151
|
Maeder ML, Gersbach CA. Genome-editing Technologies for Gene and Cell Therapy. Mol Ther 2016; 24:430-46. [PMID: 26755333 PMCID: PMC4786923 DOI: 10.1038/mt.2016.10] [Citation(s) in RCA: 416] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed.
Collapse
Affiliation(s)
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
152
|
Fujita T, Fujii H. Isolation of Specific Genomic Regions and Identification of Associated Molecules by enChIP. J Vis Exp 2016:e53478. [PMID: 26862718 PMCID: PMC4781690 DOI: 10.3791/53478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The identification of molecules associated with specific genomic regions of interest is required to understand the mechanisms of regulation of the functions of these regions. To enable the non-biased identification of molecules interacting with a specific genomic region of interest, we recently developed the engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) technique. Here, we describe how to use enChIP to isolate specific genomic regions and identify the associated proteins and RNAs. First, a genomic region of interest is tagged with a transcription activator-like (TAL) protein or a clustered regularly interspaced short palindromic repeats (CRISPR) complex consisting of a catalytically inactive form of Cas9 and a guide RNA. Subsequently, the chromatin is crosslinked and fragmented by sonication. The tagged locus is then immunoprecipitated and the crosslinking is reversed. Finally, the proteins or RNAs that are associated with the isolated chromatin are subjected to mass spectrometric or RNA sequencing analyses, respectively. This approach allows the successful identification of proteins and RNAs associated with a genomic region of interest.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University
| | - Hodaka Fujii
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University;
| |
Collapse
|
153
|
Fujita T, Fujii H. Biochemical Analysis of Genome Functions Using Locus-Specific Chromatin Immunoprecipitation Technologies. GENE REGULATION AND SYSTEMS BIOLOGY 2016; 10:1-9. [PMID: 26819551 PMCID: PMC4718151 DOI: 10.4137/grsb.s32520] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/08/2015] [Accepted: 10/18/2015] [Indexed: 01/07/2023]
Abstract
To isolate specific genomic regions that retain their molecular interactions, allowing direct identification of chromatin-bound molecules, we developed two locus-specific chromatin immunoprecipitation (locus-specific ChIP) technologies, insertional ChIP (iChIP) and engineered DNA-binding molecule-mediated ChIP (enChIP) using the clustered regularly interspaced short palindromic repeats (CRISPR) system or transcription activator-like (TAL) proteins. Essentially, a locus-specific ChIP consists of locus-tagging and affinity purification and can be combined with downstream analyses to identify molecules associated with the target genomic regions. In this review, we discuss the applications of locus-specific ChIP to analyze the genome functions, including transcription and epigenetic regulation.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hodaka Fujii
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
154
|
The Rise of CRISPR/Cas for Genome Editing in Stem Cells. Stem Cells Int 2016; 2016:8140168. [PMID: 26880991 PMCID: PMC4736575 DOI: 10.1155/2016/8140168] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 12/26/2022] Open
Abstract
Genetic manipulation is a powerful tool to establish the causal relationship between a genetic lesion and a particular pathological phenotype. The rise of CRISPR/Cas9 genome-engineering tools overcame the traditional technical bottleneck for routine site-specific genetic manipulation in cells. To create the perfect in vitro cell model, there is significant interest from the stem cell research community to adopt this fast evolving technology. This review addresses this need directly by providing both the up-to-date biochemical rationale of CRISPR-mediated genome engineering and detailed practical guidelines for the design and execution of CRISPR experiments in cell models. Ultimately, this review will serve as a timely and comprehensive guide for this fast developing technology.
Collapse
|
155
|
Fine EJ, Cradick TJ, Bao G. Strategies to Determine Off-Target Effects of Engineered Nucleases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
156
|
Jakočiūnas T, Jensen MK, Keasling JD. CRISPR/Cas9 advances engineering of microbial cell factories. Metab Eng 2015; 34:44-59. [PMID: 26707540 DOI: 10.1016/j.ymben.2015.12.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/29/2015] [Accepted: 12/10/2015] [Indexed: 12/19/2022]
Abstract
One of the key drivers for successful metabolic engineering in microbes is the efficacy by which genomes can be edited. As such there are many methods to choose from when aiming to modify genomes, especially those of model organisms like yeast and bacteria. In recent years, clustered regularly interspaced palindromic repeats (CRISPR) and its associated proteins (Cas) have become the method of choice for precision genome engineering in many organisms due to their orthogonality, versatility and efficacy. Here we review the strategies adopted for implementation of RNA-guided CRISPR/Cas9 genome editing with special emphasis on their application for metabolic engineering of yeast and bacteria. Also, examples of how nuclease-deficient Cas9 has been applied for RNA-guided transcriptional regulation of target genes will be reviewed, as well as tools available for computer-aided design of guide-RNAs will be highlighted. Finally, this review will provide a perspective on the immediate challenges and opportunities foreseen by the use of CRISPR/Cas9 genome engineering and regulation in the context of metabolic engineering.
Collapse
Affiliation(s)
- Tadas Jakočiūnas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Michael K Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| | - Jay D Keasling
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Chemical and Biomolecular Engineering & Department of Bioengineering University of California, Berkeley, CA, USA
| |
Collapse
|
157
|
Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 2015; 17:5-15. [PMID: 26670017 DOI: 10.1038/nrm.2015.2] [Citation(s) in RCA: 574] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The bacterial CRISPR-Cas9 system has emerged as a multifunctional platform for sequence-specific regulation of gene expression. This Review describes the development of technologies based on nuclease-deactivated Cas9, termed dCas9, for RNA-guided genomic transcription regulation, both by repression through CRISPR interference (CRISPRi) and by activation through CRISPR activation (CRISPRa). We highlight different uses in diverse organisms, including bacterial and eukaryotic cells, and summarize current applications of harnessing CRISPR-dCas9 for multiplexed, inducible gene regulation, genome-wide screens and cell fate engineering. We also provide a perspective on future developments of the technology and its applications in biomedical research and clinical studies.
Collapse
|
158
|
Xue HY, Ji LJ, Gao AM, Liu P, He JD, Lu XJ. CRISPR-Cas9 for medical genetic screens: applications and future perspectives. J Med Genet 2015; 53:91-7. [DOI: 10.1136/jmedgenet-2015-103409] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/13/2015] [Indexed: 12/26/2022]
|
159
|
Abstract
The rapid advances in the field of genome editing using targeted endonucleases have called considerable attention to the potential of this technology for human gene therapy. Targeted correction of disease-causing mutations could ensure lifelong, tissue-specific expression of the relevant gene, thereby alleviating or resolving a specific disease phenotype. In this review, we aim to explore the potential of this technology for the therapy of β-thalassemia. This blood disorder is caused by mutations in the gene encoding the β-globin chain of hemoglobin, leading to severe anemia in affected patients. Curative allogeneic bone marrow transplantation is available only to a small subset of patients, leaving the majority of patients dependent on regular blood transfusions and iron chelation therapy. The transfer of gene-corrected autologous hematopoietic stem cells could provide a therapeutic alternative, as recent results from gene therapy trials using a lentiviral gene addition approach have demonstrated. Genome editing has the potential to further advance this approach as it eliminates the need for semi-randomly integrating viral vectors and their associated risk of insertional mutagenesis. In the following pages we will highlight the advantages and risks of genome editing compared to standard therapy for β-thalassemia and elaborate on lessons learned from recent gene therapy trials.
Collapse
Affiliation(s)
- Astrid Glaser
- 1Murdoch Childrens Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia
| | - Bradley McColl
- 1Murdoch Childrens Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia
| | - Jim Vadolas
- 1Murdoch Childrens Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia
| |
Collapse
|
160
|
Thakore PI, D'Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM, Reddy TE, Crawford GE, Gersbach CA. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods 2015; 12:1143-9. [PMID: 26501517 PMCID: PMC4666778 DOI: 10.1038/nmeth.3630] [Citation(s) in RCA: 675] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/19/2015] [Indexed: 12/17/2022]
Abstract
Epigenome editing with the CRISPR (clustered, regularly interspaced, short palindromic repeats)-Cas9 platform is a promising technology for modulating gene expression to direct cell phenotype and to dissect the causal epigenetic mechanisms of gene regulation. Fusions of nuclease-inactive dCas9 to the Krüppel-associated box (KRAB) repressor (dCas9-KRAB) can silence target gene expression, but the genome-wide specificity and the extent of heterochromatin formation catalyzed by dCas9-KRAB are not known. We targeted dCas9-KRAB to the HS2 enhancer, a distal regulatory element that orchestrates the expression of multiple globin genes, and observed highly specific induction of H3K9 trimethylation (H3K9me3) at the enhancer and decreased chromatin accessibility of both the enhancer and its promoter targets. Targeted epigenetic modification of HS2 silenced the expression of multiple globin genes, with minimal off-target changes in global gene expression. These results demonstrate that repression mediated by dCas9-KRAB is sufficiently specific to disrupt the activity of individual enhancers via local modification of the epigenome.
Collapse
Affiliation(s)
- Pratiksha I Thakore
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
| | - Anthony M D'Ippolito
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina, USA
| | - Alexias Safi
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Ami M Kabadi
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
| | - Timothy E Reddy
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
- Department of Biostatistics &Bioinformatics, Duke University Medical Center, Durham, North Carolina, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
161
|
O’Geen H, Yu AS, Segal DJ. How specific is CRISPR/Cas9 really? Curr Opin Chem Biol 2015; 29:72-8. [PMID: 26517564 PMCID: PMC4684463 DOI: 10.1016/j.cbpa.2015.10.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Abstract
The specificity of RNA-guided nucleases has gathered considerable interest as they become broadly applied to basic research and therapeutic development. Reports of the simple generation of animal models and genome engineering of cells raised questions about targeting precision. Conflicting early reports led the field to believe that CRISPR/Cas9 system was promiscuous, leading to a variety of strategies for improving specificity and increasingly sensitive methods to detect off-target events. However, other studies have suggested that CRISPR/Cas9 is a highly specific genome-editing tool. This review will focus on deciphering and interpreting these seemingly opposing claims.
Collapse
Affiliation(s)
- Henriette O’Geen
- Genome Center, Department of Biochemistry and Molecular Medicine, and MIND Institute, University of California, Davis, CA 95616, USA
| | - Abigail S. Yu
- Genome Center, Department of Biochemistry and Molecular Medicine, and MIND Institute, University of California, Davis, CA 95616, USA
| | - David J. Segal
- Genome Center, Department of Biochemistry and Molecular Medicine, and MIND Institute, University of California, Davis, CA 95616, USA
| |
Collapse
|
162
|
Abstract
CRISPR-based approaches have quickly become a favored method to perturb genes to uncover their functions. Here, we review the key considerations in the design of genome editing experiments, and survey the tools and resources currently available to assist users of this technology.
Collapse
Affiliation(s)
- Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
163
|
Abstract
Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances.
Collapse
Affiliation(s)
- Isaac B Hilton
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA; Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA; Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA; Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
164
|
Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research. Int J Mol Sci 2015; 16:23143-64. [PMID: 26404236 PMCID: PMC4632690 DOI: 10.3390/ijms161023143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 08/31/2015] [Accepted: 09/14/2015] [Indexed: 11/16/2022] Open
Abstract
Engineered DNA-binding molecules such as transcription activator-like effector (TAL or TALE) proteins and the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) (CRISPR/Cas) system have been used extensively for genome editing in cells of various types and species. The sequence-specific DNA-binding activities of these engineered DNA-binding molecules can also be utilized for other purposes, such as transcriptional activation, transcriptional repression, chromatin modification, visualization of genomic regions, and isolation of chromatin in a locus-specific manner. In this review, we describe applications of these engineered DNA-binding molecules for biological purposes other than genome editing.
Collapse
|
165
|
Fujii H, Fujita T. Isolation of Specific Genomic Regions and Identification of Their Associated Molecules by Engineered DNA-Binding Molecule-Mediated Chromatin Immunoprecipitation (enChIP) Using the CRISPR System and TAL Proteins. Int J Mol Sci 2015; 16:21802-12. [PMID: 26370991 PMCID: PMC4613281 DOI: 10.3390/ijms160921802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 08/24/2015] [Accepted: 08/29/2015] [Indexed: 01/06/2023] Open
Abstract
Comprehensive understanding of genome functions requires identification of molecules (proteins, RNAs, genomic regions, etc.) bound to specific genomic regions of interest in vivo. To perform biochemical and molecular biological analysis of specific genomic regions, we developed engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) to purify genomic regions of interest. In enChIP, specific genomic regions are tagged for biochemical purification using engineered DNA-binding molecules, such as transcription activator-like (TAL) proteins and a catalytically inactive form of the clustered regularly interspaced short palindromic repeats (CRISPR) system. enChIP is a comprehensive approach that emphasizes non-biased search using next-generation sequencing (NGS), microarrays, mass spectrometry (MS), and other methods. Moreover, this approach is not restricted to cultured cell lines and can be easily extended to organisms. In this review, we discuss applications of enChIP to elucidating the molecular mechanisms underlying genome functions.
Collapse
Affiliation(s)
- Hodaka Fujii
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita City, Osaka 565-0871, Japan.
| | - Toshitsugu Fujita
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita City, Osaka 565-0871, Japan.
| |
Collapse
|
166
|
Polstein LR, Perez-Pinera P, Kocak DD, Vockley CM, Bledsoe P, Song L, Safi A, Crawford GE, Reddy TE, Gersbach CA. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators. Genome Res 2015; 25:1158-69. [PMID: 26025803 PMCID: PMC4510000 DOI: 10.1101/gr.179044.114] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 05/27/2015] [Indexed: 12/26/2022]
Abstract
Genome engineering technologies based on the CRISPR/Cas9 and TALE systems are enabling new approaches in science and biotechnology. However, the specificity of these tools in complex genomes and the role of chromatin structure in determining DNA binding are not well understood. We analyzed the genome-wide effects of TALE- and CRISPR-based transcriptional activators in human cells using ChIP-seq to assess DNA-binding specificity and RNA-seq to measure the specificity of perturbing the transcriptome. Additionally, DNase-seq was used to assess genome-wide chromatin remodeling that occurs as a result of their action. Our results show that these transcription factors are highly specific in both DNA binding and gene regulation and are able to open targeted regions of closed chromatin independent of gene activation. Collectively, these results underscore the potential for these technologies to make precise changes to gene expression for gene and cell therapies or fundamental studies of gene function.
Collapse
Affiliation(s)
- Lauren R Polstein
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Pablo Perez-Pinera
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - D Dewran Kocak
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Christopher M Vockley
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Peggy Bledsoe
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Alexias Safi
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA; Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Timothy E Reddy
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA; Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA; Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA; Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
167
|
Hendel A, Fine EJ, Bao G, Porteus MH. Quantifying on- and off-target genome editing. Trends Biotechnol 2015; 33:132-40. [PMID: 25595557 PMCID: PMC4308725 DOI: 10.1016/j.tibtech.2014.12.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/02/2014] [Accepted: 12/07/2014] [Indexed: 12/13/2022]
Abstract
Genome editing with engineered nucleases is a rapidly growing field thanks to transformative technologies that allow researchers to precisely alter genomes for numerous applications including basic research, biotechnology, and human gene therapy. While the ability to make precise and controlled changes at specified sites throughout the genome has grown tremendously in recent years, we still lack a comprehensive and standardized battery of assays for measuring the different genome editing outcomes created at endogenous genomic loci. Here we review the existing assays for quantifying on- and off-target genome editing and describe their utility in advancing the technology. We also highlight unmet assay needs for quantifying on- and off-target genome editing outcomes and discuss their importance for the genome editing field.
Collapse
Affiliation(s)
- Ayal Hendel
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Eli J Fine
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
168
|
Abstract
The CRISPR-Cas9 system, naturally a defense mechanism in prokaryotes, has been repurposed as an RNA-guided DNA targeting platform. It has been widely used for genome editing and transcriptome modulation, and has shown great promise in correcting mutations in human genetic diseases. Off-target effects are a critical issue for all of these applications. Here we review the current status on the target specificity of the CRISPR-Cas9 system.
Collapse
Affiliation(s)
- Xuebing Wu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrea J. Kriz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Phillip A. Sharp
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|