151
|
Bonetti D, Colombo CV, Clerici M, Longhese MP. Processing of DNA Ends in the Maintenance of Genome Stability. Front Genet 2018; 9:390. [PMID: 30258457 PMCID: PMC6143663 DOI: 10.3389/fgene.2018.00390] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022] Open
Abstract
DNA double-strand breaks (DSBs) are particularly hazardous lesions as their inappropriate repair can result in chromosome rearrangements, an important driving force of tumorigenesis. DSBs can be repaired by end joining mechanisms or by homologous recombination (HR). HR requires the action of several nucleases that preferentially remove the 5′-terminated strands at both DSB ends in a process called DNA end resection. The same nucleases are also involved in the processing of replication fork structures. Much of our understanding of these pathways has come from studies in the model organism Saccharomyces cerevisiae. Here, we review the current knowledge of the mechanism of resection at DNA DSBs and replication forks.
Collapse
Affiliation(s)
- Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | | | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| |
Collapse
|
152
|
Abstract
For more than a decade, it has been known that mammalian cells use shelterin to protect chromosome ends. Much progress has been made on the mechanism by which shelterin prevents telomeres from inadvertently activating DNA damage signaling and double-strand break (DSB) repair pathways. Shelterin averts activation of three DNA damage response enzymes [the ataxia-telangiectasia-mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) kinases and poly(ADP-ribose) polymerase 1 (PARP1)], blocks three DSB repair pathways [classical nonhomologous end joining (c-NHEJ), alternative (alt)-NHEJ, and homology-directed repair (HDR)], and prevents hyper-resection at telomeres. For several of these functions, mechanistic insights have emerged. In addition, much has been learned about how shelterin maintains the telomeric 3' overhang, forms and protects the t-loop structure, and promotes replication through telomeres. These studies revealed that shelterin is compartmentalized, with individual subunits dedicated to distinct aspects of the end-protection problem. This review focuses on the current knowledge of shelterin-mediated telomere protection, highlights differences between human and mouse shelterin, and discusses some of the questions that remain.
Collapse
Affiliation(s)
- Titia de Lange
- Laboratory of Cell Biology and Genetics, Rockefeller University, New York, NY 10065, USA;
| |
Collapse
|
153
|
Charlesworth CT, Camarena J, Cromer MK, Vaidyanathan S, Bak RO, Carte JM, Potter J, Dever DP, Porteus MH. Priming Human Repopulating Hematopoietic Stem and Progenitor Cells for Cas9/sgRNA Gene Targeting. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:89-104. [PMID: 30195800 PMCID: PMC6023838 DOI: 10.1016/j.omtn.2018.04.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 12/11/2022]
Abstract
Engineered nuclease-mediated gene targeting through homologous recombination (HR) in hematopoietic stem and progenitor cells (HSPCs) has the potential to treat a variety of genetic hematologic and immunologic disorders. Here, we identify critical parameters to reproducibly achieve high frequencies of RNA-guided (single-guide RNA [sgRNA]; CRISPR)-Cas9 nuclease (Cas9/sgRNA) and rAAV6-mediated HR at the β-globin (HBB) locus in HSPCs. We identified that by transducing HSPCs with rAAV6 post-electroporation, there was a greater than 2-fold electroporation-aided transduction (EAT) of rAAV6 endocytosis with roughly 70% of the cell population having undergone transduction within 2 hr. When HSPCs are cultured at low densities (1 × 105 cells/mL) prior to HBB targeting, HSPC expansion rates are significantly positively correlated with HR frequencies in vitro as well as in repopulating cells in immunodeficient NSG mice in vivo. We also show that culturing fluorescence-activated cell sorting (FACS)-enriched HBB-targeted HSPCs at low cell densities in the presence of the small molecules, UM171 and SR1, stimulates the expansion of gene-edited HSPCs as measured by higher engraftment levels in immunodeficient mice. This work serves not only as an optimized protocol for genome editing HSPCs at the HBB locus for the treatment of β-hemoglobinopathies but also as a foundation for editing HSPCs at other loci for both basic and translational research.
Collapse
Affiliation(s)
| | - Joab Camarena
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - M Kyle Cromer
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Rasmus O Bak
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Jason M Carte
- Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Jason Potter
- Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Daniel P Dever
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
154
|
Devkota S. The road less traveled: strategies to enhance the frequency of homology-directed repair (HDR) for increased efficiency of CRISPR/Cas-mediated transgenesis. BMB Rep 2018; 51:437-443. [PMID: 30103848 PMCID: PMC6177507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Indexed: 09/29/2023] Open
Abstract
Non-homologous end joining (NHEJ), and to a lesser extent, the error-free pathway known as homology-directed repair (HDR) are cellular mechanisms for recovery from double-strand DNA breaks (DSB) induced by RNA-guided programmable nuclease CRISPR/Cas. Since NHEJ is equivalent to using a duck tape to stick two pieces of metals together, the outcome of this repair mechanism is prone to error. Any out-of-frame mutations or premature stop codons resulting from NHEJ repair mechanism are extremely handy for loss-of-function studies. Substitution of a mutation on the genome with the correct exogenous repair DNA requires coordination via an error-free HDR, for targeted transgenesis. However, several practical limitations exist in harnessing the potential of HDR to replace a faulty mutation for therapeutic purposes in all cell types and more so in somatic cells. In germ cells after the DSB, copying occurs from the homologous chromosome, which increases the chances of incorporation of exogenous DNA with some degree of homology into the genome compared with somatic cells where copying from the identical sister chromatid is always preferred. This review summarizes several strategies that have been implemented to increase the frequency of HDR with a focus on somatic cells. It also highlights the limitations of this technology in gene therapy and suggests specific solutions to circumvent those barriers. [BMB Reports 2018; 51(9): 437-443].
Collapse
Affiliation(s)
- Sushil Devkota
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093,
USA
| |
Collapse
|
155
|
Pietrzak J, Spickett CM, Płoszaj T, Virág L, Robaszkiewicz A. PARP1 promoter links cell cycle progression with adaptation to oxidative environment. Redox Biol 2018; 18:1-5. [PMID: 29886395 PMCID: PMC5991907 DOI: 10.1016/j.redox.2018.05.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 01/01/2023] Open
Abstract
Although electrophiles are considered as detrimental to cells, accumulating recent evidence indicates that proliferating non-cancerous and particularly cancerous cells utilize these agents for pro-survival and cell cycle promoting signaling. Hence, the redox shift to mild oxidant release must be balanced by multiple defense mechanisms. Our latest findings demonstrate that cell cycle progression, which dictates oxidant level in stress-free conditions, determines PARP1 transcription. Growth modulating factors regulate CDK4/6-RBs-E2Fs axis. In cells arrested in G1 and G0, RB1-E2F1 and RBL2-E2F4 dimers recruit chromatin remodelers such as HDAC1, SWI/SNF and PRC2 to condense chromatin and turn off transcription. Release of retinoblastoma-based repressive complexes from E2F-dependent gene promoters in response to cell transition to S phase enables transcription of PARP1. This enzyme contributes to repair of oxidative DNA damage by supporting several strand break repair pathways and nucleotide or base excision repair pathways, as well as acting as a co-activator of transcription factors such as NRF2 and HIF1a, which control expression of antioxidant enzymes involved in removal of electrophiles and secondary metabolites. Furthermore, PARP1 is indispensible for transcription of the pro-survival kinases MAP2K6, ERK1/2 and AKT1, and for maintaining MAPK activity by suppressing transcription of the MAPK inhibitor, MPK1. In summary, cell cycle controlled PARP1 transcription helps cells to adapt to a pro-oxidant redox shift.
Collapse
Affiliation(s)
- Julita Pietrzak
- Department of General Biophysics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Corinne M Spickett
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Tomasz Płoszaj
- Department of Molecular Biology, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
156
|
Abstract
Canonical DNA non-homologous end-joining (c-NHEJ) and homologous recombination (HR), the two major DNA double-strand break (DSB) repair pathways, have long been depicted as competitors, fighting a race to rejoin DSBs. In human cells, Ku, an upstream component of NHEJ, is highly abundant and has exquisite end-binding capacity. Emerging evidence has suggested that Ku is the first protein binding most, if not all, DSBs, and creates a block to resection. Although most c-NHEJ proceeds without resection, recent studies have provided strong evidence for a process of resection-dependent c-NHEJ, that repairs a subset of DSBs. HR also repairs a subset of two-ended DSBs in G2 phase and processes one-ended DSBs that arise following replication fork stalling or collapse to promote replication restart. HR also necessitates end-resection. This raises the question of how end-resection takes place despite Ku's avid end-binding capacity. Insight into this enigma has been gained from the analysis of DSBs generated by Spo11 or TOP2, which create protein-bridged DSBs. The progression of repair by HR or NHEJ requires removal of the end-blocking lesions. The MRE11-RAD50-NBS1 (MRN) complex, CtIP and EXO1 play critical roles in this process. Here, we review our current understanding of how resection arises at lesions blocked by covalently bound Spo11 or TOP2 or following Ku binding, which effectively creates a distinct resection-blocking lesion due to its avid end-binding activity and abundance. Our review reveals that Ku plays an active role in determining pathway choice and exposes similarities yet distinctions in the progression of resection that is suited to the optimal repair pathway choice.
Collapse
Affiliation(s)
- Atsushi Shibata
- Education and Research Support Center, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Penny Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN19 RQ, UK
| | - Markus Löbrich
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany.
| |
Collapse
|
157
|
Jiang Y, Chu WK. Potential Roles of the Retinoblastoma Protein in Regulating Genome Editing. Front Cell Dev Biol 2018; 6:81. [PMID: 30109230 PMCID: PMC6079259 DOI: 10.3389/fcell.2018.00081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/13/2018] [Indexed: 01/15/2023] Open
Abstract
Genome editing is an important tool for modifying genomic DNA through introducing DNA insertion or deletion at specific locations of a genome. Recently CRISPR/Cas9 has been widely employed to improve the efficiency of genome editing. The Cas9 nuclease creates site-specific double strand breaks (DSBs) at targeted loci in the genome. Subsequently, the DSBs are repaired by two pathways: Homologous Recombination (HR) and Non-Homologous End-Joining (NHEJ). HR has been considered as "error-free" because it repairs DSBs by copying DNA sequences from a homologous DNA template, while NHEJ is "error-prone" as there are base deletions or insertions at the breakage site. Recently, RB1, a gene that is commonly mutated in retinoblastoma, has been reported to affect the repair efficiencies of HR and NHEJ. This review focuses on the roles of RB1 in repairing DNA DSBs, which have impacts on the precision and consequences of the genome editing, both at the targeted loci and the overall genome.
Collapse
Affiliation(s)
- Yuning Jiang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| |
Collapse
|
158
|
Montaño A, Forero-Castro M, Hernández-Rivas JM, García-Tuñón I, Benito R. Targeted genome editing in acute lymphoblastic leukemia: a review. BMC Biotechnol 2018; 18:45. [PMID: 30016959 PMCID: PMC6050675 DOI: 10.1186/s12896-018-0455-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022] Open
Abstract
Background Genome editing technologies offers new opportunities for tackling diseases such as acute lymphoblastic leukemia (ALL) that have been beyond the reach of previous therapies. Results We show how the recent availability of genome-editing tools such as CRISPR-Cas9 are an important means of advancing functional studies of ALL through the incorporation, elimination and modification of somatic mutations and fusion genes in cell lines and mouse models. These tools not only broaden the understanding of the involvement of various genetic alterations in the pathogenesis of the disease but also identify new therapeutic targets for future clinical trials. Conclusions New approaches including CRISPR-Cas9 are crucial for functional studies of genetic aberrations driving cancer progression, and that may be responsible for treatment resistance and relapses. By using this approach, diseases can be more faithfully reproduced and new therapeutic targets and approaches found.
Collapse
Affiliation(s)
- Adrián Montaño
- IBSAL, IBMCC, University of Salamanca-CSIC, Cancer Research Center, Salamanca, Spain
| | - Maribel Forero-Castro
- School of Biological Sciences (GICBUPTC Research group), Universidad Pedagógica y Tecnológica de Colombia, Boyacá, Colombia
| | - Jesús-María Hernández-Rivas
- IBSAL, IBMCC, University of Salamanca-CSIC, Cancer Research Center, Salamanca, Spain. .,Department of Medicine, University of Salamanca, Spain, Department of Hematology, University Hospital of Salamanca, Salamanca, Spain. .,IBMCC, CIC University of Salamanca-CSIC, University Hospital of Salamanca, Salamanca, Spain.
| | - Ignacio García-Tuñón
- IBSAL, IBMCC, University of Salamanca-CSIC, Cancer Research Center, Salamanca, Spain
| | - Rocío Benito
- IBSAL, IBMCC, University of Salamanca-CSIC, Cancer Research Center, Salamanca, Spain
| |
Collapse
|
159
|
The Human T-Cell Leukemia Virus Type 1 Basic Leucine Zipper Factor Attenuates Repair of Double-Stranded DNA Breaks via Nonhomologous End Joining. J Virol 2018; 92:JVI.00672-18. [PMID: 29769340 DOI: 10.1128/jvi.00672-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/10/2018] [Indexed: 12/27/2022] Open
Abstract
Adult T-cell leukemia (ATL) is a fatal malignancy of CD4+ T cells infected with human T-cell leukemia virus type 1 (HTLV-1). ATL cells often exhibit random gross chromosomal rearrangements that are associated with the induction and improper repair of double-stranded DNA breaks (DSBs). The viral oncoprotein Tax has been reported to impair DSB repair but has not been shown to be consistently expressed throughout all phases of infection. The viral oncoprotein HTLV-1 basic leucine zipper (bZIP) factor (HBZ) is consistently expressed prior to and throughout disease progression, but it is unclear whether it also influences DSB repair. We report that HBZ attenuates DSB repair by nonhomologous end joining (NHEJ), in a manner dependent upon the bZIP domain. HBZ was found to interact with two vital members of the NHEJ core machinery, Ku70 and Ku80, and to be recruited to DSBs in a bZIP-dependent manner in vitro We observed that HBZ expression also resulted in a bZIP-dependent delay in DNA protein kinase (DNA-PK) activation following treatment with etoposide. Although Tax is reported to interact with Ku70, we did not find Tax expression to interfere with HBZ:Ku complex formation. However, as Tax was reported to saturate NHEJ, we found that this effect masked the attenuation of NHEJ by HBZ. Overall, these data suggest that DSB repair mechanisms are impaired not only by Tax but also by HBZ and show that HBZ expression may significantly contribute to the accumulation of chromosomal abnormalities during HTLV-1-mediated oncogenesis.IMPORTANCE Human T-cell leukemia virus type 1 (HTLV-1) infects 15 million to 20 million people worldwide. Approximately 90% of infected individuals are asymptomatic and may remain undiagnosed, increasing the risk that they will unknowingly transmit the virus. About 5% of the HTLV-1-positive population develop adult T-cell leukemia (ATL), a fatal disease that is not highly responsive to treatment. Although ATL development remains poorly understood, two viral proteins, Tax and HBZ, have been implicated in driving disease progression by manipulating host cell signaling and transcriptional pathways. Unlike Tax, HBZ expression is consistently observed in all infected individuals, making it important to elucidate the specific role of HBZ in disease progression. Here, we present evidence that HBZ could promote the accumulation of double-stranded DNA breaks (DSBs) through the attenuation of the nonhomologous end joining (NHEJ) repair pathway. This effect may lead to genome instability, ultimately contributing to the development of ATL.
Collapse
|
160
|
George VC, Ansari SA, Chelakkot VS, Chelakkot AL, Chelakkot C, Menon V, Ramadan W, Ethiraj KR, El-Awady R, Mantso T, Mitsiogianni M, Panagiotidis MI, Dellaire G, Vasantha Rupasinghe HP. DNA-dependent protein kinase: Epigenetic alterations and the role in genomic stability of cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 780:92-105. [PMID: 31395353 DOI: 10.1016/j.mrrev.2018.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/13/2018] [Indexed: 12/28/2022]
Abstract
DNA-dependent protein kinase (DNA-PK), a member of phosphatidylinositol-kinase family, is a key protein in mammalian DNA double-strand break (DSB) repair that helps to maintain genomic integrity. DNA-PK also plays a central role in immune cell development and protects telomerase during cellular aging. Epigenetic deregulation due to endogenous and exogenous factors may affect the normal function of DNA-PK, which in turn could impair DNA repair and contribute to genomic instability. Recent studies implicate a role for epigenetics in the regulation of DNA-PK expression in normal and cancer cells, which may impact cancer progression and metastasis as well as provide opportunities for treatment and use of DNA-PK as a novel cancer biomarker. In addition, several small molecules and biological agents have been recently identified that can inhibit DNA-PK function or expression, and thus hold promise for cancer treatments. This review discusses the impact of epigenetic alterations and the expression of DNA-PK in relation to the DNA repair mechanisms with a focus on its differential levels in normal and cancer cells.
Collapse
Affiliation(s)
- Vazhappilly Cijo George
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Shabbir Ahmed Ansari
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Vipin Shankar Chelakkot
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | | | - Chaithanya Chelakkot
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Varsha Menon
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Wafaa Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Raafat El-Awady
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates; Cancer Biology Department, National Cancer Institute and College of Medicine, Cairo University, Cairo, Egypt
| | - Theodora Mantso
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada; Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Melina Mitsiogianni
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada; Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Mihalis I Panagiotidis
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
161
|
Gobbini E, Cassani C, Vertemara J, Wang W, Mambretti F, Casari E, Sung P, Tisi R, Zampella G, Longhese MP. The MRX complex regulates Exo1 resection activity by altering DNA end structure. EMBO J 2018; 37:embj.201798588. [PMID: 29925516 DOI: 10.15252/embj.201798588] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 01/19/2023] Open
Abstract
Homologous recombination is triggered by nucleolytic degradation (resection) of DNA double-strand breaks (DSBs). DSB resection requires the Mre11-Rad50-Xrs2 (MRX) complex, which promotes the activity of Exo1 nuclease through a poorly understood mechanism. Here, we describe the Mre11-R10T mutant variant that accelerates DSB resection compared to wild-type Mre11 by potentiating Exo1-mediated processing. This increased Exo1 resection activity leads to a decreased association of the Ku complex to DSBs and an enhanced DSB resection in G1, indicating that Exo1 has a direct function in preventing Ku association with DSBs. Molecular dynamics simulations show that rotation of the Mre11 capping domains is able to induce unwinding of double-strand DNA (dsDNA). The R10T substitution causes altered orientation of the Mre11 capping domain that leads to persistent melting of the dsDNA end. We propose that MRX creates a specific DNA end structure that promotes Exo1 resection activity by facilitating the persistence of this nuclease on the DSB ends, uncovering a novel MRX function in DSB resection.
Collapse
Affiliation(s)
- Elisa Gobbini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Corinne Cassani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Jacopo Vertemara
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Weibin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Fabiana Mambretti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Erika Casari
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Renata Tisi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Giuseppe Zampella
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| |
Collapse
|
162
|
Sensitization of prostate cancer to radiation therapy: Molecules and pathways to target. Radiother Oncol 2018; 128:283-300. [PMID: 29929859 DOI: 10.1016/j.radonc.2018.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/01/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022]
Abstract
Radiation therapy is used to treat cancer by radiation-induced DNA damage. Despite the best efforts to eliminate cancer, some cancer cells survive irradiation, resulting in cancer progression or recurrence. Alteration in DNA damage repair pathways is common in cancers, resulting in modulation of their response to radiation. This article focuses on the recent findings about molecules and pathways that potentially can be targeted to sensitize prostate cancer cells to ionizing radiation, thereby achieving an improved therapeutic outcome.
Collapse
|
163
|
Daley JM, Jimenez-Sainz J, Wang W, Miller AS, Xue X, Nguyen KA, Jensen RB, Sung P. Enhancement of BLM-DNA2-Mediated Long-Range DNA End Resection by CtIP. Cell Rep 2018; 21:324-332. [PMID: 29020620 DOI: 10.1016/j.celrep.2017.09.048] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 07/18/2017] [Accepted: 09/14/2017] [Indexed: 01/24/2023] Open
Abstract
DNA double-strand break repair by homologous recombination entails the resection of DNA ends to reveal ssDNA tails, which are used to invade a homologous DNA template. CtIP and its yeast ortholog Sae2 regulate the nuclease activity of MRE11 in the initial stage of resection. Deletion of CtIP in the mouse or SAE2 in yeast engenders a more severe phenotype than MRE11 nuclease inactivation, indicative of a broader role of CtIP/Sae2. Here, we provide biochemical evidence that CtIP promotes long-range resection via the BLM-DNA2 pathway. Specifically, CtIP interacts with BLM and enhances its helicase activity, and it enhances DNA cleavage by DNA2. Thus, CtIP influences multiple aspects of end resection beyond MRE11 regulation.
Collapse
Affiliation(s)
- James M Daley
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Judit Jimenez-Sainz
- Department of Therapeutic Radiobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Weibin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adam S Miller
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kevin A Nguyen
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ryan B Jensen
- Department of Therapeutic Radiobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
164
|
Abstract
PURPOSE OF REVIEW This review describes the recent progress in nuclease-based therapeutic applications for inherited heart diseases in vitro, highlights the development of the most recent genome editing technologies and discusses the associated challenges for clinical translation. RECENT FINDINGS Inherited cardiovascular disorders are passed from generation to generation. Over the past decade, considerable progress has been made in understanding the genetic basis of inherited heart diseases. The timely emergence of genome editing technologies using engineered programmable nucleases has revolutionized the basic research of inherited cardiovascular diseases and holds great promise for the development of targeted therapies. The genome editing toolbox is rapidly expanding, and new tools have been recently added that significantly expand the capabilities of engineered nucleases. Newer classes of versatile engineered nucleases, such as the "base editors," have been recently developed, offering the potential for efficient and precise therapeutic manipulation of the human genome.
Collapse
|
165
|
Brinkman EK, Chen T, de Haas M, Holland HA, Akhtar W, van Steensel B. Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks. Mol Cell 2018; 70:801-813.e6. [PMID: 29804829 PMCID: PMC5993873 DOI: 10.1016/j.molcel.2018.04.016] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 01/29/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022]
Abstract
The RNA-guided DNA endonuclease Cas9 is a powerful tool for genome editing. Little is known about the kinetics and fidelity of the double-strand break (DSB) repair process that follows a Cas9 cutting event in living cells. Here, we developed a strategy to measure the kinetics of DSB repair for single loci in human cells. Quantitative modeling of repaired DNA in time series after Cas9 activation reveals variable and often slow repair rates, with half-life times up to ∼10 hr. Furthermore, repair of the DSBs tends to be error prone. Both classical and microhomology-mediated end joining pathways contribute to the erroneous repair. Estimation of their individual rate constants indicates that the balance between these two pathways changes over time and can be altered by additional ionizing radiation. Our approach provides quantitative insights into DSB repair kinetics and fidelity in single loci and indicates that Cas9-induced DSBs are repaired in an unusual manner.
Collapse
Affiliation(s)
- Eva K Brinkman
- Oncode Institute; Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Tao Chen
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Marcel de Haas
- Oncode Institute; Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Hanna A Holland
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Waseem Akhtar
- Division of Molecular Genetics, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Bas van Steensel
- Oncode Institute; Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands.
| |
Collapse
|
166
|
Hu Y, Lin J, Fang H, Fang J, Li C, Chen W, Liu S, Ondrejka S, Gong Z, Reu F, Maciejewski J, Yi Q, Zhao JJ. Targeting the MALAT1/PARP1/LIG3 complex induces DNA damage and apoptosis in multiple myeloma. Leukemia 2018; 32:2250-2262. [PMID: 29632340 PMCID: PMC6151178 DOI: 10.1038/s41375-018-0104-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/12/2018] [Accepted: 03/05/2018] [Indexed: 12/12/2022]
Abstract
Metastasis-associated lung adenocarcinoma transcript 1(MALAT1) is a highly conserved long non-coding RNA (lncRNA). Overexpression of MALAT1 has been demonstrated to related to poor prognosis of multiple myeloma(MM) patients. Here, we demonstrated that MALAT1 plays important roles in MM DNA repair and cell death. We found bone marrow plasma cells from patients with monoclonal gammopathy of undetermined significance (MGUS) and MM express elevated MALAT1 and involve in alternative-non-homozygous end joining (A-NHEJ) pathway by binding to PARP1 and LIG3, two key components of the A-NHEJ protein complex. Degradation of the MALAT1 RNA by RNase H using antisense gapmer DNA oligos in MM cells stimulated poly-ADP-ribosylation of nuclear proteins, defected the DNA repair pathway, and further provoked apoptotic pathways. Anti-MALAT1 therapy combined with PARP1 inhibitor or proteasome inhibitor in MM cells showed a synergistic effect in vitro. Furthermore, using novel single wall carbon nanotube (SWCNT) conjugated with anti-MALAT1 oligos, we successfully knocked down MALAT1 RNA in cultured MM cell lines and xenograft murine models. Most importantly, anti-MALAT1 therapy induced DNA damage and cell apoptosis in vivo, indicating that MALAT1 could serve as a potential novel therapeutic target for MM treatment.
Collapse
Affiliation(s)
- Yi Hu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jianhong Lin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Hua Fang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Oncology, Fu Xing Hospital, Capital Medical University, Beijing, 100038, China
| | - Jing Fang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Chen Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,College of Food Science and Technology, Agricultural University of Hebei, Baoding, Hebei, 071000, China
| | - Wei Chen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Ultrasound, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Shuang Liu
- Department of Pathology, Norman Bethune International Peace Hospital, Shijiazhuang, Hebei, 050082, China
| | - Sarah Ondrejka
- Department of Laboratory Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Zihua Gong
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Frederic Reu
- Department of Translational Hematology & Oncology Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jaroslaw Maciejewski
- Department of Translational Hematology & Oncology Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Qing Yi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jian-Jun Zhao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
167
|
Recovery of Alternative End-Joining Repair Products From Drosophila Embryos. Methods Enzymol 2018. [PMID: 29523244 DOI: 10.1016/bs.mie.2017.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In this chapter, we describe a method for the recovery and analysis of alternative end-joining (alt-EJ) DNA double-strand break repair junctions following I-SceI cutting in Drosophila melanogaster embryos. Alt-EJ can be defined as a set of Ku70/80 and DNA ligase 4-independent end-joining processes that are typically mutagenic, producing deletions, insertions, and chromosomal rearrangements more frequently than higher-fidelity repair pathways such as classical nonhomologous end joining or homologous recombination. Alt-EJ has been observed to be upregulated in HR-deficient tumors and is essential for the survival and proliferation of these cells. Alt-EJ shares many initial processing steps with homologous recombination, specifically end resection; therefore, studying alt-EJ repair junctions can provide useful insight into aborted HR repair. Here, we describe the injection of plasmid constructs with specific cut sites into Drosophila embryos and the subsequent recovery of alt-EJ repair products. We also describe different analytical approaches using this system and how amplicon sequencing can be used to provide mechanistic information about alt-EJ.
Collapse
|
168
|
Abstract
Most members of the poly(ADP-ribose)polymerase family, PARP family, have a catalytic activity that involves the transfer of ADP-ribose from a beta-NAD+-molecule to protein acceptors. It was recently discovered by Talhaoui et al. that DNA-dependent PARP1 and PARP2 can also modify DNA. Here, we demonstrate that DNA-dependent PARP3 can modify DNA and form a specific primed structure for further use by the repair proteins. We demonstrated that gapped DNA that was ADP-ribosylated by PARP3 could be ligated to double-stranded DNA by DNA ligases. Moreover, this ADP-ribosylated DNA could serve as a primed DNA substrate for PAR chain elongation by the purified proteins PARP1 and PARP2 as well as by cell-free extracts. We suggest that this ADP-ribose modification can be involved in cellular pathways that are important for cell survival in the process of double-strand break formation.
Collapse
Affiliation(s)
- E A Belousova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), SB RAS, Lavrentiev Av. 8, Novosibirsk, 630090, Russia
| | - А A Ishchenko
- Groupe Réparation de l'ADN, Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Univ. Paris-Sud, Université Paris-Saclay, F-94805, Villejuif, France.,Gustave Roussy, Université Paris-Saclay, F-94805, Villejuif, France
| | - O I Lavrik
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), SB RAS, Lavrentiev Av. 8, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Pirogov Str. 2, Novosibirsk, 630090, Russia.
| |
Collapse
|
169
|
Khodaverdian VY, Hanscom T, Yu AM, Yu TL, Mak V, Brown AJ, Roberts SA, McVey M. Secondary structure forming sequences drive SD-MMEJ repair of DNA double-strand breaks. Nucleic Acids Res 2018; 45:12848-12861. [PMID: 29121353 PMCID: PMC5728401 DOI: 10.1093/nar/gkx1056] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/18/2017] [Indexed: 12/29/2022] Open
Abstract
Alternative end-joining (alt-EJ) repair of DNA double-strand breaks is associated with deletions, chromosome translocations, and genome instability. Alt-EJ frequently uses annealing of microhomologous sequences to tether broken ends. When accessible pre-existing microhomologies do not exist, we have postulated that new microhomologies can be created via limited DNA synthesis at secondary-structure forming sequences. This model, called synthesis-dependent microhomology-mediated end joining (SD-MMEJ), predicts that differences between DNA sequences near double-strand breaks should alter repair outcomes in predictable ways. To test this hypothesis, we injected plasmids with sequence variations flanking an I-SceI endonuclease recognition site into I-SceI expressing Drosophila embryos and used Illumina amplicon sequencing to compare repair junctions. As predicted by the model, we found that small changes in sequences near the I-SceI site had major impacts on the spectrum of repair junctions. Bioinformatic analyses suggest that these repair differences arise from transiently forming loops and hairpins within 30 nucleotides of the break. We also obtained evidence for ‘trans SD-MMEJ,’ involving at least two consecutive rounds of microhomology annealing and synthesis across the break site. These results highlight the importance of sequence context for alt-EJ repair and have important implications for genome editing and genome evolution.
Collapse
Affiliation(s)
- Varandt Y Khodaverdian
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Terrence Hanscom
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Amy Marie Yu
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Taylor L Yu
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Victoria Mak
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Alexander J Brown
- School of Molecular Biosciences, Washington State University, P100 Dairy Road, Pullman, WA 99164, USA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, P100 Dairy Road, Pullman, WA 99164, USA
| | - Mitch McVey
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| |
Collapse
|
170
|
Ma A, Dai X. The relationship between DNA single-stranded damage response and double-stranded damage response. Cell Cycle 2018; 17:73-79. [PMID: 29157089 PMCID: PMC5815444 DOI: 10.1080/15384101.2017.1403681] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/29/2017] [Indexed: 10/18/2022] Open
Abstract
The damage response of DNA single-stranded breaks(SSBs) and double-stranded breaks(DSBs) are two relatively independent processes involving different signaling pathways and protein factors, but there are still many overlapping parts. All of them can activate p53 protein, then the activated p53 regulates the damage response of single-stranded breaks or double-stranded breaks in transcriptional regulation and non-transcriptional regulation. Especially, the two types of damage would compete for RPA and ATR resources in damage repair process. The research has been focused on damage response of DNA single-stranded breaks or DNA double-stranded breaks. However, when single-stranded breaks and double-stranded breaks exist simultaneously, the DNA damage response remains to be elucidated. Here, we present a hybrid numerical model of p53 response and a hybrid numerical model of DNA damage repair exploring DNA damage repair and apoptosis mechanisms when DNA single-stranded breaks and DNA double-stranded breaks exist simultaneously. Firstly, when two kinds of damage are present at the same time, the response of p53 is graded, it means that p53 responds to single-stranded breaks preferentially; Secondly, DNA single-stranded breaks are repaired preferentially, and single-stranded breaks and double-stranded breaks can be repaired simultaneously after most of single-stranded breaks having been repaired; Moreover, single-stranded breaks are more likely to cause apoptosis, because the accumulation of p53 in DNA single-stranded breaks is faster than it in DNA double-stranded breaks and single-stranded breaks has lower threshold of apoptosis.
Collapse
Affiliation(s)
- Aiqing Ma
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xianhua Dai
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
171
|
Fouquin A, Guirouilh-Barbat J, Lopez B, Hall J, Amor-Guéret M, Pennaneach V. PARP2 controls double-strand break repair pathway choice by limiting 53BP1 accumulation at DNA damage sites and promoting end-resection. Nucleic Acids Res 2017; 45:12325-12339. [PMID: 29036662 PMCID: PMC5716083 DOI: 10.1093/nar/gkx881] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022] Open
Abstract
Double strand breaks (DSBs) are one of the most toxic lesions to cells. DSB repair by the canonical non-homologous end-joining (C-EJ) pathway involves minor, if any, processing of the broken DNA-ends, whereas the initiation of DNA resection channels the broken-ends toward DNA repair pathways using various lengths of homology. Mechanisms that control the resection initiation are thus central to the regulation to the choice of DSB repair pathway. Therefore, understanding the mechanisms which regulate the initiation of DNA end-resection is of prime importance. Our findings reveal that poly(ADP-ribose) polymerase 2 (PARP2) is involved in DSBR pathway choice independently of its PAR synthesis activity. We show that PARP2 favors repair by homologous recombination (HR), single strand annealing (SSA) and alternative-end joining (A-EJ) rather than the C-EJ pathway and increases the deletion sizes at A-EJ junctions. We demonstrate that PARP2 specifically limits the accumulation of the resection barrier factor 53BP1 at DNA damage sites, allowing efficient CtIP-dependent DNA end-resection. Collectively, we have identified a new PARP2 function, independent of its PAR synthesis activity, which directs DSBs toward resection-dependent repair pathways.
Collapse
Affiliation(s)
- Alexis Fouquin
- Institut Curie, PSL Research University, UMR 3348, 91405 Orsay, France.,CNRS, UMR3348, Centre Universitaire, Bât. 110, 91405 Orsay, France.,Université Paris Sud, Université Paris-Saclay, UMR 3348, 91405 Orsay, France
| | - Josée Guirouilh-Barbat
- Université Paris Sud, Institut de Cancérologie Gustave Roussy, CNRS UMR8200, 94805 Villejuif, France. Team labeled by la Ligue contre le cancer 'Ligue 2017'
| | - Bernard Lopez
- Université Paris Sud, Institut de Cancérologie Gustave Roussy, CNRS UMR8200, 94805 Villejuif, France. Team labeled by la Ligue contre le cancer 'Ligue 2017'
| | - Janet Hall
- Centre de Recherche en Cancérologie de Lyon, INSERM, CNRS, UMR 1052-5286, 69424 Lyon, France
| | - Mounira Amor-Guéret
- Institut Curie, PSL Research University, UMR 3348, 91405 Orsay, France.,CNRS, UMR3348, Centre Universitaire, Bât. 110, 91405 Orsay, France.,Université Paris Sud, Université Paris-Saclay, UMR 3348, 91405 Orsay, France
| | - Vincent Pennaneach
- Institut Curie, PSL Research University, UMR 3348, 91405 Orsay, France.,CNRS, UMR3348, Centre Universitaire, Bât. 110, 91405 Orsay, France.,Université Paris Sud, Université Paris-Saclay, UMR 3348, 91405 Orsay, France
| |
Collapse
|
172
|
Mild Telomere Dysfunction as a Force for Altering the Adaptive Potential of Subtelomeric Genes. Genetics 2017; 208:537-548. [PMID: 29242289 DOI: 10.1534/genetics.117.300607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/08/2017] [Indexed: 11/18/2022] Open
Abstract
Subtelomeric regions have several unusual characteristics, including complex repetitive structures, increased rates of evolution, and enrichment for genes involved in niche adaptation. The adaptive telomere failure hypothesis suggests that certain environmental stresses can induce a low level of telomere failure, potentially leading to elevated subtelomeric recombination that could result in adaptive mutational changes within subtelomeric genes. Here, we tested a key prediction of the adaptive telomere failure hypothesis-that telomere dysfunction mild enough to have little or no overall effect on cell fitness could still lead to substantial increases in the mutation rates of subtelomeric genes. Our results show that a mutant of Kluyveromyces lactis with stably short telomeres produced a large increase in the frequency of mutations affecting the native subtelomeric β-galactosidase (LAC4) gene. All lac4 mutants examined from strains with severe telomere dysfunction underwent terminal deletion/duplication events consistent with being due to break-induced replication. In contrast, although cells with mild telomere dysfunction also exhibited similar terminal deletion and duplication events, up to 50% of lac4 mutants from this background unexpectedly contained base changes within the LAC4 coding region. This mutational bias for producing base changes demonstrates that mild telomere dysfunction can be well suited as a force for altering the adaptive potential of subtelomeric genes.
Collapse
|
173
|
Gassner FJ, Schubert M, Rebhandl S, Spandl K, Zaborsky N, Catakovic K, Blaimer S, Hebenstreit D, Greil R, Geisberger R. Imprecision and DNA Break Repair Biased towards Incompatible End Joining in Leukemia. Mol Cancer Res 2017; 16:428-438. [PMID: 29222170 DOI: 10.1158/1541-7786.mcr-17-0373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/28/2017] [Accepted: 11/09/2017] [Indexed: 01/14/2023]
Abstract
Cancer is a genetic disease caused by mutations and chromosomal abnormalities that contribute to uncontrolled cell growth. In addition, cancer cells can rapidly respond to conventional and targeted therapies by accumulating novel and often specific genetic lesions leading to acquired drug resistance and relapsing disease. In chronic lymphocytic leukemia (CLL), however, diverse chromosomal aberrations often occur. In many cases, improper repair of DNA double-strand breaks (DSB) is a major source for genomic abnormalities. Therefore, this study examined the repair of DNA DSBs by nonhomologous end joining (NHEJ) in CLL by performing plasmid-based repair assays in primary CLL cells and normal B cells, isolated from patients, as well as TALEN/Cas9-induced chromosomal deletions in the CLL cell line Mec1. It is demonstrated that DNA repair is aberrant in CLL cells, featuring perturbed DNA break structure preference with efficient joining of noncohesive ends and more deletions at repair junctions. In addition, increased microhomology-mediated end joining (MMEJ) of DNA substrates was observed in CLL together with increased expression of MMEJ-specific repair factors. In summary, these data identify major differences in DNA repair efficiency between CLL cells and normal B cells isolated from patients.Implications: This study suggests inherently aberrant DNA DSB repair in the acquisition of subclonal genomic structural variations important for clonal evolution and treatment resistance in CLL. Mol Cancer Res; 16(3); 428-38. ©2017 AACR.
Collapse
Affiliation(s)
- Franz Josef Gassner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Maria Schubert
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Stefan Rebhandl
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Karina Spandl
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Kemal Catakovic
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Stephanie Blaimer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Daniel Hebenstreit
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University Salzburg, Austria. .,Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
174
|
Sobinoff AP, Pickett HA. Alternative Lengthening of Telomeres: DNA Repair Pathways Converge. Trends Genet 2017; 33:921-932. [DOI: 10.1016/j.tig.2017.09.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 08/30/2017] [Accepted: 09/08/2017] [Indexed: 02/08/2023]
|
175
|
Tadi SK, Tellier-Lebègue C, Nemoz C, Drevet P, Audebert S, Roy S, Meek K, Charbonnier JB, Modesti M. PAXX Is an Accessory c-NHEJ Factor that Associates with Ku70 and Has Overlapping Functions with XLF. Cell Rep 2017; 17:541-555. [PMID: 27705800 DOI: 10.1016/j.celrep.2016.09.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 08/31/2016] [Accepted: 09/09/2016] [Indexed: 01/19/2023] Open
Abstract
In mammalian cells, classical non-homologous end joining (c-NHEJ) is critical for DNA double-strand break repair induced by ionizing radiation and during V(D)J recombination in developing B and T lymphocytes. Recently, PAXX was identified as a c-NHEJ core component. We report here that PAXX-deficient cells exhibit a cellular phenotype uncharacteristic of a deficiency in c-NHEJ core components. PAXX-deficient cells display normal sensitivity to radiomimetic drugs, are proficient in transient V(D)J recombination assays, and do not shift toward higher micro-homology usage in plasmid repair assays. Although PAXX-deficient cells lack c-NHEJ phenotypes, PAXX forms a stable ternary complex with Ku bound to DNA. Formation of this complex involves an interaction with Ku70 and requires a bare DNA extension for stability. Moreover, the relatively weak Ku-dependent stimulation of LIG4/XRCC4 activity by PAXX is unmasked by XLF ablation. Thus, PAXX plays an accessory role during c-NHEJ that is largely overlapped by XLF's function.
Collapse
Affiliation(s)
- Satish K Tadi
- Cancer Research Center of Marseille, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, 13273 Marseille, France
| | - Carine Tellier-Lebègue
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, University Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Clément Nemoz
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, University Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Pascal Drevet
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, University Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Stéphane Audebert
- Cancer Research Center of Marseille, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, 13273 Marseille, France
| | - Sunetra Roy
- Department of Microbiology & Molecular Genetics, and Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Katheryn Meek
- Department of Microbiology & Molecular Genetics, and Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, University Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, 13273 Marseille, France.
| |
Collapse
|
176
|
Telomere-Internal Double-Strand Breaks Are Repaired by Homologous Recombination and PARP1/Lig3-Dependent End-Joining. Cell Rep 2017; 17:1646-1656. [PMID: 27806302 DOI: 10.1016/j.celrep.2016.10.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/06/2016] [Accepted: 10/03/2016] [Indexed: 01/29/2023] Open
Abstract
Shelterin protects chromosome ends from the DNA damage response. Although the mechanism of telomere protection has been studied extensively, the fate of double-strand breaks (DSBs) inside telomeres is not known. Here, we report that telomere-internal FokI-induced DSBs activate ATM kinase-dependent signaling in S-phase but are well tolerated and repaired efficiently. Homologous recombination contributes to repair, leading to increased telomere length heterogeneity typical of the alternative lengthening of telomeres (ALT) pathway. Furthermore, cells accumulate extra chromosomal telomeric signals (ECTS), a second hallmark of ALT. Telomere-internal DSBs are also repaired by a PARP1- and Ligase3-dependent reaction, suggesting alternative non-homologous end-joining (alt-NHEJ), which relies on microhomology at DSBs. However, as resected telomere-internal DSBs have perfect homology, their PARP1/Lig3-dependent end-joining may be more akin to single strand break repair. We conclude that shelterin does not repress ATM kinase signaling or DSB repair at telomere-internal sites, thereby allowing DNA repair to maintain telomere integrity.
Collapse
|
177
|
Parsels LA, Karnak D, Parsels JD, Zhang Q, Vélez-Padilla J, Reichert ZR, Wahl DR, Maybaum J, O'Connor MJ, Lawrence TS, Morgan MA. PARP1 Trapping and DNA Replication Stress Enhance Radiosensitization with Combined WEE1 and PARP Inhibitors. Mol Cancer Res 2017; 16:222-232. [PMID: 29133592 DOI: 10.1158/1541-7786.mcr-17-0455] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/30/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022]
Abstract
KRAS mutations in non-small cell lung cancer (NSCLC) cause increased levels of DNA damage and replication stress, suggesting that inhibition of the DNA damage response (DDR) is a promising strategy for radiosensitization of NSCLC. This study investigates the ability of a WEE1 inhibitor (AZD1775) and a PARP inhibitor (olaparib) to radiosensitize KRAS-mutant NSCLC cells and tumors. In addition to inhibiting the DDR, these small-molecule inhibitors of WEE1 and PARP induce DNA replication stress via nucleotide exhaustion and PARP trapping, respectively. As monotherapy, AZD1775 or olaparib alone modestly radiosensitized a panel of KRAS-mutant NSCLC lines. The combination of agents, however, significantly increased radiosensitization. Furthermore, AZD1775-mediated radiosensitization was rescued by nucleotide repletion, suggesting a mechanism involving AZD1775-mediated replication stress. In contrast, radiosensitization by the combination of AZD1775 and olaparib was not rescued by nucleosides. Whereas both veliparib, a PARP inhibitor that does not efficiently trap PARP1 to chromatin, and PARP1 depletion radiosensitized NSCLC cells as effectively as olaparib, which does efficiently trap PARP, only olaparib potentiated AZD1775-mediated radiosensitization. Taken together, these mechanistic data demonstrate that although nucleotide depletion is sufficient for radiosensitization by WEE1 inhibition alone, and inhibition of PARP catalytic activity is sufficient for radiosensitization by olaparib alone, PARP1 trapping is required for enhanced radiosensitization by the combination of WEE1 and PARP inhibitors.Implications: This study highlights DNA replication stress caused by nucleotide depletion and PARP1 trapping as an important mechanism of radiosensitization in KRAS-mutant tumors and supports further development of DNA replication as a therapeutic target. Mol Cancer Res; 16(2); 222-32. ©2017 AACR.
Collapse
Affiliation(s)
- Leslie A Parsels
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - David Karnak
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Joshua D Parsels
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Qiang Zhang
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | | | - Zachery R Reichert
- Department of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jonathan Maybaum
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Mark J O'Connor
- Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
178
|
Morgan RA, Gray D, Lomova A, Kohn DB. Hematopoietic Stem Cell Gene Therapy: Progress and Lessons Learned. Cell Stem Cell 2017; 21:574-590. [PMID: 29100011 PMCID: PMC6039108 DOI: 10.1016/j.stem.2017.10.010] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of allogeneic hematopoietic stem cells (HSCs) to treat genetic blood cell diseases has become a clinical standard but is limited by the availability of suitable matched donors and potential immunologic complications. Gene therapy using autologous HSCs should avoid these limitations and thus may be safer. Progressive improvements in techniques for genetic correction of HSCs, by either vector gene addition or gene editing, are facilitating successful treatments for an increasing number of diseases. We highlight the progress, successes, and remaining challenges toward the development of HSC gene therapies and discuss lessons they provide for the development of future clinical stem cell therapies.
Collapse
Affiliation(s)
- Richard A Morgan
- Charles R. Drew University of Medicine and Science, Los Angeles, CA, 90059; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, CA, 90095
| | - David Gray
- Molecular Biology Institute Interdepartmental Doctoral Program, University of California, Los Angeles, CA, 90095
| | - Anastasia Lomova
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, CA, 90095
| | - Donald B Kohn
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, CA, 90095; Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA, 90095; Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, CA, 90095; The Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, CA, USA.
| |
Collapse
|
179
|
Yashavarddhan MH, Shukla SK, Chaudhary P, Srivastava NN, Joshi J, Suar M, Gupta ML. Targeting DNA Repair through Podophyllotoxin and Rutin Formulation in Hematopoietic Radioprotection: An in Silico, in Vitro, and in Vivo Study. Front Pharmacol 2017; 8:750. [PMID: 29163150 PMCID: PMC5671582 DOI: 10.3389/fphar.2017.00750] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/03/2017] [Indexed: 11/13/2022] Open
Abstract
Drug discovery field has tremendously progressed during last few decades, however, an effective radiation countermeasure agent for the safe administration to the victims of radiation exposure is still unavailable. This multi-model study is aimed at elucidating the mechanistic aspects of a novel podophyllotoxin and rutin combination (henceforth referred as G-003M) in the hematopoietic radioprotection and its involvement in the DNA damage and repair signaling pathways. Using in silico study, we identified the binding sites and structural components of G-003M and validated in vitro. We further studied various in vivo endpoints related to the DNA repair and cell death pathways in mice pre-administered with G-003M, irradiated and subsequently euthanized to collect blood and bone marrow cells. In silico study showed the binding of podophyllotoxin to β-tubulin and presence of a functional hydroxyl group in the rutin, suggested their involvement in G2/M arrest and the free radical scavenging respectively. This experimentation was further validated through in vitro studies. In vivo mice studies confirmed that G-003M pre-administration attenuated DNA damage and enhanced repair after whole body exposure. We further noticed a decrease in the levels of γH2AX, p53BP1, and ATM kinase and an increase in the levels of DNA pk, Ku 80, Ligase IV, Mre 11, Rad 50 and NBS 1 in the blood and bone marrow cells of the G-003M pre-administered and irradiated mice. We noticed an overall increase in the pro-survival factors in the G-003M pre-treated and irradiated groups establishing the radioprotective efficacy of this formulation. The lead obtained from this study will certainly help in developing this formulation as a safe and effective radioprotector which could be used for humans against any planned or emergency exposure of radiation.
Collapse
Affiliation(s)
- M H Yashavarddhan
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, India.,KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Sandeep K Shukla
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, India
| | - Pankaj Chaudhary
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Nitya N Srivastava
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Jayadev Joshi
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, India
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Manju L Gupta
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, India
| |
Collapse
|
180
|
AUNIP/C1orf135 directs DNA double-strand breaks towards the homologous recombination repair pathway. Nat Commun 2017; 8:985. [PMID: 29042561 PMCID: PMC5645412 DOI: 10.1038/s41467-017-01151-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/21/2017] [Indexed: 11/26/2022] Open
Abstract
DNA double-strand breaks (DSBs) are mainly repaired by either homologous recombination (HR) or non-homologous end-joining (NHEJ). Here, we identify AUNIP/C1orf135, a largely uncharacterized protein, as a key determinant of DSB repair pathway choice. AUNIP physically interacts with CtIP and is required for efficient CtIP accumulation at DSBs. AUNIP possesses intrinsic DNA-binding ability with a strong preference for DNA substrates that mimic structures generated at stalled replication forks. This ability to bind DNA is necessary for the recruitment of AUNIP and its binding partner CtIP to DSBs, which in turn drives CtIP-dependent DNA-end resection and HR repair. Accordingly, loss of AUNIP or ablation of its ability to bind to DNA results in cell hypersensitivity toward a variety of DSB-inducing agents, particularly those that induce replication-associated DSBs. Our findings provide new insights into the molecular mechanism by which DSBs are recognized and channeled to the HR repair pathway. DNA double strand breaks can be repaired by homology-independent or homology-directed mechanisms. The choice between these pathways is a key event for genomic stability maintenance. Here the authors identify and characterize AUNIP, as a factor involved in tilting the balance towards homology repair.
Collapse
|
181
|
Hurwitz JL, Jones BG, Charpentier E, Woodland DL. Hypothesis: RNA and DNA Viral Sequence Integration into the Mammalian Host Genome Supports Long-Term B Cell and T Cell Adaptive Immunity. Viral Immunol 2017; 30:628-632. [PMID: 29028182 DOI: 10.1089/vim.2017.0099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Viral sequence integration into the mammalian genome has long been perceived as a health risk. In some cases, integration translates to chronic viral infection, and in other instances, oncogenic gene mutations occur. However, research also shows that animal cells can benefit from integrated viral sequences (e.g., to support host cell development or to silence foreign invaders). Here we propose that, comparable with the clustered regularly interspaced short palindromic repeats that provide bacteria with adaptive immunity against invasive bacteriophages, animal cells may co-opt integrated viral sequences to support immune memory. We hypothesize that host cells express viral peptides from open reading frames in integrated sequences to boost adaptive B cell and T cell responses long after replicating viruses are cleared. In support of this hypothesis, we examine previous literature describing (1) viruses that infect acutely (e.g., vaccinia viruses and orthomyxoviruses) followed by unexplained, long-term persistence of viral nucleotide sequences, viral peptides, and virus-specific adaptive immunity, (2) the high frequency of endogenous viral genetic elements found in animal genomes, and (3) mechanisms with which animal host machinery supports foreign sequence integration.
Collapse
Affiliation(s)
- Julia L Hurwitz
- 1 Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee.,2 Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Bart G Jones
- 1 Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee
| | - Emmanuelle Charpentier
- 3 Max Planck Institute for Infection Biology , Berlin, Germany .,4 Humboldt University , Berlin, Germany .,5 The Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University , Umeå, Sweden
| | | |
Collapse
|
182
|
Roberts B, Haupt A, Tucker A, Grancharova T, Arakaki J, Fuqua MA, Nelson A, Hookway C, Ludmann SA, Mueller IA, Yang R, Horwitz R, Rafelski SM, Gunawardane RN. Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization. Mol Biol Cell 2017; 28:2854-2874. [PMID: 28814507 PMCID: PMC5638588 DOI: 10.1091/mbc.e17-03-0209] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
The generation of a collection of human induced pluripotent stem cell (hiPSC) lines expressing endogenously GFP-tagged proteins using CRISPR/Cas9 methods is described. The methods used and the genomic and cell biological data validating the GFP-tagged hiPSC lines are also presented. We present a CRISPR/Cas9 genome-editing strategy to systematically tag endogenous proteins with fluorescent tags in human induced pluripotent stem cells (hiPSC). To date, we have generated multiple hiPSC lines with monoallelic green fluorescent protein tags labeling 10 proteins representing major cellular structures. The tagged proteins include alpha tubulin, beta actin, desmoplakin, fibrillarin, nuclear lamin B1, nonmuscle myosin heavy chain IIB, paxillin, Sec61 beta, tight junction protein ZO1, and Tom20. Our genome-editing methodology using Cas9/crRNA ribonuclear protein and donor plasmid coelectroporation, followed by fluorescence-based enrichment of edited cells, typically resulted in <0.1–4% homology-directed repair (HDR). Twenty-five percent of clones generated from each edited population were precisely edited. Furthermore, 92% (36/39) of expanded clonal lines displayed robust morphology, genomic stability, expression and localization of the tagged protein to the appropriate subcellular structure, pluripotency-marker expression, and multilineage differentiation. It is our conclusion that, if cell lines are confirmed to harbor an appropriate gene edit, pluripotency, differentiation potential, and genomic stability are typically maintained during the clonal line–generation process. The data described here reveal general trends that emerged from this systematic gene-tagging approach. Final clonal lines corresponding to each of the 10 cellular structures are now available to the research community.
Collapse
Affiliation(s)
| | - Amanda Haupt
- Allen Institute for Cell Science, Seattle, WA 98109
| | | | | | - Joy Arakaki
- Allen Institute for Cell Science, Seattle, WA 98109
| | | | | | | | | | | | - Ruian Yang
- Allen Institute for Cell Science, Seattle, WA 98109
| | - Rick Horwitz
- Allen Institute for Cell Science, Seattle, WA 98109
| | | | | |
Collapse
|
183
|
Development of a CRISPR-Cas9 System for Efficient Genome Editing of Candida lusitaniae. mSphere 2017; 2:mSphere00217-17. [PMID: 28657072 PMCID: PMC5480034 DOI: 10.1128/msphere.00217-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/29/2017] [Indexed: 11/20/2022] Open
Abstract
Candida lusitaniae is a member of the Candida clade that includes a diverse group of fungal species relevant to both human health and biotechnology. This species exhibits a full sexual cycle to undergo interconversion between haploid and diploid forms. C. lusitaniae is also an emerging opportunistic pathogen that can cause serious bloodstream infections in the clinic and yet has often proven to be refractory to facile genetic manipulations. In this work, we develop a clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated gene 9 (Cas9) system to enable genome editing of C. lusitaniae. We demonstrate that expression of CRISPR-Cas9 components under species-specific promoters is necessary for efficient gene targeting and can be successfully applied to multiple genes in both haploid and diploid isolates. Gene deletion efficiencies with CRISPR-Cas9 were further enhanced in C. lusitaniae strains lacking the established nonhomologous end joining (NHEJ) factors Ku70 and DNA ligase 4. These results indicate that NHEJ plays an important role in directing the repair of DNA double-strand breaks (DSBs) in C. lusitaniae and that removal of this pathway increases integration of gene deletion templates by homologous recombination. The described approaches significantly enhance the ability to perform genetic studies in, and promote understanding of, this emerging human pathogen and model sexual species. IMPORTANCE The ability to perform efficient genome editing is a key development for detailed mechanistic studies of a species. Candida lusitaniae is an important member of the Candida clade and is relevant both as an emerging human pathogen and as a model for understanding mechanisms of sexual reproduction. We highlight the development of a CRISPR-Cas9 system for efficient genome manipulation in C. lusitaniae and demonstrate the importance of species-specific promoters for expression of CRISPR components. We also demonstrate that the NHEJ pathway contributes to non-template-mediated repair of DNA DSBs and that removal of this pathway enhances efficiencies of gene targeting by CRISPR-Cas9. These results therefore establish important genetic tools for further exploration of C. lusitaniae biology.
Collapse
|
184
|
Chen YJ, Tsai CH, Wang PY, Teng SC. SMYD3 Promotes Homologous Recombination via Regulation of H3K4-mediated Gene Expression. Sci Rep 2017. [PMID: 28630472 PMCID: PMC5476597 DOI: 10.1038/s41598-017-03385-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SMYD3 is a methyltransferase highly expressed in many types of cancer. It usually functions as an oncogenic protein to promote cell cycle, cell proliferation, and metastasis. Here, we show that SMYD3 modulates another hallmark of cancer, DNA repair, by stimulating transcription of genes involved in multiple steps of homologous recombination. Deficiency of SMYD3 induces DNA-damage hypersensitivity, decreases levels of repair foci, and leads to impairment of homologous recombination. Moreover, the regulation of homologous recombination-related genes is via the methylation of H3K4 at the target gene promoters. These data imply that, besides its reported oncogenic abilities, SMYD3 may maintain genome integrity by ensuring expression levels of HR proteins to cope with the high demand of restart of stalled replication forks in cancers.
Collapse
Affiliation(s)
- Yun-Ju Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Cheng-Hui Tsai
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Pin-Yu Wang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan. .,Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, 10051, Taiwan.
| |
Collapse
|
185
|
Akematsu T, Fukuda Y, Garg J, Fillingham JS, Pearlman RE, Loidl J. Post-meiotic DNA double-strand breaks occur in Tetrahymena, and require Topoisomerase II and Spo11. eLife 2017. [PMID: 28621664 PMCID: PMC5482572 DOI: 10.7554/elife.26176] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Based on observations of markers for DNA lesions, such as phosphorylated histone H2AX (γH2AX) and open DNA ends, it has been suggested that post-meiotic DNA double-strand breaks (PM-DSBs) enable chromatin remodeling during animal spermiogenesis. However, the existence of PM-DSBs is unconfirmed, and the mechanism responsible for their formation is unclear. Here, we report the first direct observation of programmed PM-DSBs via the electrophoretic separation of DSB-generated DNA fragments in the ciliate Tetrahymena thermophila. These PM-DSBs are accompanied by switching from a heterochromatic to euchromatic chromatin structure in the haploid pronucleus. Both a topoisomerase II paralog with exclusive pronuclear expression and Spo11 are prerequisites for PM-DSB induction. Reduced PM-DSB induction blocks euchromatin formation, characterized by histone H3K56 acetylation, leading to a failure in gametic nuclei production. We propose that PM-DSBs are responsible for histone replacement during the reprogramming of generative to undifferentiated progeny nuclei. DOI:http://dx.doi.org/10.7554/eLife.26176.001
Collapse
Affiliation(s)
- Takahiko Akematsu
- Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Yasuhiro Fukuda
- Department of Biodiversity Science, Tohoku University, Oosaki, Japan.,Division of Biological Resource Science, Tohoku University, Oosaki, Japan.,Graduate School of Agricultural Science, Tohoku University, Oosaki, Japan
| | - Jyoti Garg
- Department of Biology, York University, Toronto, Canada
| | | | | | - Josef Loidl
- Department of Chromosome Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
186
|
Janssen A, Breuer GA, Brinkman EK, van der Meulen AI, Borden SV, van Steensel B, Bindra RS, LaRocque JR, Karpen GH. A single double-strand break system reveals repair dynamics and mechanisms in heterochromatin and euchromatin. Genes Dev 2017; 30:1645-57. [PMID: 27474442 PMCID: PMC4973294 DOI: 10.1101/gad.283028.116] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/05/2016] [Indexed: 01/04/2023]
Abstract
Janssen et al. developed an in vivo single double-strand break (DSB) system for both heterochromatic and euchromatic loci in Drosophila melanogaster. Live imaging and sequence analysis of repair products reveal that DSBs in euchromatin and heterochromatin are repaired with similar kinetics, employ both NHEJ and HR, and can use homologous chromosomes as an HR template. Repair of DNA double-strand breaks (DSBs) must be properly orchestrated in diverse chromatin regions to maintain genome stability. The choice between two main DSB repair pathways, nonhomologous end-joining (NHEJ) and homologous recombination (HR), is regulated by the cell cycle as well as chromatin context. Pericentromeric heterochromatin forms a distinct nuclear domain that is enriched for repetitive DNA sequences that pose significant challenges for genome stability. Heterochromatic DSBs display specialized temporal and spatial dynamics that differ from euchromatic DSBs. Although HR is thought to be the main pathway used to repair heterochromatic DSBs, direct tests of this hypothesis are lacking. Here, we developed an in vivo single DSB system for both heterochromatic and euchromatic loci in Drosophila melanogaster. Live imaging of single DSBs in larval imaginal discs recapitulates the spatio–temporal dynamics observed for irradiation (IR)-induced breaks in cell culture. Importantly, live imaging and sequence analysis of repair products reveal that DSBs in euchromatin and heterochromatin are repaired with similar kinetics, employ both NHEJ and HR, and can use homologous chromosomes as an HR template. This direct analysis reveals important insights into heterochromatin DSB repair in animal tissues and provides a foundation for further explorations of repair mechanisms in different chromatin domains.
Collapse
Affiliation(s)
- Aniek Janssen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Gregory A Breuer
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut 06510, USA; Department of Experimental Pathology, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Eva K Brinkman
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Annelot I van der Meulen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Sean V Borden
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut 06510, USA; Department of Experimental Pathology, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Jeannine R LaRocque
- Department of Human Science, School of Nursing and Health Studies, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Gary H Karpen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
187
|
Spampinato CP. Protecting DNA from errors and damage: an overview of DNA repair mechanisms in plants compared to mammals. Cell Mol Life Sci 2017; 74:1693-1709. [PMID: 27999897 PMCID: PMC11107726 DOI: 10.1007/s00018-016-2436-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 01/10/2023]
Abstract
The genome integrity of all organisms is constantly threatened by replication errors and DNA damage arising from endogenous and exogenous sources. Such base pair anomalies must be accurately repaired to prevent mutagenesis and/or lethality. Thus, it is not surprising that cells have evolved multiple and partially overlapping DNA repair pathways to correct specific types of DNA errors and lesions. Great progress in unraveling these repair mechanisms at the molecular level has been made by several talented researchers, among them Tomas Lindahl, Aziz Sancar, and Paul Modrich, all three Nobel laureates in Chemistry for 2015. Much of this knowledge comes from studies performed in bacteria, yeast, and mammals and has impacted research in plant systems. Two plant features should be mentioned. Plants differ from higher eukaryotes in that they lack a reserve germline and cannot avoid environmental stresses. Therefore, plants have evolved different strategies to sustain genome fidelity through generations and continuous exposure to genotoxic stresses. These strategies include the presence of unique or multiple paralogous genes with partially overlapping DNA repair activities. Yet, in spite (or because) of these differences, plants, especially Arabidopsis thaliana, can be used as a model organism for functional studies. Some advantages of this model system are worth mentioning: short life cycle, availability of both homozygous and heterozygous lines for many genes, plant transformation techniques, tissue culture methods and reporter systems for gene expression and function studies. Here, I provide a current understanding of DNA repair genes in plants, with a special focus on A. thaliana. It is expected that this review will be a valuable resource for future functional studies in the DNA repair field, both in plants and animals.
Collapse
Affiliation(s)
- Claudia P Spampinato
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
188
|
Vitale I, Manic G, De Maria R, Kroemer G, Galluzzi L. DNA Damage in Stem Cells. Mol Cell 2017; 66:306-319. [DOI: 10.1016/j.molcel.2017.04.006] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/23/2017] [Accepted: 04/05/2017] [Indexed: 01/03/2023]
|
189
|
Hoogenboom WS, Klein Douwel D, Knipscheer P. Xenopus egg extract: A powerful tool to study genome maintenance mechanisms. Dev Biol 2017; 428:300-309. [PMID: 28427716 DOI: 10.1016/j.ydbio.2017.03.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 01/09/2023]
Abstract
DNA repair pathways are crucial to maintain the integrity of our genome and prevent genetic diseases such as cancer. There are many different types of DNA damage and specific DNA repair mechanisms have evolved to deal with these lesions. In addition to these repair pathways there is an extensive signaling network that regulates processes important for repair, such as cell cycle control and transcription. Despite extensive research, DNA damage repair and signaling are not fully understood. In vitro systems such as the Xenopus egg extract system, have played, and still play, an important role in deciphering the molecular details of these processes. Xenopus laevis egg extracts contain all factors required to efficiently perform DNA repair outside a cell, using mechanisms conserved in humans. These extracts have been used to study several genome maintenance pathways, including mismatch repair, non-homologous end joining, ICL repair, DNA damage checkpoint activation, and replication fork stability. Here we describe how the Xenopus egg extract system, in combination with specifically designed DNA templates, contributed to our detailed understanding of these pathways.
Collapse
Affiliation(s)
- Wouter S Hoogenboom
- Hubrecht Institute - KNAW, University Medical Center Utrecht & Cancer GenomiCs Netherlands, The Netherlands
| | - Daisy Klein Douwel
- Hubrecht Institute - KNAW, University Medical Center Utrecht & Cancer GenomiCs Netherlands, The Netherlands
| | - Puck Knipscheer
- Hubrecht Institute - KNAW, University Medical Center Utrecht & Cancer GenomiCs Netherlands, The Netherlands.
| |
Collapse
|
190
|
Abstract
With the introduction of precision genome editing using CRISPR-Cas9 technology, we have entered a new era of genetic engineering and gene therapy. With RNA-guided endonucleases, such as Cas9, it is possible to engineer DNA double strand breaks (DSB) at specific genomic loci. DSB repair by the error-prone non-homologous end-joining (NHEJ) pathway can disrupt a target gene by generating insertions and deletions. Alternatively, Cas9-mediated DSBs can be repaired by homology-directed repair (HDR) using an homologous DNA repair template, thus allowing precise gene editing by incorporating genetic changes into the repair template. HDR can introduce gene sequences for protein epitope tags, delete genes, make point mutations, or alter enhancer and promoter activities. In anticipation of adapting this technology for gene therapy in human somatic cells, much focus has been placed on increasing the fidelity of CRISPR-Cas9 and increasing HDR efficiency to improve precision genome editing. In this review, we will discuss applications of CRISPR technology for gene inactivation and genome editing with a focus on approaches to enhancing CRISPR-Cas9-mediated HDR for the generation of cell and animal models, and conclude with a discussion of recent advances and challenges towards the application of this technology for gene therapy in humans.
Collapse
Affiliation(s)
- Jayme Salsman
- a Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Graham Dellaire
- a Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- b Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- c Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
191
|
Miller AS, Daley JM, Pham NT, Niu H, Xue X, Ira G, Sung P. A novel role of the Dna2 translocase function in DNA break resection. Genes Dev 2017; 31:503-510. [PMID: 28336516 PMCID: PMC5393064 DOI: 10.1101/gad.295659.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/17/2017] [Indexed: 11/24/2022]
Abstract
Here, Miller et al. investigated the role of Dna2, a flap endonuclease with 5′–3′ helicase activity, which is involved in the resection process. The Dna2 helicase activity has been implicated in Okazaki fragment processing during DNA replication but is thought to be dispensable for DNA end resection. In this study, the authors find a previously unrecognized role of the Dna2 translocase activity in DNA break end resection and in the imposition of the 5′ strand specificity of end resection. DNA double-strand break repair by homologous recombination entails nucleolytic resection of the 5′ strand at break ends. Dna2, a flap endonuclease with 5′–3′ helicase activity, is involved in the resection process. The Dna2 helicase activity has been implicated in Okazaki fragment processing during DNA replication but is thought to be dispensable for DNA end resection. Unexpectedly, we found a requirement for the helicase function of Dna2 in end resection in budding yeast cells lacking exonuclease 1. Biochemical analysis reveals that ATP hydrolysis-fueled translocation of Dna2 on ssDNA facilitates 5′ flap cleavage near a single-strand–double strand junction while attenuating 3′ flap incision. Accordingly, the ATP hydrolysis-defective dna2-K1080E mutant is less able to generate long products in a reconstituted resection system. Our study thus reveals a previously unrecognized role of the Dna2 translocase activity in DNA break end resection and in the imposition of the 5′ strand specificity of end resection.
Collapse
Affiliation(s)
- Adam S Miller
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - James M Daley
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Nhung Tuyet Pham
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hengyao Niu
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, USA
| | - Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Grzegorz Ira
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
192
|
Nonhomologous End-Joining with Minimal Sequence Loss Is Promoted by the Mre11-Rad50-Nbs1-Ctp1 Complex in Schizosaccharomyces pombe. Genetics 2017; 206:481-496. [PMID: 28292918 DOI: 10.1534/genetics.117.200972] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/24/2017] [Indexed: 11/18/2022] Open
Abstract
While the Mre11-Rad50-Nbs1 (MRN) complex has known roles in repair processes like homologous recombination and microhomology-mediated end-joining, its role in nonhomologous end-joining (NHEJ) is unclear as Saccharomyces cerevisiae, Schizosaccharomyces pombe, and mammals have different requirements for repairing cut DNA ends. Most double-strand breaks (DSBs) require nucleolytic processing prior to DNA ligation. Therefore, we studied repair using the Hermes transposon, whose excision leaves a DSB capped by hairpin ends similar to structures generated by palindromes and trinucleotide repeats. We generated single Hermes insertions using a novel S. pombe transient transfection system, and used Hermes excision to show a requirement for MRN in the NHEJ of nonligatable ends. NHEJ repair was indicated by the >1000-fold decrease in excision in cells lacking Ku or DNA ligase 4. Most repaired excision sites had <5 bp of sequence loss or mutation, characteristic for NHEJ and similar excision events in metazoans, and in contrast to the more extensive loss seen in S. cerevisiaeS. pombe NHEJ was reduced >1000-fold in cells lacking each MRN subunit, and loss of MRN-associated Ctp1 caused a 30-fold reduction. An Mre11 dimer is thought to hold DNA ends together for repair, and Mre11 dimerization domain mutations reduced repair 300-fold. In contrast, a mre11 mutant defective in endonucleolytic activity, the same mutant lacking Ctp1, or the triple mutant also lacking the putative hairpin nuclease Pso2 showed wild-type levels of repair. Thus, MRN may act to recruit the hairpin opening activity that allows subsequent repair.
Collapse
|
193
|
Oguro Y, Yamazaki H, Ara S, Shida Y, Ogasawara W, Takagi M, Takaku H. Efficient gene targeting in non-homologous end-joining-deficient Lipomyces starkeyi strains. Curr Genet 2017; 63:751-763. [DOI: 10.1007/s00294-017-0679-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/21/2017] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
|
194
|
Lacoste S, Bhatia S, Chen Y, Bhatia R, O’Connor TR. Autologous hematopoietic stem cell transplantation in lymphoma patients is associated with a decrease in the double strand break repair capacity of peripheral blood lymphocytes. PLoS One 2017; 12:e0171473. [PMID: 28207808 PMCID: PMC5313139 DOI: 10.1371/journal.pone.0171473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023] Open
Abstract
Patients who undergo autologous hematopoietic stem cell transplantation (aHCT) for treatment of a relapsed or refractory lymphoma are at risk of developing therapy related- myelodysplasia/acute myeloid leukemia (t-MDS/AML). Part of the risk likely resides in inherent interindividual differences in their DNA repair capacity (DRC), which is thought to influence the effect chemotherapeutic treatments have on the patient's stem cells prior to aHCT. Measuring DRC involves identifying small differences in repair proficiency among individuals. Initially, we investigated the cell model in healthy individuals (primary lymphocytes and/or lymphoblastoid cell lines) that would be appropriate to measure genetically determined DRC using host-cell reactivation assays. We present evidence that interindividual differences in DRC double-strand break repair (by non-homologous end-joining [NHEJ] or single-strand annealing [SSA]) are better preserved in non-induced primary lymphocytes. In contrast, lymphocytes induced to proliferate are required to assay base excision (BER) or nucleotide excision repair (NER). We established that both NHEJ and SSA DRCs in lymphocytes of healthy individuals were inversely correlated with the age of the donor, indicating that DSB repair in lymphocytes is likely not a constant feature but rather something that decreases with age (~0.37% NHEJ DRC/year). To investigate the predictive value of pre-aHCT DRC on outcome in patients, we then applied the optimized assays to the analysis of primary lymphocytes from lymphoma patients and found that individuals who later developed t-MDS/AML (cases) were indistinguishable in their DRC from controls who never developed t-MDS/AML. However, when DRC was investigated shortly after aHCT in the same individuals (21.6 months later on average), aHCT patients (both cases and controls) showed a significant decrease in DSB repair measurements. The average decrease of 6.9% in NHEJ DRC observed among aHCT patients was much higher than the 0.65% predicted for such a short time frame, based on ageing results for healthy individuals.
Collapse
Affiliation(s)
- Sandrine Lacoste
- Department of Cancer Biology, Beckman Research Institute, Duarte, California, United States of America
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yanjun Chen
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ravi Bhatia
- Division of Hematology and Oncology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Timothy R. O’Connor
- Department of Cancer Biology, Beckman Research Institute, Duarte, California, United States of America
| |
Collapse
|
195
|
Wang H, Xu X. Microhomology-mediated end joining: new players join the team. Cell Biosci 2017; 7:6. [PMID: 28101326 PMCID: PMC5237343 DOI: 10.1186/s13578-017-0136-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 01/06/2017] [Indexed: 01/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most deleterious type of DNA damage in cells arising from endogenous and exogenous attacks on the genomic DNA. Timely and properly repair of DSBs is important for genomic integrity and survival. MMEJ is an error-prone repair mechanism for DSBs, which relies on exposed microhomologous sequence flanking broken junction to fix DSBs in a Ku- and ligase IV-independent manner. Recently, significant progress has been made in MMEJ mechanism study. In this review, we will summarize its biochemical activities of several newly identified MMEJ factors and their biological significance.
Collapse
Affiliation(s)
- Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048 China ; Shenzhen University School of Medicine, Shenzhen, 518060 Guangdong China
| |
Collapse
|
196
|
Chen Y, Li Z, Dong Z, Beebe J, Yang K, Fu L, Zhang JT. 14-3-3σ Contributes to Radioresistance By Regulating DNA Repair and Cell Cycle via PARP1 and CHK2. Mol Cancer Res 2017; 15:418-428. [PMID: 28087741 DOI: 10.1158/1541-7786.mcr-16-0366] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/23/2016] [Accepted: 12/11/2016] [Indexed: 01/05/2023]
Abstract
14-3-3σ has been implicated in the development of chemo and radiation resistance and in poor prognosis of multiple human cancers. While it has been postulated that 14-3-3σ contributes to these resistances via inhibiting apoptosis and arresting cells in G2-M phase of the cell cycle, the molecular basis of this regulation is currently unknown. In this study, we tested the hypothesis that 14-3-3σ causes resistance to DNA-damaging treatments by enhancing DNA repair in cells arrested in G2-M phase following DNA-damaging treatments. We showed that 14-3-3σ contributed to ionizing radiation (IR) resistance by arresting cancer cells in G2-M phase following IR and by increasing non-homologous end joining (NHEJ) repair of the IR-induced DNA double strand breaks (DSB). The increased NHEJ repair activity was due to 14-3-3σ-mediated upregulation of PARP1 expression that promoted the recruitment of DNA-PKcs to the DNA damage sites for repair of DSBs. On the other hand, the increased G2-M arrest following IR was due to 14-3-3σ-induced Chk2 expression.Implications: These findings reveal an important molecular basis of 14-3-3σ function in cancer cell resistance to chemo/radiation therapy and in poor prognosis of human cancers. Mol Cancer Res; 15(4); 418-28. ©2017 AACR.
Collapse
Affiliation(s)
- Yifan Chen
- Departments of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Zhaomin Li
- Departments of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zizheng Dong
- Departments of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jenny Beebe
- Departments of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ke Yang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liwu Fu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China. .,Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Jian-Ting Zhang
- Departments of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
197
|
Luo K, Li L, Li Y, Wu C, Yin Y, Chen Y, Deng M, Nowsheen S, Yuan J, Lou Z. A phosphorylation-deubiquitination cascade regulates the BRCA2-RAD51 axis in homologous recombination. Genes Dev 2016; 30:2581-2595. [PMID: 27941124 PMCID: PMC5204351 DOI: 10.1101/gad.289439.116] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/30/2016] [Indexed: 11/24/2022]
Abstract
Homologous recombination (HR) is one of the major DNA double-strand break (DSB) repair pathways in mammalian cells. Defects in HR trigger genomic instability and result in cancer predisposition. The defining step of HR is homologous strand exchange directed by the protein RAD51, which is recruited to DSBs by BRCA2. However, the regulation of the BRCA2-RAD51 axis remains unclear. Here we report that ubiquitination of RAD51 hinders RAD51-BRCA2 interaction, while deubiquitination of RAD51 facilitates RAD51-BRCA2 binding and RAD51 recruitment and thus is critical for proper HR. Mechanistically, in response to DNA damage, the deubiquitinase UCHL3 is phosphorylated and activated by ATM. UCHL3, in turn, deubiquitinates RAD51 and promotes the binding between RAD51 and BRCA2. Overexpression of UCHL3 renders breast cancer cells resistant to radiation and chemotherapy, while depletion of UCHL3 sensitizes cells to these treatments, suggesting a determinant role of UCHL3 in cancer therapy. Overall, we identify UCHL3 as a novel regulator of DNA repair and reveal a model in which a phosphorylation-deubiquitination cascade dynamically regulates the BRCA2-RAD51 pathway.
Collapse
Affiliation(s)
- Kuntian Luo
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Lei Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yunhui Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Chenming Wu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yujiao Yin
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuping Chen
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Min Deng
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic School of Medicine, Rochester, Minnesota 55905, USA
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
198
|
Bhattacharjee S, Nandi S. Choices have consequences: the nexus between DNA repair pathways and genomic instability in cancer. Clin Transl Med 2016; 5:45. [PMID: 27921283 PMCID: PMC5136664 DOI: 10.1186/s40169-016-0128-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/22/2016] [Indexed: 11/10/2022] Open
Abstract
Background The genome is under constant assault from a multitude of sources that can lead to the formation of DNA double-stand breaks (DSBs). DSBs are cytotoxic lesions, which if left unrepaired could lead to genomic instability, cancer and even cell death. However, erroneous repair of DSBs can lead to chromosomal rearrangements and loss of heterozygosity, which in turn can also cause cancer and cell death. Hence, although the repair of DSBs is crucial for the maintenance of genome integrity the process of repair need to be well regulated and closely monitored. Main body The two most commonly used pathways to repair DSBs in higher eukaryotes include non-homologous end joining (NHEJ) and homologous recombination (HR). NHEJ is considered to be error-prone, intrinsically mutagenic quick fix remedy to seal together the broken DNA ends and restart replication. In contrast, HR is a high-fidelity process that has been very well conserved from phage to humans. Here we review HR and its sub-pathways. We discuss what factors determine the sub pathway choice including etiology of the DSB, chromatin structure at the break site, processing of the DSBs and the mechanisms regulating the sub-pathway choice. We also elaborate on the potential of targeting HR genes for cancer therapy and anticancer strategies. Conclusion The DNA repair field is a vibrant one, and the stage is ripe for scrutinizing the potential treatment efficacy and future clinical applications of the pharmacological inhibitors of HR enzymes as mono- or combinatorial therapy regimes. Electronic supplementary material The online version of this article (doi:10.1186/s40169-016-0128-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Saikat Nandi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
199
|
Regulation of non-homologous end joining via post-translational modifications of components of the ligation step. Curr Genet 2016; 63:591-605. [PMID: 27915381 DOI: 10.1007/s00294-016-0670-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 12/29/2022]
Abstract
DNA double-strand breaks are the most serious type of DNA damage and non-homologous end joining (NHEJ) is an important pathway for their repair. In Saccharomyces cerevisiae, three complexes mediate the canonical NHEJ pathway, Ku (Ku70/Ku80), MRX (Mre11/Rad50/Xrs2) and DNA ligase IV (Dnl4/Lif1). Mammalian NHEJ is more complex, primarily as a consequence of the fact that more factors are involved in the process, and also because higher chromatin organization and more complex regulatory networks exist in mammals. In addition, a stronger interconnection between the NHEJ and DNA damage response (DDR) pathways seems to occur in mammals compared to yeast. DDR employs multiple post-translational modifications (PTMs) of the target proteins and mutual crosstalk among them to ensure highly efficient down-stream effects. Checkpoint-mediated phosphorylation is the best understood PTM that regulates DDR, although recently SUMOylation has also been shown to be involved. Both phosphorylation and SUMOylation affect components of NHEJ. In this review, we discuss a role of these two PTMs in regulation of NHEJ via targeting the components of the ligation step.
Collapse
|
200
|
Anand R, Ranjha L, Cannavo E, Cejka P. Phosphorylated CtIP Functions as a Co-factor of the MRE11-RAD50-NBS1 Endonuclease in DNA End Resection. Mol Cell 2016; 64:940-950. [PMID: 27889449 DOI: 10.1016/j.molcel.2016.10.017] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/26/2016] [Accepted: 10/13/2016] [Indexed: 12/26/2022]
Abstract
To repair a DNA double-strand break (DSB) by homologous recombination (HR), the 5'-terminated strand of the DSB must be resected. The human MRE11-RAD50-NBS1 (MRN) and CtIP proteins were implicated in the initiation of DNA end resection, but the underlying mechanism remained undefined. Here, we show that CtIP is a co-factor of the MRE11 endonuclease activity within the MRN complex. This function is absolutely dependent on CtIP phosphorylation that includes the key cyclin-dependent kinase target motif at Thr-847. Unlike in yeast, where the Xrs2/NBS1 subunit is dispensable in vitro, NBS1 is absolutely required in the human system. The MRE11 endonuclease in conjunction with RAD50, NBS1, and phosphorylated CtIP preferentially cleaves 5'-terminated DNA strands near DSBs. Our results define the initial step of HR that is particularly relevant for the processing of DSBs bearing protein blocks.
Collapse
Affiliation(s)
- Roopesh Anand
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Lepakshi Ranjha
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Elda Cannavo
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Petr Cejka
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|