151
|
Abstract
Directed evolution has proved to be an effective strategy for improving or altering the activity of biomolecules for industrial, research and therapeutic applications. The evolution of proteins in the laboratory requires methods for generating genetic diversity and for identifying protein variants with desired properties. This Review describes some of the tools used to diversify genes, as well as informative examples of screening and selection methods that identify or isolate evolved proteins. We highlight recent cases in which directed evolution generated enzymatic activities and substrate specificities not known to exist in nature.
Collapse
Affiliation(s)
- Michael S Packer
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - David R Liu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
152
|
Significantly improved thermostability of a reductase CgKR1 from Candida glabrata with a key mutation at Asp 138 for enhancing bioreduction of aromatic α-keto esters. J Biotechnol 2015; 203:54-61. [DOI: 10.1016/j.jbiotec.2015.02.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/14/2015] [Accepted: 02/28/2015] [Indexed: 01/03/2023]
|
153
|
Otzen M, Crismaru CG, Postema CP, Wijma HJ, Heberling MM, Szymanski W, de Wildeman S, Janssen DB. Metabolism of β-valine via a CoA-dependent ammonia lyase pathway. Appl Microbiol Biotechnol 2015; 99:8987-98. [PMID: 26004802 PMCID: PMC4619459 DOI: 10.1007/s00253-015-6551-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/24/2015] [Accepted: 03/17/2015] [Indexed: 11/30/2022]
Abstract
Pseudomonas species strain SBV1 can rapidly grow on medium containing β-valine as a sole nitrogen source. The tertiary amine feature of β-valine prevents direct deamination reactions catalyzed by aminotransferases, amino acid dehydrogenases, and amino acid oxidases. However, lyase- or aminomutase-mediated conversions would be possible. To identify enzymes involved in the degradation of β-valine, a PsSBV1 gene library was prepared and used to complement the β-valine growth deficiency of a closely related Pseudomonas strain. This resulted in the identification of a gene encoding β-valinyl-coenzyme A ligase (BvaA) and two genes encoding β-valinyl-CoA ammonia lyases (BvaB1 and BvaB2). The BvaA protein demonstrated high sequence identity to several known phenylacetate CoA ligases. Purified BvaA enzyme did not convert phenyl acetic acid but was able to activate β-valine in an adenosine triphosphate (ATP)- and CoA-dependent manner. The substrate range of the enzyme appears to be narrow, converting only β-valine and to a lesser extent, 3-aminobutyrate and β-alanine. Characterization of BvaB1 and BvaB2 revealed that both enzymes were able to deaminate β-valinyl-CoA to produce 3-methylcrotonyl-CoA, a common intermediate in the leucine degradation pathway. Interestingly, BvaB1 and BvaB2 demonstrated no significant sequence identity to known CoA-dependent ammonia lyases, suggesting they belong to a new family of enzymes. BLAST searches revealed that BvaB1 and BvaB2 show high sequence identity to each other and to several enoyl-CoA hydratases, a class of enzymes that catalyze a similar reaction with water instead of amine as the leaving group.
Collapse
Affiliation(s)
- Marleen Otzen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ciprian G Crismaru
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Christiaan P Postema
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Hein J Wijma
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Matthew M Heberling
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Wiktor Szymanski
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Stefaan de Wildeman
- DSM Pharmaceutical Products, Geleen, The Netherlands.,BioBased Materials, Faculty of Humanities and Sciences, Maastricht University, Chemelot, The Netherlands
| | - Dick B Janssen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
154
|
Denard CA, Ren H, Zhao H. Improving and repurposing biocatalysts via directed evolution. Curr Opin Chem Biol 2015; 25:55-64. [DOI: 10.1016/j.cbpa.2014.12.036] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/14/2014] [Accepted: 12/18/2014] [Indexed: 11/27/2022]
|
155
|
Floor RJ, Wijma HJ, Jekel PA, Terwisscha van Scheltinga AC, Dijkstra BW, Janssen DB. X-ray crystallographic validation of structure predictions used in computational design for protein stabilization. Proteins 2015; 83:940-51. [PMID: 25739581 DOI: 10.1002/prot.24791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/11/2015] [Accepted: 02/14/2015] [Indexed: 11/10/2022]
Abstract
Protein engineering aimed at enhancing enzyme stability is increasingly supported by computational methods for calculation of mutant folding energies and for the design of disulfide bonds. To examine the accuracy of mutant structure predictions underlying these computational methods, crystal structures of thermostable limonene epoxide hydrolase variants obtained by computational library design were determined. Four different predicted effects indeed contributed to the obtained stabilization: (i) enhanced interactions between a flexible loop close to the N-terminus and the rest of the protein; (ii) improved interactions at the dimer interface; (iii) removal of unsatisfied hydrogen bonding groups; and (iv) introduction of additional positively charged groups at the surface. The structures of an eightfold and an elevenfold mutant showed that most mutations introduced the intended stabilizing interactions, and side-chain conformations were correctly predicted for 72-88% of the point mutations. However, mutations that introduced a disulfide bond in a flexible region had a larger influence on the backbone conformation than predicted. The enzyme active sites were unaltered, in agreement with the observed preservation of catalytic activities. The structures also revealed how a c-Myc tag, which was introduced for facile detection and purification, can reduce access to the active site and thereby lower the catalytic activity. Finally, sequence analysis showed that comprehensive mutant energy calculations discovered stabilizing mutations that are not proposed by the consensus or B-FIT methods.
Collapse
Affiliation(s)
- Robert J Floor
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
156
|
Lamazares E, Clemente I, Bueno M, Velázquez-Campoy A, Sancho J. Rational stabilization of complex proteins: a divide and combine approach. Sci Rep 2015; 5:9129. [PMID: 25774740 PMCID: PMC4360737 DOI: 10.1038/srep09129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/19/2015] [Indexed: 11/09/2022] Open
Abstract
Increasing the thermostability of proteins is often crucial for their successful use as analytic, synthetic or therapeutic tools. Most rational thermostabilization strategies were developed on small two-state proteins and, unsurprisingly, they tend to fail when applied to the much more abundant, larger, non-fully cooperative proteins. We show that the key to stabilize the latter is to know the regions of lower stability. To prove it, we have engineered apoflavodoxin, a non-fully cooperative protein on which previous thermostabilizing attempts had failed. We use a step-wise combination of structure-based, rationally-designed, stabilizing mutations confined to the less stable structural region, and obtain variants that, according to their van't Hoff to calorimetric enthalpy ratios, exhibit fully-cooperative thermal unfolding with a melting temperature of 75°C, 32 degrees above the lower melting temperature of the non-cooperative wild type protein. The ideas introduced here may also be useful for the thermostabilization of complex proteins through formulation or using specific stabilizing ligands (e.g. pharmacological chaperones).
Collapse
Affiliation(s)
- Emilio Lamazares
- 1] Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain [2] Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Isabel Clemente
- 1] Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain [2] Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Marta Bueno
- 1] Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain [2] Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- 1] Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain [2] Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain [3] Fundación ARAID, Gobierno de Aragón, Spain
| | - Javier Sancho
- 1] Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain [2] Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
157
|
Verma D, Grigoryan G, Bailey-Kellogg C. Structure-based design of combinatorial mutagenesis libraries. Protein Sci 2015; 24:895-908. [PMID: 25611189 DOI: 10.1002/pro.2642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/14/2014] [Accepted: 01/11/2015] [Indexed: 01/27/2023]
Abstract
The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called "Structure-based Optimization of Combinatorial Mutagenesis" (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states.
Collapse
Affiliation(s)
- Deeptak Verma
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire
| | | | | |
Collapse
|
158
|
Nobili A, Tao Y, Pavlidis IV, van den Bergh T, Joosten HJ, Tan T, Bornscheuer UT. Simultaneous use of in silico design and a correlated mutation network as a tool to efficiently guide enzyme engineering. Chembiochem 2015; 16:805-10. [PMID: 25711719 DOI: 10.1002/cbic.201402665] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Indexed: 12/30/2022]
Abstract
In order to improve the efficiency of directed evolution experiments, in silico multiple-substrate clustering was combined with an analysis of the variability of natural enzymes within a protein superfamily. This was applied to a Pseudomonas fluorescens esterase (PFE I) targeting the enantioselective hydrolysis of 3-phenylbutyric acid esters. Data reported in the literature for nine substrates were used for the clustering meta-analysis of the docking conformations in wild-type PFE I, and this highlighted a tryptophan residue (W28) as an interesting target. Exploration of the most frequently, naturally occurring amino acids at this position suggested that the reduced flexibility observed in the case of the W28F variant leads to enhancement of the enantioselectivity. This mutant was subsequently combined with mutations identified in a library based on analysis of a correlated mutation network. By interrogation of <80 variants a mutant with 15-fold improved enantioselectivity was found.
Collapse
Affiliation(s)
- Alberto Nobili
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, Greifswald University, Felix-Hausdorff Strasse 4, 17487 Greifswald (Germany)
| | | | | | | | | | | | | |
Collapse
|
159
|
Wijma HJ, Floor RJ, Bjelic S, Marrink SJ, Baker D, Janssen DB. Enantioselective enzymes by computational design and in silico screening. Angew Chem Int Ed Engl 2015; 54:3726-30. [PMID: 25651000 DOI: 10.1002/anie.201411415] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Indexed: 01/08/2023]
Abstract
Computational enzyme design holds great promise for providing new biocatalysts for synthetic chemistry. A strategy to design small mutant libraries of complementary enantioselective epoxide hydrolase variants for the production of highly enantioenriched (S,S)-diols and (R,R)-diols is developed. Key features of this strategy (CASCO, catalytic selectivity by computational design) are the design of mutations that favor binding of the substrate in a predefined orientation, the introduction of steric hindrance to prevent unwanted substrate binding modes, and ranking of designs by high-throughput molecular dynamics simulations. Using this strategy we obtained highly stereoselective mutants of limonene epoxide hydrolase after experimental screening of only 37 variants. The results indicate that computational methods can replace a substantial amount of laboratory work when developing enantioselective enzymes.
Collapse
Affiliation(s)
- Hein J Wijma
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands)
| | | | | | | | | | | |
Collapse
|
160
|
Wijma HJ, Floor RJ, Bjelic S, Marrink SJ, Baker D, Janssen DB. Enantioselective Enzymes by Computational Design and In Silico Screening. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411415] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
161
|
Verges A, Cambon E, Barbe S, Salamone S, Le Guen Y, Moulis C, Mulard LA, Remaud-Siméon M, André I. Computer-Aided Engineering of a Transglycosylase for the Glucosylation of an Unnatural Disaccharide of Relevance for Bacterial Antigen Synthesis. ACS Catal 2015. [DOI: 10.1021/cs501288r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Alizée Verges
- Université de Toulouse; INSA,UPS,INP;
LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- INRA, UMR792 Ingénierie
des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
| | - Emmanuelle Cambon
- Université de Toulouse; INSA,UPS,INP;
LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- INRA, UMR792 Ingénierie
des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
| | - Sophie Barbe
- Université de Toulouse; INSA,UPS,INP;
LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- INRA, UMR792 Ingénierie
des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
| | - Stéphane Salamone
- Institut Pasteur,
Unité de Chimie des Biomolécules, 28 rue du Dr. Roux, F-75724 Paris Cedex 15, France
- CNRS UMR3523,
Institut Pasteur, F-75015 Paris, France
| | - Yann Le Guen
- Institut Pasteur,
Unité de Chimie des Biomolécules, 28 rue du Dr. Roux, F-75724 Paris Cedex 15, France
- CNRS UMR3523,
Institut Pasteur, F-75015 Paris, France
- Université Paris Descartes Sorbonne Paris Cité, Institut Pasteur, F-75015 Paris, France
| | - Claire Moulis
- Université de Toulouse; INSA,UPS,INP;
LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- INRA, UMR792 Ingénierie
des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
| | - Laurence A. Mulard
- Institut Pasteur,
Unité de Chimie des Biomolécules, 28 rue du Dr. Roux, F-75724 Paris Cedex 15, France
- CNRS UMR3523,
Institut Pasteur, F-75015 Paris, France
| | - Magali Remaud-Siméon
- Université de Toulouse; INSA,UPS,INP;
LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- INRA, UMR792 Ingénierie
des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
| | - Isabelle André
- Université de Toulouse; INSA,UPS,INP;
LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- INRA, UMR792 Ingénierie
des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
| |
Collapse
|
162
|
Goyal B, Patel K, Srivastava KR, Durani S. De novo design of stereochemically-bent sixteen-residue β-hairpin as a hydrolase mimic. RSC Adv 2015. [DOI: 10.1039/c5ra19015k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stepwise design of sixteen-residue β-hairpin as a hydrolase mimic involving fold design by stereochemical mutation followed by inverse-design of sequence.
Collapse
Affiliation(s)
- Bhupesh Goyal
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai–400076
- India
| | - Kirti Patel
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai–400076
- India
| | | | - Susheel Durani
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai–400076
- India
| |
Collapse
|
163
|
Cheng F, Zhu L, Schwaneberg U. Directed evolution 2.0: improving and deciphering enzyme properties. Chem Commun (Camb) 2015; 51:9760-72. [DOI: 10.1039/c5cc01594d] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A KnowVolution: knowledge gaining directed evolution including four phases is proposed in this feature article, which generates improved enzyme variants and molecular understanding.
Collapse
Affiliation(s)
- Feng Cheng
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Leilei Zhu
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI-Leibniz Institute for Interactive Materials
| |
Collapse
|
164
|
Zhang S, Wang Y, Song X, Hong J, Zhang Y, Yao L. Improving Trichoderma reesei Cel7B Thermostability by Targeting the Weak Spots. J Chem Inf Model 2014; 54:2826-33. [DOI: 10.1021/ci500339v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Shujun Zhang
- Laboratory
of Biofuels, Qingdao
Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, 266061, China
| | - Yefei Wang
- Laboratory
of Biofuels, Qingdao
Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, 266061, China
| | - Xiangfei Song
- Laboratory
of Biofuels, Qingdao
Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, 266061, China
| | - Jingbo Hong
- Laboratory
of Biofuels, Qingdao
Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, 266061, China
| | - Yu Zhang
- Laboratory
of Biofuels, Qingdao
Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, 266061, China
| | - Lishan Yao
- Laboratory
of Biofuels, Qingdao
Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, 266061, China
| |
Collapse
|
165
|
van den Berg BA, Reinders MJ, van der Laan JM, Roubos JA, de Ridder D. Protein redesign by learning from data. Protein Eng Des Sel 2014; 27:281-8. [DOI: 10.1093/protein/gzu031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
166
|
Floor RJ, Wijma HJ, Colpa DI, Ramos-Silva A, Jekel PA, Szymański W, Feringa BL, Marrink SJ, Janssen DB. Computational library design for increasing haloalkane dehalogenase stability. Chembiochem 2014; 15:1660-72. [PMID: 24976371 DOI: 10.1002/cbic.201402128] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Indexed: 11/05/2022]
Abstract
We explored the use of a computational design framework for the stabilization of the haloalkane dehalogenase LinB. Energy calculations, disulfide bond design, molecular dynamics simulations, and rational inspection of mutant structures predicted many stabilizing mutations. Screening of these in small mutant libraries led to the discovery of seventeen point mutations and one disulfide bond that enhanced thermostability. Mutations located in or contacting flexible regions of the protein had a larger stabilizing effect than mutations outside such regions. The combined introduction of twelve stabilizing mutations resulted in a LinB mutant with a 23 °C increase in apparent melting temperature (Tm,app , 72.5 °C) and an over 200-fold longer half-life at 60 °C. The most stable LinB variants also displayed increased compatibility with co-solvents, thus allowing substrate conversion and kinetic resolution at much higher concentrations than with the wild-type enzyme.
Collapse
Affiliation(s)
- Robert J Floor
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands)
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
van Beek HL, Wijma HJ, Fromont L, Janssen DB, Fraaije MW. Stabilization of cyclohexanone monooxygenase by a computationally designed disulfide bond spanning only one residue. FEBS Open Bio 2014; 4:168-74. [PMID: 24649397 PMCID: PMC3953729 DOI: 10.1016/j.fob.2014.01.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 11/28/2022] Open
Abstract
Cyclohexanone monooxygenase was stabilized by an in silico designed disulfide bond. Stabilizing disulfide bonds were successfully designed based on a model structure. The half-life at 30 °C was increased 12-fold for the mutant enzyme. The apparent melting point was increased by 6 °C for the mutant enzyme. The most stabilizing disulfide bond spans only one residue.
Enzyme stability is an important parameter in biocatalytic applications, and there is a strong need for efficient methods to generate robust enzymes. We investigated whether stabilizing disulfide bonds can be computationally designed based on a model structure. In our approach, unlike in previous disulfide engineering studies, short bonds spanning only a few residues were included. We used cyclohexanone monooxygenase (CHMO), a Baeyer–Villiger monooxygenase (BVMO) from Acinetobacter sp. NCIMB9871 as the target enzyme. This enzyme has been the prototype BVMO for many biocatalytic studies even though it is notoriously labile. After creating a small library of mutant enzymes with introduced cysteine pairs and subsequent screening for improved thermostability, three stabilizing disulfide bonds were identified. The introduced disulfide bonds are all within 12 Å of each other, suggesting this particular region is critical for unfolding. This study shows that stabilizing disulfide bonds do not have to span many residues, as the most stabilizing disulfide bond, L323C–A325C, spans only one residue while it stabilizes the enzyme, as shown by a 6 °C increase in its apparent melting temperature.
Collapse
Affiliation(s)
- Hugo L van Beek
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hein J Wijma
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Lucie Fromont
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dick B Janssen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marco W Fraaije
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|