151
|
|
152
|
|
153
|
Höfelmayr H, Strobl LJ, Stein C, Laux G, Marschall G, Bornkamm GW, Zimber-Strobl U. Activated mouse Notch1 transactivates Epstein-Barr virus nuclear antigen 2-regulated viral promoters. J Virol 1999; 73:2770-80. [PMID: 10074124 PMCID: PMC104034 DOI: 10.1128/jvi.73.4.2770-2780.1999] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus nuclear antigen 2 (EBNA2) is essential for B-cell immortalization by EBV, most probably by its ability to transactivate a number of cellular and viral genes. EBNA2-responsive elements (EBNA2REs) have been identified in several EBNA2-regulated viral promoters, each of them carrying at least one RBP-Jkappa recognition site. RBP-Jkappa recruits EBNA2 to the EBNA2RE and, once complexed to EBNA2, is converted from a repressor into an activator. An activated form of the cellular receptor Notch also interacts with RBP-Jkappa, providing a link between EBNA2 and Notch signalling. To determine whether activated Notch is able to transactivate EBNA2-responsive viral promoters, we performed cotransfection experiments with activated mouse Notch1 (mNotch1-IC) and luciferase constructs of the BamHI C, LMP1, and LMP2A promoters. We present here evidence that mNotch1-IC transactivates viral promoters known to be regulated by EBNA2. As shown for EBNA2, mutations or deletions of the RBP-Jkappa sites diminish or eliminate mNotch1-IC-mediated transactivation of the promoters, pointing to an essential role for Notch-RBP-Jkappa interaction. In addition to RBP-Jkappa, other cellular factors may bind within the EBNA2REs of viral promoters. While some factors appear to play an important role in both EBNA2- and mNotch1-IC-mediated transactivation, others are only important for the activity of either EBNA2 or mNotch1-IC. We could observe specific mNotch1-IC-responsive regions, thereby throwing more light upon which cofactors interact with EBNA2 and mNotch1-IC, thus enabling them to become functionally transactivators in vivo.
Collapse
Affiliation(s)
- H Höfelmayr
- Institut für Klinische Molekularbiologie und Tumorgenetik, GSF-Forschungszentrum für Umwelt und Gesundheit, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
154
|
Hsieh JJ, Zhou S, Chen L, Young DB, Hayward SD. CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex. Proc Natl Acad Sci U S A 1999; 96:23-8. [PMID: 9874765 PMCID: PMC15086 DOI: 10.1073/pnas.96.1.23] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/1998] [Indexed: 11/18/2022] Open
Abstract
CBF1 is a member of the CSL family of DNA binding factors, which mediate either transcriptional repression or transcriptional activation. CSL proteins play a central role in Notch signaling and in Epstein-Barr virus-induced immortalization. Notch is a transmembrane protein involved in cell-fate decisions, and the cytoplasmic domain of Notch (NotchIC) targets CBF1. The Epstein-Barr virus-immortalizing protein EBNA2 activates both cellular and viral gene expression by targeting CBF1 and mimicking NotchIC. We have examined the mechanism of CBF1-mediated repression and show that CBF1 binds to a unique corepressor, CBF1 interacting corepressor (CIR). A CIR homolog is encoded by Caenorhabditis elegans, indicating that CIR is evolutionarily conserved. Two CBF1 mutants that were unable to bind CIR did not function as repressors, suggesting that targeting of CIR to CBF1 is an important component of repression. When expressed as a Gal4 fusion protein, CIR repressed reporter gene expression. CIR binds to histone deacetylase and to SAP30 and serves as a linker between CBF1 and the histone deacetylase complex.
Collapse
Affiliation(s)
- J J Hsieh
- Molecular Virology Laboratories, Department of Pharmacology and Molecular Sciences and Department of Oncology, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
155
|
Kurooka H, Kuroda K, Honjo T. Roles of the ankyrin repeats and C-terminal region of the mouse notch1 intracellular region. Nucleic Acids Res 1998; 26:5448-55. [PMID: 9826771 PMCID: PMC147984 DOI: 10.1093/nar/26.23.5448] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Notch intracellular region (RAMIC) interacts with a DNA binding protein RBP-J to activate transcription of genes that inhibit cell differentiation. The RAM domain and ankyrin (ANK) repeats of mouse Notch1 RAMIC were shown to be responsible for RBP-J binding and necessary for transactivation. The C-terminal portion of Notch1 RAMIC has also been suggested to be important for transactivation. Using GAL4 fusion constructs, we identified a novel transactivation domain (TAD) between the ANK repeats and the PEST sequence of mouse Notch1. The C-terminal half of mouse Notch2 RAMIC also exhibited TAD activity. Unexpectedly, the RBP-J chimeric protein with the Notch1 TAD failed to activate transcription but the activity was recovered by addition of either the RAM domain or ANK repeats. The results suggest that the activity of Notch1 TAD is repressed by fusion with RBP-J because of the presence of a RBP-J-associated co-repressor(s), which could be displaced by either the RAM domain or ANK repeats. Taken together, mouse Notch1 RAMIC can experimentally be separated into three functional domains: the RAM domain and ANK repeats for RBP-J binding and co-repressor displacement and the C-terminal TAD.
Collapse
Affiliation(s)
- H Kurooka
- Department of Medical Chemistry, Kyoto University Faculty of Medicine, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
156
|
Kim HK, Siu G. The notch pathway intermediate HES-1 silences CD4 gene expression. Mol Cell Biol 1998; 18:7166-75. [PMID: 9819403 PMCID: PMC109298 DOI: 10.1128/mcb.18.12.7166] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/1998] [Accepted: 09/10/1998] [Indexed: 11/20/2022] Open
Abstract
We have previously identified a transcriptional silencer that is critical for proper expression of the CD4 gene during T-cell development. Here we report that the Hairy/Enhancer of Split homologue HES-1, a transcription factor in the lin12/Notch signaling pathway, binds to an important functional site in the CD4 silencer. Overexpression of HES-1 leads to the silencer site-dependent repression of CD4 promoter and enhancer function as well as the downregulation of endogenous CD4 expression in CD4(+) CD8(-) TH cells. Interestingly, overexpression of an activated form of Notch1 (NotchIC) leads to the repression of CD4 promoter and enhancer function both in the presence and absence of the silencer. NotchIC-mediated CD4 silencer function is not affected by the deletion of the HES-1-binding site, indicating that multiple factors binding to CD4 transcriptional control elements are responsive to signaling from this pathway, including other silencer-binding factors. Taken together, these data are consistent with the hypothesis that the lin12/Notch signaling pathway is important in thymic development and provide a molecular mechanism via the control of CD4 gene expression in which the lin12/Notch pathway affects T-cell developmental fate.
Collapse
Affiliation(s)
- H K Kim
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
157
|
Abstract
Abstract
The Notch signaling system regulates proliferation and differentiation in many tissues. Notch is a transmembrane receptor activated by ligands expressed on adjacent cells. Hematopoietic stem cells and early progenitors express Notch, making the stromal cells which form cell-cell contacts with progenitor cells candidate ligand-presenting cells in the hematopoietic microenvironment. Therefore, we examined primary stromal cell cultures for expression of Notch ligands. Using reverse transcription-polymerase chain reaction, in situ hybridization, immunohistochemistry, and Western blotting, we demonstrate expression of Jagged 1 in primary stromal cultures. To investigate if the stromal expression of Jagged 1 has functional effects on hematopoietic progenitors, we cultured CD34+, c-kit+ hematopoietic progenitor cells derived from the aorto gonadal mesonephros region of day 11 mouse embryos on the Jagged 1− stromal cell line S17 and on S17 cells engineered to express Jagged 1. The presence of Jagged 1 increased the number of colonies formed in subsequent methylcellulose culture fourfold. Larger increases in colony numbers were observed under the same culture conditions with CD34+, c-kit+ hematopoietic progenitor cells derived from d11 fetal liver. These results obtained in vitro table Jagged 1 as a candidate regulator of stem cell fate in the context of stromal microenvironments in vivo.
© 1998 by The American Society of Hematology.
Collapse
|
158
|
Abstract
The Notch signaling system regulates proliferation and differentiation in many tissues. Notch is a transmembrane receptor activated by ligands expressed on adjacent cells. Hematopoietic stem cells and early progenitors express Notch, making the stromal cells which form cell-cell contacts with progenitor cells candidate ligand-presenting cells in the hematopoietic microenvironment. Therefore, we examined primary stromal cell cultures for expression of Notch ligands. Using reverse transcription-polymerase chain reaction, in situ hybridization, immunohistochemistry, and Western blotting, we demonstrate expression of Jagged 1 in primary stromal cultures. To investigate if the stromal expression of Jagged 1 has functional effects on hematopoietic progenitors, we cultured CD34+, c-kit+ hematopoietic progenitor cells derived from the aorto gonadal mesonephros region of day 11 mouse embryos on the Jagged 1− stromal cell line S17 and on S17 cells engineered to express Jagged 1. The presence of Jagged 1 increased the number of colonies formed in subsequent methylcellulose culture fourfold. Larger increases in colony numbers were observed under the same culture conditions with CD34+, c-kit+ hematopoietic progenitor cells derived from d11 fetal liver. These results obtained in vitro table Jagged 1 as a candidate regulator of stem cell fate in the context of stromal microenvironments in vivo.© 1998 by The American Society of Hematology.
Collapse
|
159
|
Facchini LM, Penn LZ. The molecular role of Myc in growth and transformation: recent discoveries lead to new insights. FASEB J 1998. [DOI: 10.1096/fasebj.12.9.633] [Citation(s) in RCA: 278] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Linda M. Facchini
- Ontario Cancer Institute/Princess Margaret HospitalDivision of Cell and Molecular BiologyDepartment of Medical BiophysicsUniversity of Toronto Toronto M5G 2M9 Canada
| | - Linda Z. Penn
- Ontario Cancer Institute/Princess Margaret HospitalDivision of Cell and Molecular BiologyDepartment of Medical BiophysicsUniversity of Toronto Toronto M5G 2M9 Canada
| |
Collapse
|
160
|
Oswald F, Liptay S, Adler G, Schmid RM. NF-kappaB2 is a putative target gene of activated Notch-1 via RBP-Jkappa. Mol Cell Biol 1998; 18:2077-88. [PMID: 9528780 PMCID: PMC121438 DOI: 10.1128/mcb.18.4.2077] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
NF-kappaB2 (p100/p52), a member of the NF-kappaB/Rel family of transcription factors, is involved in the regulation of a variety of genes important for immune function. Previously, we have shown that the NF-kappaB2 gene is regulated in a positive and a negative manner. Two kappaB elements within the NF-kappaB2 promoter mediate tumor necrosis factor alpha-inducible transactivation. In addition, we have shown that there exists a transcriptional repression in the absence of NF-kappaB. To identify a DNA binding activity responsible for this transcriptional repression, we have partially purified a nuclear complex, named Rep-kappaB. Here we further analyze this putative repressive binding activity. Detailed examination of Rep-kappaB-DNA interaction revealed the sequence requirements for binding to be almost identical to those of recombination signal binding protein Jkappa (RBP-Jkappa), the mammalian homolog of the protein encoded by Drosophila suppressor of hairless [Su(H)]. In addition, in electromobility shift assays, Rep-kappaB binding activity is recognized by an antibody directed against RBP-Jkappa. By performing transient-transfection assays, we show that human RBP-Jkappa represses basal as well as RelA (p65)-stimulated NF-kappaB2 promoter activity. Studies in Drosophila melanogaster have shown that Su(H) is implicated in the Notch signaling pathway regulating cell fate decisions. In transient-transfection assays we show that truncated Notch-1 strongly induces NF-kappaB2 promoter activity. In summary, our data clearly demonstrate that Rep-kappaB is closely related or identical to RBP-Jkappa. RBP-Jkappa is a strong transcriptional repressor of NF-kappaB2. Moreover, this repression can be overcome by activated Notch-1, suggesting that NF-kappaB2 is a novel putative Notch target gene.
Collapse
Affiliation(s)
- F Oswald
- Department of Internal Medicine, University of Ulm, Germany
| | | | | | | |
Collapse
|
161
|
Capobianco AJ, Zagouras P, Blaumueller CM, Artavanis-Tsakonas S, Bishop JM. Neoplastic transformation by truncated alleles of human NOTCH1/TAN1 and NOTCH2. Mol Cell Biol 1997; 17:6265-73. [PMID: 9343387 PMCID: PMC232477 DOI: 10.1128/mcb.17.11.6265] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Notch genes of Drosophila melanogaster and vertebrates encode transmembrane receptors that help determine cell fate during development. Although ligands for Notch proteins have been identified, the signaling cascade downstream of the receptors remains poorly understood. In human acute lymphoblastic T-cell leukemia, a chromosomal translocation damages the NOTCH1 gene. The damage apparently gives rise to a constitutively activated version of NOTCH protein. Here we show that a truncated version of NOTCH1 protein resembling that found in the leukemic cells can transform rat kidney cells in vitro. The transformation required cooperation with the E1A oncogene of adenovirus. The transforming version of NOTCH protein was located in the nucleus. In contrast, neither wild-type NOTCH protein nor a form of the truncated protein permanently anchored to the plasma membrane produced transformation in vitro. We conclude that constitutive activation of NOTCH similar to that found in human leukemia can contribute to neoplastic transformation. Transformation may require that the NOTCH protein be translocated to the nucleus. These results sustain a current view of how Notch transduces a signal from the surface of the cell to the nucleus.
Collapse
Affiliation(s)
- A J Capobianco
- The George Williams Hooper Foundation, University of California, San Francisco, 94143-0552, USA.
| | | | | | | | | |
Collapse
|
162
|
Abstract
Multipotent haemopoietic progenitor cells appear to be 'primed' for commitment by co-expression of a multiplicity of genes characteristic of different lineages. Lineage commitment proceeds as the consolidation of a distinct pattern of gene expression out of this milieu.
Collapse
Affiliation(s)
- M A Cross
- Department of Experimental Haematology, Paterson Institute for Cancer Research, Christie Hospital National Health Service Trust, Manchester, UK.
| | | |
Collapse
|
163
|
Stewart M, Terry A, Hu M, O'Hara M, Blyth K, Baxter E, Cameron E, Onions DE, Neil JC. Proviral insertions induce the expression of bone-specific isoforms of PEBP2alphaA (CBFA1): evidence for a new myc collaborating oncogene. Proc Natl Acad Sci U S A 1997; 94:8646-51. [PMID: 9238031 PMCID: PMC23059 DOI: 10.1073/pnas.94.16.8646] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The til-1 locus was identified as a common retroviral integration site in virus-accelerated lymphomas of CD2-myc transgenic mice. We now show that viral insertions at til-1 lead to transcriptional activation of PEBP2alphaA (CBFA1), a transcription factor related to the Drosophila segmentation gene product, Runt. Insertions are upstream and in the opposite orientation to the gene and appear to activate a variant promoter that is normally silent in T cells. Activity of this promoter was detected in rodent osteogenic sarcoma cells and primary osteoblasts, implicating bone as the normal site of promoter activity. The isoforms encoded by the activated gene all encompass the conserved runt DNA-binding domain and share a novel N terminus different from the previously reported PEBP2alphaA products. Minor products include isoforms with internal deletions due to exon skipping and a novel C-terminal domain unrelated to known runt domain factors. The major isoform expressed from the activated til-1 locus (G1) was found to account for virtually all of the core binding factor activity in nuclear extracts from its corresponding lymphoma cell line. Another member of this gene family, AML1(CBFA2), is well known for its involvement in human hemopoietic tumors. These results provide evidence of a direct oncogenic role for PEBP2alphaA and indicate that the Myc and Runt family genes can cooperate in oncogenesis.
Collapse
Affiliation(s)
- M Stewart
- Molecular Oncology Laboratory, Department of Veterinary Pathology, University of Glasgow, Bearsden, Glasgow G61 1QH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Abstract
Homologs of the Notch receptor and its ligands participate in cell fate decisions during vertebrate development. The past year has seen significant advances in knowledge of the role of Notch in Xenopus neuronal development and T-cell development and in our understanding of the Notch signalling pathway in vertebrates. Connections have also been discovered between alterations in Notch function and human disease.
Collapse
Affiliation(s)
- E Robey
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA.
| |
Collapse
|
165
|
Washburn T, Schweighoffer E, Gridley T, Chang D, Fowlkes BJ, Cado D, Robey E. Notch activity influences the alphabeta versus gammadelta T cell lineage decision. Cell 1997; 88:833-43. [PMID: 9118226 DOI: 10.1016/s0092-8674(00)81929-7] [Citation(s) in RCA: 337] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The choice between the alphabeta or gammadelta T cell fates is influenced by the production of functional, in-frame rearrangements of the TCR genes, but the mechanism that controls the lineage choice is not known. Here, we show that T cells that are heterozygous for a mutation of the Notch1 gene are more likely to develop as gammadelta T cells than as alphabeta T cells, implying that reduced Notch activity favors the gammadelta T cell fate over the alphabeta T cell fate. A constitutively activated form of Notch produces a reciprocal phenotype and induces thymocytes that have functional gammadeltaTCR gene rearrangements to adopt the alphabeta T cell fate. Our data indicate that Notch acts together with the newly formed T cell antigen receptor to direct the alphabeta versus gammadelta T cell lineage decision.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/chemistry
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/physiology
- CD8-Positive T-Lymphocytes/chemistry
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/physiology
- Cell Differentiation/physiology
- Cell Lineage/physiology
- Female
- Flow Cytometry
- Gene Dosage
- Gene Rearrangement
- Hematopoietic Stem Cells/immunology
- Heterozygote
- Male
- Membrane Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Polymerase Chain Reaction
- Polymorphism, Restriction Fragment Length
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Notch
- Recombinant Fusion Proteins/immunology
- Signal Transduction/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Transgenes/immunology
Collapse
Affiliation(s)
- T Washburn
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | | | | | | | |
Collapse
|
166
|
de la Pompa JL, Wakeham A, Correia KM, Samper E, Brown S, Aguilera RJ, Nakano T, Honjo T, Mak TW, Rossant J, Conlon RA. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 1997; 124:1139-48. [PMID: 9102301 DOI: 10.1242/dev.124.6.1139] [Citation(s) in RCA: 428] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Notch pathway functions in multiple cell fate determination processes in invertebrate embryos, including the decision between the neuroblast and epidermoblast lineages in Drosophila. In the mouse, targeted mutation of the Notch pathway genes Notch1 and RBP-Jk has demonstrated a role for these genes in somite segmentation, but a function in neurogenesis and in cell fate decisions has not been shown. Here we show that these mutations lead to altered expression of the Notch signalling pathway homologues Hes-5, Mash-1 and Dll1, resulting in enhanced neurogenesis. Precocious neuronal differentiation is indicated by the expanded expression domains of Math4A, neuroD and NSCL-1. The RBP-Jk mutation has stronger effects on expression of these genes than does the Notch1 mutation, consistent with functional redundancy of Notch genes in neurogenesis. Our results demonstrate conservation of the Notch pathway and its regulatory mechanisms from fly to mouse, and support a role for the murine Notch signalling pathway in the regulation of neural stem cell differentiation.
Collapse
|
167
|
Hsieh JJ, Nofziger DE, Weinmaster G, Hayward SD. Epstein-Barr virus immortalization: Notch2 interacts with CBF1 and blocks differentiation. J Virol 1997; 71:1938-45. [PMID: 9032325 PMCID: PMC191274 DOI: 10.1128/jvi.71.3.1938-1945.1997] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
EBNA2 is essential for immortalization of B cells by Epstein-Barr virus. EBNA2 is tethered to responsive promoters through a cellular factor, CBF1. CBF1 also binds to the activated form of mammalian Notch1, providing a linkage between EBNA2 function and Notch signalling. However, Notch2 is the predominant form expressed in spleen. The degree to which these Notch homologs are functionally convergent is not known. We present evidence that Notch2 also signals through CBF1. As is the case for Notch1, Notch2 interacted with the minimal repression domain of CBF1 and was targeted to CBF1 through the intracellular, subtransmembrane domain. Additional characterization suggested that the interaction domain of Notch may be bipartite. The intracellular domain of Notch2 (Notch2IC) located to the nucleus. This activated form of Notch2 transactivated expression of a target gene containing upstream CBF1 binding sites. The use of CBF1 mutants carrying amino acid substitutions in the transcriptional repression domain revealed that activation of gene expression by Notch2 is also based on masking of CBF1-mediated repression. Targeting of Notch1 and targeting of Notch2 were found to be identical and distinguishable from targeting by EBNA2. Mutation of CBF1 at codons 249 to 251 abolished interaction with both Notch proteins but not with EBNA2. In a biological examination of Notch2 function in muscle cells, Notch2IC activated endogenous HES-1 gene expression and blocked muscle cell differentiation. Overall, the data imply that at least a subset of the intracellular events following signalling in cells expressing Notch2 are common to those in Notch1-expressing cells. The concept that EBNA2 functions by mimicking Notch signalling is therefore viable whether cells are expressing Notch1 or Notch2.
Collapse
Affiliation(s)
- J J Hsieh
- Department of Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
168
|
Affiliation(s)
- T Hunter
- Molecular Biology and Virology Laboratory, Salk Institute, La Jolla, California 92037-1099, USA
| |
Collapse
|