151
|
Lastauskienė E, Zinkevičienė A, Girkontaitė I, Kaunietis A, Kvedarienė V. Formic acid and acetic acid induce a programmed cell death in pathogenic Candida species. Curr Microbiol 2014; 69:303-10. [PMID: 24752490 DOI: 10.1007/s00284-014-0585-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/24/2014] [Indexed: 11/29/2022]
Abstract
Cutaneous fungal infections are common and widespread. Antifungal agents used for the treatment of these infections often have undesirable side effects. Furthermore, increased resistance of the microorganisms to the antifungal drugs becomes the growing problem. Accordingly, the search for natural antifungal compounds continues to receive attention. Apoptosis is highly regulated programmed cell death. During yeast cell apoptosis, amino acids and peptides are released and can stimulate regeneration of human epithelium cells. Thus, detection of chemical compounds inducing apoptosis in yeast and nontoxic for humans is of great medical relevance. The aim of this study was to detect chemical compound inducing apoptosis in pathogenic Candida species with the lowest toxicity to the mammalian cells. Five chemical compounds--acetic acid, sodium bicarbonate, potassium carbonate, lithium acetate, and formic acid--were tested for evaluation of antifungal activity on C. albicans, C. guilliermondii, and C. lusitaniae. The results showed that acetic acid and formic acid at the lowest concentrations induced yeast cells death. Apoptosis analysis revealed that cells death was accompanied by activation of caspase. Minimal inhibitory concentrations of potassium carbonate and sodium bicarbonate induced Candida cells necrosis. Toxicity test with mammalian cell cultures showed that formic acid has the lowest effect on the growth of Jurkat and NIH 3T3 cells. In conclusion, our results show that a low concentration of formic acid induces apoptosis-like programmed cell death in the Candida yeast and has a minimal effect on the survivability of mammalian cells, suggesting potential applications in the treatment of these infections.
Collapse
Affiliation(s)
- Eglė Lastauskienė
- Department of Microbiology and Biotechnology, Faculty of Natural Sciences, Vilnius University, M.K. Čiurlionio str. 21/27, LT-03101, Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
152
|
Woo JM, Yang KM, Kim SU, Blank LM, Park JB. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions. Appl Microbiol Biotechnol 2014; 98:6085-94. [PMID: 24706214 DOI: 10.1007/s00253-014-5691-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023]
Abstract
Cellular responses of Saccharomyces cerevisiae to high temperatures of up to 42 °C during ethanol fermentation at a high glucose concentration (i.e., 100 g/L) were investigated. Increased temperature correlated with stimulated glucose uptake to produce not only the thermal protectant glycerol but also ethanol and acetic acid. Carbon flux into the tricarboxylic acid (TCA) cycle correlated positively with cultivation temperature. These results indicate that the increased demand for energy (in the form of ATP), most likely caused by multiple stressors, including heat, acetic acid, and ethanol, was matched by both the fermentation and respiration pathways. Notably, acetic acid production was substantially stimulated compared to that of other metabolites during growth at increased temperature. The acetic acid produced in addition to ethanol seemed to subsequently result in adverse effects, leading to increased production of reactive oxygen species. This, in turn, appeared to cause the specific growth rate, and glucose uptake rate reduced leading to a decrease of the specific ethanol production rate far before glucose depletion. These results suggest that adverse effects from heat, acetic acid, ethanol, and oxidative stressors are synergistic, resulting in a decrease of the specific growth rate and ethanol production rate and, hence, are major determinants of cell stability and ethanol fermentation performance of S. cerevisiae at high temperatures. The results are discussed in the context of possible applications.
Collapse
Affiliation(s)
- Ji-Min Woo
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | | | | | | | | |
Collapse
|
153
|
Chen Y, Zeng H, Tian J, Ban X, Ma B, Wang Y. Dill (Anethum graveolens L.) seed essential oil induces Candida albicans apoptosis in a metacaspase-dependent manner. Fungal Biol 2014; 118:394-401. [DOI: 10.1016/j.funbio.2014.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/16/2014] [Accepted: 02/18/2014] [Indexed: 02/02/2023]
|
154
|
Franco FP, Santiago AC, Henrique-Silva F, de Castro PA, Goldman GH, Moura DS, Silva-Filho MC. The sugarcane defense protein SUGARWIN2 causes cell death in Colletotrichum falcatum but not in non-pathogenic fungi. PLoS One 2014; 9:e91159. [PMID: 24608349 PMCID: PMC3946703 DOI: 10.1371/journal.pone.0091159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/10/2014] [Indexed: 11/18/2022] Open
Abstract
Plants respond to pathogens and insect attacks by inducing and accumulating a large set of defense-related proteins. Two homologues of a barley wound-inducible protein (BARWIN) have been characterized in sugarcane, SUGARWIN1 and SUGARWIN2 (sugarcane wound-inducible proteins). Induction of SUGARWINs occurs in response to Diatraea saccharalis damage but not to pathogen infection. In addition, the protein itself does not show any effect on insect development; instead, it has antimicrobial activities toward Fusarium verticillioides, an opportunistic fungus that usually occurs after D. saccharalis borer attacks on sugarcane. In this study, we sought to evaluate the specificity of SUGARWIN2 to better understand its mechanism of action against phytopathogens and the associations between fungi and insects that affect plants. We used Colletotrichum falcatum, a fungus that causes red rot disease in sugarcane fields infested by D. saccharalis, and Ceratocystis paradoxa, which causes pineapple disease in sugarcane. We also tested whether SUGARWIN2 is able to cause cell death in Aspergillus nidulans, a fungus that does not infect sugarcane, and in the model yeast Saccharomyces cerevisiae, which is used for bioethanol production. Recombinant SUGARWIN2 altered C. falcatum morphology by increasing vacuolization, points of fractures and a leak of intracellular material, leading to germling apoptosis. In C. paradoxa, SUGARWIN2 showed increased vacuolization in hyphae but did not kill the fungi. Neither the non-pathogenic fungus A. nidulans nor the yeast S. cerevisiae was affected by recombinant SUGARWIN2, suggesting that the protein is specific to sugarcane opportunistic fungal pathogens.
Collapse
Affiliation(s)
- Flávia P. Franco
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Adelita C. Santiago
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Flávio Henrique-Silva
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Campinas, SP, Brazil
| | - Daniel S. Moura
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Marcio C. Silva-Filho
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
155
|
Yucel EB, Eraslan S, Ulgen KO. The impact of medium acidity on the chronological life span ofSaccharomyces cerevisiae - lipids, signaling cascades, mitochondrial and vacuolar functions. FEBS J 2014; 281:1281-303. [DOI: 10.1111/febs.12705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Esra B. Yucel
- Department of Chemical Engineering; Boğaziçi University; Istanbul Turkey
| | - Serpil Eraslan
- Department of Chemical Engineering; Boğaziçi University; Istanbul Turkey
| | - Kutlu O. Ulgen
- Department of Chemical Engineering; Boğaziçi University; Istanbul Turkey
| |
Collapse
|
156
|
Azad G, Singh V, Mandal P, Singh P, Golla U, Baranwal S, Chauhan S, Tomar RS. Ebselen induces reactive oxygen species (ROS)-mediated cytotoxicity in Saccharomyces cerevisiae with inhibition of glutamate dehydrogenase being a target. FEBS Open Bio 2014; 4:77-89. [PMID: 24490132 PMCID: PMC3907691 DOI: 10.1016/j.fob.2014.01.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 12/12/2022] Open
Abstract
Ebselen is a synthetic, lipid-soluble seleno-organic compound. The high electrophilicity of ebselen enables it to react with multiple cysteine residues of various proteins. Despite extensive research on ebselen, its target molecules and mechanism of action remains less understood. We performed biochemical as well as in vivo experiments employing budding yeast as a model organism to understand the mode of action of ebselen. The growth curve analysis and FACS (florescence activated cell sorting) assays revealed that ebselen exerts growth inhibitory effects on yeast cells by causing a delay in cell cycle progression. We observed that ebselen exposure causes an increase in intracellular ROS levels and mitochondrial membrane potential, and that these effects were reversed by addition of antioxidants such as reduced glutathione (GSH) or N-acetyl-l-cysteine (NAC). Interestingly, a significant increase in ROS levels was noticed in gdh3-deleted cells compared to wild-type cells. Furthermore, we showed that ebselen inhibits GDH function by interacting with its cysteine residues, leading to the formation of inactive hexameric GDH. Two-dimensional gel electrophoresis revealed protein targets of ebselen including CPR1, the yeast homolog of Cyclophilin A. Additionally, ebselen treatment leads to the inhibition of yeast sporulation. These results indicate a novel direct connection between ebselen and redox homeostasis.
Collapse
Key Words
- CypA, Cyclophilin A
- DCFH-DA, 2,7-dichlorodihydrofluorescein diacetate
- Ebselen
- FACS, florescence activated cell sorting
- GDH, glutamate dehydrogenase
- GSH, glutathione
- Glutamate dehydrogenase
- Histone clipping
- Mitochondrial membrane potential
- NAC, N-acetyl-l-cysteine
- Ni-NTA, nickel-nitrilotriacetic acid
- ROS levels
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- Yeast sporulation
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Raghuvir S. Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462023, India
| |
Collapse
|
157
|
Sousa M, Duarte AM, Fernandes TR, Chaves SR, Pacheco A, Leão C, Côrte-Real M, Sousa MJ. Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae. BMC Genomics 2013; 14:838. [PMID: 24286259 PMCID: PMC4046756 DOI: 10.1186/1471-2164-14-838] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acetic acid is mostly known as a toxic by-product of alcoholic fermentation carried out by Saccharomyces cerevisiae, which it frequently impairs. The more recent finding that acetic acid triggers apoptotic programmed cell death (PCD) in yeast sparked an interest to develop strategies to modulate this process, to improve several biotechnological applications, but also for biomedical research. Indeed, acetate can trigger apoptosis in cancer cells, suggesting its exploitation as an anticancer compound. Therefore, we aimed to identify genes involved in the positive and negative regulation of acetic acid-induced PCD by optimizing a functional analysis of a yeast Euroscarf knock-out mutant collection. RESULTS The screen consisted of exposing the mutant strains to acetic acid in YPD medium, pH 3.0, in 96-well plates, and subsequently evaluating the presence of culturable cells at different time points. Several functional categories emerged as greatly relevant for modulation of acetic acid-induced PCD (e.g.: mitochondrial function, transcription of glucose-repressed genes, protein synthesis and modifications, and vesicular traffic for protection, or amino acid transport and biosynthesis, oxidative stress response, cell growth and differentiation, protein phosphorylation and histone deacetylation for its execution). Known pro-apoptotic and anti-apoptotic genes were found, validating the approach developed. Metabolism stood out as a main regulator of this process, since impairment of major carbohydrate metabolic pathways conferred resistance to acetic acid-induced PCD. Among these, lipid catabolism arose as one of the most significant new functions identified. The results also showed that many of the cellular and metabolic features that constitute hallmarks of tumour cells (such as higher glycolytic energetic dependence, lower mitochondrial functionality, increased cell division and metabolite synthesis) confer sensitivity to acetic acid-induced PCD, potentially explaining why tumour cells are more susceptible to acetate than untransformed cells and reinforcing the interest in exploiting this acid in cancer therapy. Furthermore, our results clearly establish a connection between cell proliferation and cell death regulation, evidencing a conserved developmental role of programmed cell death in unicellular eukaryotes. CONCLUSIONS This work advanced the characterization of acetic acid-induced PCD, providing a wealth of new information on putative molecular targets for its control with impact both in biotechnology and biomedicine.
Collapse
Affiliation(s)
- Marlene Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Lastauskienė E, Zinkevičienė A, Čitavičius D. Ras/PKA signal transduction pathway participates in the regulation of Saccharomyces cerevisiae cell apoptosis in an acidic environment. Biotechnol Appl Biochem 2013; 61:3-10. [PMID: 24267639 DOI: 10.1002/bab.1183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 11/12/2013] [Indexed: 11/09/2022]
Abstract
The acidification of the medium is observed during yeast cell growth. This process contributes to the emission of organic acids, mainly acetic acid. Acetic acid is known as the inducer of apoptosis in the yeast Saccharomyces cerevisiae. In this study, we showed that hydrochloric acid can also induce apoptosis in yeast cells, and the apoptotic phenotype triggered by treating yeast cells with hydrochloric acid is modulated by the Ras/PKA pathway. The Ras/PKA pathway is highly conserved between all eukaryotic organisms, as well as cell processes that are related to apoptosis and aging. In this research, we demonstrated that the activation of the Ras/PKA pathway by insertion of Ras2(Val19) allele or deletion of PDE2 gene increases cell death, displaying the markers of apoptosis in an acidic environment. Downregulation of the pathway by deletion of RAS2, RAS1, PDE1, and insertion of the Ha-ras gene increases the cell viability and diminishes cell death with the apoptotic phenotypes. The deletion of PDE1 gene and double deletion of both phosphodiesterase genes prevent the induction of apoptosis in the cells. Modulations in the Ras/PKA pathway affect cell viability and apoptosis during natural gradual acidification of the medium as well as in acid stress conditions.
Collapse
Affiliation(s)
- Eglė Lastauskienė
- Department of Microbiology and Biotechnology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania
| | | | | |
Collapse
|
159
|
Lin SJ, Austriaco N. Aging and cell death in the other yeasts, Schizosaccharomyces pombe and Candida albicans. FEMS Yeast Res 2013; 14:119-35. [PMID: 24205865 DOI: 10.1111/1567-1364.12113] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/18/2013] [Accepted: 10/10/2013] [Indexed: 12/22/2022] Open
Abstract
How do cells age and die? For the past 20 years, the budding yeast, Saccharomyces cerevisiae, has been used as a model organism to uncover the genes that regulate lifespan and cell death. More recently, investigators have begun to interrogate the other yeasts, the fission yeast, Schizosaccharomyces pombe, and the human fungal pathogen, Candida albicans, to determine if similar longevity and cell death pathways exist in these organisms. After summarizing the longevity and cell death phenotypes in S. cerevisiae, this mini-review surveys the progress made in the study of both aging and programed cell death (PCD) in the yeast models, with a focus on the biology of S. pombe and C. albicans. Particular emphasis is placed on the similarities and differences between the two types of aging, replicative aging, and chronological aging, and between the three types of cell death, intrinsic apoptosis, autophagic cell death, and regulated necrosis, found in these yeasts. The development of the additional microbial models for aging and PCD in the other yeasts may help further elucidate the mechanisms of longevity and cell death regulation in eukaryotes.
Collapse
Affiliation(s)
- Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | | |
Collapse
|
160
|
Hanly TJ, Henson MA. Dynamic model-based analysis of furfural and HMF detoxification by pure and mixed batch cultures of S. cerevisiae and S. stipitis. Biotechnol Bioeng 2013; 111:272-84. [PMID: 23983023 DOI: 10.1002/bit.25101] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/13/2013] [Accepted: 08/15/2013] [Indexed: 01/16/2023]
Abstract
Inhibitory compounds that result from biomass hydrolysis are an obstacle to the efficient production of second-generation biofuels. Fermentative microorganisms can reduce compounds such as furfural and 5-hydroxymethyl furfural (HMF), but detoxification is accompanied by reduced growth rates and ethanol yields. In this study, we assess the effects of these furan aldehydes on pure and mixed yeast cultures consisting of a respiratory deficient mutant of Saccharomyces cerevisiae and wild-type Scheffersomyces stipitis using dynamic flux balance analysis. Uptake kinetics and stoichiometric equations for the intracellular reduction reactions associated with each inhibitor were added to genome-scale metabolic reconstructions of the two yeasts. Further modification of the S. cerevisiae metabolic network was necessary to satisfactorily predict the amount of acetate synthesized during HMF reduction. Inhibitory terms that captured the adverse effects of the furan aldehydes and their corresponding alcohols on cell growth and ethanol production were added to attain qualitative agreement with batch experiments conducted for model development and validation. When the two yeasts were co-cultured in the presence of the furan aldehydes, inoculums that reduced the synthesis of highly toxic acetate produced by S. cerevisiae yielded the highest ethanol productivities. The model described here can be used to generate optimal fermentation strategies for the simultaneous detoxification and fermentation of lignocellulosic hydrolysates by S. cerevisiae and/or S. stipitis.
Collapse
Affiliation(s)
- Timothy J Hanly
- Department of Chemical Engineering, University of Massachusetts, Goessmann Lab 159, 686 N. Pleasant St., Amherst, Massachusetts, 01003-3110
| | | |
Collapse
|
161
|
Yue Q, Zhou X, Leng Q, Zhang L, Cheng B, Zhang X. 7-ketocholesterol-induced caspase-mediated apoptosis in Saccharomyces cerevisiae. FEMS Yeast Res 2013; 13:796-803. [PMID: 24028627 DOI: 10.1111/1567-1364.12089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 11/28/2022] Open
Abstract
The cytotoxicity of cholesterol oxidation products has been documented in several mammalian cell lines. It can lead to a wide range of diseases. However, the molecular mechanisms underlying this toxicity in vivo are scarce. The objective of the present study was to assess the potential toxic effects of 7-ketocholesterol, an important cholesterol oxidation product, on Saccharomyces cerevisiae. Our data show for the first time that 7-ketocholesterol can induce dose-dependent cell death in S. cerevisiae. These results suggest that the death induced by this compound is apoptotic and accompanied by chromatin condensation, the production of ROS, and translocation of phosphatidylserine from the inner to the outer leaflet of the cytoplasmic membrane. We further showed that 7-ketocholesterol-induced cell death was partially rescued after pretreatment with caspase inhibitor (Z-VAD-fmk). In addition, caspase deletion resulted in promotion of cell viability. All these results strongly indicated that 7-ketocholesterol induces apoptosis in yeast cells through a caspase-dependent pathway.
Collapse
Affiliation(s)
- Qiulin Yue
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | | | | | | | | | | |
Collapse
|
162
|
Lefevre SD, Roermund CW, Wanders RJA, Veenhuis M, Klei IJ. The significance of peroxisome function in chronological aging of Saccharomyces cerevisiae. Aging Cell 2013; 12:784-93. [PMID: 23755917 PMCID: PMC3824234 DOI: 10.1111/acel.12113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2013] [Indexed: 12/01/2022] Open
Abstract
We studied the chronological lifespan of glucose-grown Saccharomyces cerevisiae in relation to the function of intact peroxisomes. We analyzed four different peroxisome-deficient (pex) phenotypes. These included Δpex3 cells that lack peroxisomal membranes and in which all peroxisomal proteins are mislocalized together with Δpex6 in which all matrix proteins are mislocalized to the cytosol, whereas membrane proteins are still correctly sorted to peroxisomal ghosts. In addition, we analyzed two mutants in which the peroxisomal location of the β-oxidation machinery is in part disturbed. We analyzed Δpex7 cells that contain virtually normal peroxisomes, except that all matrix proteins that contain a peroxisomal targeting signal type 2 (PTS2, also including thiolase), are mislocalized to the cytosol. In Δpex5 cells, peroxisomes only contain matrix proteins with a PTS2 in conjunction with all proteins containing a peroxisomal targeting signal type 1 (PTS1, including all β-oxidation enzymes except thiolase) are mislocalized to the cytosol. We show that intact peroxisomes are an important factor in yeast chronological aging because all pex mutants showed a reduced chronological lifespan. The strongest reduction was observed in Δpex5 cells. Our data indicate that this is related to the complete inactivation of the peroxisomal β-oxidation pathway in these cells due to the mislocalization of thiolase. Our studies suggest that during chronological aging, peroxisomal β-oxidation contributes to energy generation by the oxidation of fatty acids that are released by degradation of storage materials and recycled cellular components during carbon starvation conditions.
Collapse
Affiliation(s)
- Sophie D. Lefevre
- Molecular Cell Biology Groningen Biomolecular Sciences and Biotechnology Institute (GBB) University of Groningen P.O. Box 111039700CC Groningen The Netherlands
| | - Carlo W. Roermund
- Departments of Pediatrics and Clinical Chemistry Laboratory of Genetic Metabolic Diseases Academic Medical Centre University of Amsterdam 1105 AZ Amsterdam The Netherlands
| | - Ronald J. A. Wanders
- Departments of Pediatrics and Clinical Chemistry Laboratory of Genetic Metabolic Diseases Academic Medical Centre University of Amsterdam 1105 AZ Amsterdam The Netherlands
| | - Marten Veenhuis
- Molecular Cell Biology Groningen Biomolecular Sciences and Biotechnology Institute (GBB) University of Groningen P.O. Box 111039700CC Groningen The Netherlands
| | - Ida J. Klei
- Molecular Cell Biology Groningen Biomolecular Sciences and Biotechnology Institute (GBB) University of Groningen P.O. Box 111039700CC Groningen The Netherlands
| |
Collapse
|
163
|
Pacheco A, Azevedo F, Rego A, Santos J, Chaves SR, Côrte-Real M, Sousa MJ. C2-phytoceramide perturbs lipid rafts and cell integrity in Saccharomyces cerevisiae in a sterol-dependent manner. PLoS One 2013; 8:e74240. [PMID: 24040213 PMCID: PMC3770674 DOI: 10.1371/journal.pone.0074240] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/31/2013] [Indexed: 11/19/2022] Open
Abstract
Specific ceramides are key regulators of cell fate, and extensive studies aimed to develop therapies based on ceramide-induced cell death. However, the mechanisms regulating ceramide cytotoxicity are not yet fully elucidated. Since ceramides also regulate growth and stress responses in yeast, we studied how different exogenous ceramides affect yeast cells. C2-phytoceramide, a soluble form of phytoceramides, the yeast counterparts of mammalian ceramides, greatly reduced clonogenic survival, particularly in the G2/M phase, but did not induce autophagy nor increase apoptotic markers. Rather, the loss of clonogenic survival was associated with PI positive staining, disorganization of lipid rafts and cell wall weakening. Sensitivity to C2-phytoceramide was exacerbated in mutants lacking Hog1p, the MAP kinase homolog of human p38 kinase. Decreasing sterol membrane content reduced sensitivity to C2-phytoceramide, suggesting sterols are the targets of this compound. This study identified a new function of C2-phytoceramide through disorganization of lipid rafts and induction of a necrotic cell death under hypo-osmotic conditions. Since lipid rafts are important in mammalian cell signaling and adhesion, our findings further support pursuing the exploitation of yeast to understand the basis of synthetic ceramides' cytotoxicity to provide novel strategies for therapeutic intervention in cancer and other diseases.
Collapse
Affiliation(s)
- Andreia Pacheco
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
164
|
Jensen PR, Karlsson M, Lerche MH, Meier S. Real-Time DNP NMR Observations of Acetic Acid Uptake, Intracellular Acidification, and of Consequences for Glycolysis and Alcoholic Fermentation in Yeast. Chemistry 2013; 19:13288-93. [DOI: 10.1002/chem.201302429] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Indexed: 12/27/2022]
|
165
|
Lack of HXK2 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:678473. [PMID: 24089630 PMCID: PMC3780702 DOI: 10.1155/2013/678473] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/18/2013] [Accepted: 07/24/2013] [Indexed: 01/24/2023]
Abstract
We recently showed that activated Ras proteins are localized to the plasma membrane and in the nucleus in wild-type cells growing exponentially on glucose, while in the hxk2Δ strain they accumulated mainly in mitochondria. An aberrant accumulation of activated Ras in these organelles was previously reported and correlated to mitochondrial dysfunction, accumulation of ROS, and cell death. Here we show that addition of acetic acid to wild-type cells results in a rapid recruitment of Ras-GTP from the nucleus and the plasma membrane to the mitochondria, providing a further proof that Ras proteins might be involved in programmed cell death. Moreover, we show that Hxk2 protects against apoptosis in S. cerevisiae. In particular, cells lacking HXK2 and showing a constitutive accumulation of activated Ras at the mitochondria are more sensitive to acetic-acid-induced programmed cell death compared to the wild type strain. Indeed, deletion of HXK2 causes an increase of apoptotic cells with several morphological and biochemical changes that are typical of apoptosis, including DNA fragmentation, externalization of phosphatidylserine, and ROS production. Finally, our results suggest that apoptosis induced by lack of Hxk2 may not require the activation of Yca1, the metacaspase homologue identified in yeast.
Collapse
|
166
|
Lindberg L, Santos AX, Riezman H, Olsson L, Bettiga M. Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress. PLoS One 2013; 8:e73936. [PMID: 24023914 PMCID: PMC3762712 DOI: 10.1371/journal.pone.0073936] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/26/2013] [Indexed: 01/03/2023] Open
Abstract
When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D) and Zygosaccharomyces bailii (CBS7555) cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L−1, while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L−1 acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS) showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP)2C 2.2×) and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP)2C 2.7×), when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to generate large rearrangements in its lipid profile.
Collapse
Affiliation(s)
- Lina Lindberg
- Department of Chemical and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
167
|
Chen H, Workman JJ, Tenga A, Laribee RN. Target of rapamycin signaling regulates high mobility group protein association to chromatin, which functions to suppress necrotic cell death. Epigenetics Chromatin 2013; 6:29. [PMID: 24044743 PMCID: PMC3766136 DOI: 10.1186/1756-8935-6-29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/27/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The target of rapamycin complex 1 (TORC1) is an evolutionarily conserved signal transduction pathway activated by environmental nutrients that regulates gene transcription to control cell growth and proliferation. How TORC1 modulates chromatin structure to control gene expression, however, is largely unknown. Because TORC1 is a major transducer of environmental information, defining this process has critical implications for both understanding environmental effects on epigenetic processes and the role of aberrant TORC1 signaling in many diseases, including cancer, diabetes, and cardiovascular disease. RESULTS To elucidate the role of TORC1 signaling in chromatin regulation, we screened a budding yeast histone H3 and H4 mutant library using the selective TORC1 inhibitor rapamycin to identify histone residues functionally connected to TORC1. Intriguingly, we identified histone H3 lysine 37 (H3K37) as a residue that is essential during periods of limited TORC1 activity. An H3K37A mutation resulted in cell death by necrosis when TORC1 signaling was simultaneously impaired. The induction of necrosis was linked to alterations in high mobility group (HMG) protein binding to chromatin. Furthermore, the necrotic phenotype could be recapitulated in wild-type cells by deregulating the model HMG proteins, Hmo1 or Ixr1, thus implicating a direct role for HMG protein deregulation as a stimulus for inducing necrosis. CONCLUSIONS This study identifies histone H3 and H4 residues functionally required for TORC1-dependent cell growth and proliferation that are also candidate epigenetic pathways regulated by TORC1 signaling. It also demonstrates a novel role for H3K37 and TORC1 in regulating the binding of select HMG proteins to chromatin and that HMG protein deregulation can initiate a necrotic cell death response. Overall, the results from this study suggest a possible model by which chromatin anchors HMG proteins during periods of limited TORC1 signaling, such as that which occurs during conditions of nutrient stress, to suppress necrotic cell death.
Collapse
Affiliation(s)
- Hongfeng Chen
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
168
|
Ethanol and acetate acting as carbon/energy sources negatively affect yeast chronological aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:802870. [PMID: 24062879 PMCID: PMC3767056 DOI: 10.1155/2013/802870] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/09/2013] [Indexed: 12/20/2022]
Abstract
In Saccharomyces cerevisiae, the chronological lifespan (CLS) is defined as the length of time that a population of nondividing cells can survive in stationary phase. In this phase, cells remain metabolically active, albeit at reduced levels, and responsive to environmental signals, thus simulating the postmitotic quiescent state of mammalian cells. Many studies on the main nutrient signaling pathways have uncovered the strong influence of growth conditions, including the composition of culture media, on CLS. In this context, two byproducts of yeast glucose fermentation, ethanol and acetic acid, have been proposed as extrinsic proaging factors. Here, we report that ethanol and acetic acid, at physiological levels released in the exhausted medium, both contribute to chronological aging. Moreover, this combined proaging effect is not due to a toxic environment created by their presence but is mainly mediated by the metabolic pathways required for their utilization as carbon/energy sources. In addition, measurements of key enzymatic activities of the glyoxylate cycle and gluconeogenesis, together with respiration assays performed in extreme calorie restriction, point to a long-term quiescent program favoured by glyoxylate/gluconeogenesis flux contrary to a proaging one based on the oxidative metabolism of ethanol/acetate via TCA and mitochondrial respiration.
Collapse
|
169
|
Silva A, Sampaio-Marques B, Fernandes Â, Carreto L, Rodrigues F, Holcik M, Santos MAS, Ludovico P. Involvement of yeast HSP90 isoforms in response to stress and cell death induced by acetic acid. PLoS One 2013; 8:e71294. [PMID: 23967187 PMCID: PMC3744546 DOI: 10.1371/journal.pone.0071294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/27/2013] [Indexed: 11/18/2022] Open
Abstract
Acetic acid-induced apoptosis in yeast is accompanied by an impairment of the general protein synthesis machinery, yet paradoxically also by the up-regulation of the two isoforms of the heat shock protein 90 (HSP90) chaperone family, Hsc82p and Hsp82p. Herein, we show that impairment of cap-dependent translation initiation induced by acetic acid is caused by the phosphorylation and inactivation of eIF2α by Gcn2p kinase. A microarray analysis of polysome-associated mRNAs engaged in translation in acetic acid challenged cells further revealed that HSP90 mRNAs are over-represented in this polysome fraction suggesting preferential translation of HSP90 upon acetic acid treatment. The relevance of HSP90 isoform translation during programmed cell death (PCD) was unveiled using genetic and pharmacological abrogation of HSP90, which suggests opposing roles for HSP90 isoforms in cell survival and death. Hsc82p appears to promote survival and its deletion leads to necrotic cell death, while Hsp82p is a pro-death molecule involved in acetic acid-induced apoptosis. Therefore, HSP90 isoforms have distinct roles in the control of cell fate during PCD and their selective translation regulates cellular response to acetic acid stress.
Collapse
Affiliation(s)
- Alexandra Silva
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ângela Fernandes
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Laura Carreto
- Department of Biology and Centre d’Enseignement de la Statistique Appliquée à la Médecine, University of Aveiro, Aveiro, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Martin Holcik
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Manuel A. S. Santos
- Department of Biology and Centre d’Enseignement de la Statistique Appliquée à la Médecine, University of Aveiro, Aveiro, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- * E-mail:
| |
Collapse
|
170
|
Wang X, Jin M, Balan V, Jones AD, Li X, Li BZ, Dale BE, Yuan YJ. Comparative metabolic profiling revealed limitations in xylose-fermenting yeast during co-fermentation of glucose and xylose in the presence of inhibitors. Biotechnol Bioeng 2013; 111:152-64. [DOI: 10.1002/bit.24992] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xin Wang
- Key Laboratory of Systems Bioengineering; Ministry of Education; Department of Pharmaceutical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 P.R. China
| | - Mingjie Jin
- Biomass Conversion Research Laboratory (BCRL); Department of Chemical Engineering and Materials Science; Michigan State University; 3900 Collins Road MBI International Building Lansing Michigan 48910
| | - Venkatesh Balan
- Biomass Conversion Research Laboratory (BCRL); Department of Chemical Engineering and Materials Science; Michigan State University; 3900 Collins Road MBI International Building Lansing Michigan 48910
| | - A. Daniel Jones
- Department of Biochemistry and Molecular Biology; Michigan State University; East Lansing Michigan
- Department of Chemistry; Michigan State University; East Lansing Michigan
| | - Xia Li
- Key Laboratory of Systems Bioengineering; Ministry of Education; Department of Pharmaceutical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 P.R. China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering; Ministry of Education; Department of Pharmaceutical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 P.R. China
| | - Bruce E. Dale
- Biomass Conversion Research Laboratory (BCRL); Department of Chemical Engineering and Materials Science; Michigan State University; 3900 Collins Road MBI International Building Lansing Michigan 48910
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering; Ministry of Education; Department of Pharmaceutical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 P.R. China
| |
Collapse
|
171
|
Frohman C, Mira de Orduña R. Cellular viability and kinetics of osmotic stress associated metabolites of Saccharomyces cerevisiae during traditional batch and fed-batch alcoholic fermentations at constant sugar concentrations. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
172
|
Martani F, Fossati T, Posteri R, Signori L, Porro D, Branduardi P. Different response to acetic acid stress inSaccharomyces cerevisiaewild-type andl-ascorbic acid-producing strains. Yeast 2013; 30:365-78. [DOI: 10.1002/yea.2969] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 12/31/2022] Open
|
173
|
Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement. Appl Microbiol Biotechnol 2013; 97:7405-16. [DOI: 10.1007/s00253-013-5071-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/04/2013] [Accepted: 06/17/2013] [Indexed: 02/05/2023]
|
174
|
Wu L, Yi H, Zhang H. Reactive oxygen species and Ca2+are involved in sodium arsenite-induced cell killing in yeast cells. FEMS Microbiol Lett 2013; 343:57-63. [DOI: 10.1111/1574-6968.12131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/06/2013] [Accepted: 03/11/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
| | - Huilan Yi
- School of Life Science; Shanxi University; Taiyuan; China
| | - Hufang Zhang
- College of Agriculture; Shanxi Agricultural University; Taigu; China
| |
Collapse
|
175
|
Poly(ADP-ribose) polymerase is a substrate recognized by two metacaspases of Podospora anserina. EUKARYOTIC CELL 2013; 12:900-12. [PMID: 23584991 DOI: 10.1128/ec.00337-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The two metacaspases MCA1 and MCA2 of the fungal aging model organism Podospora anserina (PaMCA1 and PaMCA2, respectively) have previously been demonstrated to be involved in the control of programmed cell death (PCD) and life span. In order to identify specific pathways and components which are controlled by the activity of these enzymes, we set out to characterize them further. Heterologous overexpression in Escherichia coli of the two metacaspase genes resulted in the production of proteins which aggregate and form inclusion bodies from which the active protein has been recovered via refolding in appropriate buffers. The renaturated proteins are characterized by an arginine-specific activity and are active in caspase-like self-maturation leading to the generation of characteristic small protein fragments. Both activities are dependent on the presence of calcium. Incubation of the two metacaspases with recombinant poly(ADP-ribose) polymerase (PARP), a known substrate of mammalian caspases, led to the identification of PARP as a substrate of the two P. anserina proteases. Using double mutants in which P. anserina Parp (PaParp) is overexpressed and PaMca1 is either overexpressed or deleted, we provide evidence for in vivo degradation of PaPARP by PaMCA1. These results support the idea that the substrate profiles of caspases and metacaspases are at least partially overlapping. Moreover, they link PCD and DNA maintenance in the complex network of molecular pathways involved in aging and life span control.
Collapse
|
176
|
Peña PV, Glasker S, Srienc F. Genome-wide overexpression screen for sodium acetate resistance in Saccharomyces cerevisiae. J Biotechnol 2013; 164:26-33. [DOI: 10.1016/j.jbiotec.2012.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/02/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
|
177
|
Giannattasio S, Guaragnella N, Zdralević M, Marra E. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid. Front Microbiol 2013; 4:33. [PMID: 23430312 PMCID: PMC3576806 DOI: 10.3389/fmicb.2013.00033] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/05/2013] [Indexed: 01/07/2023] Open
Abstract
Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications.
Collapse
Affiliation(s)
- Sergio Giannattasio
- Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche Bari, Italy
| | | | | | | |
Collapse
|
178
|
Cascio V, Gittings D, Merloni K, Hurton M, Laprade D, Austriaco N. S-Adenosyl-L-methionine protects the probiotic yeast, Saccharomyces boulardii, from acid-induced cell death. BMC Microbiol 2013; 13:35. [PMID: 23402325 PMCID: PMC3639806 DOI: 10.1186/1471-2180-13-35] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 02/05/2013] [Indexed: 02/07/2023] Open
Abstract
Background Saccharomyces boulardii is a probiotic yeast routinely used to prevent and to treat gastrointestinal disorders, including the antibiotic-associated diarrhea caused by Clostridium difficile infections. However, only 1-3% of the yeast administered orally is recovered alive in the feces suggesting that this yeast is unable to survive the acidic environment of the gastrointestinal tract. Results We provide evidence that suggests that S. boulardii undergoes programmed cell death (PCD) in acidic environments, which is accompanied by the generation of reactive oxygen species and the appearance of caspase-like activity. To better understand the mechanism of cell death at the molecular level, we generated microarray gene expression profiles of S. boulardii cells cultured in an acidic environment. Significantly, functional annotation revealed that the up-regulated genes were significantly over-represented in cell death pathways Finally, we show that S-adenosyl-L-methionine (AdoMet), a commercially available, FDA-approved dietary supplement, enhances the viability of S. boulardii in acidic environments, most likely by preventing programmed cell death. Conclusions In toto, given the observation that many of the proven health benefits of S. boulardii are dependent on cell viability, our data suggests that taking S. boulardii and AdoMet together may be a more effective treatment for gastrointestinal disorders than taking the probiotic yeast alone.
Collapse
Affiliation(s)
- Vincent Cascio
- Department of Biology, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, USA
| | | | | | | | | | | |
Collapse
|
179
|
Greetham D, Kritsiligkou P, Watkins RH, Carter Z, Parkin J, Grant CM. Oxidation of the yeast mitochondrial thioredoxin promotes cell death. Antioxid Redox Signal 2013; 18:376-85. [PMID: 22770501 PMCID: PMC3526897 DOI: 10.1089/ars.2012.4597] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Yeast, like other eukaryotes, contains a complete mitochondrial thioredoxin system comprising a thioredoxin (Trx3) and a thioredoxin reductase (Trr2). Mitochondria are a main source of reactive oxygen species (ROS) in eukaryotic organisms, and this study investigates the role of Trx3 in regulating cell death during oxidative stress conditions. RESULTS We have previously shown that the redox state of mitochondrial Trx3 is buffered by the glutathione redox couple such that oxidized mitochondrial Trx3 only accumulates in mutants simultaneously lacking Trr2 and a glutathione reductase (Glr1). We show here that the redox state of mitochondrial Trx3 is important for yeast growth and its oxidation in a glr1 trr2 mutant induces programmed cell death. Apoptosis is dependent on the Yca1 metacaspase, since loss of YCA1 abrogates cell death induced by oxidized Trx3. Our data also indicate a role for a mitochondrial 1-cysteine (Cys) peroxiredoxin (Prx1) in the oxidation of Trx3, since Trx3 does not become oxidized in glr1 trr2 mutants or in a wild-type strain exposed to hydrogen peroxide in the absence of PRX1. INNOVATION This study provides evidence that the redox state of a mitochondrial thioredoxin regulates yeast apoptosis in response to oxidative stress conditions. Moreover, the results identify a signaling pathway, where the thioredoxin system functions in both antioxidant defense and in controlling cell death. CONCLUSIONS Mitochondrial Prx1 functions as a redox signaling molecule that oxidizes Trx3 and promotes apoptosis. This would mean that under conditions where Prx1 cannot detoxify mitochondrial ROS, it induces cell death to remove the affected cells.
Collapse
Affiliation(s)
- Darren Greetham
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
180
|
Kazemzadeh L, Cvijovic M, Petranovic D. Boolean model of yeast apoptosis as a tool to study yeast and human apoptotic regulations. Front Physiol 2012; 3:446. [PMID: 23233838 PMCID: PMC3518040 DOI: 10.3389/fphys.2012.00446] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/07/2012] [Indexed: 01/14/2023] Open
Abstract
Programmed cell death (PCD) is an essential cellular mechanism that is evolutionary conserved, mediated through various pathways and acts by integrating different stimuli. Many diseases such as neurodegenerative diseases and cancers are found to be caused by, or associated with, regulations in the cell death pathways. Yeast Saccharomyces cerevisiae, is a unicellular eukaryotic organism that shares with human cells components and pathways of the PCD and is therefore used as a model organism. Boolean modeling is becoming promising approach to capture qualitative behavior and describe essential properties of such complex networks. Here we present large literature-based and to our knowledge first Boolean model that combines pathways leading to apoptosis (a type of PCD) in yeast. Analysis of the yeast model confirmed experimental findings of anti-apoptotic role of Bir1p and pro-apoptotic role of Stm1p and revealed activation of the stress protein kinase Hog proposing the maximal level of activation upon heat stress. In addition we extended the yeast model and created an in silico humanized yeast in which human pro- and anti-apoptotic regulators Bcl-2 family and Valosin-contain protein (VCP) are included in the model. We showed that accumulation of Bax in silico humanized yeast shows apoptotic markers and that VCP is essential target of Akt Signaling. The presented Boolean model provides comprehensive description of yeast apoptosis network behavior. Extended model of humanized yeast gives new insights of how complex human disease like neurodegeneration can initially be tested.
Collapse
Affiliation(s)
- Laleh Kazemzadeh
- Department of Chemical and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden ; Digital Enterprise Research Institute, National University of Ireland Galway, Ireland
| | | | | |
Collapse
|
181
|
The involvement of acetic acid in programmed cell death for the elimination of Bacillus sp. used in bioremediation. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2012. [DOI: 10.1016/j.jgeb.2012.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
182
|
Rego A, Costa M, Chaves SR, Matmati N, Pereira H, Sousa MJ, Moradas-Ferreira P, Hannun YA, Costa V, Côrte-Real M. Modulation of mitochondrial outer membrane permeabilization and apoptosis by ceramide metabolism. PLoS One 2012; 7:e48571. [PMID: 23226203 PMCID: PMC3511487 DOI: 10.1371/journal.pone.0048571] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/28/2012] [Indexed: 01/28/2023] Open
Abstract
The yeast Saccharomyces cerevisiae undergoes a mitochondrial-dependent programmed cell death in response to different stimuli, such as acetic acid, with features similar to those of mammalian apoptosis. However, the upstream signaling events in this process, including those leading to mitochondrial membrane permeabilization, are still poorly characterized. Changes in sphingolipid metabolism have been linked to modulation of apoptosis in both yeast and mammalian cells, and ceramides have been detected in mitochondria upon apoptotic stimuli. In this study, we aimed to characterize the contribution of enzymes involved in ceramide metabolism to apoptotic cell death induced by acetic acid. We show that isc1Δ and lag1Δ mutants, lacking inositol phosphosphingolipid phospholipase C and ceramide synthase, respectively, exhibited a higher resistance to acetic acid that was associated with lower levels of some phytoceramide species. Consistently, these mutant cells displayed lower levels of ROS production and reduced mitochondrial alterations, such as mitochondrial fragmentation and degradation, and decreased translocation of cytochrome c into the cytosol in response to acetic acid. These results suggest that ceramide production contributes to cell death induced by acetic acid, especially through hydrolysis of complex sphingolipids catalyzed by Isc1p and de novo synthesis catalyzed by Lag1p, and provide the first in vivo indication of its involvement in mitochondrial outer membrane permeabilization in yeast.
Collapse
Affiliation(s)
- António Rego
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental, Universidade do Minho, Braga, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Margarida Costa
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Susana Rodrigues Chaves
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental, Universidade do Minho, Braga, Portugal
| | - Nabil Matmati
- Stony Brook Cancer Center, Stony Brook University, Health Science Center, Stony Brook, New York, United States of America
| | - Helena Pereira
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental, Universidade do Minho, Braga, Portugal
| | - Maria João Sousa
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental, Universidade do Minho, Braga, Portugal
| | - Pedro Moradas-Ferreira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Yusuf A. Hannun
- Stony Brook Cancer Center, Stony Brook University, Health Science Center, Stony Brook, New York, United States of America
| | - Vítor Costa
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- * E-mail: (VC); (MCR)
| | - Manuela Côrte-Real
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental, Universidade do Minho, Braga, Portugal
- * E-mail: (VC); (MCR)
| |
Collapse
|
183
|
Casatta N, Porro A, Orlandi I, Brambilla L, Vai M. Lack of Sir2 increases acetate consumption and decreases extracellular pro-aging factors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:593-601. [PMID: 23159490 DOI: 10.1016/j.bbamcr.2012.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 11/05/2012] [Accepted: 11/08/2012] [Indexed: 11/29/2022]
Abstract
Yeast chronological aging is regarded as a model for aging of mammalian post-mitotic cells. It refers to changes occurring in stationary phase cells over a relatively long period of time. How long these cells can survive in such a non-dividing state defines the chronological lifespan. Several factors influence cell survival including two well known normal by-products of yeast glucose fermentation such as ethanol and acetic acid. In fact, the presence in the growth medium of these C2 compounds has been shown to limit the chronological lifespan. In the chronological aging paradigm, a pro-aging role has also emerged for the deacetylase Sir2, the founding member of the Sirtuin family, whose loss of function increases the depletion of extracellular ethanol by an unknown mechanism. Here, we show that lack of Sir2 strongly influences carbon metabolism. In particular, we point out a more efficient acetate utilization which in turn may have a stimulatory effect on ethanol catabolism. This correlates with an enhanced glyoxylate/gluconeogenic flux which is fuelled by the acetyl-CoA produced from the acetate activation. Thus, when growth relies on a respiratory metabolism such as that on ethanol or acetate, SIR2 inactivation favors growth. Moreover, in the chronological aging paradigm, the increase in the acetate metabolism implies that sir2Δ cells avoid acetic acid accumulation in the medium and deplete ethanol faster; consequently pro-aging extracellular signals are reduced. In addition, an enhanced gluconeogenesis allows replenishment of intracellular glucose stores which may be useful for better long-term cell survival.
Collapse
Affiliation(s)
- Nadia Casatta
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | | | | | | | | |
Collapse
|
184
|
Santos A, Alonso A, Belda I, Marquina D. Cell cycle arrest and apoptosis, two alternative mechanisms for PMKT2 killer activity. Fungal Genet Biol 2012; 50:44-54. [PMID: 23137543 DOI: 10.1016/j.fgb.2012.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/12/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
Abstract
Pichia membranifaciens CYC 1086 secretes a unique 30kDa killer toxin (PMKT2) that inhibits a variety of spoilage yeasts and fungi of agronomical interest. The cytocidal effect of PMKT2 on Saccharomyces cerevisiae cells was studied. Metabolic events associated with the loss of S. cerevisiae viability caused by PMKT2 were qualitatively identical to those reported for K28 killer toxin activity, but different to those reported for PMKT. At higher doses, none of the cellular events accounting for the action of PMKT, the killer toxin secreted by P. membranifaciens CYC 1106, was observed for PMKT2. Potassium leakage, sodium influx and the decrease of intracellular pH were not among the primary effects of PMKT2. We report here that this protein is unable to form ion-permeable channels in liposome membranes, suggesting that channel formation is not the mechanism of cytotoxic action of PMKT2. Nevertheless, flow cytometry studies have revealed a cell cycle arrest at an early S-phase with an immature bud and pre-replicated 1n DNA content. By testing the sensitivity of cells arrested at different stages in the cell cycle, we hoped to identify the execution point for lethality more precisely. Cells arrested at the G1-phase by α-factor or arrested at G2-phase by the spindle poison methyl benzimidazol-2-yl-carbamate (MBC) were protected against the toxin. Cells released from the arrest in both cases were killed by PMKT2 at a similar rate. Nevertheless, cells released from MBC-arrest were able to grow for a short time, and then viability dropped rapidly. These findings suggest that cells released from G2-phase are initially able to divide, but die in the presence of PMKT2 after initiating the S-phase in a new cycle, adopting a terminal phenotype within that cycle. By contrast, low doses of PMKT and PMKT2 were able to generate the same cellular response. The evidence presented here shows that treating yeast with low doses of PMKT2 leads to the typical membranous, cytoplasmic, mitochondrial and nuclear markers of apoptosis, namely, the production of reactive oxygen species, DNA strand breaks, metacaspase activation and cytochrome c release.
Collapse
Affiliation(s)
- Antonio Santos
- Department of Microbiology, Complutense University of Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
185
|
Mollinedo F. Lipid raft involvement in yeast cell growth and death. Front Oncol 2012; 2:140. [PMID: 23087902 PMCID: PMC3467458 DOI: 10.3389/fonc.2012.00140] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/25/2012] [Indexed: 01/04/2023] Open
Abstract
The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas - Universidad de Salamanca Salamanca, Spain
| |
Collapse
|
186
|
Polyunsaturated fatty acids cause apoptosis in C. albicans and C. dubliniensis biofilms. Biochim Biophys Acta Gen Subj 2012; 1820:1463-8. [DOI: 10.1016/j.bbagen.2012.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/24/2012] [Accepted: 05/10/2012] [Indexed: 01/31/2023]
|
187
|
Cui Y, Zhao S, Wu Z, Dai P, Zhou B. Mitochondrial release of the NADH dehydrogenase Ndi1 induces apoptosis in yeast. Mol Biol Cell 2012; 23:4373-82. [PMID: 22993213 PMCID: PMC3496611 DOI: 10.1091/mbc.e12-04-0281] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ndi1, the yeast homologue of caspase-independent apoptosis inducer AMID, turns out to be a general, as well as a potent, yeast apoptotic factor. This protein normally acts at the first step in respiration but, when stressed, cleaves its protective N-terminal, escapes from the mitochondria, and switches to become apoptotic. Saccharomyces cerevisiae NDI1 codes for the internal mitochondrial ubiquinone oxidoreductase, which transfers electrons from NADH to ubiquinone in the respiratory chain. Previously we found that Ndi1 is a yeast homologue of the protein apoptosis-inducing factor–homologous mitochondrion-associated inducer of death and displays potent proapoptotic activity. Here we show that S. cerevisiae NDI1 is involved in apoptosis induced by various stimuli tested, including H2O2, Mn, and acetate acid, independent of Z-VAD-fmk (a caspase inhibitor) inhibition. Although Ndi1 also participates in respiration, its proapoptotic property is separable from the ubiquinone oxidoreductase activity. During apoptosis, the N-terminal of Ndi1 is cleaved off in the mitochondria, and this activated form then escapes out to execute its apoptotic function. The N-terminal cleavage appears to be essential for the manifestation of the full apoptotic activity, as the uncleaved form of Ndi1 exhibits much less growth-inhibitory activity. Our results thus indicate an important role of Ndi1 in the switch of life and death fates in yeast: during normal growth, Ndi1 assimilates electrons to the electron transport chain and initiates the respiration process to make ATP, whereas under stresses, it cleaves the toxicity-sequestering N-terminal cap, is released from the mitochondria, and becomes a cell killer.
Collapse
Affiliation(s)
- Yixian Cui
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
188
|
Growth culture conditions and nutrient signaling modulating yeast chronological longevity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:680304. [PMID: 22928083 PMCID: PMC3425870 DOI: 10.1155/2012/680304] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/10/2012] [Indexed: 01/27/2023]
Abstract
The manipulation of nutrient-signaling pathways in yeast has uncovered the impact of environmental growth conditions in longevity. Studies using calorie restriction show that reducing glucose concentration of the culture media is sufficient to increase replicative and chronological lifespan (CLS). Other components of the culture media and factors such as the products of fermentation have also been implicated in the regulation of CLS. Acidification of the culture media mainly due to acetic acid and other organic acids production negatively impacts CLS. Ethanol is another fermentative metabolite capable of inducing CLS reduction in aged cells by yet unknown mechanisms. Recently, ammonium was reported to induce cell death associated with shortening of CLS. This effect is correlated to the concentration of NH4+ added to the culture medium and is particularly evident in cells starved for auxotrophy-complementing amino acids. Studies on the nutrient-signaling pathways regulating yeast aging had a significant impact on aging-related research, providing key insights into mechanisms that modulate aging and establishing the yeast as a powerful system to extend knowledge on longevity regulation in multicellular organisms.
Collapse
|
189
|
Murakami C, Delaney JR, Chou A, Carr D, Schleit J, Sutphin GL, An EH, Castanza AS, Fletcher M, Goswami S, Higgins S, Holmberg M, Hui J, Jelic M, Jeong KS, Kim JR, Klum S, Liao E, Lin MS, Lo W, Miller H, Moller R, Peng ZJ, Pollard T, Pradeep P, Pruett D, Rai D, Ros V, Schuster A, Singh M, Spector BL, Vander Wende H, Wang AM, Wasko BM, Olsen B, Kaeberlein M. pH neutralization protects against reduction in replicative lifespan following chronological aging in yeast. Cell Cycle 2012; 11:3087-96. [PMID: 22871733 DOI: 10.4161/cc.21465] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chronological and replicative aging have been studied in yeast as alternative paradigms for post-mitotic and mitotic aging, respectively. It has been known for more than a decade that cells of the S288C background aged chronologically in rich medium have reduced replicative lifespan relative to chronologically young cells. Here we report replication of this observation in the diploid BY4743 strain background. We further show that the reduction in replicative lifespan from chronological aging is accelerated when cells are chronologically aged under standard conditions in synthetic complete medium rather than rich medium. The loss of replicative potential with chronological age is attenuated by buffering the pH of the chronological aging medium to 6.0, an intervention that we have previously shown can extend chronological lifespan. These data demonstrate that extracellular acidification of the culture medium can cause intracellular damage in the chronologically aging population that is asymmetrically segregated by the mother cell to limit subsequent replicative lifespan.
Collapse
|
190
|
Castro CC, Gunning C, Oliveira CM, Couto JA, Teixeira JA, Martins RC, Ferreira ACS. Saccharomyces cerevisiae oxidative response evaluation by cyclic voltammetry and gas chromatography-mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:7252-7261. [PMID: 22746983 DOI: 10.1021/jf300389v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study is focused on the evaluation of the impact of Saccharomyces cerevisiae metabolism in the profile of compounds with antioxidant capacity in a synthetic wine during fermentation. A bioanalytical pipeline, which allows for biological systems fingerprinting and sample classification by combining electrochemical features with biochemical background, is proposed. To achieve this objective, alcoholic fermentations of a minimal medium supplemented with phenolic acids were evaluated daily during 11 days, for electrochemical profile, phenolic acids, and the volatile fermentation fraction, using cyclic voltametry, high-performance liquid chromatography-diode array detection, and headspace/solid-phase microextraction/gas chromatography-mass spectrometry (target and nontarget approaches), respectively. It was found that acetic acid, 2-phenylethanol, and isoamyl acetate are compounds with a significative contribution for samples metabolic variability, and the electrochemical features demonstrated redox-potential changes throughout the alcoholic fermentations, showing at the end a similar pattern to normal wines. Moreover, S. cerevisiae had the capacity of producing chlorogenic acid in the supplemented medium fermentation from simple precursors present in the minimal medium.
Collapse
Affiliation(s)
- Cristiana C Castro
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
191
|
Maturano YP, Nally MC, Toro ME, Castellanos de Figueroa LI, Combina M, Vazquez F. Monitoring of killer yeast populations in mixed cultures: influence of incubation temperature of microvinifications samples. World J Microbiol Biotechnol 2012; 28:3135-42. [PMID: 22806751 DOI: 10.1007/s11274-012-1123-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 06/30/2012] [Indexed: 10/28/2022]
Abstract
Killer yeasts are frequently used to combat and prevent contamination by wild-type yeasts during wine production and they can even dominate the wine fermentation. Stuck and sluggish fermentations can be caused by an unbalanced ratio of killer to sensitive yeasts in the bioreactor, and therefore it is important to determine the proportion of both populations. The aim of this study was to provide a simple tool to monitor killer yeast populations during controlled mixed microvinifications of killer and sensitive Saccharomyces cerevisiae. Samples were periodically extracted during vinification, seeded on Petri dishes and incubated at 25 and 37 °C; the latter temperature was assayed for possible inactivation of killer toxin production. Colonies developed under the described conditions were randomly transferred to killer phenotype detection medium. Significant differences in the killer/sensitive ratio were observed between both incubation temperatures in all microvinifications. These results suggest that 37 °C seems a better option to determine the biomass of sensitive yeasts, in order to avoid underestimation of sensitive cells in the presence of killer yeasts during fermentations. Incubation at a toxin-inhibiting temperature clearly showed the real ratio of killer to sensitive cells in fermentation systems.
Collapse
|
192
|
Guaragnella N, Zdralević M, Antonacci L, Passarella S, Marra E, Giannattasio S. The role of mitochondria in yeast programmed cell death. Front Oncol 2012; 2:70. [PMID: 22783546 PMCID: PMC3388595 DOI: 10.3389/fonc.2012.00070] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/14/2012] [Indexed: 01/02/2023] Open
Abstract
Mammalian apoptosis and yeast programmed cell death (PCD) share a variety of features including reactive oxygen species production, protease activity and a major role played by mitochondria. In view of this, and of the distinctive characteristics differentiating yeast and multicellular organism PCD, the mitochondrial contribution to cell death in the genetically tractable yeast Saccharomyces cerevisiae has been intensively investigated. In this mini-review we report whether and how yeast mitochondrial function and proteins belonging to oxidative phosphorylation, protein trafficking into and out of mitochondria, and mitochondrial dynamics, play a role in PCD. Since in PCD many processes take place over time, emphasis will be placed on an experimental model based on acetic acid-induced PCD (AA-PCD) which has the unique feature of having been investigated as a function of time. As will be described there are at least two AA-PCD pathways each with a multifaceted role played by mitochondrial components, in particular by cytochrome c.
Collapse
Affiliation(s)
- Nicoletta Guaragnella
- Institute of Biomembranes and Bioenergetics, National Research Council of Italy, Bari, Italy
| | | | | | | | | | | |
Collapse
|
193
|
Orlandi I, Casatta N, Vai M. Lack of Ach1 CoA-Transferase Triggers Apoptosis and Decreases Chronological Lifespan in Yeast. Front Oncol 2012; 2:67. [PMID: 22754872 PMCID: PMC3386497 DOI: 10.3389/fonc.2012.00067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/11/2012] [Indexed: 11/13/2022] Open
Abstract
ACH1 encodes a mitochondrial enzyme of Saccharomyces cerevisiae endowed with CoA-transferase activity. It catalyzes the CoASH transfer from succinyl-CoA to acetate generating acetyl-CoA. It is known that ACH1 inactivation results in growth defects on media containing acetate as a sole carbon and energy source which are particularly severe at low pH. Here, we show that chronological aging ach1Δ cells which accumulate a high amount of extracellular acetic acid display a reduced chronological lifespan. The faster drop of cell survival is completely abrogated by alleviating the acid stress either by a calorie restricted regimen that prevents acetic acid production or by transferring chronologically aging mutant cells to water. Moreover, the short-lived phenotype of ach1Δ cells is accompanied by reactive oxygen species accumulation, severe mitochondrial damage, and an early insurgence of apoptosis. A similar pattern of endogenous severe oxidative stress is observed when ach1Δ cells are cultured using acetic acid as a carbon source under acidic conditions. On the whole, our data provide further evidence of the role of acetic acid as cell-extrinsic mediator of cell death during chronological aging and highlight a primary role of Ach1 enzymatic activity in acetic acid detoxification which is important for mitochondrial functionality.
Collapse
Affiliation(s)
- Ivan Orlandi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca Milano, Italy
| | | | | |
Collapse
|
194
|
Farrugia G, Balzan R. Oxidative stress and programmed cell death in yeast. Front Oncol 2012; 2:64. [PMID: 22737670 PMCID: PMC3380282 DOI: 10.3389/fonc.2012.00064] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/02/2012] [Indexed: 12/11/2022] Open
Abstract
Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed.
Collapse
Affiliation(s)
- Gianluca Farrugia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta
| | - Rena Balzan
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta
| |
Collapse
|
195
|
Arroyo-Helguera O, Penas Alejandro DL, Irene C. Occurrence of killer Candida glabrata clinical isolates. Braz J Microbiol 2012; 43:880-7. [PMID: 24031902 PMCID: PMC3768868 DOI: 10.1590/s1517-83822012000300005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 08/18/2011] [Accepted: 06/07/2012] [Indexed: 12/04/2022] Open
Abstract
In this work we characterized the occurrence of killer activity in 64 Candida glabrata clinical isolates under different conditions. We found that only 6.25 % of the clinical isolates tested were positive for killer activity against a Saccharomyces cerevisiae W303 sensitive strain. Sensitivity of killer activity to different values of pH and temperatures was analyzed. We found that the killer activity presented by all isolates was resistant to every pH and temperature tested, although optimal activity was found at a range of pH values from 4 to 7 and at 37°C. We did not observe extrachromosomal genetic elements associated with killer activity in any of the positive C. glabrata isolates. The killer effect was due to a decrease in viability and DNA fragmentation in sensitive yeast.
Collapse
Affiliation(s)
- O Arroyo-Helguera
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luís Castelazo Ayala S/N, Industrial Animas , 91190 Xalapa, Veracruz , México
| | | | | |
Collapse
|
196
|
Ng CY, Jung MY, Lee J, Oh MK. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb Cell Fact 2012; 11:68. [PMID: 22640729 PMCID: PMC3442981 DOI: 10.1186/1475-2859-11-68] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 05/04/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND 2,3-Butanediol is a chemical compound of increasing interest due to its wide applications. It can be synthesized via mixed acid fermentation of pathogenic bacteria such as Enterobacter aerogenes and Klebsiella oxytoca. The non-pathogenic Saccharomyces cerevisiae possesses three different 2,3-butanediol biosynthetic pathways, but produces minute amount of 2,3-butanediol. Hence, we attempted to engineer S. cerevisiae strain to enhance 2,3-butanediol production. RESULTS We first identified gene deletion strategy by performing in silico genome-scale metabolic analysis. Based on the best in silico strategy, in which disruption of alcohol dehydrogenase (ADH) pathway is required, we then constructed gene deletion mutant strains and performed batch cultivation of the strains. Deletion of three ADH genes, ADH1, ADH3 and ADH5, increased 2,3-butanediol production by 55-fold under microaerobic condition. However, overproduction of glycerol was observed in this triple deletion strain. Additional rational design to reduce glycerol production by GPD2 deletion altered the carbon fluxes back to ethanol and significantly reduced 2,3-butanediol production. Deletion of ALD6 reduced acetate production in strains lacking major ADH isozymes, but it did not favor 2,3-butanediol production. Finally, we introduced 2,3-butanediol biosynthetic pathway from Bacillus subtilis and E. aerogenes to the engineered strain and successfully increased titer and yield. Highest 2,3-butanediol titer (2.29 . l-1) and yield (0.113 g . g-1) were achieved by Δadh1 Δadh3 Δadh5 strain under anaerobic condition. CONCLUSIONS With the aid of in silico metabolic engineering, we have successfully designed and constructed S. cerevisiae strains with improved 2,3-butanediol production.
Collapse
Affiliation(s)
- Chiam Yu Ng
- Department of Chemical & Biological Engineering, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | |
Collapse
|
197
|
Tulha J, Faria-Oliveira F, Lucas C, Ferreira C. Programmed cell death in Saccharomyces cerevisiae is hampered by the deletion of GUP1 gene. BMC Microbiol 2012; 12:80. [PMID: 22617017 PMCID: PMC3444424 DOI: 10.1186/1471-2180-12-80] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/27/2012] [Indexed: 12/28/2022] Open
Abstract
Background During the past years, yeast has been successfully established as a model to study mechanisms of programmed cell death regulation. Saccharomyces cerevisiae commits to cell death showing typical hallmarks of metazoan apoptosis, in response to different stimuli. Gup1p, an O-acyltransferase, is required for several cellular processes that are related to apoptosis development, such as rafts integrity and stability, lipid metabolism including GPI anchor correct remodeling, proper mitochondrial and vacuole function, bud site selection and actin dynamics. Therefore, we hypothesize that apoptotic process would be affected by GUP1 deletion. Results In the present work we used two known apoptosis inducing conditions, chronological aging and acetic acid, to assess several apoptotic markers in gup1∆ mutant strain. We found that this mutant presents a significantly reduced chronological lifespan as compared to Wt and it is also highly sensitive to acetic acid treatment. In addition, it presents extremely high levels of ROS. There were notorious differences on apoptotic markers between Wt and gup1∆ mutant strains, namely on the maintenance of plasma membrane integrity, on the phosphatidylserine externalization, on the depolarization of mitochondrial membrane and on the chromatin condensation. Those suggested that the mutant, under either condition, probably dies of necrosis and not from apoptosis. Conclusions To Gup1p has been assigned an important function on lipid rafts assembly/integrity, lipid metabolism and GPI anchor remodeling. Our results provide, for the first time, the connection of the integrity of yeast lipid rafts and apoptosis induction and/or signaling, giving new insights into the molecular mechanisms underlying this process in yeast.
Collapse
Affiliation(s)
- Joana Tulha
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | | | | | | |
Collapse
|
198
|
Santos J, Sousa MJ, Leão C. Ammonium is toxic for aging yeast cells, inducing death and shortening of the chronological lifespan. PLoS One 2012; 7:e37090. [PMID: 22615903 PMCID: PMC3352862 DOI: 10.1371/journal.pone.0037090] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/17/2012] [Indexed: 11/18/2022] Open
Abstract
Here we show that in aging Saccharomyces cerevisiae (budding yeast) cells, NH4+ induces cell death associated with shortening of chronological life span. This effect is positively correlated with the concentration of NH4+ added to the culture medium and is particularly evident when cells are starved for auxotrophy-complementing amino acids. NH4+-induced cell death is accompanied by an initial small increase of apoptotic cells followed by extensive necrosis. Autophagy is inhibited by NH4+, but this does not cause a decrease in cell viability. We propose that the toxic effects of NH4+ are mediated by activation of PKA and TOR and inhibition of Sch9p. Our data show that NH4+ induces cell death in aging cultures through the regulation of evolutionary conserved pathways. They may also provide new insights into longevity regulation in multicellular organisms and increase our understanding of human disorders such as hyperammonemia as well as effects of amino acid deprivation employed as a therapeutic strategy.
Collapse
Affiliation(s)
- Júlia Santos
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria João Sousa
- Molecular and Environmental Research Centre (CBMA)/Department of Biology, University of Minho, Braga, Portugal
- * E-mail:
| | - Cecília Leão
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
199
|
Wang YS, Wang ZY. Sodium citrate induces apoptosis in biocontrol yeast Cryptococcus laurentii. J Appl Microbiol 2012; 113:135-42. [PMID: 22515564 DOI: 10.1111/j.1365-2672.2012.05312.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To provide the observation that sodium citrate induced apoptosis in biocontrol yeast Cryptococcus laurentii. METHODS AND RESULTS The viability of the yeast cells was evaluated using the percentage of colony-forming units (CFU) of treated cells. The induction of cell death was dependent on the concentration of sodium citrate and exhibited typical apoptotic markers such as phosphatidylserine (PS) translocation as shown by annexin V coupled with fluorescein isothiocyanate (FITC) labelling and DNA fragmentation as detected by TdT-mediated dUTP-biotin nick end labelling (TUNEL) assay. The annexin V-positive cells reached the maximum (14·8%) on the third day, whereas TUNEL-positive cells increased gradually from 5·92 to 27·9% within 5 days of incubation in sodium citrate. In addition, confocal laser microscopy and flow cytometric analysis revealed that the induction of apoptosis was associated with the production of reactive oxygen species (ROS) that reached the highest intracellular level in the first day, before the peak of the early event (PS exposure) in apoptosis. The apoptosis was delayed by the addition of antioxidant glutathione (GSH), suggesting that ROS generated in this process plays a key role in the regulation of the apoptosis in C. laurentii cells. CONCLUSIONS This study indicated that the apoptotic signals in C. laurentii are dependent on citrate ions and/or sodium ions, the concentration and initial acidity of sodium citrate. Induction of ROS in response to sodium citrate plays a significant role in apoptosis. SIGNIFICANCE AND IMPACT OF THE STUDY Yeast Cryptococcus laurentii has been selected as an effective biocontrol indicator for the postharvest diseases because of its competition for nutrients and space with the pathogen in the wound of fruits. This study presents a convenient method for commercial production of yeast as biocontrol agent.
Collapse
Affiliation(s)
- Y-S Wang
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.
| | | |
Collapse
|
200
|
Bissoli G, Niñoles R, Fresquet S, Palombieri S, Bueso E, Rubio L, García-Sánchez MJ, Fernández JA, Mulet JM, Serrano R. Peptidyl-prolyl cis-trans isomerase ROF2 modulates intracellular pH homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:704-716. [PMID: 22268595 DOI: 10.1111/j.1365-313x.2012.04921.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Intracellular pH must be kept close to neutrality to be compatible with cellular functions, but the mechanisms of pH homeostasis and the responses to intracellular acidification are mostly unknown. In the plant Arabidopsis thaliana, we found that intracellular acid stress generated by weak organic acids at normal external pH induces expression of several chaperone genes, including ROF2, which encodes a peptidyl-prolyl cis-trans isomerase of the FK506-binding protein class. Loss of function of ROF2, and especially double mutation of ROF2 and the closely related gene ROF1, results in acid sensitivity. Over-expression of ROF2 confers tolerance to intracellular acidification by increasing proton extrusion from cells. The activation of the plasma membrane proton pump (H(+) -ATPase) is indirect: over-expression of ROF2 activates K(+) uptake, causing depolarization of the plasma membrane, which activates the electrogenic H(+) pump. The depolarization of ROF2 over-expressing plants explains their tolerance to toxic cations such as lithium, norspermidine and hygromycin B, whose uptake is driven by the membrane potential. As ROF2 induction and intracellular acidification are common consequences of many stresses, this mechanism of pH homeostasis may be of general importance for stress tolerance.
Collapse
Affiliation(s)
- Gaetano Bissoli
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|