Yamazaki H, Ohmura K, Nakayama A, Takeichi Y, Otozai K, Yamasaki M, Tamura G, Yamane K. Alpha-amylase genes (amyR2 and amyE+) from an alpha-amylase-hyperproducing Bacillus subtilis strain: molecular cloning and nucleotide sequences.
J Bacteriol 1983;
156:327-37. [PMID:
6413492 PMCID:
PMC215086 DOI:
10.1128/jb.156.1.327-337.1983]
[Citation(s) in RCA: 108] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
amyR2, amyE+, and aroI+ alleles from an alpha-amylase-hyperproducing strain, Bacillus subtilis NA64, were cloned in temperate B. subtilis phage p11, and the amyR2 and amyE+ genes were then recloned in plasmid pUB110, which was designated pTUB4. The order of the restriction sites, ClaI-EcoRI-PstI-SalI-SmaI, found in the DNA fragment carrying amyR2 and amyE+ from the phage genome was also found in the 2.3-kilobase insert of pTUB4. Approximately 2,600 base pairs of the DNA nucleotide sequence of the amyR2 and amyE+ gene region in pTUB4 were determined. Starting from an ATG initiator codon, an open reading frame was composed of a total 1,776 base pairs (592 amino acids). Among the 1,776 base pairs, 1,674 (558 amino acids) were found in the cloned DNA fragment, and 102 base pairs (34 amino acids) were in the vector pUB110 DNA. The COOH terminal region of the alpha-amylase of pTUB4 was encoded in pUB110. The electrophoretic mobility in a 7.5% polyacrylamide gel of the alpha-amylase was slightly faster than that of the parental alpha-amylases. The NH2 termination portion of the gene encoded a 41-amino acid-long signal sequence (Ohmura et al., Biochem. Biophys. Res. Commun. 112:687-683, 1983). The DNA sequence of the mature extracellular alpha-amylase, a potential RNA polymerase recognition site and Pribnow box (TTGATAGAGTGATTGTGATAATTTAAAAT), and an AT-rich inverted repeat structure which has free energy of -8.2 kcal/mol (-34.3 kJ/mol) were identified. The AT-rich inverted repeat structure seemed to correspond to the hyperproducing character. The nucleotide sequence around the region was quite different from the promoter region of the B. subtilis 168 alpha-amylase gene which was cloned in the Escherichia coli vector systems.
Collapse