recently, p62(dok) (Dok1), a member of the Dok family of adapter molecules, has been reported to be activated by CD2 and not by CD3 engagement. Here we have examined the role of p62(dok) in CD2-dependent signaling in Jurkat T cells. As previously reported, we find that ligation of the CD2 molecule by mitogenic pairs of anti-CD2 mAbs led to phosphorylation of p62(dok). While CD2-induced p62(dok) tyrosine phosphorylation was independent of both the p36/38 membrane adapter protein linker of activated T cells (LAT) and the ZAP70/Syk family of kinases, it was dependent upon the Src family of kinases including Lck and Fyn. We find further that CD2 engagement induced the association of tyrosine-phosphorylated p62(dok) to Crk-L. The CD2-dependent association of p62(dok) to Crk-L was independent of expression of the ZAP70/Syk family of kinases. Of note, while T cell receptor-CD3 engagement did not induce either p62(dok) phosphorylation or Crk-L association in Jurkat T cells, it did inhibit CD2-dependent p62(dok)-Crk-L complexes; this TcR-CD3-mediated regulation was dependent upon ZAP70 kinase activity. Our data suggest that phosphorylation of p62(dok) and its interaction with other signaling proteins may depend upon integrated signals emanating from the CD2 receptor, utilizing a ZAP70/LAT-independent pathway, and the TcR-CD3 receptor, which is ZAP70/Syk-dependent.
Collapse
Affiliation(s)
- M P Martelli
- Laboratory of Lymphocyte Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
161
|
Chuang SS, Kumaresan PR, Mathew PA. 2B4 (CD244)-mediated activation of cytotoxicity and IFN-gamma release in human NK cells involves distinct pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6210-6. [PMID: 11714782 DOI: 10.4049/jimmunol.167.11.6210] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
2B4 (CD244), a member of the CD2 subset of the Ig superfamily receptors, is expressed on all human NK cells, a subpopulation of T cells, basophils and monocytes. 2B4 activates NK cell mediated cytotoxicity, induces secretion of IFN-gamma and matrix metalloproteinases, and NK cell invasiveness. Although there have been several molecules shown to interact with 2B4, the signaling mechanism of 2B4-mediated activation of NK cells is still unknown. In this study, we found cross-linking of 2B4 on YT cells, a human NK cell line, results in the increased DNA binding activity of activator protein-1 (AP-1), an important regulator of nuclear gene expression in leukocytes. We investigated the possible role of various signaling molecules that may be involved in the activation of lytic function of YT cells via 2B4. Treatment of YT cells with various specific inhibitors indicate that 2B4-stimulation of YT cells in spontaneous and Ab-dependent cytotoxicity is Ras/Raf dependent and involves multiple MAPK signaling pathways (ERK1/2 and p38). However, only inhibitors of transcription and p38 inhibited 2B4-mediated IFN-gamma release indicating distinct pathways are involved in cytotoxicity and cytokine release. In this study we also show that 2B4 constitutively associates with the linker for activation of T cells (LAT) and that 2B4 may mediate NK cell activation via a LAT-dependent signaling pathway. These results indicate that 2B4-mediated activation of NK cells involves complex interactions involving LAT, Ras, Raf, ERK and p38 and that cytolytic function and cytokine production may be regulated by distinct pathways.
Collapse
Affiliation(s)
- S S Chuang
- Department of Molecular Biology and Immunology and Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | |
Collapse
|
162
|
Myung PS, Derimanov GS, Jordan MS, Punt JA, Liu QH, Judd BA, Meyers EE, Sigmund CD, Freedman BD, Koretzky GA. Differential requirement for SLP-76 domains in T cell development and function. Immunity 2001; 15:1011-26. [PMID: 11754821 DOI: 10.1016/s1074-7613(01)00253-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The hematopoietic cell-specific adaptor protein, SLP-76, is critical for T cell development and mature T cell receptor (TCR) signaling; however, the structural requirements of SLP-76 for mediating thymopoiesis and mature T cell function remain largely unknown. In this study, transgenic mice were generated to examine the requirements for specific domains of SLP-76 in thymocytes and peripheral T cells in vivo. Examination of mice expressing various mutants of SLP-76 on the null background demonstrates a differential requirement for specific domains of SLP-76 in thymocytes and T cells and provides new insight into the molecular mechanisms underlying SLP-76 function.
Collapse
Affiliation(s)
- P S Myung
- Graduate Program in Immunology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Shan X, Balakir R, Criado G, Wood JS, Seminario MC, Madrenas J, Wange RL. Zap-70-independent Ca(2+) mobilization and Erk activation in Jurkat T cells in response to T-cell antigen receptor ligation. Mol Cell Biol 2001; 21:7137-49. [PMID: 11585897 PMCID: PMC99889 DOI: 10.1128/mcb.21.21.7137-7149.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2001] [Accepted: 07/16/2001] [Indexed: 11/20/2022] Open
Abstract
The tyrosine kinase ZAP-70 has been implicated as a critical intermediary between T-cell antigen receptor (TCR) stimulation and Erk activation on the basis of the ability of dominant negative ZAP-70 to inhibit TCR-stimulated Erk activation, and the reported inability of anti-CD3 antibodies to activate Erk in ZAP-70-negative Jurkat cells. However, Erk is activated in T cells receiving a partial agonist signal, despite failing to activate ZAP-70. This discrepancy led us to reanalyze the ZAP-70-negative Jurkat T-cell line P116 for its ability to support Erk activation in response to TCR/CD3 stimulation. Erk was activated by CD3 cross-linking in P116 cells. However, this response required a higher concentration of anti-CD3 antibody and was delayed and transient compared to that in Jurkat T cells. Activation of Raf-1 and MEK-1 was coincident with Erk activation. Remarkably, the time course of Ras activation was comparable in the two cell lines, despite proceeding in the absence of LAT tyrosine phosphorylation in the P116 cells. CD3 stimulation of P116 cells also induced tyrosine phosphorylation of phospholipase C-gamma1 (PLCgamma1) and increased the intracellular Ca(2+) concentration. Protein kinase C (PKC) inhibitors blocked CD3-stimulated Erk activation in P116 cells, while parental Jurkat cells were refractory to PKC inhibition. The physiologic relevance of these signaling events is further supported by the finding of PLCgamma1 tyrosine phosphorylation, Erk activation, and CD69 upregulation in P116 cells on stimulation with superantigen and antigen-presenting cells. These results demonstrate the existence of two pathways leading to TCR-stimulated Erk activation in Jurkat T cells: a ZAP-70-independent pathway requiring PKC and a ZAP-70-dependent pathway that is PKC independent.
Collapse
Affiliation(s)
- X Shan
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224-6825, USA
| | | | | | | | | | | | | |
Collapse
|
164
|
Koretzky GA, Myung PS. Positive and negative regulation of T-cell activation by adaptor proteins. Nat Rev Immunol 2001; 1:95-107. [PMID: 11905825 DOI: 10.1038/35100523] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adaptor proteins, molecules that mediate intermolecular interactions, are now known to be as crucial for lymphocyte activation as are receptors and effectors. Extensive work from numerous laboratories has identified and characterized many of these adaptors, demonstrating their roles as both positive and negative regulators. Studies into the molecular basis for the actions of these molecules shows that they function in various ways, including: recruitment of positive or negative regulators into signalling networks, modulation of effector function by allosteric regulation of enzymatic activity, and by targeting other proteins for degradation. This review will focus on a number of adaptors that are important for lymphocyte function and emphasize the various ways in which these proteins carry out their essential roles.
Collapse
Affiliation(s)
- G A Koretzky
- Abramson Family Cancer Research Institute and Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
| | | |
Collapse
|
165
|
Wonerow P, Watson SP. The transmembrane adapter LAT plays a central role in immune receptor signalling. Oncogene 2001; 20:6273-83. [PMID: 11607829 DOI: 10.1038/sj.onc.1204770] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The transmembrane adapter LAT (linker for activation of T cells) plays a central role in signalling by ITAM bearing receptors expressed on T cells, natural killer cells, mast cells and platelets. Receptor engagement leads to the phosphorylation of tyrosine residues present in the intracellular domain of LAT and formation of a multiprotein complex with other adapter molecules and enzymes including Grb2, Gads/SLP-76 and PLCgamma isoforms. These signalling events predominantly take place in glycolipid-enriched membrane domains. The constitutive presence of LAT in GEMs enables its function as the main scaffolding protein for the organization of GEM-localized signalling. The study of LAT-deficient mice and LAT-deficient cell lines further emphasizes the importance of LAT for these signalling cascades but also defines the existence of LAT-independent events downstream of the Syk-family kinase-ITAM complex.
Collapse
Affiliation(s)
- P Wonerow
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| | | |
Collapse
|
166
|
Wilde JI, Watson SP. Regulation of phospholipase C gamma isoforms in haematopoietic cells: why one, not the other? Cell Signal 2001; 13:691-701. [PMID: 11602179 DOI: 10.1016/s0898-6568(01)00191-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phospholipase C gamma (PLCgamma) isoforms are critical for the generation of calcium signals in haematopoietic systems in response to the stimulation of immune receptors. PLCgamma is unique amongst phospholipases in that it is tightly regulated by the action of a number of tyrosine kinases. It is itself directly phosphorylated on a number of tyrosines and contains several domains through which it can interact with other signalling proteins and lipid products such as phosphatidylinositol 3,4,5-trisphosphate. Through this network of interactions, PLCgamma is activated and recruited to its substrate, phosphatidylinositol 4,5-bisphosphate, at the membrane. Both isoforms of PLCgamma, PLCgamma1 and PLCgamma2, are present in haematopoietic cells. The signalling cascade involved in the regulation of these two isoforms varies between cells, though the systems are similar for both PLCgamma1 and PLCgamma2. We will compare these cascades for both PLCgamma1 and PLCgamma2 and discuss possible reasons as to why one form of PLCgamma and not the other is required for signalling in specific haematopoietic cells, including T lymphocytes, B lymphocytes, platelets, and mast cells.
Collapse
Affiliation(s)
- J I Wilde
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | | |
Collapse
|
167
|
Verí MC, DeBell KE, Seminario MC, DiBaldassarre A, Reischl I, Rawat R, Graham L, Noviello C, Rellahan BL, Miscia S, Wange RL, Bonvini E. Membrane raft-dependent regulation of phospholipase Cgamma-1 activation in T lymphocytes. Mol Cell Biol 2001; 21:6939-50. [PMID: 11564877 PMCID: PMC99870 DOI: 10.1128/mcb.21.20.6939-6950.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous signaling molecules associate with lipid rafts, either constitutively or after engagement of surface receptors. One such molecule, phospholipase Cgamma-1 (PLCgamma1), translocates from the cytosol to lipid rafts during T-cell receptor (TCR) signaling. To investigate the role played by lipid rafts in the activation of this molecule in T cells, an influenza virus hemagglutinin A (HA)-tagged PLCgamma1 was ectopically expressed in Jurkat T cells and targeted to these microdomains by the addition of a dual-acylation signal. Raft-targeted PLCgamma1 was constitutively tyrosine phosphorylated and induced constitutive NF-AT-dependent transcription and interleukin-2 secretion in Jurkat cells. Tyrosine phosphorylation of raft-targeted PLCgamma1 did not require Zap-70 or the interaction with the adapters Lat and Slp-76, molecules that are necessary for TCR signaling. In contrast, the Src family kinase Lck was required. Coexpression in HEK 293T cells of PLCgamma1-HA with Lck or the Tec family kinase Rlk resulted in preferential phosphorylation of raft-targeted PLCgamma1 over wild-type PLCgamma1. These data show that localization of PLCgamma1 in lipid rafts is sufficient for its activation and demonstrate a role for lipid rafts as microdomains that dynamically segregate and integrate PLCgamma1 with other signaling components.
Collapse
Affiliation(s)
- M C Verí
- Laboratory of Immunobiology, Division of Monoclonal Antibodies, Center for Biologics Evaluation & Research, National Institute o f Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Li W, Fan J, Woodley DT. Nck/Dock: an adapter between cell surface receptors and the actin cytoskeleton. Oncogene 2001; 20:6403-17. [PMID: 11607841 DOI: 10.1038/sj.onc.1204782] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In response to extracellular signals, cell surface receptors engage in connections with multiple intracellular signaling pathways, leading to the cellular responses such as survival, migration, proliferation and differentiation. The 'pY-->SH2/SH3-->effector' connection is a frequently used scheme by many cell surface receptors, in which SH2/SH3-containing adapters connect protein tyrosine phosphorylation to a variety of downstream effector pathways. Following the initial landmark finding that Grb2 adapter links the receptors to the Ras pathway leading to DNA synthesis, recent studies have revealed that the biological function of the SH2/SH3 adapter Nck/Dock is to link cell surface receptors to the actin cytoskeleton. For example, in the evolutionarily-conserved signaling network, GEF-Rac-Nck-Pak, Nck 'fixes up' the interaction of Pak with its upstream activator, Rac. The activated Pak then regulates the cytoskeletal dynamics. The fact that the majority of the more than 20 Nck-SH3-associated effectors are regulators of the actin cytoskeleton suggests that Nck/Dock regulates, via binding to distinct effectors, various cell type-specific motogenic responses. This review focuses on our current understanding of Nck/Dock function. Due to the number and complexity of the terminologies used in this review, a 'Glossary of Terms' is provided to help reduce confusions.
Collapse
Affiliation(s)
- W Li
- The Department of Medicine, Division of Dermatology and the Norris Cancer Center, the University of Southern California Keck School of Medicine, 1303 North Mission Road, Los Angeles, California CA 90033, USA.
| | | | | |
Collapse
|
169
|
Goitsuka R, Tatsuno A, Ishiai M, Kurosaki T, Kitamura D. MIST functions through distinct domains in immunoreceptor signaling in the presence and absence of LAT. J Biol Chem 2001; 276:36043-50. [PMID: 11463797 DOI: 10.1074/jbc.m106390200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MIST (also termed Clnk) is an adaptor protein structurally related to SLP-76 and BLNK/BASH/SLP-65 hematopoietic cell-specific adaptor proteins. By using the BLNK-deficient DT40 chicken B cell system, we demonstrated MIST functions through distinct intramolecular domains in immunoreceptor signaling depending on the availability of linker for activation of T cells (LAT). MIST can partially restore the B cell antigen receptor (BCR) signaling in the BLNK-deficient cells, which requires phosphorylation of the two N-terminal tyrosine residues. Co-expression of LAT with MIST fully restored the BCR signaling and dispenses with the requirement of the two tyrosines in MIST for BCR signaling. However, some other tyrosine(s), as well as the Src homology (SH) 2 domain and the two proline-rich regions in MIST, is still required for full reconstitution of the BCR signaling, in cooperation with LAT. The C-terminal proline-rich region of MIST is dispensable for the LAT-aided full restoration of MAP kinase activation, although it is responsible for the interaction with LAT and for the localization in glycolipid-enriched microdomains. On the other hand, the N-terminal proline-rich region, which is a binding site of the SH3 domain of phospholipase Cgamma, is essential for BCR signaling. These results revealed a marked plasticity of MIST function as an adaptor in the cell contexts with or without LAT.
Collapse
Affiliation(s)
- R Goitsuka
- Division of Molecular Biology, Research Institute for Biological Sciences, Science University of Tokyo, 2669 Yamazaki, Noda, Chiba 278-0022, Japan.
| | | | | | | | | |
Collapse
|
170
|
Affiliation(s)
- T Harder
- Basel Institute for Immunology, CH-4005 Basel, Switzerland
| |
Collapse
|
171
|
Morley SC, Bierer BE. The actin cytoskeleton, membrane lipid microdomains, and T cell signal transduction. Adv Immunol 2001; 77:1-43. [PMID: 11293114 DOI: 10.1016/s0065-2776(01)77013-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- S C Morley
- Laboratory of Lymphocyte Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
172
|
Affiliation(s)
- S Tsukada
- Department of Molecular Medicine, Osaka University Medical School, Yamadaoka, Suita City, Osaka 565-0871, Japan
| | | | | |
Collapse
|
173
|
Lin J, Weiss A. Identification of the minimal tyrosine residues required for linker for activation of T cell function. J Biol Chem 2001; 276:29588-95. [PMID: 11395491 DOI: 10.1074/jbc.m102221200] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The linker for activation of T cells (LAT) is essential for signaling through the T cell receptor (TCR). Following TCR stimulation, LAT becomes tyrosine-phosphorylated, creating docking sites for other signaling proteins such as phospholipase C-gamma(1) (PLC-gamma(1)), Grb2, and Gads. In this study, we have attempted to identify the critical tyrosine residues in LAT that mediate TCR activation-induced mobilization of intracellular Ca(2+) and activation of the MAP kinase Erk2. By using the LAT-deficient Jurkat derivative, J.CaM2, stable cell lines were established expressing various tyrosine mutants of LAT. We show that three specific tyrosine residues (Tyr(132), Tyr(171), and Tyr(191)) are necessary and sufficient to achieve a Ca(2+) flux following TCR stimulation. These tyrosine residues function by reconstituting PLC-gamma(1) phosphorylation and recruitment to LAT. However, these same tyrosines can only partially reconstitute Erk activation. Full reconstitution of Erk requires two additional tyrosine residues (Tyr(110) and Tyr(226)), both of which have the Grb2-binding motif YXN. This reconstitution of Erk activation requires that the critical tyrosine residues be on the same molecule of LAT, suggesting that a single LAT molecule nucleates multiple protein-protein interactions required for optimal signal transduction.
Collapse
Affiliation(s)
- J Lin
- Department of Medicine, Biomedical Sciences Graduate Program, Howard Hughes Medical Institute, University of California, San Francisco, California 94143-0795, USA
| | | |
Collapse
|
174
|
Bromley SK, Burack WR, Johnson KG, Somersalo K, Sims TN, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML. The immunological synapse. Annu Rev Immunol 2001; 19:375-96. [PMID: 11244041 DOI: 10.1146/annurev.immunol.19.1.375] [Citation(s) in RCA: 661] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The adaptive immune response is initiated by the interaction of T cell antigen receptors with major histocompatibility complex molecule-peptide complexes in the nanometer scale gap between a T cell and an antigen-presenting cell, referred to as an immunological synapse. In this review we focus on the concept of immunological synapse formation as it relates to membrane structure, T cell polarity, signaling pathways, and the antigen-presenting cell. Membrane domains provide an organizational principle for compartmentalization within the immunological synapse. T cell polarization by chemokines increases T cell sensitivity to antigen. The current model is that signaling and formation of the immunological synapse are tightly interwoven in mature T cells. We also extend this model to natural killer cell activation, where the inhibitory NK synapse provides a striking example in which inhibition of signaling leaves the synapse in its nascent, inverted state. The APC may also play an active role in immunological synapse formation, particularly for activation of naïve T cells.
Collapse
MESH Headings
- Animals
- Antigen Presentation/immunology
- Cell Adhesion
- Cell Adhesion Molecules/physiology
- Cell Communication
- Cell Membrane/ultrastructure
- Cell Polarity
- Chemokines/physiology
- Cholera Toxin/pharmacology
- Immunologic Capping
- Killer Cells, Natural/immunology
- Killer Cells, Natural/ultrastructure
- Lymphocyte Activation/immunology
- Membrane Microdomains/physiology
- Membrane Microdomains/ultrastructure
- Mice
- Models, Immunological
- Receptor-CD3 Complex, Antigen, T-Cell/immunology
- Receptor-CD3 Complex, Antigen, T-Cell/ultrastructure
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/ultrastructure
- Receptors, Chemokine/physiology
- Receptors, Immunologic/immunology
- Receptors, Immunologic/physiology
- Receptors, Immunologic/ultrastructure
- Signal Transduction
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/ultrastructure
Collapse
Affiliation(s)
- S K Bromley
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Paz PE, Wang S, Clarke H, Lu X, Stokoe D, Abo A. Mapping the Zap-70 phosphorylation sites on LAT (linker for activation of T cells) required for recruitment and activation of signalling proteins in T cells. Biochem J 2001; 356:461-71. [PMID: 11368773 PMCID: PMC1221857 DOI: 10.1042/0264-6021:3560461] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
T-cell-receptor (TCR)-mediated LAT (linker for activation of T cells) phosphorylation is critical for the membrane recruitment of signalling complexes required for T-cell activation. Although tyrosine phosphorylation of LAT is required for recruitment and activation of signalling proteins, the molecular mechanism associated with this event is unclear. In the present study we reconstituted the LAT signalling pathway by demonstrating that a direct tyrosine phosphorylation of LAT with activated protein-tyrosine kinase Zap70 is necessary and sufficient for the association and activation of signalling proteins. Zap-70 efficiently phosphorylates LAT on tyrosine residues at positions 226, 191, 171, 132 and 127. By substituting these tyrosine residues in LAT with phenylalanine and by utilizing phosphorylated peptides derived from these sites, we mapped the tyrosine residues in LAT required for the direct interaction and activation of Vav, p85/p110alpha and phospholipase Cgamma1 (PLCgamma1). Our results indicate that Tyr(226) and Tyr(191) are required for Vav binding, whereas Tyr(171) and Tyr(132) are necessary for association and activation of phosphoinositide 3-kinase activity and PLCgamma1 respectively. Furthermore, by expression of LAT mutants in LAT-deficient T cells, we demonstrate that Tyr(191) and Tyr(171) are required for T-cell activation and Tyr(132) is required for the activation of PLCgamma1 and Ras signalling pathways.
Collapse
Affiliation(s)
- P E Paz
- Onyx Pharmaceuticals, 3031 Research Drive, Richmond, CA 94806, USA
| | | | | | | | | | | |
Collapse
|
176
|
Sommers CL, Menon RK, Grinberg A, Zhang W, Samelson LE, Love PE. Knock-in mutation of the distal four tyrosines of linker for activation of T cells blocks murine T cell development. J Exp Med 2001; 194:135-42. [PMID: 11457888 PMCID: PMC2193454 DOI: 10.1084/jem.194.2.135] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The integral membrane adapter protein linker for activation of T cells (LAT) performs a critical function in T cell antigen receptor (TCR) signal transduction by coupling the TCR to downstream signaling pathways. After TCR engagement, LAT is tyrosine phosphorylated by ZAP-70 creating docking sites for multiple src homology 2-containing effector proteins. In the Jurkat T cell line, the distal four tyrosines of LAT bind PLCgamma-1, Grb2, and Gads. Mutation of these four tyrosine residues to phenylalanine (4YF) blocked TCR-mediated calcium mobilization, Erk activation, and nuclear factor (NF)-AT activation. In this study, we examined whether these four tyrosine residues were essential for T cell development by generating LAT "knock-in" mutant mice that express the 4YF mutant protein under the control of endogenous LAT regulatory sequences. Significantly, the phenotype of 4YF knock-in mice was identical to LAT(-/)- (null) mice; thymocyte development was arrested at the immature CD4(-)CD8(-) stage and no mature T cells were present. Knock-in mice expressing wild-type LAT protein, generated by a similar strategy, displayed a normal T cell developmental profile. These results demonstrate that the distal four tyrosine residues of LAT are essential for preTCR signaling and T cell development in vivo.
Collapse
Affiliation(s)
- C L Sommers
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
177
|
Yablonski D, Kadlecek T, Weiss A. Identification of a phospholipase C-gamma1 (PLC-gamma1) SH3 domain-binding site in SLP-76 required for T-cell receptor-mediated activation of PLC-gamma1 and NFAT. Mol Cell Biol 2001; 21:4208-18. [PMID: 11390650 PMCID: PMC87082 DOI: 10.1128/mcb.21.13.4208-4218.2001] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SLP-76 is an adapter protein required for T-cell receptor (TCR) signaling. In particular, TCR-induced tyrosine phosphorylation and activation of phospholipase C-gamma1 (PLC-gamma1), and the resultant TCR-inducible gene expression, depend on SLP-76. Nonetheless, the mechanisms by which SLP-76 mediates PLC-gamma1 activation are not well understood. We now demonstrate that SLP-76 directly interacts with the Src homology 3 (SH3) domain of PLC-gamma1. Structure-function analysis of SLP-76 revealed that each of the previously defined protein-protein interaction domains can be individually deleted without completely disrupting SLP-76 function. Additional deletion mutations revealed a new, 67-amino-acid functional domain within the proline-rich region of SLP-76, which we have termed the P-1 domain. The P-1 domain mediates a constitutive interaction of SLP-76 with the SH3 domain of PLC-gamma1 and is required for TCR-mediated activation of Erk, PLC-gamma1, and NFAT (nuclear factor of activated T cells). The adjacent Gads-binding domain of SLP-76, also within the proline-rich region, mediates inducible recruitment of SLP-76 to a PLC-gamma1-containing complex via the recruitment of both PLC-gamma1 and Gads to another cell-type-specific adapter, LAT. Thus, TCR-induced activation of PLC-gamma1 entails the binding of PLC-gamma1 to both LAT and SLP-76, a finding that may underlie the requirement for both LAT and SLP-76 to mediate the optimal activation of PLC-gamma1.
Collapse
Affiliation(s)
- D Yablonski
- Department of Pharmacology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa 31096, Israel
| | | | | |
Collapse
|
178
|
Pfrepper KI, Marie-Cardine A, Simeoni L, Kuramitsu Y, Leo A, Spicka J, Hilgert I, Scherer J, Schraven B. Structural and functional dissection of the cytoplasmic domain of the transmembrane adaptor protein SIT (SHP2-interacting transmembrane adaptor protein). Eur J Immunol 2001; 31:1825-36. [PMID: 11433379 DOI: 10.1002/1521-4141(200106)31:6<1825::aid-immu1825>3.0.co;2-v] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
SIT (SHP2-interacting transmembrane adaptor protein) is a recently identified transmembrane adaptor protein, which is expressed in lymphocytes. Its structural properties, in particular the presence of five potential tyrosine phosphorylation sites, suggest involvement of SIT in TCR-mediated recruitment of SH2 domain-containing intracellular signaling molecules to the plasma membrane. Indeed, it has recently been demonstrated that SIT inducibly interacts with the SH2-containing protein tyrosine phosphatase 2 (SHP2) via an immunoreceptor tyrosine-based inhibition motif (ITIM). Moreover, SIT is capable to inhibit TCR-mediated signals proximal of activation of protein kinase C. However, inhibition of T cell activation by SIT occurs independently of SHP2 binding. The present study was performed to further characterize the molecular interaction between SIT and intracellular effector molecules and to identify the protein(s) mediating its inhibitory function. We demonstrate that SIT not only interacts with SHP2 but also with the adaptor protein Grb2 via two consensus YxN motifs. However, mutation of both Grb2-binding sites also does not influence the inhibitory function of SIT. In contrast, mutation of the tyrosine-based signaling motif Y(168) ASV completely abrogates the ability of SIT to inhibit T cell activation. Co-precipitation experiments revealed that the tyrosine kinase p50(csk) could represent the negative regulatory effector molecule that binds to this motif.
Collapse
Affiliation(s)
- K I Pfrepper
- Immunomodulation Laboratory of the Institute for Immunology, Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Herndon TM, Shan XC, Tsokos GC, Wange RL. ZAP-70 and SLP-76 regulate protein kinase C-theta and NF-kappa B activation in response to engagement of CD3 and CD28. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5654-64. [PMID: 11313406 DOI: 10.4049/jimmunol.166.9.5654] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The transcription factor NF-kappaB is a critical regulator of T cell function that becomes strongly activated in response to coengagement of TCR and CD28. Although events immediately proximal to NF-kappaB activation are well understood, uncertainty remains over which upstream signaling pathways engaged by TCR and CD28 lead to NF-kappaB activation. By using Jurkat T cell lines that are deficient or replete for either the protein tyrosine kinase ZAP-70 or the cytosolic adapter molecule SLP-76, the role of these proteins in modulating NF-kappaB activation was examined. NF-kappaB was not activated in response to coengagement of TCR and CD28 in either the ZAP-70- or SLP-76-negative cells, whereas stimuli that bypass these receptors (PMA plus A23187, or TNF-alpha) activated NF-kappaB normally. Protein kinase C (PKC) theta activation, which is required for NF-kappaB activation, also was defective in these cells. Reexpression of ZAP-70 restored PKCtheta and NF-kappaB activation in response to TCR and CD28 coengagement. p95(vav) (Vav)-1 tyrosine phosphorylation was largely unperturbed in the ZAP-70-negative cells; however, receptor-stimulated SLP-76/Vav-1 coassociation was greatly reduced. Wild-type SLP-76 fully restored PKCtheta and NF-kappaB activation in the SLP-76-negative cells, whereas 3YF-SLP-76, which lacks the sites of tyrosine phosphorylation required for Vav-1 binding, only partially rescued signaling. These data illustrate the importance of the ZAP-70/SLP-76 signaling pathway in CD3/CD28-stimulated activation of PKC theta and NF-kappaB, and suggest that Vav-1 association with SLP-76 may be important in this pathway.
Collapse
Affiliation(s)
- T M Herndon
- Laboratory of Biological Chemistry, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
180
|
Leitenberg D, Balamuth F, Bottomly K. Changes in the T cell receptor macromolecular signaling complex and membrane microdomains during T cell development and activation. Semin Immunol 2001; 13:129-38. [PMID: 11308296 DOI: 10.1006/smim.2000.0304] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Initiation and propagation of T cell receptor signaling pathways involves the mobilization and aggregation of a variety of signaling intermediates with the T cell receptor and associated molecules into specialized signaling complexes. Accumulating evidence suggests that differential regulation of the formation and composition of the T cell receptor macromolecular signaling complex may affect the different biological consequences of T cell activation. The regulatory mechanisms involved in the assembly of these complexes remains poorly understood, but in part is affected by the avidity of the T cell receptor ligand, co-stimulatory signals, and by the differentiation state of the T cell.
Collapse
Affiliation(s)
- D Leitenberg
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8011, USA
| | | | | |
Collapse
|
181
|
Nadler MJ, Matthews SA, Turner H, Kinet JP. Signal transduction by the high-affinity immunoglobulin E receptor Fc epsilon RI: coupling form to function. Adv Immunol 2001; 76:325-55. [PMID: 11079101 DOI: 10.1016/s0065-2776(01)76022-1] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- M J Nadler
- Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
182
|
Yoder J, Pham C, Iizuka YM, Kanagawa O, Liu SK, McGlade J, Cheng AM. Requirement for the SLP-76 adaptor GADS in T cell development. Science 2001; 291:1987-91. [PMID: 11239162 DOI: 10.1126/science.1057176] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
GADS is an adaptor protein implicated in CD3 signaling because of its ability to link SLP-76 to LAT. A GADS-deficient mouse was generated by gene targeting, and the function of GADS in T cell development and activation was examined. GADS- CD4-CD8- thymocytes exhibited a severe block in proliferation but still differentiated into mature T cells. GADS- thymocytes failed to respond to CD3 cross-linking in vivo and were impaired in positive and negative selection. Immunoprecipitation experiments revealed that the association between SLP-76 and LAT was uncoupled in GADS- thymocytes. These observations indicate that GADS is a critical adaptor for CD3 signaling.
Collapse
Affiliation(s)
- J Yoder
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
183
|
Bunnell SC, Kapoor V, Trible RP, Zhang W, Samelson LE. Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Immunity 2001; 14:315-29. [PMID: 11290340 DOI: 10.1016/s1074-7613(01)00112-1] [Citation(s) in RCA: 338] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
T cell activation induces functional changes in cell shape and cytoskeletal architecture. To facilitate the collection of dynamic, high-resolution images of activated T cells, we plated T cells on coverslips coated with antibodies to the T cell receptor (TCR). Using these images, we were able to quantitate the morphological responses of individual cells over time. Here, we show that TCR engagement triggers the formation and expansion of contacts bounded by continuously remodeled actin-rich rings. These processes are associated with the extension of lamellipodia and require actin polymerization, tyrosine kinase activation, cytoplasmic calcium increases, and LAT, an important hematopoietic adaptor. In addition, the maintenance of the resulting contact requires sustained calcium influxes, an intact microtubule cytoskeleton, and functional LAT.
Collapse
Affiliation(s)
- S C Bunnell
- Laboratory of Cellular and Molecular Biology, Division of Basic Sciences, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
184
|
Torgersen KM, Vaage JT, Rolstad B, Taskén K. A soluble LAT deletion mutant inhibits T-cell activation: reduced recruitment of signalling molecules to glycolipid-enriched microdomains. Cell Signal 2001; 13:213-20. [PMID: 11282460 DOI: 10.1016/s0898-6568(01)00131-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The type III transmembrane adaptor protein linker for activation of T cells (LAT) is essential for membrane recruitment of signalling molecules following TCR activation. Here we show that although LAT deleted in the transmembrane domain is completely soluble, it can be tyrosine phosphorylated after anti-CD3 stimulation or pervanadate treatment. Overexpression of this deletion mutant in transiently transfected Jurkat TAg cells inhibits transcriptional activation of nuclear factor of activated T cells (NF-AT)/AP-1 reporter construct in a concentration-dependent manner. Furthermore, by selection of transiently transfected cells, a clear reduction of TCR-induced CD69 expression was observed in cells expressing the mutant. These dominant negative effects seemed to be dependent both on the ability of the membrane deletion mutant to reduce phosphorylation of endogenous LAT and to reduce interaction of endogenous LAT with PLC-gamma1 and Grb2. Consistent with this, the redistribution of PLC-gamma1 and Grb2 to glycolipid-enriched microdomains, called lipid rafts, after stimulation was inhibited when the soluble form of LAT was overexpressed. We suggest that the dominant negative effect is caused by the ability of the mutant to sequester signalling molecules in cytosol and thereby inhibit redistribution of signalling molecules to lipid rafts upon T-cell activation.
Collapse
Affiliation(s)
- K M Torgersen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | |
Collapse
|
185
|
Dietrich J, Cella M, Colonna M. Ig-like transcript 2 (ILT2)/leukocyte Ig-like receptor 1 (LIR1) inhibits TCR signaling and actin cytoskeleton reorganization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2514-21. [PMID: 11160312 DOI: 10.4049/jimmunol.166.4.2514] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ig-like transcript 2 (ILT2)/leukocyte Ig-like receptor 1 (LIR1) is a receptor, specific for MHC class I molecules, that inhibits lymphoid and myeloid cells. Here, we analyzed the molecular and cellular mechanisms by which ILT2 modulates T cell activation in primary CTLs and transfected T cell lines. We found that cross-linking with the TCR and the activity of Src tyrosine kinase p56(lck) were required for phosphorylation of ILT2 and subsequent recruitment of Src homology protein 1. In contrast, ILT2 triggering resulted in reduced phosphorylation of TCRzeta and linker for activation of T cells, which led to reduced TCRzeta-ZAP70 complex formation, as well as extracellular signal-related kinase 1 and 2 activation. Furthermore, ILT2 inhibited both superantigen and anti-TCR Ab-induced rearrangement of the actin cytoskeleton. The inhibitory effect mediated by ILT2 is probably concentrated at the APC-T cell interface because both TCR and ILT2 were strongly polarized toward the APC upon engagement by their specific ligands. Thus, ILT2 inhibits both signaling and cellular events involved in the activation of T cells.
Collapse
MESH Headings
- Actins/antagonists & inhibitors
- Actins/metabolism
- Adaptor Proteins, Signal Transducing
- Amino Acid Motifs
- Antibodies, Monoclonal/metabolism
- Antigens, CD
- Carrier Proteins/metabolism
- Carrier Proteins/physiology
- Cell Line, Transformed
- Cell Polarity/immunology
- Cytoplasm/immunology
- Cytoplasm/metabolism
- Cytoskeleton/immunology
- Cytoskeleton/metabolism
- Humans
- Immunosuppressive Agents/metabolism
- Immunosuppressive Agents/pharmacology
- Intracellular Signaling Peptides and Proteins
- Leukocyte Immunoglobulin-like Receptor B1
- Ligands
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/physiology
- Membrane Proteins/metabolism
- Membrane Proteins/physiology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Phosphoproteins/metabolism
- Phosphoproteins/physiology
- Phosphorylation
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- SH2 Domain-Containing Protein Tyrosine Phosphatases
- Signal Transduction/immunology
- T-Lymphocytes/enzymology
- T-Lymphocytes/metabolism
- src Homology Domains/immunology
Collapse
Affiliation(s)
- J Dietrich
- Institute of Medical Microbiology and Immunology, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
186
|
Ku GM, Yablonski D, Manser E, Lim L, Weiss A. A PAK1-PIX-PKL complex is activated by the T-cell receptor independent of Nck, Slp-76 and LAT. EMBO J 2001; 20:457-65. [PMID: 11157752 PMCID: PMC133476 DOI: 10.1093/emboj/20.3.457] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Given the importance of the Rho GTPase family member Rac1 and the Rac1/Cdc42 effector PAK1 in T-cell activation, we investigated the requirements for their activation by the T-cell receptor (TCR). Rac1 and PAK1 activation required the tyrosine kinases ZAP-70 and Syk, but not the cytoplasmic adaptor Slp-76. Surprisingly, PAK1 was activated in the absence of the transmembrane adaptor LAT while Rac1 was not. However, efficient PAK1 activation required its binding sites for Rho GTPases and for PIX, a guanine nucleotide exchange factor for Rho GTPases. The overexpression of ssPIX that either cannot bind PAK1 or lacks GEF function blocked PAK1 activation. These data suggest that a PAK1-PIX complex is recruited to appropriate sites for activation and that PIX is required for Rho family GTPase activation upstream of PAK1. Furthermore, we detected a stable trimolecular complex of PAK1, PIX and the paxillin kinase linker p95PKL. Taken together, these data show that PAK1 contained in this trimolecular complex is activated by a novel LAT- and Slp-76-independent pathway following TCR stimulation.
Collapse
Affiliation(s)
| | - Deborah Yablonski
- Howard Hughes Medical Institute, Department of Medicine, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143-0414, USA,
Department of Pharmacology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, POB 9649 Bat Galim, Haifa 31096, Israel, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609 and Institute of Neurology, University College London, London WC1N 1PJ, UK Corresponding author e-mail:
| | - Edward Manser
- Howard Hughes Medical Institute, Department of Medicine, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143-0414, USA,
Department of Pharmacology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, POB 9649 Bat Galim, Haifa 31096, Israel, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609 and Institute of Neurology, University College London, London WC1N 1PJ, UK Corresponding author e-mail:
| | - Louis Lim
- Howard Hughes Medical Institute, Department of Medicine, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143-0414, USA,
Department of Pharmacology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, POB 9649 Bat Galim, Haifa 31096, Israel, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609 and Institute of Neurology, University College London, London WC1N 1PJ, UK Corresponding author e-mail:
| | - Arthur Weiss
- Howard Hughes Medical Institute, Department of Medicine, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143-0414, USA,
Department of Pharmacology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, POB 9649 Bat Galim, Haifa 31096, Israel, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609 and Institute of Neurology, University College London, London WC1N 1PJ, UK Corresponding author e-mail:
| |
Collapse
|
187
|
Wange RL. LAT, the Linker for Activation of T Cells: A Bridge Between T Cell-Specific and General Signaling Pathways. Sci Signal 2000. [DOI: 10.1126/scisignal.632000re1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
188
|
Wange RL. LAT, the linker for activation of T cells: a bridge between T cell-specific and general signaling pathways. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2000; 2000:re1. [PMID: 11752630 DOI: 10.1126/stke.2000.63.re1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A key event in the regulation of the adaptive immune response is the binding of major histocompatibility complex-bound foreign peptides to T cell antigen receptors (TCRs) that are present on the cell surface of T lymphocytes. Recognition of the presence of cognate antigen in the host animal induces a series of biochemical changes within the T cell; these changes, in the context of additional signals from other surface receptors, ultimately result in massive proliferation of receptor-engaged T cells and the acquisition of effector and memory functions. Early studies established the importance of the activation of the enzymes phospholipase C-gamma1 (PLC-gamma1) and phosphatidylinositol 3-kinase (PI3K), as well as the small molecular weight heterotrimeric guanine nucleotide binding protein (G protein) Ras, in this process. These biochemical events are dependent on the activity of several protein tyrosine kinases that become activated immediately upon TCR engagement. An unresolved question in the field has been which molecules and what sequence of events tie together the early tyrosine phosphorylation events with the activation of these downstream signaling molecules. A likely candidate for linking the proximal and distal portions of the TCR signaling pathway is the recently described protein, LAT. LAT is a 36-kD transmembrane protein that becomes rapidly tyrosine-phosphorylated after TCR engagement. Phosphorylation of LAT creates binding sites for the Src homology 2 (SH2) domains of other proteins, including PLC-gamma1, Grb2, Gads, Grap, 3BP2, and Shb, and indirectly binds SOS, c-Cbl, Vav, SLP-76, and Itk. LAT is localized to the glycolipid-enriched membrane (GEM) subdomains of the plasma membrane by virtue of palmitoylation of two cysteine residues positioned near the endofacial side of the plasma membrane. Notably, in the absence of LAT, TCR engagement does not lead to activation of distal signaling events. This review examines the circumstances surrounding the discovery of LAT and our current understanding of its properties, and discusses current models for how LAT may be functioning to support the transduction of TCR-initiated, T cell-specific signaling events to the distal, general signaling machinery.
Collapse
Affiliation(s)
- R L Wange
- Laboratory of Biological Chemistry, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
189
|
Irvin BJ, Williams BL, Nilson AE, Maynor HO, Abraham RT. Pleiotropic contributions of phospholipase C-gamma1 (PLC-gamma1) to T-cell antigen receptor-mediated signaling: reconstitution studies of a PLC-gamma1-deficient Jurkat T-cell line. Mol Cell Biol 2000; 20:9149-61. [PMID: 11094067 PMCID: PMC102173 DOI: 10.1128/mcb.20.24.9149-9161.2000] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipase C-gamma1 (PLC-gamma1) plays a crucial role in the coupling of T-cell antigen receptor (TCR) ligation to interleukin-2 (IL-2) gene expression in activated T lymphocytes. In this study, we have isolated and characterized two novel, PLC-gamma1-deficient sublines derived from the Jurkat T-leukemic cell line. The P98 subline displays a >90% reduction in PLC-gamma1 expression, while the J.gamma1 subline contains no detectable PLC-gamma1 protein. The lack of PLC-gamma1 expression in J.gamma1 cells caused profound defects in TCR-dependent Ca(2+) mobilization and NFAT activation. In contrast, both of these responses occurred at normal levels in PLC-gamma1-deficient P98 cells. Unexpectedly, the P98 cells displayed significant and selective defects in the activation of both the composite CD28 response element (RE/AP) and the full-length IL-2 promoter following costimulation with anti-TCR antibodies and phorbol ester. These transcriptional defects were reversed by transfection of P98 cells with a wild-type PLC-gamma1 expression vector but not by expression of mutated PLC-gamma1 constructs that lacked a functional, carboxyl-terminal SH2 [SH2(C)] domain or the major Tyr(783) phosphorylation site. On the other hand, the amino-terminal SH2 [SH2(N)] domain was not essential for reconstitution of RE/AP- or IL-2 promoter-dependent transcription but was required for the association of PLC-gamma1 with LAT, as well as the tyrosine phosphorylation of PLC-gamma1 itself, in activated P98 cells. These studies demonstrate that the PLC-gamma1 SH2(N) and SH2(C) domains play functionally distinct roles during TCR-mediated signaling and identify a non-Ca(2+)-related signaling function linked to the SH2(C) domain, which couples TCR plus phorbol ester-CD28 costimulation to the activation of the IL-2 promoter in T lymphocytes.
Collapse
Affiliation(s)
- B J Irvin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
190
|
Bikah G, Pogue-Caley RR, McHeyzer-Williams LJ, McHeyzer-Williams MG. Regulating T helper cell immunity through antigen responsiveness and calcium entry. Nat Immunol 2000; 1:402-12. [PMID: 11062500 DOI: 10.1038/80841] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We evaluated changes in the signaling potentials and proliferative capacity of single antigen-specific T helper (TH) cells during a primary immune response to a protein antigen. At the peak of cellular expansion in vivo all antigen-specific TH cells exhibited a profound block in CD3- and CD4-mediated mobilization of intracellular calcium together with a more global block in T cell receptor-independent capacitative calcium entry (CCE). The proliferative response of these antigen-specific TH cells to anti-CD3, anti-CD28 and IL-2 was also severely blunted. Cross-linking CD69 on a substantial fraction of CD69+ antigen-specific TH cells relieved this block in CCE and restored proliferative capacity in vitro. The CCE rescue operated through a CD69-coupled G protein and required calcium-bound calmodulin and calcineurin. These data reveal critical changes in the responsiveness of antigen-specific TH cells and provide evidence of new mechanisms for the regulation of antigen-specific TH cell development in vivo.
Collapse
Affiliation(s)
- G Bikah
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
191
|
Harder T, Kuhn M. Selective accumulation of raft-associated membrane protein LAT in T cell receptor signaling assemblies. J Cell Biol 2000; 151:199-208. [PMID: 11038169 PMCID: PMC2192654 DOI: 10.1083/jcb.151.2.199] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of T cell antigen receptor (TCR) induces tyrosine phosphorylations that mediate the assembly of signaling protein complexes. Moreover, cholesterol-sphingolipid raft membrane domains have been implicated to play a role in TCR signal transduction. Here, we studied the assembly of TCR with signal transduction proteins and raft markers in plasma membrane subdomains of Jurkat T leukemic cells. We employed a novel method to immunoisolate plasma membrane subfragments that were highly concentrated in activated TCR-CD3 complexes and associated signaling proteins. We found that the raft transmembrane protein linker for activation of T cells (LAT), but not a palmitoylation-deficient non-raft LAT mutant, strongly accumulated in TCR-enriched immunoisolates in a tyrosine phosphorylation-dependent manner. In contrast, other raft-associated molecules, including protein tyrosine kinases Lck and Fyn, GM1, and cholesterol, were not highly concentrated in TCR-enriched plasma membrane immunoisolates. Many downstream signaling proteins coisolated with the TCR/LAT-enriched plasma membrane fragments, suggesting that LAT/TCR assemblies form a structural scaffold for TCR signal transduction proteins. Our results indicate that TCR signaling assemblies in plasma membrane subdomains, rather than generally concentrating raft-associated membrane proteins and lipids, form by a selective protein-mediated anchoring of the raft membrane protein LAT in vicinity of TCR.
Collapse
Affiliation(s)
- T Harder
- Basel Institute for Immunology, CH-4005, Basel, Switzerland
| | | |
Collapse
|
192
|
Boerth NJ, Sadler JJ, Bauer DE, Clements JL, Gheith SM, Koretzky GA. Recruitment of SLP-76 to the membrane and glycolipid-enriched membrane microdomains replaces the requirement for linker for activation of T cells in T cell receptor signaling. J Exp Med 2000; 192:1047-58. [PMID: 11015445 PMCID: PMC2193307 DOI: 10.1084/jem.192.7.1047] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2000] [Accepted: 08/16/2000] [Indexed: 11/04/2022] Open
Abstract
Two hematopoietic-specific adapters, src homology 2 domain-containing leukocyte phosphoprotein of 76 kD (SLP-76) and linker for activation of T cells (LAT), are critical for T cell development and T cell receptor (TCR) signaling. Several studies have suggested that SLP-76 and LAT function coordinately to promote downstream signaling. In support of this hypothesis, we find that a fraction of SLP-76 localizes to glycolipid-enriched membrane microdomains (GEMs) after TCR stimulation. This recruitment of SLP-76 requires amino acids 224-244. The functional consequences of targeting SLP-76 to GEMs for TCR signaling are demonstrated using a LAT/SLP-76 chimeric protein. Expression of this construct reconstitutes TCR-inducted phospholipase Cgamma1 phosphorylation, extracellular signal-regulated kinase activation, and nuclear factor of activated T cells (NFAT) promoter activity in LAT-deficient Jurkat T cells (J.CaM2). Mutation of the chimeric construct precluding its recruitment to GEMs diminishes but does not eliminate its ability to support TCR signaling. Expression of a chimera that lacks SLP-76 amino acids 224-244 restores NFAT promoter activity, suggesting that if localized, SLP-76 does not require an association with Gads to promote T cell activation. In contrast, mutation of the protein tyrosine kinase phosphorylation sites of SLP-76 in the context of the LAT/SLP-76 chimera abolishes reconstitution of TCR function. Collectively, these experiments show that optimal TCR signaling relies on the compartmentalization of SLP-76 and that one critical function of LAT is to bring SLP-76 and its associated proteins to the membrane.
Collapse
Affiliation(s)
- N J Boerth
- Signal Transduction Program, The Leonard and Madlyn Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, 19104-6160, USA
| | | | | | | | | | | |
Collapse
|
193
|
Ishiai M, Kurosaki M, Inabe K, Chan AC, Sugamura K, Kurosaki T. Involvement of LAT, Gads, and Grb2 in compartmentation of SLP-76 to the plasma membrane. J Exp Med 2000; 192:847-56. [PMID: 10993915 PMCID: PMC2193288 DOI: 10.1084/jem.192.6.847] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
B cell linker protein (BLNK) and Src homology 2 domain-containing leukocyte protein of 76 kD (SLP-76) are adaptor proteins required for B cell receptor (BCR) and T cell receptor function, respectively. Here, we show that expression of SLP-76 cannot reconstitute BCR function in Zap-70(+)BLNK(-) B cells. This could be attributable to inability of SLP-76 to be recruited into glycolipid-enriched microdomains (GEMs) after antigen receptor cross-linking. Supporting this idea, the BCR function was restored when a membrane-associated SLP-76 chimera was enforcedly localized to GEMs. Moreover, we demonstrate that addition of both linker for activation of T cells (LAT) and Grb2-related adaptor downstream of Shc (Gads) to SLP-76 allow SLP-76 to be recruited into GEMs, whereby the BCR function is reconstituted. The Gads function was able to be replaced by overexpression of Grb2. In contrast to SLP-76, BLNK did not require Grb2 families for its recruitment to GEMs. Hence, these data suggest a functional overlap between BLNK and SLP-76, while emphasizing the difference in requirement for additional adaptor molecules in their targeting to GEMs.
Collapse
Affiliation(s)
- M Ishiai
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi 570-8506, Japan
| | | | | | | | | | | |
Collapse
|
194
|
Sundvold V, Torgersen KM, Post NH, Marti F, King PD, Røttingen JA, Spurkland A, Lea T. T cell-specific adapter protein inhibits T cell activation by modulating Lck activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2927-31. [PMID: 10975797 DOI: 10.4049/jimmunol.165.6.2927] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported the isolation of a cDNA encoding a T cell-specific adapter protein (TSAd). Its amino acid sequence contains an SH2 domain, tyrosines in protein binding motifs, and proline-rich regions. In this report we show that expression of TSAd is induced in normal peripheral blood T cells stimulated with anti-CD3 mAbs or anti-CD3 plus anti-CD28 mAbs. Overexpression of TSAd in Jurkat T cells interfered with TCR-mediated signaling by down-modulating anti-CD3/PMA-induced IL-2 promoter activity and anti-CD3 induced Ca2+ mobilization. The TCR-induced tyrosine phosphorylation of phospholipase C-gamma1, SH2-domain-containing leukocyte-specific phosphoprotein of 76kDa, and linker for activation of T cells was also reduced. Furthermore, TSAd inhibited Zap-70 recruitment to the CD3zeta-chains in a dose-dependent manner. Consistent with this, Lck kinase activity was reduced 3- to 4-fold in COS-7 cells transfected with both TSAd and Lck, indicating a regulatory effect of TSAd on Lck. In conclusion, our data strongly suggest an inhibitory role for TSAd in proximal T cell activation.
Collapse
Affiliation(s)
- V Sundvold
- Institute of Immunology, The National Hospital, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Signaling via LAT (linker for T-cell activation) and Syk/ZAP70 is required for ERK activation and NFAT transcriptional activation following CD2 stimulation. Blood 2000. [DOI: 10.1182/blood.v96.6.2181] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractActivation of T cells can be initiated through cell surface molecules in addition to the T-cell receptor-CD3 (TCR-CD3) complex. In human T cells, ligation of the CD2 molecule by mitogenic pairs of anti-CD2 monoclonal antibodies activates T cells via biochemical signaling pathways similar but not identical to those elicited on TCR engagement. This study describes a key role for the p36/38 membrane adapter protein linker for T cell activation (LAT) in CD2-mediated T-cell activation. Following ligation of CD2 on the surface of the Jurkat T-cell line and human purified T cells, LAT was tyrosine phosphorylated and shown to associate in vivo with a number of other tyrosine phosphorylated proteins including PLCγ-1, Grb-2, and SLP-76. Using Jurkat cell lines deficient in ZAP70/Syk (P116) or LAT (ANJ3) expression, CD2-dependent PLCγ-1 and SLP-76 tyrosine phosphorylation required expression both of ZAP70 or Syk and of LAT. As predicted, the absence of either LAT or ZAP70/Syk kinases correlated with a defect in the induction of nuclear factor of activated T cells (NFAT) transcriptional activity, activation of the interleukin-2 promoter, and ERK phosphorylation following CD2 stimulation. These data suggest that LAT is an adapter protein important for the regulation of CD2-mediated T-cell activation.
Collapse
|
196
|
Signaling via LAT (linker for T-cell activation) and Syk/ZAP70 is required for ERK activation and NFAT transcriptional activation following CD2 stimulation. Blood 2000. [DOI: 10.1182/blood.v96.6.2181.h8002181_2181_2190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of T cells can be initiated through cell surface molecules in addition to the T-cell receptor-CD3 (TCR-CD3) complex. In human T cells, ligation of the CD2 molecule by mitogenic pairs of anti-CD2 monoclonal antibodies activates T cells via biochemical signaling pathways similar but not identical to those elicited on TCR engagement. This study describes a key role for the p36/38 membrane adapter protein linker for T cell activation (LAT) in CD2-mediated T-cell activation. Following ligation of CD2 on the surface of the Jurkat T-cell line and human purified T cells, LAT was tyrosine phosphorylated and shown to associate in vivo with a number of other tyrosine phosphorylated proteins including PLCγ-1, Grb-2, and SLP-76. Using Jurkat cell lines deficient in ZAP70/Syk (P116) or LAT (ANJ3) expression, CD2-dependent PLCγ-1 and SLP-76 tyrosine phosphorylation required expression both of ZAP70 or Syk and of LAT. As predicted, the absence of either LAT or ZAP70/Syk kinases correlated with a defect in the induction of nuclear factor of activated T cells (NFAT) transcriptional activity, activation of the interleukin-2 promoter, and ERK phosphorylation following CD2 stimulation. These data suggest that LAT is an adapter protein important for the regulation of CD2-mediated T-cell activation.
Collapse
|
197
|
Liu SK, Smith CA, Arnold R, Kiefer F, McGlade CJ. The adaptor protein Gads (Grb2-related adaptor downstream of Shc) is implicated in coupling hemopoietic progenitor kinase-1 to the activated TCR. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1417-26. [PMID: 10903746 DOI: 10.4049/jimmunol.165.3.1417] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The hemopoietic-specific Gads (Grb2-related adaptor downstream of Shc) adaptor protein possesses amino- and carboxyl-terminal Src homology 3 (SH3) domains flanking a central SH2 domain and a unique region rich in glutamine and proline residues. Gads functions to couple the activated TCR to distal signaling events through its interactions with the leukocyte-specific signaling proteins SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) and LAT (linker for activated T cells). Expression library screening for additional Gads-interacting molecules identified the hemopoietic progenitor kinase-1 (HPK1), and we investigated the HPK1-Gads interaction within the DO11.10 murine T cell hybridoma system. Our results demonstrate that HPK1 inducibly associates with Gads and becomes tyrosine phosphorylated following TCR activation. HPK1 kinase activity is up-regulated in response to activation of the TCR and requires the presence of its proline-rich motifs. Mapping experiments have revealed that the carboxyl-terminal SH3 domain of Gads and the fourth proline-rich region of HPK1 are essential for their interaction. Deletion of the fourth proline-rich region of HPK1 or expression of a Gads SH2 mutant in T cells inhibits TCR-induced HPK1 tyrosine phosphorylation. Together, these data suggest that HPK1 is involved in signaling downstream from the TCR, and that SH2/SH3 domain-containing adaptor proteins, such as Gads, may function to recruit HPK1 to the activated TCR complex.
Collapse
Affiliation(s)
- S K Liu
- Department of Medical Biophysics and The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
198
|
Tamir A, Eisenbraun MD, Garcia GG, Miller RA. Age-dependent alterations in the assembly of signal transduction complexes at the site of T cell/APC interaction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1243-51. [PMID: 10903722 DOI: 10.4049/jimmunol.165.3.1243] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCR interaction with peptide-MHC complexes triggers migration of protein kinases, actin-binding proteins, and other accessory molecules to the T cell/APC synapse. We used confocal immunofluorescence methods to show that the adapter protein LAT (linker for activation of T cells) and the guanine nucleotide exchange factor Vav also move to the APC interface in mouse CD4 T cells conjugated to anti-CD3 hybridoma cells, and in TCR-transgenic CD4 cells conjugated to APC bearing agonist (but not closely related nonagonist) peptides. The proportion of CD4+ T cells able to relocalize LAT or Vav, or to relocate cytoplasmic NT-AT (NF-ATc) from cytoplasm to nucleus, declines about 2-fold in aged mice. The decline in LAT relocalization is accompanied by a similar decline in tyrosine phosphorylation of LAT in CD4 cells stimulated by CD3/CD4 cross-linking. Two-color experiments show that LAT redistribution is strongly associated with relocalization of both NF-ATc and protein kinase C-theta among individual cells. LAT migration to the immunological synapse depends on actin polymerization as well as on activity of Src family kinases, but aging leads to only a small change in the percentage of CD4 cells that redistribute F-actin to the site of APC contact. These results suggest that defects in the ability of T cells from aged donors to move kinase substrates and coupling factors, including LAT and Vav, into the T cell/APC contact region may contribute to the decline with age in NF-ATc-dependent gene expression, and thus to defects in T cell clonal expansion.
Collapse
Affiliation(s)
- A Tamir
- Department of Pathology, Cellular and Molecular Biology Graduate Program, and Geriatrics Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
199
|
Petrie RJ, Schnetkamp PP, Patel KD, Awasthi-Kalia M, Deans JP. Transient translocation of the B cell receptor and Src homology 2 domain-containing inositol phosphatase to lipid rafts: evidence toward a role in calcium regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1220-7. [PMID: 10903719 DOI: 10.4049/jimmunol.165.3.1220] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane microdomains (lipid rafts) are enriched in selected signaling molecules and may compartmentalize receptor-mediated signals. Here, we report that in primary human B lymphocytes and in Ramos B cells B cell receptor (BCR) stimulation induces rapid and transient redistribution of a subset of engaged BCRs to lipid rafts and phosphorylation of raft-associated tyrosine kinase substrates. Cholesterol sequestration disrupted the lipid rafts, preventing BCR redistribution, but did not inhibit tyrosine kinase activation or phosphorylation of mitogen-activated protein kinase/extracellular regulated kinase. However, raft disruption enhanced the release of calcium from intracellular stores, suggesting that rafts may sequester early signaling events that down-regulate calcium flux. Consistent with this, BCR stimulation induced rapid and transient translocation of the Src homology 2 domain-containing inositol phosphatase, SHIP, into lipid rafts.
Collapse
Affiliation(s)
- R J Petrie
- Departments of Biochemistry and Molecular Biology and Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
200
|
Zhang W, Trible RP, Zhu M, Liu SK, McGlade CJ, Samelson LE. Association of Grb2, Gads, and phospholipase C-gamma 1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell angigen receptor-mediated signaling. J Biol Chem 2000; 275:23355-61. [PMID: 10811803 DOI: 10.1074/jbc.m000404200] [Citation(s) in RCA: 315] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The linker for activation of T cells (LAT) is a critical adaptor molecule required for T cell antigen receptor (TCR)-mediated signaling and thymocyte development. Upon T cell activation, LAT becomes highly phosphorylated on tyrosine residues, and Grb2, Gads, and phospholipase C (PLC)-gamma1 bind LAT via Src homology-2 domains. In LAT-deficient mutant Jurkat cells, TCR engagement fails to induce ERK activation, Ca(2+) flux, and activation of AP-1 and NF-AT. We mapped the tyrosine residues in LAT responsible for interaction with these specific signaling molecules by expressing LAT mutants with tyrosine to phenylalanine mutations in LAT-deficient cells. Our results showed that three distal tyrosines, Tyr(171), Tyr(191), and Tyr(226), are responsible for Grb2-binding; Tyr(171), and Tyr(191), but not Tyr(226), are necessary for Gads binding. Mutation of Tyr(132) alone abolished PLC-gamma1 binding. Mutation of all three distal tyrosines also abolished PLC-gamma1 binding, suggesting there might be multiple binding sites for PLC-gamma1. Mutation of Tyr(132) affected calcium flux and blocked Erk and NF-AT activation. Since Grb2 binding is not affected by this mutation, these results strongly suggest that PLC-gamma activation regulates Ras activation in these cells. Mutation of individual Grb2 binding sites had no functional effect, but mutation of two or three of these sites, in combination, also affected Erk and NF-AT activation.
Collapse
Affiliation(s)
- W Zhang
- Laboratory of Cellular and Molecular Biology, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | |
Collapse
|