151
|
Abstract
In this work, genome maintenance strategies of organisms belonging to different kingdoms (animals versus plants) but of similar genome size were investigated using a novel, universal double-strand break (DSB) repair assay. Different plasmids linearised with KpnI, Acc65I or EcoRV yielding either 3' or 5' protruding or blunt DNA termini, respectively, were transfected into HeLa cells and Nicotiana plumbaginifolia protoplasts and assayed for the efficiency and fidelity of DSB repair. We show that the mechanism of break sealing is similar but that drastic differences are seen in the fidelity of repair: in HeLa cells, 50-55% DSBs were repaired precisely, compared to as little as 15-30% in tobacco cells. Moreover, the DSB repair in plants resulted in 30-40% longer deletions and significantly shorter insertions. Combined, these led to more than twofold larger net DNA loss in tobacco cells. Our observations point to possible differences in the strategies of DSB repair and genome maintenance in plants and animals.
Collapse
Affiliation(s)
- Pawel Pelczar
- Friedrich Miescher Institute, PO Box 2543, CH-4002 Basel, Switzerland
| | | | | |
Collapse
|
152
|
Pastwa E, Neumann RD, Mezhevaya K, Winters TA. Repair of radiation-induced DNA double-strand breaks is dependent upon radiation quality and the structural complexity of double-strand breaks. Radiat Res 2003; 159:251-61. [PMID: 12537531 DOI: 10.1667/0033-7587(2003)159[0251:roridd]2.0.co;2] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mammalian cells primarily repair DSBs by nonhomologous end joining (NHEJ). To assess the ability of human cells to mediate end joining of complex DSBs such as those produced by chemicals, oxidative events, or high- and low-LET radiation, we employed an in vitro double-strand break repair assay using plasmid DNA linearized by these various agents. We found that human HeLa cell extracts support end joining of complex DSBs and form multimeric plasmid products from substrates produced by the radiomimetic drug bleomycin, 60Co gamma rays, and the effects of 125I decay in DNA. End joining was found to be dependent on the type of DSB-damaging agent, and it decreased as the cytotoxicity of the DSB-inducing agent increased. In addition to the inhibitory effects of DSB end-group structures on repair, NHEJ was found to be strongly inhibited by lesions proximal to DSB ends. The initial repair rate for complex non-ligatable bleomycin-induced DSBs was sixfold less than that of similarly configured (blunt-ended) but less complex (ligatable) restriction enzyme-induced DSBs. Repair of DSBs produced by gamma rays was 15-fold less efficient than repair of restriction enzyme-induced DSBs. Repair of the DSBs produced by 125I was near the lower limit of detection in our assay and was at least twofold lower than that of gamma-ray-induced DSBs. In addition, DSB ends produced by 125I were shown to be blocked by 3'-nucleotide fragments: the removal of these by E. coli endonuclease IV permitted ligation.
Collapse
Affiliation(s)
- Elzbieta Pastwa
- Nuclear Medicine Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
153
|
Lee JW, Inamdar KV, Hannah MF, Lees-Miller SP, Povirk LF. DNA end sequestration by DNA-dependent protein kinase and end joining of sterically constrained substrates in whole-cell extracts. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2003; 42:279-287. [PMID: 14673873 DOI: 10.1002/em.10197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Extracts of Xenopus eggs and of cultured human and hamster cells have the capacity to join nonhomologous DNA ends, and all do so with similar specificity. To examine the formation of repair complexes on DNA under conditions of end joining, end-labeled fragments were incubated with the various extracts and then subjected to DNase-I footprinting. Human and Xenopus extracts produced footprints virtually identical to that of purified DNA-dependent protein kinase holoenzyme (Ku plus DNA-PKcs), with protection of the terminal 28 bp. Extracts of hamster cells were more variable, but usually produced a 16-bp footprint, similar to that of Ku alone. In all cases a 28-bp holoenzyme-like footprint was associated with wortmannin-sensitive end joining, minimal 3'-5' exonucleolytic resection, and a predominance of accurate end-joining products. To determine whether the short segments of DNA occupied by Ku and DNA-PK were sufficient to support end joining, Y-shaped substrates were constructed in which only one arm was available for end joining. A Y substrate with a 31-bp arm bearing a partially cohesive 3' overhang was accurately joined by a Xenopus egg extract, whereas a substrate with a 21-bp arm was not. Surprisingly, a human cell extract did not join the Y substrates at all. The results suggest that differences in wortmannin sensitivity and in the distribution of in vitro end-joining products may be attributable to the variations in the levels of DNA-PKcs in the extracts. In addition, end joining in human extracts appears to involve interactions with significantly longer segments of DNA than the approximately 28 bp occupied by DNA-PK.
Collapse
Affiliation(s)
- Jae Wan Lee
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298-0230, USA
| | | | | | | | | |
Collapse
|
154
|
Abstract
Homologous recombination has been recognized in recent years to be an important DNA repair pathway in mammalian cells, for such damage as chromosomal double-strand breaks. Cells mutated for the genes involved in the hereditary breast and ovarian cancer susceptibility syndromes, i.e. BRCA1 and BRCA2, show defects in DNA repair by homologous recombination, implicating this repair pathway in protecting individuals against tumorigenesis. This review summarizes recent advances in our understanding of BRCA1 and BRCA2 in DNA repair, as well as insight into these proteins gleaned from structure determination of domains of these proteins and the broader evolutionary conservation than previously appreciated.
Collapse
Affiliation(s)
- Maria Jasin
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
155
|
Svitashev SK, Pawlowski WP, Makarevitch I, Plank DW, Somers DA. Complex transgene locus structures implicate multiple mechanisms for plant transgene rearrangement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:433-45. [PMID: 12445116 DOI: 10.1046/j.1365-313x.2002.01433.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To more fully characterize the internal structure of transgene loci and to gain further understanding of mechanisms of transgene locus formation, we sequenced more than 160 kb of complex transgene loci in two unrelated transgenic oat (Avena sativa L.) lines transformed using microprojectile bombardment. The transgene locus sequences from both lines exhibited extreme scrambling of non-contiguous transgene and genomic fragments recombined via illegitimate recombination. A perfect direct repeat of the delivered DNA, and inverted and imperfect direct repeats were detected in the same transgene locus indicating that homologous recombination and synthesis-dependent mechanism(s), respectively, were also involved in transgene locus rearrangement. The most unexpected result was the small size of the fragments of delivered and genomic DNA incorporated into the transgene loci via illegitimate recombination; 50 of the 82 delivered DNA fragments were shorter than 200 bp. Eleven transgene and genomic fragments were shorter than the DNA lengths required for Ku-mediated non-homologous end joining. Detection of these small fragments provided evidence that illegitimate recombination was most likely mediated by a synthesis-dependent strand-annealing mechanism that resulted in transgene scrambling. Taken together, these results indicate that transgene locus formation involves the concerted action of several DNA break-repair mechanisms.
Collapse
Affiliation(s)
- Sergei K Svitashev
- Department of Agronomy and Plant Genetics, Plant Molecular Genetics Institute, University of Minnesota, 411 Borlaug Hall, 1991 Buford Circle, St Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
156
|
Jeanson L, Subra F, Vaganay S, Hervy M, Marangoni E, Bourhis J, Mouscadet JF. Effect of Ku80 depletion on the preintegrative steps of HIV-1 replication in human cells. Virology 2002; 300:100-8. [PMID: 12202210 DOI: 10.1006/viro.2002.1515] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To gain new insights regarding the role of Ku, the DNA-PK DNA-binding component, during lentiviral DNA integration, we have investigated the HIV-1 replication in Ku80-depleted human cells. CEM4fx cells underexpressing the Ku80 factor were selected after transduction by a retroviral vector expressing the Ku80 full-length antisense sequence. De novo infection experiment with NL4.3 HIV-1 strain led to the observation that the viral replication was delayed in the Ku80-depleted cells. Early events of the replicative cycle, including nuclear import of the viral DNA, were not affected. In contrast, the formation of the 2-LTR circles was impaired, thus demonstrating the implication of Ku in HIV-1 DNA circularization, for the first time in human cells. Furthermore, the detection of integrated proviruses by an Alu-LTR-nested PCR amplification method was affected in cells underexpressing Ku80. These results suggest that this factor may also be involved in the mechanisms leading to the stable establishment of HIV-1 provirus.
Collapse
Affiliation(s)
- Laurence Jeanson
- UMR8532 CNRS, Institut Gustave Roussy, PR2, 39 rue Camille Desmoulins, 94805, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
157
|
Mérel P, Prieur A, Pfeiffer P, Delattre O. Absence of major defects in non-homologous DNA end joining in human breast cancer cell lines. Oncogene 2002; 21:5654-9. [PMID: 12165865 DOI: 10.1038/sj.onc.1205742] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2002] [Revised: 05/22/2002] [Accepted: 06/07/2002] [Indexed: 02/01/2023]
Abstract
Structural abnormalities of chromosomes, including translocations and deletions, are extremely frequent in human cancer cells and particularly in breast cancer cells. One hypothesis to account for these alterations is a deficiency in the repair of DNA double-strand breaks (DSB). This repair process relies on two distinct pathways, homologous recombination (HR) and non-homologous DNA end joining (NHEJ). To investigate this latter pathway, we have studied the ability of cell-free extracts from a variety of human cells to rejoin different types of DSBs. The end joining activity of eleven sporadic breast cancer cell lines (BCCLs) was compared with that of control cells including primary human fibroblasts and cells harbouring a limited number of chromosome abnormalities. In vitro rejoining activity was not detected in extracts from MO59J DNA-PKcs-deficient cells and was strongly inhibited by wortmannin in control extracts. In contrast, most sporadic BCCLs and BRCA1 or BRCA2 deficient cells demonstrated similar efficiencies and accuracies of in vitro NHEJ than control cells. Only two BCCLs, SKBR3 and MDA-MB-453 exhibited decreased in vitro NHEJ. This study therefore indicates that a major defect in the NHEJ pathway is unlikely to account for the high number of chromosomes abnormalities observed in sporadic and hereditary BCCLs.
Collapse
Affiliation(s)
- Philippe Mérel
- Laboratoire de Pathologie Moléculaire des Cancers, INSERM U509, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | |
Collapse
|
158
|
Mahajan KN, Nick McElhinny SA, Mitchell BS, Ramsden DA. Association of DNA polymerase mu (pol mu) with Ku and ligase IV: role for pol mu in end-joining double-strand break repair. Mol Cell Biol 2002; 22:5194-202. [PMID: 12077346 PMCID: PMC139779 DOI: 10.1128/mcb.22.14.5194-5202.2002] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mammalian DNA polymerase mu (pol mu) is related to terminal deoxynucleotidyl transferase, but its biological role is not yet clear. We show here that after exposure of cells to ionizing radiation (IR), levels of pol mu protein increase. pol mu also forms discrete nuclear foci after IR, and these foci are largely coincident with IR-induced foci of gammaH2AX, a previously characterized marker of sites of DNA double-strand breaks. pol mu is thus part of the cellular response to DNA double-strand breaks. pol mu also associates in cell extracts with the nonhomologous end-joining repair factor Ku and requires both Ku and another end-joining factor, XRCC4-ligase IV, to form a stable complex on DNA in vitro. pol mu in turn facilitates both stable recruitment of XRCC4-ligase IV to Ku-bound DNA and ligase IV-dependent end joining. In contrast, the related mammalian DNA polymerase beta does not form a complex with Ku and XRCC4-ligase IV and is less effective than pol mu in facilitating joining mediated by these factors. Our data thus support an important role for pol mu in the end-joining pathway for repair of double-strand breaks.
Collapse
Affiliation(s)
- Kiran N Mahajan
- Lineberger Comprehensive Cancer Center, Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | | | |
Collapse
|
159
|
Wang P, Lee JW, Yu Y, Turner K, Zou Y, Jackson-Cook CK, Povirk LF. Gene rearrangements induced by the DNA double-strand cleaving agent neocarzinostatin: conservative non-homologous reciprocal exchanges in an otherwise stable genome. Nucleic Acids Res 2002; 30:2639-46. [PMID: 12060680 PMCID: PMC117282 DOI: 10.1093/nar/gkf369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Among a collection of 74 aprt mutations induced by treatment of plateau phase Chinese hamster ovary CHO cells with the radiomimetic DNA double-strand cleaving agent neocarzinostatin, nine were large-scale rearrangements. Molecular analysis indicated that all nine were highly conservative, non-homologous reciprocal exchanges, most of which were intrachromosomal as determined by fluorescence in situ hybridization. All but one of the parental sequences contained potential double-strand cleavage sites positioned such that the observed rearrangements could be explained by drug-induced double-strand breakage followed by trimming, templated patching and ligation of the exchanged ends. Predicted non-complementary 3' overhangs were often preserved in the newly formed junctions, suggesting alignment-based fill-in of the overhangs. Banding of metaphase spreads of these mutants, and of a number of mutants induced by the functionally similar compound bleomycin, revealed that bleomycin-induced reciprocal exchange mutants had multiple additional chromosome alterations and considerable chromosomal heterogeneity within each mutant line. In contrast, neocarzinostatin-induced reciprocal exchange mutants, as well as bleomycin-induced base substitution and single base deletion mutants, retained stable pseudodiploid karyotypes similar to that of the parent line. Thus, some reciprocal exchanges arising from misjoining of double-strand breaks were associated with global chromosomal instability, while other ostensibly similar events were not.
Collapse
Affiliation(s)
- Peng Wang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0230, USA
| | | | | | | | | | | | | |
Collapse
|
160
|
Gaymes TJ, North PS, Brady N, Hickson ID, Mufti GJ, Rassool FV. Increased error-prone non homologous DNA end-joining--a proposed mechanism of chromosomal instability in Bloom's syndrome. Oncogene 2002; 21:2525-33. [PMID: 11971187 DOI: 10.1038/sj.onc.1205331] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2001] [Revised: 01/09/2002] [Accepted: 01/11/2002] [Indexed: 11/08/2022]
Abstract
BS is an inherited cancer predisposition disorder caused by inactivation of the RecQ family helicase, BLM. One of the defining features of cells from BS individuals is chromosomal instability, characterized by elevated sister chromatid exchanges (SCEs), as well as chromosomal breaks, deletions, and rearrangements. Although the basis for chromosomal instability is poorly understood, there is evidence that chromosomal abnormalities can arise through an alteration in the efficiency or fidelity of DNA double strand break (DSB) repair. Here, we show that BS cells demonstrate aberrant DSB repair mediated by the non-homologous end-joining (NHEJ) pathway for DNA repair, one of the two main pathways for the repair of DSBs in mammalian cells. Through a comparison of BS cell lines, and a derivative in which the BS phenotype has been reverted by expression of the BLM cDNA, we show that BS cells display aberrant end-joining of DSBs. Importantly, DNA end-joining in BS cells is highly error-prone and frequently results in DNA ligation at distant sites of microhomology, creating large DNA deletions. This aberrant repair is dependent upon the presence of the Ku70/86 heterodimer, a key component in the NHEJ pathway. We propose that aberrant NHEJ is a candidate mechanism for the generation of chromosomal instability in BS.
Collapse
Affiliation(s)
- Terry J Gaymes
- Department of Haematological Medicine, Leukaemic Sciences Laboratories, The Rayne Institute, GKT School of Medicine, Denmark Hill, London SE5 9NU, UK
| | | | | | | | | | | |
Collapse
|
161
|
Odersky A, Panyutin IV, Panyutin IG, Schunck C, Feldmann E, Goedecke W, Neumann RD, Obe G, Pfeiffer P. Repair of sequence-specific 125I-induced double-strand breaks by nonhomologous DNA end joining in mammalian cell-free extracts. J Biol Chem 2002; 277:11756-64. [PMID: 11821407 DOI: 10.1074/jbc.m111304200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian cells, nonhomologous DNA end joining (NHEJ) is considered the major pathway of double-strand break (DSB) repair. Rejoining of DSB produced by decay of (125)I positioned against a specific target site in plasmid DNA via a triplex-forming oligonucleotide (TFO) was investigated in cell-free extracts from Chinese hamster ovary cells. The efficiency and quality of NHEJ of the "complex" DSB induced by the (125)I-TFO was compared with that of "simple" DSB induced by restriction enzymes. We demonstrate that the extracts are indeed able to rejoin (125)I-TFO-induced DSB, although at approximately 10-fold decreased efficiency compared with restriction enzyme-induced DSB. The resulting spectrum of junctions is highly heterogeneous exhibiting deletions (1-30 bp), base pair substitutions, and insertions and reflects the heterogeneity of DSB induced by the (125)I-TFO within its target site. We show that NHEJ of (125)I-TFO-induced DSB is not a random process that solely depends on the position of the DSB but is driven by the availability of microhomology patches in the target sequence. The similarity of the junctions obtained with the ones found in vivo after (125)I-TFO-mediated radiodamage indicates that our in vitro system may be a useful tool to elucidate the mechanisms of ionizing radiation-induced mutagenesis and repair.
Collapse
Affiliation(s)
- Andrea Odersky
- Institut für Genetik FB9, Universität Essen, Universitätsstrasse 5, D-45117 Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Abstract
Ku proteins are associated with a variety of cellular processes such as repair of DNA-double-strand breaks, telomere maintenance and retrotransposition. In recent years, we have learned a lot about their cellular and molecular functions and it has turned out that Ku-dependent processes affect the stability of the genome, both positively and negatively, in several ways. This article gives an overview on the role of Ku in determining the shape of the genome.
Collapse
Affiliation(s)
- Anna A. Friedl
- Strahlenbiologisches Institut der Universität München, Schiller Straße 42, 80336 München, Germany
| |
Collapse
|
163
|
Pierce AJ, Hu P, Han M, Ellis N, Jasin M. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev 2001; 15:3237-42. [PMID: 11751629 PMCID: PMC312854 DOI: 10.1101/gad.946401] [Citation(s) in RCA: 421] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chromosomal double-strand breaks (DSBs) in mammalian cells are repaired by either homology-directed repair (HDR), using a homologous sequence as a repair template, or nonhomologous end-joining (NHEJ), which often involves sequence alterations at the DSB site. To characterize the interrelationship of these two pathways, we analyzed HDR of a DSB in cells deficient for NHEJ components. We find that the HDR frequency is enhanced in Ku70(-/-), XRCC4(-/-), and DNA-PKcs(-/-) cells, with the increase being particularly striking in Ku70(-/-) cells. Neither sister-chromatid exchange nor gene-targeting frequencies show a dependence on these NHEJ proteins. A Ku-modulated two-ended versus one-ended chromosome break model is presented to explain these results.
Collapse
Affiliation(s)
- A J Pierce
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, and Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
164
|
Arkhipova IR, Morrison HG. Three retrotransposon families in the genome of Giardia lamblia: two telomeric, one dead. Proc Natl Acad Sci U S A 2001; 98:14497-502. [PMID: 11734649 PMCID: PMC64710 DOI: 10.1073/pnas.231494798] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transposable elements inhabiting eukaryotic genomes are generally regarded either as selfish DNA, which is selectively neutral to the host organism, or as parasitic DNA, deleterious to the host. Thus far, the only agreed-upon example of beneficial eukaryotic transposons is provided by Drosophila telomere-associated retrotransposons, which transpose directly to the chromosome ends and thereby protect them from degradation. This article reports the transposon content of the genome of the protozoan Giardia lamblia, one of the earliest-branching eukaryotes. A total of three non-long terminal repeat retrotransposon families have been identified, two of which are located at the ends of chromosomes, and the third one contains exclusively dead copies with multiple internal deletions, nucleotide substitutions, and frame shifts. No other reverse transcriptase- or transposase-related sequences were found. Thus, the entire genome of this protozoan, which is not known to reproduce sexually, contains only retrotransposons that are either confined to telomeric regions and possibly beneficial, or inactivated and completely nonfunctional.
Collapse
Affiliation(s)
- I R Arkhipova
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.
| | | |
Collapse
|
165
|
Ostertag EM, Kazazian HH. Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition. Genome Res 2001; 11:2059-65. [PMID: 11731496 PMCID: PMC311219 DOI: 10.1101/gr.205701] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
L1 retrotransposons are pervasive in the human genome. Approximately 25% of recent L1 insertions in the genome are inverted and truncated at the 5' end of the element, but the mechanism of L1 inversion has been a complete mystery. We analyzed recent L1 inversions from the genomic database and discovered several findings that suggested a mechanism for the creation of L1 inversions, which we call twin priming. Twin priming is a consequence of target primed reverse transcription (TPRT), a coupled reverse transcription/integration reaction that L1 elements are thought to use during their retrotransposition. In TPRT, the L1 endonuclease cleaves DNA at its target site to produce a double-strand break with two single-strand overhangs. During twin priming, one of the overhangs anneals to the poly(A) tail of the L1 RNA, and the other overhang anneals internally on the RNA. The overhangs then serve as primers for reverse transcription. The data further indicate that a process identical to microhomology-driven single-strand annealing resolves L1 inversion intermediates.
Collapse
Affiliation(s)
- E M Ostertag
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
166
|
Smith J, Baldeyron C, De Oliveira I, Sala-Trepat M, Papadopoulo D. The influence of DNA double-strand break structure on end-joining in human cells. Nucleic Acids Res 2001; 29:4783-92. [PMID: 11726687 PMCID: PMC96706 DOI: 10.1093/nar/29.23.4783] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA end-joining is the major repair pathway for double-strand breaks (DSBs) in higher eukaryotes. To understand how DSB structure affects the end-joining process in human cells, we have examined the in vivo repair of linearized plasmids containing complementary as well as several different configurations of non-complementary DNA ends. Our results demonstrate that, while complementary and blunt termini display comparable levels of error-free rejoining, end-joining fidelity is decreased to varying extents among mismatched non-complementary ends. End structure also influences the kinetics of repair, accurately recircularized substrates for blunt and complementary termini being detected significantly earlier than for mismatched non-complementary ends. These results suggest that the end-joining process is composed of an early component, capable of efficiently repairing substrates requiring a single ligation event, and a late component, involved in the rejoining of complex substrates requiring multiple processing steps. Finally, these two types of repair events may have different genetic requirements as suggested by the finding that exposure of cells to wortmannin, a potent inhibitor of phosphatidylinositol 3-related kinases (PI 3-related kinases), blocks the repair of complex substrates while having little or no effect on those requiring a simple ligation event.
Collapse
Affiliation(s)
- J Smith
- UMR 218 CNRS, Institut Curie-Recherche, 26 rue d'Ulm, 75248 Paris, France
| | | | | | | | | |
Collapse
|
167
|
Abstract
XRCC5 (also known as Ku80) is a component of the DNA-dependent protein kinase (DNA-PK), existing as a heterodimer with G22P1 (also known as Ku70). DNA-PK is involved in the nonhomologous end-joining (NHEJ) pathway of DNA double-strand break (DSB) repair, and kinase activity is dependent upon interaction of the Ku subunits with the resultant DNA ends. Nuclear XRCC5 is normally extractable with non-ionic detergent; it is found in the soluble cytoplasmic fraction after nuclear isolation with Triton X-100. In this study, we found that heating at 45.5 degrees C causes a decreased extractability of XRCC5 from the nuclei of human U-1 melanoma or HeLa cells. Such decreases in extractability are indicative of protein aggregation within nuclei. Recovery of extractability of XRCC5 to that of unheated control cells was observed after incubation at 37 degrees C after heat shock. The decrease in extractability and the kinetics of recovery were dependent on dose, although the decrease in extractability reached a plateau after heating for 15 min or more. Thermotolerant U-1 cells also showed decreased extractability of XRCC5, but to a lesser degree compared to nontolerant cells. When a comparable initial reduction of extractability of XRCC5 was induced in both thermotolerant and nontolerant cells, the kinetics of recovery was nearly identical. The kinetics of recovery of the extractability of XRCC5 was different from that of total nuclear protein in nontolerant cells; recovery of extractability of XRCC5 occurred faster initially and returned to the level in unheated cells faster than total nuclear protein. Similar results were obtained for thermotolerant cells, with differences between the initial recovery of the extractability of XRCC5 and total protein being particularly evident after longer heating times. Heat has been shown to inactivate XRCC5. We speculate that inactivation of XRCC5 after heat shock results from protein aggregation, and that changes in XRCC5 may, in part, lead to inhibition of DSB repair through inactivation of the NHEJ pathway.
Collapse
Affiliation(s)
- B D Beck
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
168
|
Hemann MT, Strong MA, Hao LY, Greider CW. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 2001; 107:67-77. [PMID: 11595186 DOI: 10.1016/s0092-8674(01)00504-9] [Citation(s) in RCA: 863] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Loss of telomere function can induce cell cycle arrest and apoptosis. To investigate the processes that trigger cellular responses to telomere dysfunction, we crossed mTR-/- G6 mice that have short telomeres with mice heterozygous for telomerase (mTR+/-) that have long telomeres. The phenotype of the telomerase null offspring was similar to that of the late generation parent, although only half of the chromosomes were short. Strikingly, spectral karyotyping (SKY) analysis revealed that loss of telomere function occurred preferentially on chromosomes with critically short telomeres. Our data indicate that, while average telomere length is measured in most studies, it is not the average but rather the shortest telomeres that constitute telomere dysfunction and limit cellular survival in the absence of telomerase.
Collapse
Affiliation(s)
- M T Hemann
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
169
|
Pastwa E, Neumann RD, Winters TA. In vitro repair of complex unligatable oxidatively induced DNA double-strand breaks by human cell extracts. Nucleic Acids Res 2001; 29:E78. [PMID: 11504886 PMCID: PMC55862 DOI: 10.1093/nar/29.16.e78] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We describe a new assay for in vitro repair of oxidatively induced DNA double-strand breaks (DSBs) by HeLa cell nuclear extracts. The assay employs linear plasmid DNA containing DNA DSBs produced by the radiomimetic drug bleomycin. The bleomycin-induced DSB possesses a complex structure similar to that produced by oxidative processes and ionizing radiation. Bleomycin DSBs are composed of blunt ends or ends containing a single 5'-base overhang. Regardless of the 5'-end structure, all bleomycin-induced DSBs possess 3'-ends blocked by phosphoglycolate. Cellular extraction and initial end joining conditions for our assay were optimized with restriction enzyme-cleaved DNA to maximize ligation activity. Parameters affecting ligation such as temperature, time, ionic strength, ATP utilization and extract protein concentration were examined. Similar reactions were performed with the bleomycin-linearized substrate. In all cases, end-joined molecules ranging from dimers to higher molecular weight forms were produced and observed directly in agarose gels stained with Vistra Green and imaged with a FluorImager 595. This detection method is at least 50-fold more sensitive than ethidium bromide and permits detection of </=0.25 ng double-stranded DNA per band in post-electrophoretically stained agarose gels. Consequently, our end-joining reaction requires </=100 ng substrate DNA and >/=50% conversion of substrate to product is achieved with simple substrates such as restriction enzyme-cleaved DNA. Using our assay we have observed a 6-fold lower repair rate and a lag in reaction initiation for bleomycin-induced DSBs as compared to blunt-ended DNA. Also, end joining reaction conditions are DSB end group dependent. In particular, bleomycin-induced DSB repair is considerably more sensitive to inhibition by increased ionic strength than repair of blunt-ended DNA.
Collapse
Affiliation(s)
- E Pastwa
- Nuclear Medicine Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
170
|
Abstract
The Ku protein is an essential protein for DNA double-strand-break repair by the pathway of nonhomologous DNA end-joining (NHEJ). A previous study showed that Ku bound to one DNA molecule could transfer directly to another DNA molecule without being released into the solution first. Direct transfer requires the two DNA molecules having homologous cohesive ends with a minimum of four complementary bases. Results of this study reveal that direct transfer activity of Ku is regulated by NaCl and MgCl2. Increasing either one of the two cations can decrease the required amount of the other. However, the DNA end-binding activity of Ku is not affected by changing the concentration of the cations, indicating that the two activities are regulated independently. Most importantly, the results also show that Ku can transfer directly from one DNA molecule to another one with nonhomologous ends under the condition of 200 mM NaCl and 5mM MgCl2. The ability of direct transfer between DNAs with nonhomologous ends suggests that Ku can align or juxtapose two DNA ends during NHEJ.
Collapse
Affiliation(s)
- C F Chiu
- Department of Life Science, National Tsin-Hua University, Hsinchu, Taiwan, ROC
| | | | | |
Collapse
|
171
|
Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 2001; 412:607-14. [PMID: 11493912 DOI: 10.1038/35088000] [Citation(s) in RCA: 843] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Ku heterodimer (Ku70 and Ku80 subunits) contributes to genomic integrity through its ability to bind DNA double-strand breaks and facilitate repair by the non-homologous end-joining pathway. The crystal structure of the human Ku heterodimer was determined both alone and bound to a 55-nucleotide DNA element at 2.7 and 2.5 A resolution, respectively. Ku70 and Ku80 share a common topology and form a dyad-symmetrical molecule with a preformed ring that encircles duplex DNA. The binding site can cradle two full turns of DNA while encircling only the central 3-4 base pairs (bp). Ku makes no contacts with DNA bases and few with the sugar-phosphate backbone, but it fits sterically to major and minor groove contours so as to position the DNA helix in a defined path through the protein ring. These features seem well designed to structurally support broken DNA ends and to bring the DNA helix into phase across the junction during end processing and ligation.
Collapse
Affiliation(s)
- J R Walker
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
172
|
Pospiech H, Rytkönen AK, Syväoja JE. The role of DNA polymerase activity in human non-homologous end joining. Nucleic Acids Res 2001; 29:3277-88. [PMID: 11470886 PMCID: PMC55831 DOI: 10.1093/nar/29.15.3277] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In mammalian cells, DNA double-strand breaks are repaired mainly by non-homologous end joining, which modifies and ligates two DNA ends without requiring extensive base pairing interactions for alignment. We investigated the role of DNA polymerases in DNA-PK-dependent end joining of restriction-digested plasmids in vitro and in vivo. Rejoining of DNA blunt ends as well as those with partially complementary 5' or 3' overhangs was stimulated by 20-53% in HeLa cell-free extracts when dNTPs were included, indicating that part of the end joining is dependent on DNA synthesis. This DNA synthesis-dependent end joining was sensitive to aphidicolin, an inhibitor of alpha-like DNA polymerases. Furthermore, antibodies that neutralize the activity of DNA polymerase alpha were found to strongly inhibit end joining in vitro, whereas neutralizing antibodies directed against DNA polymerases beta and epsilon did not. DNA sequence analysis of end joining products revealed two prominent modes of repair, one of which appeared to be dependent on DNA synthesis. Identical products of end joining were recovered from HeLa cells after transfection with one of the model substrates, suggesting that the same end joining mechanisms also operate in vivo. Fractionation of cell extracts to separate PCNA as well as depletion of cell extracts for PCNA resulted in a moderate but significant reduction in end joining activity, suggesting a potential role in a minor repair pathway.
Collapse
Affiliation(s)
- H Pospiech
- Biocenter Oulu and Department of Biochemistry, PO Box 3000, FIN-90014 University of Oulu, Finland
| | | | | |
Collapse
|
173
|
Chen S, Inamdar KV, Pfeiffer P, Feldmann E, Hannah MF, Yu Y, Lee JW, Zhou T, Lees-Miller SP, Povirk LF. Accurate in vitro end joining of a DNA double strand break with partially cohesive 3'-overhangs and 3'-phosphoglycolate termini: effect of Ku on repair fidelity. J Biol Chem 2001; 276:24323-30. [PMID: 11309379 DOI: 10.1074/jbc.m010544200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To examine determinants of fidelity in DNA end joining, a substrate containing a model of a staggered free radical-mediated double-strand break, with cohesive phosphoglycolate-terminated 3'-overhangs and a one-base gap in each strand, was constructed. In extracts of Xenopus eggs, human lymphoblastoid cells, hamster CHO-K1 cells, and a Chinese hamster ovary (CHO) derivative lacking the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), the predominant end joining product was that corresponding to accurate restoration of the original sequence. In extracts of the Ku-deficient CHO derivative xrs6, a shorter product, consistent with 3' --> 5' resection before ligation, was formed. Similar results were seen for a substrate with 5'-overhangs and recessed 3'-phosphoglycolate ends. Supplementation of the xrs6 extracts with purified Ku restored accurate end joining. In Xenopus and human extracts, but not in hamster extracts, gap filling and ligation were blocked by wortmannin, consistent with a requirement for DNA-PKcs activity. The results suggest a Ku-dependent pathway, regulated by DNA-PKcs, that can accurately restore the original DNA sequence at sites of free radical-mediated double-strand breaks, by protecting DNA termini from degradation and maintaining the alignment of short partial complementarities during gap filling and ligation.
Collapse
Affiliation(s)
- S Chen
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Klugbauer S, Pfeiffer P, Gassenhuber H, Beimfohr C, Rabes HM. RET rearrangements in radiation-induced papillary thyroid carcinomas: high prevalence of topoisomerase I sites at breakpoints and microhomology-mediated end joining in ELE1 and RET chimeric genes. Genomics 2001; 73:149-60. [PMID: 11318605 DOI: 10.1006/geno.2000.6434] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Children exposed to radioactive iodine after the Chernobyl reactor accident frequently developed papillary thyroid carcinomas (PTC). The predominant molecular lesions in these tumors are rearrangements of the RET receptor tyrosine kinase gene. Various types of RET rearrangements have been described. More than 90% of PTC with RET rearrangement exhibit a PTC1 or PTC3 type of rearrangement with an inversion of the H4 or ELE1 gene, respectively, on chromosome 10. To obtain closer insight into the mechanisms underlying PTC3 inversions, we analyzed the genomic breakpoints of 22 reciprocal and 4 nonreciprocal ELE1 and RET rearrangements in 26 post-Chernobyl tumor samples. In contrast to previous assumptions, an accumulation of breakpoints at the two Alu elements in the ELE1 sequence was not observed. Instead, breakpoints are distributed in the affected introns of both genes without significant clustering. When compared to the corresponding wildtype sequences, the majority of breakpoints (92%) do not contain larger deletions or insertions. Most remarkably, at least one topoisomerase I site was found exactly at or in close vicinity to all breakpoints, indicating a potential role for this enzyme in the formation of DNA strand breaks and/or ELE1 and RET inversions. The presence of short regions of sequence homology (microhomologies) and short direct and inverted repeats at the majority of breakpoints furthermore indicates a nonhomologous DNA end-joining mechanism in the formation of chimeric ELE1/Ret and Ret/ELE1 genes.
Collapse
Affiliation(s)
- S Klugbauer
- Institute of Pathology, Ludwig Maximilians University of Munich, Thalkirchner Strasse 36, D-80337 Munich, Germany
| | | | | | | | | |
Collapse
|