151
|
Miller D. Confrontation, Consolidation, and Recognition: The Oocyte's Perspective on the Incoming Sperm. Cold Spring Harb Perspect Med 2015; 5:a023408. [PMID: 25957313 PMCID: PMC4526728 DOI: 10.1101/cshperspect.a023408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
From the oocyte's perspective, the incoming sperm poses a significant challenge. Despite (usually) arising from a male of the same species, the sperm is a "foreign" body that may carry with it additional, undesirable factors such as transposable elements (mainly retroposons) into the egg. These factors can arise either during spermatogenesis or while the sperm is moving through the epididymis or the female genital tract. Furthermore, in addition to the paternal genome, the sperm also carries its own complex repertoire of RNAs into the egg that includes mRNAs, lncRNAs, and sncRNAs. Last, the paternal genome itself is efficiently packaged into a protamine (nucleo-toroid) and histone (nucleosome)-based chromatin scaffold within which much of the RNA is embedded. Taken together, the sperm delivers a far more complex package to the egg than was originally thought. Understanding this complexity, at both the compositional and structural level, depends largely on investigating sperm chromatin from both the genomic (DNA packaging) and epigenomic (RNA carriage and extant histone modifications) perspectives. Why this complexity has arisen and its likely purpose requires us to look more closely at what happens in the oocyte when the sperm gains entry and the processes that then take place preparing the paternal (and maternal) genomes for syngamy.
Collapse
Affiliation(s)
- David Miller
- Institute of Cardiovascular and Metabolic Medicine (LICAMM), LIGHT Laboratories, University of Leeds, Leeds, LS2 9JT West Yorkshire, United Kingdom
| |
Collapse
|
152
|
Johnston SD, López-Fernández C, Arroyo F, Fardell S, Roy R, Gosálvez J. Spermatozoa of Sminthopsis murina (Mammalia: Metatheria) exhibit an unusually high degree of chromatin stability in the absence of disulphide bonding in protamine 1. Reprod Fertil Dev 2015; 28:RD14504. [PMID: 25714780 DOI: 10.1071/rd14504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/05/2015] [Indexed: 11/23/2022] Open
Abstract
Although all but a single genus (Planigale) of the metatheria so far examined contain no cysteine residues in protamine 1, we report a remarkable level of chromatin stability in the spermatozoa of the common dunnart, Sminthopsis murina. S. murina cauda epididymal spermatozoa and somatic epithelial cells were exposed to a combination of graded treatments to lyse sperm protein and induce sperm DNA damage via standard freeze-thaw protocols and post-thaw incubation at 37°C for 48h, exposure to sodium nitroprusside (SNP) and the enzyme AluI restriction endonuclease. Sperm DNA fragmentation was assessed using the comet assay and sperm chromatin dispersal test. Although S. murina somatic cells showed DNA fragmentation following protein lysis and after treatment with all the protocols specifically designed to induce chromatin damage, sperm DNA fragmentation was only observed following moderate to severe proteolytic exposure and treatment with the restriction endonuclease; there was also an increase in the baseline halo of spermatozoa treated with an aggressive reducing agent, but no corresponding evidence of fragmented DNA, suggesting that cysteine residues may be functioning to conform tertiary and/or quaternary chromatin structure. Given that the protamine 1 of S. murina contains no cysteine, we suggest that the source of these residues is possibly the histone fraction of the chromatin and that the high level of stability is potentially related to prolonged sperm survival in the female's reproductive tract.
Collapse
|
153
|
Dogan S, Vargovic P, Oliveira R, Belser LE, Kaya A, Moura A, Sutovsky P, Parrish J, Topper E, Memili E. Sperm protamine-status correlates to the fertility of breeding bulls. Biol Reprod 2015; 92:92. [PMID: 25673563 DOI: 10.1095/biolreprod.114.124255] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 02/06/2015] [Indexed: 01/29/2023] Open
Abstract
During fertilization, spermatozoa make essential contributions to embryo development by providing oocyte activating factors, centrosomal components, and paternal chromosomes. Protamines are essential for proper packaging of sperm DNA; however, in contrast to the studies of oocyte-related female infertility, the influence of sperm chromatin structure on male infertility has not been evaluated extensively. The objective of this study was to determine the sperm chromatin content of bull spermatozoa by evaluating DNA fragmentation, chromatin maturity/protamination, PRM1 protein status, and nuclear shape in spermatozoa from bulls with different fertility. Relationships between protamine 1 (PRM1) and the chromatin integrity were ascertained in spermatozoa from Holstein bulls with varied (high vs. low) but acceptable fertility. Sperm DNA fragmentation and chromatin maturity (protamination) were tested using Halomax assay and toluidine blue staining, respectively. The PRM1 content was assayed using Western blotting and in-gel densitometry, flow cytometry, and immunocytochemistry. Fragmentation of DNA was increased and chromatin maturity significantly reduced in spermatozoa from low-fertility bulls compared to those from high-fertility bulls. Field fertility scores of the bulls were negatively correlated with the percentage of spermatozoa displaying reduced protamination and fragmented DNA using toluidine blue and Halomax, respectively. Bull fertility was also positively correlated with PRM1 content by Western blotting and flow cytometry. However, detection of PRM1 content by Western blotting alone was not predictive of bull fertility. In immunocytochemistry, abnormal spermatozoa showed either a lack of PRM1 or scattered localization in the apical/acrosomal region of the nuclei. The nuclear shape was distorted in spermatozoa from low-fertility bulls. In conclusion, we showed that inadequate amount and localization of PRM1 were associated with defects in sperm chromatin structure, coinciding with reduced fertility in bulls. These findings are highly significant because they reveal molecular and morphological phenotypes of mammalian spermatozoa that influence fertility.
Collapse
Affiliation(s)
- Sule Dogan
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, Mississippi
| | - Peter Vargovic
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | | | - Lauren E Belser
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, Mississippi
| | | | | | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, Missouri Departments of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri
| | - John Parrish
- Department of Animal Science, University of Wisconsin, Madison, Madison, Wisconsin
| | - Einko Topper
- Alta Genetics Incorporated, Watertown, Wisconsin
| | - Erdoğan Memili
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, Mississippi
| |
Collapse
|
154
|
Salces-Ortiz J, Ramón M, González C, Pérez-Guzmán MD, Garde JJ, García-Álvarez O, Maroto-Morales A, Calvo JH, Serrano MM. Differences in the ovine HSP90AA1 gene expression rates caused by two linked polymorphisms at its promoter affect rams sperm DNA fragmentation under environmental heat stress conditions. PLoS One 2015; 10:e0116360. [PMID: 25671615 PMCID: PMC4324765 DOI: 10.1371/journal.pone.0116360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/28/2014] [Indexed: 12/11/2022] Open
Abstract
Heat shock (HS) is one of the best-studied exogenous cellular stresses. Almost all tissues, cell types, metabolic pathways and biochemical reactions are affected in greater or lesser extent by HS. However, there are some especially thermo sensible cellular types such as the mammalian male germ cells. The present study examined the role of three INDELs in conjunction with the -660G/C polymorphism located at the HSP90AA1 promoter region over the gene expression rate under HS. Specially, the -668insC INDEL, which is very close to the -660G/C transversion, is a good candidate to be implied in the transcriptional regulation of the gene by itself or in a cooperative way with this SNP. Animals carrying the genotype II-668 showed higher transcription rates than those with ID-668 (FC = 3.07) and DD-668 (FC = 3.40) genotypes for samples collected under HS. A linkage between gene expression and sperm DNA fragmentation was also found. When HS conditions were present along or in some stages of the spermatogenesis, alternative genotypes of the -668insC and -660G/C mutations are involved in the effect of HS over sperm DNA fragmentation. Thus, unfavorable genotypes in terms of gene expression induction (ID-668GC-660 and DD-668GG-660) do not produce enough mRNA (stored as messenger ribonucleoprotein particles) and Hsp90α protein to cope with future thermal stress which might occur in posterior stages when transcriptional activity is reduced and cell types and molecular processes are more sensible to heat (spermatocytes in pachytene and spermatids protamination). This would result in the impairment of DNA packaging and the consequent commitment of the events occurring shortly after fertilization and during embryonic development. In the short-term, the assessment of the relationship between sperm DNA fragmentation sensitivity and ram’s fertility will be of interest to a better understanding of the mechanisms of response to HS and its consequences on animal production and reproduction performance.
Collapse
Affiliation(s)
| | - Manuel Ramón
- CERSYRA, Av. Del Vino 10, 13300, Valdepeñas, Spain
- * E-mail:
| | | | | | - J. Julián Garde
- SaBio IREC (CSIC–UCLM–JCCM) Campus Universitario S.N., 02071, Albacete, Spain
| | - Olga García-Álvarez
- SaBio IREC (CSIC–UCLM–JCCM) Campus Universitario S.N., 02071, Albacete, Spain
| | | | - Jorge H. Calvo
- Unidad de Tecnología en Producción Animal, CITA, 59059, Zaragoza, Spain
| | | |
Collapse
|
155
|
A simple sperm DNA toroid integrity test and risk of miscarriage. BIOMED RESEARCH INTERNATIONAL 2015; 2015:780983. [PMID: 25649376 PMCID: PMC4310444 DOI: 10.1155/2015/780983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/17/2014] [Indexed: 12/22/2022]
Abstract
Current methods of analyzing sperm chromatin competency overlook the inner sperm compartment which is inaccessible to probes and reagents. By breaking the molecular protamine disulfide bridges, the DNA toroids are exposed to integrity analysis. The aim was to develop a simple nuclear toroid test and determine its association with fertilization, pregnancy, and miscarriage. The approach involved treating washed sperm remaining after ICSI procedures (N=35 cases) with acidified Triton X-100 and dithiothreitol (DTT) before Diff-Quik staining. Percentages of sperm with normal chromatin indicated by light-colored nuclei were assessed. The toroid integrity test showed more sperm with normal chromatin in the pregnant group (73.6±1.7%, mean±SEM) when compared with the miscarriage (51.2±6.6%) or nonpregnant groups (60.9±4.8%). Furthermore, the toroid results were correlated with ICSI fertilization (R=0.32, P=0.04) and pregnancy outcome (pregnant cases 73.6±1.7% versus nonpregnant 58.0±3.9%, P=0.001). ROC calculated cut-off was >70.0% for normal toroid integrity (sensitivity 0.98, specificity 0.33, and diagnostic accuracy 78.3%). An association between normal sperm toroid integrity and miscarriage was evident when the staining procedure included acidified detergent DTT pretreatment.
Collapse
|
156
|
|
157
|
Fernández-Díez C, González-Rojo S, Montfort J, Le Cam A, Bobe J, Robles V, Pérez-Cerezales S, Herráez MP. Inhibition of zygotic DNA repair: transcriptome analysis of the offspring in trout (Oncorhynchus mykiss). Reproduction 2015; 149:101-11. [DOI: 10.1530/rep-14-0382] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Zygotic repair of the paternal genome is a key event after fertilization. Spermatozoa accumulate DNA strand breaks during spermatogenesis and can suffer additional damage by different factors, including cryopreservation. Fertilization with DNA-damaged spermatozoa (DDS) is considered to promote implantation failures and abortions, but also long-term effects on the progeny that could be related with a defective repair. Base excision repair (BER) pathway is considered the most active in zygotic DNA repair, but healthy oocytes contain enzymes for all repairing pathways. In this study, the effects of the inhibition of the BER pathway in the zygote were analyzed on the progeny obtained after fertilization with differentially DDS. Massive gene expression (GE; 61 657 unique probes) was analyzed after hatching using microarrays. Trout oocytes are easily fertilized with DDS and the high prolificacy allows live progeny to be obtained even with a high rate of abortions. Nevertheless, the zygotic inhibition of Poly (ADP-ribose) polymerase, upstream of BER pathway, resulted in 810 differentially expressed genes (DEGs) after hatching. DEGs are related with DNA repair, apoptosis, telomere maintenance, or growth and development, revealing a scenario of impaired DNA damage signalization and repair. Downregulation of the apoptotic cascade was noticed, suggesting a selection of embryos tolerant to residual DNA damage during embryo development. Our results reveal changes in the progeny from defective repairing zygotes including higher malformations rate, weight gain, longer telomeres, and lower caspase 3/7 activity, whose long-term consequences should be analyzed in depth.
Collapse
|
158
|
Gavriliouk D, Aitken RJ. Damage to Sperm DNA Mediated by Reactive Oxygen Species: Its Impact on Human Reproduction and the Health Trajectory of Offspring. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 868:23-47. [DOI: 10.1007/978-3-319-18881-2_2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
159
|
González-Rojo S, Fernández-Díez C, Guerra SM, Robles V, Herraez MP. Differential gene susceptibility to sperm DNA damage: analysis of developmental key genes in trout. PLoS One 2014; 9:e114161. [PMID: 25479606 PMCID: PMC4257556 DOI: 10.1371/journal.pone.0114161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 11/04/2014] [Indexed: 11/21/2022] Open
Abstract
Sperm chromatin in mammals is packaged in different blocks associated to protamines (PDNA), histones (HDNA), or nuclear matrix proteins. Differential packaging has been related to early or late transcription and also to differential susceptibility to genotoxic damage. Genes located in the more accessible HDNA could be more susceptible to injuries than those located in PDNA, being potential biomarkers of paternal DNA damage. Fish sperm chromatin organization is much diversified, some species lacking protamines and some others totally depleted of histones. Analyzing genotoxic damage in a species homogeneously compacted with some sperm nuclear basic protein type, could help in deciphering the clues of differential susceptibility to damage. In the present study we analyzed in rainbow trout the differential susceptibility of nine genes to UV irradiation and H2O2 treatment. The absence of histones in the sperm nuclei was confirmed by Western blot. The chromatin fractionation in sensitive and resistant regions to PvuII (presumably HDNA-like and PDNA-like, respectively) revealed that the nine genes locate in the same resistant region. The number of lesions promoted was quantified using a qPCR approach. Location of 8-hydroxyguanosine (8-OHdG) was analyzed by immunocytochemistry and confocal microscopy. UV irradiation promoted similar number of lesions in all the analyzed genes and a homogenous distribution of 8-OHdG within the nuclei. 8-OHdG was located in the peripheral area of the nucleus after H2O2 treatment, which promoted a significantly higher number of lesions in developmental-related genes (8.76–10.95 lesions/10 kb) than in rDNA genes (1.05–1.67 lesions/10 kb). We showed for the first time, that differential susceptibility to damage is dependent on the genotoxic mechanism and relies on positional differences between genes. Sensitive genes were also analyzed in cryopreserved sperm showing a lower number of lesions than the previous treatments and a predominant peripheral distribution of oxidative damage (8-OHdG).
Collapse
Affiliation(s)
| | | | - Susana M. Guerra
- Department of Molecular Biology, University of León, León, Spain
| | - Vanesa Robles
- Department of Molecular Biology, University of León, León, Spain
| | - Maria Paz Herraez
- Department of Molecular Biology, University of León, León, Spain
- * E-mail:
| |
Collapse
|
160
|
Palermo GD, Neri QV, Cozzubbo T, Rosenwaks Z. Perspectives on the assessment of human sperm chromatin integrity. Fertil Steril 2014; 102:1508-17. [DOI: 10.1016/j.fertnstert.2014.10.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 12/13/2022]
|
161
|
Ward WS, Moisyadi S. Medical school hotline: The Institute for Biogenesis Research: a flower in the Pacific. HAWAI'I JOURNAL OF MEDICINE & PUBLIC HEALTH : A JOURNAL OF ASIA PACIFIC MEDICINE & PUBLIC HEALTH 2014; 73:393-6. [PMID: 25628972 PMCID: PMC4300549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- W Steven Ward
- Professor of the Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI, and Director of the Institute for Biogenesis Research, Honolulu, HI (WSW)
| | - Stefan Moisyadi
- Professor of the Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI, and Director of the Institute for Biogenesis Research, Honolulu, HI (WSW)
| |
Collapse
|
162
|
Kasinsky H, Ellis S, Martens G, Ausió J. Dynamic aspects of spermiogenic chromatin condensation patterning by phase separation during the histone-to-protamine transition in charalean algae and relation to bryophytes. Tissue Cell 2014; 46:415-32. [DOI: 10.1016/j.tice.2014.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/07/2014] [Accepted: 07/21/2014] [Indexed: 10/25/2022]
|
163
|
Affiliation(s)
- Gayatri Mohanty
- Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Orissa, India
| | - Nirlipta Swain
- Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Orissa, India
| | - Luna Samanta
- Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Orissa, India
| |
Collapse
|
164
|
Drosophila protamine-like Mst35Ba and Mst35Bb are required for proper sperm nuclear morphology but are dispensable for male fertility. G3-GENES GENOMES GENETICS 2014; 4:2241-5. [PMID: 25236732 PMCID: PMC4232549 DOI: 10.1534/g3.114.012724] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During spermiogenesis, histones are massively replaced with protamines. A previous report showed that Drosophila males homozygous for a genomic deletion covering several genes including the protamine-like genes Mst35Ba/b are surprisingly fertile. Here, we have precisely deleted the Mst35B locus by homologous recombination, and we confirm the dispensability of Mst35Ba/b for fertility.
Collapse
|
165
|
Abstract
At fertilization, the gametes endow the embryo with a genomic blueprint, the integrity of which is affected by the age and environmental exposures of both parents. Recent studies reveal that parental history and experiences also exert effects through epigenomic information not contained in the DNA sequence, including variations in sperm and oocyte cytosine methylation and chromatin patterning, noncoding RNAs, and mitochondria. Transgenerational epigenetic effects interact with conditions at conception to program the developmental trajectory of the embryo and fetus, ultimately affecting the lifetime health of the child. These insights compel us to revise generally held notions to accommodate the prospect that biological parenting commences well before birth, even prior to conception.
Collapse
Affiliation(s)
- Michelle Lane
- The Robinson Research Institute and School of Paediatrics and Reproductive Health, The University of Adelaide, Level 3, Medical School, South Adelaide, SA, 5005 Australia
| | - Rebecca L Robker
- The Robinson Research Institute and School of Paediatrics and Reproductive Health, The University of Adelaide, Level 3, Medical School, South Adelaide, SA, 5005 Australia
| | - Sarah A Robertson
- The Robinson Research Institute and School of Paediatrics and Reproductive Health, The University of Adelaide, Level 3, Medical School, South Adelaide, SA, 5005 Australia.
| |
Collapse
|
166
|
Rajput SK, Lee K, Zhenhua G, Di L, Folger JK, Smith GW. Embryotropic actions of follistatin: paracrine and autocrine mediators of oocyte competence and embryo developmental progression. Reprod Fertil Dev 2014; 26:37-47. [PMID: 24305175 DOI: 10.1071/rd13282] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite several decades since the birth of the first test tube baby and the first calf derived from an in vitro-fertilised embryo, the efficiency of assisted reproductive technologies remains less than ideal. Poor oocyte competence is a major factor limiting the efficiency of in vitro embryo production. Developmental competence obtained during oocyte growth and maturation establishes the foundation for successful fertilisation and preimplantation embryonic development. Regulation of molecular and cellular events during fertilisation and embryo development is mediated, in part, by oocyte-derived factors acquired during oocyte growth and maturation and programmed by factors of follicular somatic cell origin. The available evidence supports an important intrinsic role for oocyte-derived follistatin and JY-1 proteins in mediating embryo developmental progression after fertilisation, and suggests that the paracrine and autocrine actions of oocyte-derived growth differentiation factor 9, bone morphogenetic protein 15 and follicular somatic cell-derived members of the fibroblast growth factor family impact oocyte competence and subsequent embryo developmental progression after fertilisation. An increased understanding of the molecular mechanisms mediating oocyte competence and stage-specific developmental events during early embryogenesis is crucial for further improvements in assisted reproductive technologies.
Collapse
Affiliation(s)
- Sandeep K Rajput
- Laboratory of Mammalian Reproductive Biology and Genomics, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
167
|
Li J, Huan Y, Xie B, Wang J, Zhao Y, Jiao M, Huang T, Kong Q, Liu Z. Identification and characterization of an oocyte factor required for sperm decondensation in pig. Reproduction 2014; 148:367-75. [PMID: 25030891 DOI: 10.1530/rep-14-0264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mammalian oocytes possess factors to support fertilization and embryonic development, but knowledge on these oocyte-specific factors is limited. In the current study, we demonstrated that porcine oocytes with the first polar body collected at 33 h of in vitro maturation sustain IVF with higher sperm decondensation and pronuclear formation rates and support in vitro development with higher cleavage and blastocyst rates, compared with those collected at 42 h (P<0.05). Proteomic analysis performed to clarify the mechanisms underlying the differences in developmental competence between oocytes collected at 33 and 42 h led to the identification of 18 differentially expressed proteins, among which protein disulfide isomerase associated 3 (PDIA3) was selected for further study. Inhibition of maternal PDIA3 via antibody injection disrupted sperm decondensation; conversely, overexpression of PDIA3 in oocytes improved sperm decondensation. In addition, sperm decondensation failure in PDIA3 antibody-injected oocytes was rescued by dithiothreitol, a commonly used disulfide bond reducer. Our results collectively report that maternal PDIA3 plays a crucial role in sperm decondensation by reducing protamine disulfide bonds in porcine oocytes, supporting its utility as a potential tool for oocyte selection in assisted reproduction techniques.
Collapse
Affiliation(s)
- Jingyu Li
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Yanjun Huan
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Bingteng Xie
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Jiaqiang Wang
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Yanhua Zhao
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Mingxia Jiao
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Tianqing Huang
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Qingran Kong
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Zhonghua Liu
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| |
Collapse
|
168
|
Lane M, McPherson NO, Fullston T, Spillane M, Sandeman L, Kang WX, Zander-Fox DL. Oxidative stress in mouse sperm impairs embryo development, fetal growth and alters adiposity and glucose regulation in female offspring. PLoS One 2014; 9:e100832. [PMID: 25006800 PMCID: PMC4089912 DOI: 10.1371/journal.pone.0100832] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/29/2014] [Indexed: 12/19/2022] Open
Abstract
Paternal health cues are able to program the health of the next generation however the mechanism for this transmission is unknown. Reactive oxygen species (ROS) are increased in many paternal pathologies, some of which program offspring health, and are known to induce DNA damage and alter the methylation pattern of chromatin. We therefore investigated whether a chemically induced increase of ROS in sperm impairs embryo, pregnancy and offspring health. Mouse sperm was exposed to 1500 µM of hydrogen peroxide (H2O2), which induced oxidative damage, however did not affect sperm motility or the ability to bind and fertilize an oocyte. Sperm treated with H2O2 delayed on-time development of subsequent embryos, decreased the ratio of inner cell mass cells (ICM) in the resulting blastocyst and reduced implantation rates. Crown-rump length at day 18 of gestation was also reduced in offspring produced by H2O2 treated sperm. Female offspring from H2O2 treated sperm were smaller, became glucose intolerant and accumulated increased levels of adipose tissue compared to control female offspring. Interestingly male offspring phenotype was less severe with increases in fat depots only seen at 4 weeks of age, which was restored to that of control offspring later in life, demonstrating sex-specific impacts on offspring. This study implicates elevated sperm ROS concentrations, which are common to many paternal health pathologies, as a mediator of programming offspring for metabolic syndrome and obesity.
Collapse
Affiliation(s)
- Michelle Lane
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health and Robinson Institute, University of Adelaide, South Australia, Australia
- Repromed, Dulwich, South Australia, Australia
- * E-mail:
| | - Nicole O. McPherson
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health and Robinson Institute, University of Adelaide, South Australia, Australia
| | - Tod Fullston
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health and Robinson Institute, University of Adelaide, South Australia, Australia
| | - Marni Spillane
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health and Robinson Institute, University of Adelaide, South Australia, Australia
| | - Lauren Sandeman
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health and Robinson Institute, University of Adelaide, South Australia, Australia
| | - Wan Xian Kang
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health and Robinson Institute, University of Adelaide, South Australia, Australia
| | - Deirdre L. Zander-Fox
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health and Robinson Institute, University of Adelaide, South Australia, Australia
- Repromed, Dulwich, South Australia, Australia
| |
Collapse
|
169
|
A double-blinded comparison of in situ TUNEL and aniline blue versus flow cytometry acridine orange for the determination of sperm DNA fragmentation and nucleus decondensation state index. ZYGOTE 2014; 23:556-62. [PMID: 24988915 PMCID: PMC4501373 DOI: 10.1017/s0967199414000288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The impact of sperm DNA fragmentation on assisted reproductive technology (ART) successes, in terms of outcome, is now established. High levels of DNA strand breaks severely affect the probability of pregnancy. The importance of sperm nucleus condensation in early embryogenesis and, subsequently, on the quality of the conceptus is now emerging. In this article we have compared in situ analyses with terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labelling (TUNEL) (for DNA fragmentation) with aniline blue (AB) (for nucleus decondensation), versus flow cytometry (FC) after acridine orange staining, in a double-blinded analysis. In our hands, TUNEL and acridine orange give perfectly comparable results. For decondensation the results are also comparable, but the double-stranded green fluorescence obtained with acridine orange seems to slightly underestimate the decondensation status obtained with AB.
Collapse
|
170
|
Tandara M, Bajić A, Tandara L, Bilić-Zulle L, Šunj M, Kozina V, Goluža T, Jukić M. Sperm DNA integrity testing: big halo is a good predictor of embryo quality and pregnancy after conventional IVF. Andrology 2014; 2:678-86. [DOI: 10.1111/j.2047-2927.2014.00234.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/19/2014] [Accepted: 05/12/2014] [Indexed: 01/06/2023]
Affiliation(s)
- M. Tandara
- Department of Human Reproduction; Clinic for Women's Diseases and Obstetrics of University Hospital Center Split; Split Croatia
| | - A. Bajić
- Department of Human Reproduction; Clinic for Women's Diseases and Obstetrics of University Hospital Center Split; Split Croatia
| | - L. Tandara
- Department of Medical Laboratory Diagnosis; University Hospital Center Split; Split Croatia
| | - L. Bilić-Zulle
- Clinical Department of Laboratory Diagnosis; Clinical Hospital Center Rijeka and Department of Medical Informatics; Rijeka University School of Medicine; Rijeka Croatia
| | - M. Šunj
- Department of Human Reproduction; Clinic for Women's Diseases and Obstetrics of University Hospital Center Split; Split Croatia
| | - V. Kozina
- Department of Histology and Embryology; School of Medicine; University of Zagreb; Zagreb Croatia
| | - T. Goluža
- Department of Gynecology and Obstetrics; School of Medicine; University of Zagreb; Zagreb Croatia
| | - M. Jukić
- Department of Human Reproduction; Clinic for Women's Diseases and Obstetrics of University Hospital Center Split; Split Croatia
| |
Collapse
|
171
|
Puglisi R, Maccari I, Pipolo S, Mangia F, Boitani C. The nuclear form of glutathione peroxidase 4 colocalizes and directly interacts with protamines in the nuclear matrix during mouse sperm chromatin assembly. SPERMATOGENESIS 2014; 4:e28460. [PMID: 25225625 PMCID: PMC4160342 DOI: 10.4161/spmg.28460] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 11/19/2022]
Abstract
The testis-specific nuclear form of Phospholipid Hydroperoxide Glutathione Peroxidase (nGPx4) is associated with the nuclear matrix during spermiogenesis and is implicated in sperm chromatin condensation. In this study, we have addressed the question whether nGPx4 directly interacts with protamines by transiently sharing a nuclear matrix localization. We first expressed tagged protamine 1-myc and protamine 2-V5 in HeLa and COS-1 cells and showed by both confocal microscopy and immunoblotting analyses that protamines were produced in vitro and colocalized correctly to the nucleus. Co-transfection experiments demonstrated that protamine 1 was physically associated with flag-nGPx4 specifically at the level of nuclear matrix. The peculiar presence of protamines together with nGPx4 in this subnuclear compartment was also confirmed in mouse elongated spermatids by immunofluorescence, suggesting that nGPx4 is a physiological component of a novel protein complex relevant to chromatin assembly in condensing haploid cells. Also, in epididymal sperm, nGPx4 and protamine 1 co-immunoprecipitated, indicating that nGPx4, although localized to a subnuclear compartment different from that of protamines, represents a constant link between nuclear matrix and chromatin in mammalian male gamete.
Collapse
Affiliation(s)
- Rossella Puglisi
- DAHFMO; Section of Histology & Medical Embryology; University of Rome "La Sapienza;" Rome, Italy
| | - Irene Maccari
- DAHFMO; Section of Histology & Medical Embryology; University of Rome "La Sapienza;" Rome, Italy
| | - Simona Pipolo
- DAHFMO; Section of Histology & Medical Embryology; University of Rome "La Sapienza;" Rome, Italy
| | - Franco Mangia
- Dept Psychology; Section of Neuroscience; University of Rome"La Sapienza;" Rome, Italy
| | - Carla Boitani
- DAHFMO; Section of Histology & Medical Embryology; University of Rome "La Sapienza;" Rome, Italy
| |
Collapse
|
172
|
Noblanc A, Kocer A, Drevet JR. Recent knowledge concerning mammalian sperm chromatin organization and its potential weaknesses when facing oxidative challenge. Basic Clin Androl 2014; 24:6. [PMID: 26779341 PMCID: PMC4715350 DOI: 10.1186/2051-4190-24-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/26/2014] [Indexed: 01/08/2023] Open
Abstract
Spermatozoa are the smallest and most cyto-differentiated mammalian cells. From a somatic cell-like appearance at the beginning of spermatogenesis, the male germ cell goes through a highly sophisticated process to reach its final organization entirely devoted to its mission which is to deliver the paternal genome to the oocyte. In order to fit the paternal DNA into the tiny spermatozoa head, complete chromatin remodeling is necessary. This review essentially focuses on present knowledge of this mammalian sperm nucleus compaction program. Particular attention is given to most recent advances that concern the specific organization of mammalian sperm chromatin and its potential weaknesses. Emphasis is placed on sperm DNA oxidative damage that may have dramatic consequences including infertility, abnormal embryonic development and the risk of transmission to descendants of an altered paternal genome.
Collapse
Affiliation(s)
- Anais Noblanc
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| | - Ayhan Kocer
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| | - Joël R Drevet
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| |
Collapse
|
173
|
Simon L, Liu L, Murphy K, Ge S, Hotaling J, Aston KI, Emery B, Carrell DT. Comparative analysis of three sperm DNA damage assays and sperm nuclear protein content in couples undergoing assisted reproduction treatment. Hum Reprod 2014; 29:904-17. [PMID: 24619433 DOI: 10.1093/humrep/deu040] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Is there an association between sperm DNA damage, measured by three different assays, sperm nuclear protein content and clinical outcomes in assisted reproduction treatment (ART)? SUMMARY ANSWER Sperm DNA damage measured by terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling (TUNEL) and the Comet assay were significantly associated with ART outcomes in our single institution study. WHAT IS KNOWN ALREADY Abnormal protamine expression is known to be associated with sperm DNA damage and male infertility. A number of studies have shown a significant relationship between sperm DNA damage and ART outcomes. To date, there are no large studies providing direct comparisons of DNA damage tests within the same study population. Thus, the prognostic value for each method remains unknown. STUDY DESIGN, SIZE, DURATION Cross-sectional study of 238 men from infertile couples undergoing ART at the University Center for Reproductive Medicine, Utah, USA, between April 2011 and March 2013. PARTICIPANTS/MATERIALS, SETTING, METHODS Sperm from men undergoing ART were tested for DNA damage using the alkaline Comet assay, TUNEL and flow cytometric chromatin evaluation (FCCE) assays. Histone retention was analysed using the aniline blue staining method, whereas protamine content (proteins P1 and P2) and ratio were analysed using acid urea gel electrophoresis. The prognostic value of each sperm DNA test to predict clinical pregnancy was calculated. MAIN RESULTS AND THE ROLE OF CHANCE Histone retention was associated with sperm DNA damage (P < 0.001), reduced embryo quality (P = 0.005) and clinical pregnancies (P < 0.001). The mean percentage of sperm with DNA damage was significantly higher in sperm from non-pregnant couples compared with that from pregnant couples, as measured by TUNEL assay (15.04 ± 1.16% versus 8.79 ± 0.56%; P < 0.001) and alkaline Comet assay (72.79 ± 2.49% versus 55.86 ± 2.29%; P < 0.001). There was no association between clinical pregnancies and DNA fragmentation index measured by FCCE (12.97 ± 1.46 versus 14.93 ± 1.65; P = 0.379). Of the protamine parameters analysed, only the P1/P2 ratio was associated with sperm count (P = 0.013), men's age (P = 0.037), maturity (P = 0.049) and blastocyst quality (P = 0.012). Histone retention and sperm DNA damage measured by Comet and TUNEL assays were associated with fertilization rate (P < 0.05), embryo quality (P < 0.05) and implantation rate (P < 0.05). LIMITATIONS, REASONS FOR CAUTION A potential drawback of this study is that it is cross-sectional. Generally in such studies there is more than one variable that could cause the effect. Analysing sperm is one part of the equation; there are also a number of female factors that have the potential to influence ART outcomes. Therefore, given the large and well-established role of female factors in infertility, normal sperm DNA integrity and protamination do not necessarily ensure clinical pregnancy in ART. Thus, female factors can reduce the prognostic value of sperm DNA tests. Further, our use of native semen instead of prepared sperm may have iatrogenically increased the DNA damage. WIDER IMPLICATIONS OF THE FINDINGS Alteration in sperm nuclear protein affects sperm DNA integrity. Further, with the current dataset, TUNEL and Comet assays appeared more predictive of ART success than FCCE. STUDY FUNDING/COMPETING INTEREST(S) No personal or direct financial support has been received for any of this work. The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- L Simon
- Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah, Salt Lake City, UT 84108, USA
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Cortés-Gutiérrez EI, Dávila-Rodríguez MI, Cerda-Flores RM, Fernández JL, López-Fernández C, Aragón Tovar AR, Gosálvez J. Localisation and quantification of alkali-labile sites in human spermatozoa by DNA breakage detection-fluorescence in situ hybridisation. Andrologia 2014; 47:221-7. [PMID: 24576285 DOI: 10.1111/and.12250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2014] [Indexed: 11/28/2022] Open
Abstract
The localisation and quantification of constitutive alkali-labile sites (ALSs) were investigated using a protocol of DNA breakage detection plus fluorescence in situ hybridisation (DBD-FISH) and alkaline single-cell gel electrophoresis (SCGE or comet assay), in spermatozoa of infertile and fertile men. Semen samples from 10 normozoospermic patients undergoing infertility treatment and 10 fertile men were included in this study. ALSs were localised and quantified by DBD-FISH. The region most sensitive to alkali treatment in human spermatozoa was located in the basal region of the head. ALSs were more frequent in spermatozoa of infertile men than in those of fertile men. These results were confirmed by SCGE comet assays. In conclusion, the most intense localisation of hybridisation signals in human spermatozoa, representing the highest density of constitutive ALSs, was not randomly distributed and was predominantly located in the base of the head. Moreover, infertile men presented with an increase in ALS frequency. Further studies are necessary to determine the association between ALS, sperm chromatin organisation and infertility.
Collapse
Affiliation(s)
- E I Cortés-Gutiérrez
- Department of Genetics, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, IMSS, Monterrey, Mexico
| | | | | | | | | | | | | |
Collapse
|
175
|
Maselli J, Hales BF, Robaire B. Paternal exposure to testis cancer chemotherapeutics alters sperm fertilizing capacity and affects gene expression in the eight-cell stage rat embryo. Andrology 2014; 2:259-66. [DOI: 10.1111/j.2047-2927.2014.00185.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/14/2013] [Accepted: 01/05/2014] [Indexed: 12/22/2022]
Affiliation(s)
- J. Maselli
- Departments of Pharmacology and Therapeutics; McGill University; Montréal QC Canada
| | - B. F. Hales
- Departments of Pharmacology and Therapeutics; McGill University; Montréal QC Canada
| | - B. Robaire
- Departments of Pharmacology and Therapeutics; McGill University; Montréal QC Canada
- Obstetrics and Gynecology; McGill University; Montréal QC Canada
| |
Collapse
|
176
|
Rahman MB, Vandaele L, Rijsselaere T, El-Deen MS, Maes D, Shamsuddin M, Van Soom A. Bovine spermatozoa react to in vitro heat stress by activating the mitogen-activated protein kinase 14 signalling pathway. Reprod Fertil Dev 2014; 26:245-57. [DOI: 10.1071/rd12198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 11/27/2012] [Indexed: 11/23/2022] Open
Abstract
Heat stress has long been recognised as a cause of subfertility in farm animals. The objectives of the present study were to elucidate the effect of heat stress on sperm function and involvement of the mitogen-activated protein kinase (MAPK) 14 signalling pathway. Spermatozoa incubated for 4 h at a physiological temperature (38.5°C) exhibited significantly (P < 0.05) reduced motility, plasma membrane integrity and mitochondrial potential compared with non-incubated spermatozoa; the reductions in these parameters were more severe following incubation at a hyperthermic (41°C) temperature (P < 0.01). Percentages of fertilisation and embryo development were highly affected in spermatozoa incubated at 41°C compared with non-incubated spermatozoa (P < 0.01). Similarly, embryo quality was adversely affected by sperm incubation at 41°C, as indicated by a higher apoptotic cell ratio in Day 7 blastocysts compared with that in the non-incubated control group (14.6% vs 6.7%, respectively; P < 0.01). Using SB203580 (10 µg mL–1), a specific inhibitor of the p38 MAPK pathway, during sperm hyperthermia reduced MAPK14 activation (24.9% vs 35.6%), increased sperm motility (45.8% vs 26.5%) and reduced DNA fragmentation (16.9% vs 23.4%) compared with the untreated control group, but did not improve subsequent fertilisation and embryo development. In conclusion, heat stress significantly affects the potential of spermatozoa to penetrate oocytes, as well as subsequent embryo development and quality. Notably, the data show that the MAPK14 signalling pathway is largely involved in heat-induced sperm damage. However, further research is needed to elucidate other signalling pathways possibly involved in heat-induced sperm damage.
Collapse
|
177
|
Jodar M, Oliva R. Protamine Alterations in Human Spermatozoa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 791:83-102. [DOI: 10.1007/978-1-4614-7783-9_6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
178
|
Structure of Chromatin in Spermatozoa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 791:1-11. [DOI: 10.1007/978-1-4614-7783-9_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
179
|
Abstract
The former perception of the spermatozoon as a delivery device of the male genome has been expanded to include a new understanding of the cell's complex role in fertilization. Once the spermatozoon reaches the oocyte, it triggers egg activation and orchestrates the stages of pre- and post-fertilization in a preprogrammed pattern while tapping the oocyte's resources in an effort to generate a new life.
Collapse
Affiliation(s)
- Queenie V Neri
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, 1305 York Avenue, Suite 720, New York, NY, 10021, USA
| | | | | | | |
Collapse
|
180
|
Noblanc A, Damon-Soubeyrand C, Karrich B, Henry-Berger J, Cadet R, Saez F, Guiton R, Janny L, Pons-Rejraji H, Alvarez JG, Drevet JR, Kocer A. DNA oxidative damage in mammalian spermatozoa: where and why is the male nucleus affected? Free Radic Biol Med 2013; 65:719-723. [PMID: 23954469 DOI: 10.1016/j.freeradbiomed.2013.07.044] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/08/2013] [Accepted: 07/31/2013] [Indexed: 11/25/2022]
Abstract
Gamete DNA integrity is one key parameter conditioning reproductive success as well as the quality of life for the offspring. In particular, damage to the male nucleus can have profound negative effects on the outcome of fertilization. Because of the absence of repair activity of the quiescent mature spermatozoa it is easily subjected to nuclear damage, of which oxidative damage is by far the most prominent. In relation to the organization of the mammalian sperm nucleus we show here that one can correlate the nuclear regions of lower compaction with areas preferentially showing oxidative damage. More precisely, we show that oxidative DNA damage targets primarily histone-rich and nuclear matrix-attached domains located in the peripheral and basal regions of the mouse sperm nucleus. These particular sperm DNA domains were recently shown to be enriched in genes of paramount importance in postfertilization DNA replication events and in the onset of the embryonic developmental program. We propose that monitoring of sperm DNA oxidation using the type of assay presented here should be considered in clinical practice when one wants to estimate the integrity of the paternal nucleus along with more classical assays that essentially analyze DNA fragmentation and nucleus compaction.
Collapse
Affiliation(s)
- Anais Noblanc
- Genetic Reproduction and Development, CNRS UMR6293-INSERM U1103-Clermont Université, 63171 Aubière Cedex, France
| | - Christelle Damon-Soubeyrand
- Genetic Reproduction and Development, CNRS UMR6293-INSERM U1103-Clermont Université, 63171 Aubière Cedex, France
| | - Bouchta Karrich
- Genetic Reproduction and Development, CNRS UMR6293-INSERM U1103-Clermont Université, 63171 Aubière Cedex, France
| | - Joelle Henry-Berger
- Genetic Reproduction and Development, CNRS UMR6293-INSERM U1103-Clermont Université, 63171 Aubière Cedex, France
| | - Rémi Cadet
- Genetic Reproduction and Development, CNRS UMR6293-INSERM U1103-Clermont Université, 63171 Aubière Cedex, France
| | - Fabrice Saez
- Genetic Reproduction and Development, CNRS UMR6293-INSERM U1103-Clermont Université, 63171 Aubière Cedex, France
| | - Rachel Guiton
- Genetic Reproduction and Development, CNRS UMR6293-INSERM U1103-Clermont Université, 63171 Aubière Cedex, France
| | - Laurent Janny
- Genetic Reproduction and Development, CNRS UMR6293-INSERM U1103-Clermont Université, 63171 Aubière Cedex, France; CHU Estaing, Assistance Médicale à la Procréation, Clermont-Ferrand, France
| | - Hanae Pons-Rejraji
- Genetic Reproduction and Development, CNRS UMR6293-INSERM U1103-Clermont Université, 63171 Aubière Cedex, France; CHU Estaing, Assistance Médicale à la Procréation, Clermont-Ferrand, France
| | - Juan G Alvarez
- Centro Androgen, La Coruña, Spain; Harvard Medical School, Boston, MA 02115, USA
| | - Joël R Drevet
- Genetic Reproduction and Development, CNRS UMR6293-INSERM U1103-Clermont Université, 63171 Aubière Cedex, France.
| | - Ayhan Kocer
- Genetic Reproduction and Development, CNRS UMR6293-INSERM U1103-Clermont Université, 63171 Aubière Cedex, France
| |
Collapse
|
181
|
Ribas-Maynou J, Gawecka JE, Benet J, Ward WS. Double-stranded DNA breaks hidden in the neutral Comet assay suggest a role of the sperm nuclear matrix in DNA integrity maintenance. Mol Hum Reprod 2013; 20:330-40. [PMID: 24282283 DOI: 10.1093/molehr/gat090] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We used a mouse model in which sperm DNA damage was induced to understand the relationship of double-stranded DNA (dsDNA) breaks to sperm chromatin structure and to the Comet assay. Sperm chromatin fragmentation (SCF) produces dsDNA breaks located on the matrix attachment regions, between protamine toroids. In this model, epididymal sperm induced to undergo SCF can religate dsDNA breaks while vas deferens sperm cannot. Here, we demonstrated that the conventional neutral Comet assay underestimates the epididymal SCF breaks because the broken DNA ends remain attached to the nuclear matrix, causing the DNA to remain associated with the dispersion halo, and the Comet tails to be weak. Therefore, we term these hidden dsDNA breaks. When the Comet assay was modified to include an additional incubation with sodium dodecyl sulfate (SDS) and dithiothreitol (DTT) after the conventional lysis, thereby solubilizing the nuclear matrix, the broken DNA was released from the matrix, which resulted in a reduction of the sperm head halo and an increase in the Comet tail length, exposing the hidden dsDNA breaks. Conversely, SCF-induced vas deferens sperm had small halos and long tails with the conventional neutral Comet assay, suggesting that the broken DNA ends were not tethered to the nuclear matrix. These results suggest that the attachment to the nuclear matrix is crucial for the religation of SCF-induced DNA breaks in sperm. Our data suggest that the neutral Comet assay identifies only dsDNA breaks that are released from the nuclear matrix and that the addition of an SDS treatment can reveal these hidden dsDNA breaks.
Collapse
Affiliation(s)
- J Ribas-Maynou
- Unitat de Biologia Cellular, Fisiologia i Immunologia, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | |
Collapse
|
182
|
Zhuang T, Hess RA, Kolla V, Higashi M, Raabe TD, Brodeur GM. CHD5 is required for spermiogenesis and chromatin condensation. Mech Dev 2013; 131:35-46. [PMID: 24252660 DOI: 10.1016/j.mod.2013.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 10/26/2022]
Abstract
Haploid spermatids undergo extensive cellular, molecular and morphological changes to form spermatozoa during spermiogenesis. Abnormalities in these steps can lead to serious male fertility problems, from oligospermia to complete azoospermia. CHD5 is a chromatin-remodeling nuclear protein expressed almost exclusively in the brain and testis. Male Chd5 knockout (KO) mice have deregulated spermatogenesis, characterized by immature sloughing of spermatids, spermiation failure, disorganization of the spermatogenic cycle and abnormal head morphology in elongating spermatids. This results in the inappropriate placement and juxtaposition of germ cell types within the epithelium. Sperm that did enter the epididymis displayed irregular shaped sperm heads, and retained cytoplasmic components. These sperm also stained positively for acidic aniline, indicating improper removal of histones and lack of proper chromatin condensation. Electron microscopy showed that spermatids in the seminiferous tubules of Chd5 KO mice have extensive nuclear deformation, with irregular shaped heads of elongated spermatids, and lack the progression of chromatin condensation in an anterior-to-posterior direction. However, the mRNA expression levels of other important genes controlling spermatogenesis were not affected. Chd5 KO mice also showed decreased H4 hyperacetylation beginning at stage IX, step 9, which is vital for the histone-transition protein replacement in spermiogenesis. Our data indicate that CHD5 is required for normal spermiogenesis, especially for spermatid chromatin condensation.
Collapse
Affiliation(s)
- Tiangang Zhuang
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Venkatadri Kolla
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Mayumi Higashi
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Tobias D Raabe
- Penn Gene Targeting Service, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Garrett M Brodeur
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; The Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
183
|
Zakhidov ST, Pavlyuchenkova SM, Samoylov AV, Mudzhiri NM, Marshak TL, Rudoy VM, Dement’eva OV, Zelenina IA, Skuridin SG, Yevdokimov YM. Bovine sperm chromatin is not protected from the effects of ultrasmall gold nanoparticles. BIOL BULL+ 2013. [DOI: 10.1134/s1062359013060149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
184
|
Valcarce DG, Cartón-García F, Riesco MF, Herráez MP, Robles V. Analysis of DNA damage after human sperm cryopreservation in genes crucial for fertilization and early embryo development. Andrology 2013; 1:723-30. [DOI: 10.1111/j.2047-2927.2013.00116.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/21/2013] [Accepted: 06/29/2013] [Indexed: 11/28/2022]
Affiliation(s)
- D. G. Valcarce
- Department of Molecular Biology and INDEGSAL; University of León; León; Spain
| | - F. Cartón-García
- Department of Molecular Biology and INDEGSAL; University of León; León; Spain
| | - M. F. Riesco
- Department of Molecular Biology and INDEGSAL; University of León; León; Spain
| | - M. P. Herráez
- Department of Molecular Biology and INDEGSAL; University of León; León; Spain
| | - V. Robles
- Department of Molecular Biology and INDEGSAL; University of León; León; Spain
| |
Collapse
|
185
|
Sperm vacuoles negatively affect outcomes in intracytoplasmic morphologically selected sperm injection in terms of pregnancy, implantation, and live-birth rates. Fertil Steril 2013; 100:379-85. [DOI: 10.1016/j.fertnstert.2013.04.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/28/2013] [Accepted: 04/19/2013] [Indexed: 11/24/2022]
|
186
|
Fullston T, Ohlsson Teague EMC, Palmer NO, DeBlasio MJ, Mitchell M, Corbett M, Print CG, Owens JA, Lane M. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J 2013; 27:4226-43. [PMID: 23845863 DOI: 10.1096/fj.12-224048] [Citation(s) in RCA: 373] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Obesity is highly prevalent, and its incidence is increasing. The previous study showing a major effect of paternal obesity on metabolic health of offspring is confounded by comorbidity with diabetes. Therefore, we investigated the effect of diet-induced paternal obesity, in the absence of diabetes, on the metabolic health of two resultant generations and the molecular profiles of the testes and sperm. Founder (F0) male C57BL6 mice were fed either a high-fat diet (HFD) or a control diet (CD); n = 10/diet for a period of 10 wk. Testis expression of mRNA/microRNAs was analyzed by microarray and qPCR and sperm microRNA abundance by qPCR. Two subsequent generations were generated by mating F0 and then F1 mice to CD mice, and their metabolic health was investigated. All mice, other than F0 males, were maintained on a CD. HFD feeding induced paternal obesity with a 21% increase in adiposity, but not overt diabetes, and initiated intergenerational transmission of obesity and insulin resistance in two generations of offspring. This distinct phenotypic constellation is either partially or fully transmitted to both female and male F1 offspring and further transmitted through both parental lineages to the F2 generation, with a heightened effect on female F1 offspring (+67% in adiposity) and their F2 sons (+24% in adiposity). Founder male obesity altered the testes expression of 414 mRNAs by microarray and 11 microRNAs by qPCR, concomitant with alterations in sperm microRNA content and a 25% reduction in global methylation of germ cell DNA. Diet-induced paternal obesity modulates sperm microRNA content and germ cell methylation status, which are potential signals that program offspring health and initiate the transmission of obesity and impaired metabolic health to future generations. This study implicates paternal obesity in the transgenerational amplification of obesity and type 2 diabetes in humans.
Collapse
Affiliation(s)
- Tod Fullston
- 1Level 3 Medical School South, University of Adelaide, Adelaide, SA, Australia 5005.
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Meyer-Ficca ML, Lonchar JD, Ihara M, Bader JJ, Meyer RG. Alteration of poly(ADP-ribose) metabolism affects murine sperm nuclear architecture by impairing pericentric heterochromatin condensation. Chromosoma 2013; 122:319-35. [PMID: 23729169 DOI: 10.1007/s00412-013-0416-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/07/2013] [Accepted: 05/13/2013] [Indexed: 01/02/2023]
Abstract
The mammalian sperm nucleus is characterized by unique properties that are important for fertilization. Sperm DNA retains only small numbers of histones in distinct positions, and the majority of the genome is protamine associated, which allows for extreme condensation and protection of the genetic material. Furthermore, sperm nuclei display a highly ordered architecture that is characterized by a centrally located chromocenter comprising the pericentromeric chromosome regions and peripherally positioned telomeres. Establishment of this unique and well-conserved nuclear organization during spermiogenesis is not well understood. Utilizing fluorescence in situ hybridization (FISH), we show that a large fraction of the histone-associated sperm genome is repetitive in nature, while a smaller fraction is associated with unique DNA sequences. Coordinated activity of poly(ADP-ribose) (PAR) polymerase and topoisomerase II beta has been shown to facilitate DNA relaxation and histone to protamine transition during spermatid condensation, and altered PAR metabolism is associated with an increase in sperm histone content. Combining FISH with three-dimensional laser scanning microscopy technology, we further show that altered PAR metabolism by genetic or pharmacological intervention leads to a disturbance of the overall sperm nuclear architecture with a lower degree of organization and condensation of the chromocenters formed by chromosomal pericentromeric heterochromatin.
Collapse
Affiliation(s)
- Mirella L Meyer-Ficca
- Center for Animal Transgenesis and Germ Cell Research, Department of Animal Biology and Mari Lowe Center for Comparative Oncology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
188
|
|
189
|
Aitken RJ, Bronson R, Smith TB, De Iuliis GN. The source and significance of DNA damage in human spermatozoa; a commentary on diagnostic strategies and straw man fallacies. Mol Hum Reprod 2013; 19:475-85. [DOI: 10.1093/molehr/gat025] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
190
|
Gawecka JE, Marh J, Ortega M, Yamauchi Y, Ward MA, Ward WS. Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development. PLoS One 2013; 8:e56385. [PMID: 23431372 PMCID: PMC3576397 DOI: 10.1371/journal.pone.0056385] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 01/08/2013] [Indexed: 12/25/2022] Open
Abstract
Mouse zygotes do not activate apoptosis in response to DNA damage. We previously reported a unique form of inducible sperm DNA damage termed sperm chromatin fragmentation (SCF). SCF mirrors some aspects of somatic cell apoptosis in that the DNA degradation is mediated by reversible double strand breaks caused by topoisomerase 2B (TOP2B) followed by irreversible DNA degradation by a nuclease(s). Here, we created zygotes using spermatozoa induced to undergo SCF (SCF zygotes) and tested how they responded to moderate and severe paternal DNA damage during the first cell cycle. We found that the TUNEL assay was not sensitive enough to identify the breaks caused by SCF in zygotes in either case. However, paternal pronuclei in both groups stained positively for γH2AX, a marker for DNA damage, at 5 hrs after fertilization, just before DNA synthesis, while the maternal pronuclei were negative. We also found that both pronuclei in SCF zygotes with moderate DNA damage replicated normally, but paternal pronuclei in the SCF zygotes with severe DNA damage delayed the initiation of DNA replication by up to 12 hrs even though the maternal pronuclei had no discernable delay. Chromosomal analysis of both groups confirmed that the paternal DNA was degraded after S-phase while the maternal pronuclei formed normal chromosomes. The DNA replication delay caused a marked retardation in progression to the 2-cell stage, and a large portion of the embryos arrested at the G2/M border, suggesting that this is an important checkpoint in zygotic development. Those embryos that progressed through the G2/M border died at later stages and none developed to the blastocyst stage. Our data demonstrate that the zygote responds to sperm DNA damage through a non-apoptotic mechanism that acts by slowing paternal DNA replication and ultimately leads to arrest in embryonic development.
Collapse
Affiliation(s)
- Joanna E. Gawecka
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii at Manoa, John A. Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - Joel Marh
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii at Manoa, John A. Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - Michael Ortega
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii at Manoa, John A. Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - Yasuhiro Yamauchi
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii at Manoa, John A. Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - Monika A. Ward
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii at Manoa, John A. Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - W. Steven Ward
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii at Manoa, John A. Burns School of Medicine, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
191
|
Pereza N, Črnjar K, Buretić-Tomljanović A, Volk M, Kapović M, Peterlin B, Ostojić S. Y chromosome azoospermia factor region microdeletions are not associated with idiopathic recurrent spontaneous abortion in a Slovenian population: association study and literature review. Fertil Steril 2013; 99:1663-7. [PMID: 23410896 DOI: 10.1016/j.fertnstert.2013.01.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To investigate the potential association of Y chromosome microdeletions with idiopathic recurrent spontaneous abortion (IRSA) in a Slovenian population and compare our results with those of previously published studies in different populations, with the intention of clarifying the potential impact of Y chromosome microdeletions on IRSA. DESIGN Case-control and association study. SETTING Departments of gynecology and obstetrics and university-based research laboratory. PATIENT(S) Male partners of 148 couples with at least three spontaneous pregnancy losses of unknown etiology, and 148 fertile men. INTERVENTION(S) Multiplex polymerase chain reactions. MAIN OUTCOME MEASURE(S) Azoospermia factor (AZF) regions were tested for Y chromosome microdeletions according to European Academy of Andrology/European Molecular Genetics Quality Network guidelines. The PubMed database was searched to retrieve articles linking Y chromosome microdeletions and susceptibility to IRSA. RESULT(S) None of the IRSA or control men had microdeletions in the AZFa, AZFb, or AZFc regions. A total of nine previous studies examined the relationship between Y chromosome microdeletions and IRSA, yielding contradictory results, which we discuss in detail. CONCLUSION(S) On the basis of our comparisons, it is unlikely that Y chromosome microdeletions contribute to IRSA and are therefore currently not recommended for the routine evaluation of IRSA couples.
Collapse
Affiliation(s)
- Nina Pereza
- Department of Biology and Medical Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | | | | | | | | | | |
Collapse
|
192
|
Gosálvez J, Migueles B, López-Fernández C, Sanchéz-Martín F, Sáchez-Martín P. Single sperm selection and DNA fragmentation analysis: The case of MSOME/IMSI. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ns.2013.57a002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
193
|
Kumar M, Kumar K, Jain S, Hassan T, Dada R. Novel insights into the genetic and epigenetic paternal contribution to the human embryo. Clinics (Sao Paulo) 2013; 68 Suppl 1:5-14. [PMID: 23503950 PMCID: PMC3583177 DOI: 10.6061/clinics/2013(sup01)02] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 08/20/2012] [Indexed: 01/26/2023] Open
Abstract
The integrity of the sperm genome and epigenome are critical for normal embryonic development. The advent of assisted reproductive technology has led to an increased understanding of the role of sperm in fertilization and embryogenesis. During fertilization, the sperm transmits not only nuclear DNA to the oocyte but also activation factor, centrosomes, and a host of messenger RNA and microRNAs. This complex complement of microRNAs and other non-coding RNAs is believed to modify important post-fertilization events. Thus, the health of the sperm genome and epigenome is critical for improving assisted conception rates and the birth of healthy offspring.
Collapse
Affiliation(s)
- Manoj Kumar
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, India
| | | | | | | | | |
Collapse
|
194
|
Akashi M, Yokota S, Fujita H. Polyubiquitination and Proteasome Signals in Tubulobulbar Complexes of Rat Late Spermatids. Cell 2013. [DOI: 10.4236/cellbio.2013.24019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
195
|
Grassetti D, Paoli D, Gallo M, D'Ambrosio A, Lombardo F, Lenzi A, Gandini L. Protamine-1 and -2 polymorphisms and gene expression in male infertility: an Italian study. J Endocrinol Invest 2012; 35:882-8. [PMID: 22104739 DOI: 10.3275/8111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Correct histone/protamine replacement is an important stage in chromatin condensation during spermiogenesis in humans. There are two types of protamines: protamine 1 (P1) and the protamine 2 family (P2, P3, and P4), coded by the genes PRM1 and PRM2. AIM We analyze the sequences and gene expression of PRM1 and PRM2 and their relationship with defective spermatogenesis. MATERIALS AND METHODS Sequence analysis was carried out on 163 patients attending our laboratory for analysis of seminal fluid. Patients were divided into three groups: normozoospermic (53), teratozoospermic (60), and azoospermic (50). Gene expression was analyzed in seven patients with azoospermia and one with cryptozoospermia. RESULTS Seven single nuclotide polymorphisms (SNP) were identified: G54A, G102T and C230A for PRM1, and C246T, G288C, G298C and C373A for PRM2. For C230A, the CA genotype was present in 38% of teratozoospermic vs 55% of normozoospermic and 64% of azoospermic patients; for C373A, CA was found in 37% of teratozoospermic vs 47% of normozoospermic and 64% of azoospermic patients. In contrast, for G298C, GC was more common in the teratozoospermic (63%) than in the normozoospermic (49%) or azoospermic (48%) groups. These differences could suggest a greater susceptibility of these patients to abnormal sperm morphology. In five patients the levels of transcripts were reduced with respect to the control. CONCLUSION These data suggest that premeiotic arrest is associated with extremely reduced protamine expression. New studies of both PRM1 and PRM2 and their mRNA expression could help us better understand the molecular mechanisms underlying the protamine transcription and translation processes.
Collapse
Affiliation(s)
- D Grassetti
- Department of Experimental Medicine, University of Rome "La Sapienza", Viale del Policlinico 155, 00161 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
196
|
Schagdarsurengin U, Paradowska A, Steger K. Analysing the sperm epigenome: roles in early embryogenesis and assisted reproduction. Nat Rev Urol 2012; 9:609-19. [PMID: 23045264 DOI: 10.1038/nrurol.2012.183] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An understanding of the epigenetic mechanisms involved in sperm production and their impact on the differentiating embryo is essential if we are to optimize fertilization and assisted reproduction techniques in the future. Male germ cells are unique in terms of size, robustness, and chromatin structure, which is highly condensed owing to the replacement of most histones by protamines. Analysis of sperm epigenetics requires specific techniques that enable the isolation of high quality chromatin and associated nucleic acids. Histone modification, DNA methylation and noncoding RNAs have important, but so far underestimated, roles in the production of fertile sperm. Aberrations in these epigenetic processes have detrimental consequences for both early embryo development and assisted reproductive technology. Emerging computational techniques are likely to improve our understanding of chromatin dynamics in the future.
Collapse
Affiliation(s)
- Undraga Schagdarsurengin
- Justus Liebig University, Department of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Giessen, Germany
| | | | | |
Collapse
|
197
|
Ribas-Maynou J, García-Peiró A, Fernandez-Encinas A, Amengual MJ, Prada E, Cortés P, Navarro J, Benet J. Double stranded sperm DNA breaks, measured by Comet assay, are associated with unexplained recurrent miscarriage in couples without a female factor. PLoS One 2012; 7:e44679. [PMID: 23028579 PMCID: PMC3444447 DOI: 10.1371/journal.pone.0044679] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/07/2012] [Indexed: 12/23/2022] Open
Abstract
It is known that sperm samples from recurrent pregnancy loss (RPL) couples have an increase in their sperm DNA fragmentation (SDF), but no studies have been performed in order to identify differences between single stranded SDF (ssSDF) and double stranded SDF (dsSDF) in these patients. This could be relevant because the type of DNA damage could have different effects. Semen samples were classified attending their clinical status: 25 fertile donors and 20 RPL patients with at least two unexplained first trimester miscarriages. SDF was analysed using alkaline and neutral Comet assay, SCD test and pulsed-field gel electrophoresis (PFGE), and ROC analysis including data from 105 more infertile patients (n = 150) was performed to establish predictive threshold values. SDF for alkaline and neutral Comet, and the SCD test was analysed in these categories of individuals. Data revealed the presence of two subgroups within fertile donors. The values obtained were 21.10±9.13, 23.35±10.45 and 12.31±4.31, respectively, for fertile donors with low values for both ssSDF and dsSDF; 27.86±12.64, 80.69±12.67 and 12.43±5.22, for fertile donors with low ssSDF and high dsSDF; and 33.61±15.50, 84.64±11.28 and 19.28±6.05, for unexplained RPL patients, also showing a low ssSDF and high dsSDF profile. This latter profile was seen in 85% of unexplained RPL and 33% of fertile donors, suggesting that it may be associated to a male risk factor for undergoing RPL. ROC analysis regarding recurrent miscarriage set the cut-off value at 77.50% of dsDNA SDF. PFGE for low ssSDF and high dsSDF profile samples and positive controls treated with DNase, to induce dsDNA breaks, showed a more intense band of about 48 kb, which fits the toroid model of DNA compaction in sperm, pointing out that some nuclease activity may be affecting their sperm DNA in RPL patients. This work identifies a very specific SDF profile related to the paternal risk of having RPL.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Càtedra de Recerca Eugin-UAB, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cel lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Agustín García-Peiró
- Càtedra de Recerca Eugin-UAB, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cel lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alba Fernandez-Encinas
- Càtedra de Recerca Eugin-UAB, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cel lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Maria José Amengual
- UDIAT, Centre Diagnòstic. Corporació Sanitària Parc Taulí. Sabadell. Institut Universitari Parc Taulí – UAB, Sabadell, Spain
| | - Elena Prada
- Servei de Ginecologia, Hospital Universitari Mútua de Terrassa, Terrassa, Spain
| | - Pilar Cortés
- Departament de Genética i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joaquima Navarro
- Càtedra de Recerca Eugin-UAB, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cel lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jordi Benet
- Càtedra de Recerca Eugin-UAB, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cel lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
198
|
Montjean D, Belloc S, Benkhalifa M, Dalleac A, Menezo Y. Sperm vacuoles are linked to capacitation and acrosomal status. Hum Reprod 2012; 27:2927-32. [DOI: 10.1093/humrep/des266] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
199
|
Cordelli E, Eleuteri P, Grollino MG, Benassi B, Blandino G, Bartoleschi C, Pardini MC, Di Caprio EV, Spanò M, Pacchierotti F, Villani P. Direct and delayed X-ray-induced DNA damage in male mouse germ cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:429-439. [PMID: 22730201 DOI: 10.1002/em.21703] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 06/01/2023]
Abstract
Sperm DNA integrity is essential for the accurate transmission of paternal genetic information. Various stages of spermatogenesis are characterized by large differences in radiosensitivity. Differentiating spermatogonia are susceptible to radiation-induced cell killing, but some of them can repair DNA damage and progress through differentiation. In this study, we applied the neutral comet assay, immunodetection of phosphorylated H2AX (γ-H2AX) and the Sperm Chromatin Structure Assay (SCSA) to detect DNA strand breaks in testicular cells and spermatozoa at different times following in vivo X-ray irradiation. Radiation produced DNA strand breaks in testicular cells that were repaired within the first few hours after exposure. Spermatozoa were resistant to the induction of DNA damage, but non-targeted DNA lesions were detected in spermatozoa derived from surviving irradiated spermatogonia. These lesions formed while round spermatids started to elongate within the testicular seminiferous tubules. The transcription of pro-apoptotic genes at this time was also enhanced, suggesting that an apoptotic-like process was involved in DNA break production. Our results suggest that proliferating spermatogonia retain a memory of the radiation insult that is recognized at a later developmental stage and activates a process leading to DNA fragmentation.
Collapse
|
200
|
Souza CEA, Rego JPA, Lobo CH, Oliveira JTA, Nogueira FC, Domont GB, Fioramonte M, Gozzo FC, Moreno FB, Monteiro-Moreira ACO, Figueiredo JR, Moura AA. Proteomic analysis of the reproductive tract fluids from tropically-adapted Santa Ines rams. J Proteomics 2012; 75:4436-56. [DOI: 10.1016/j.jprot.2012.05.039] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/18/2012] [Accepted: 05/22/2012] [Indexed: 01/13/2023]
|