151
|
Andrews AJ, Hall TA, Brown JW. Characterization of RNase P holoenzymes from Methanococcus jannaschii and Methanothermobacter thermoautotrophicus. Biol Chem 2001; 382:1171-7. [PMID: 11592398 DOI: 10.1515/bc.2001.147] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The partial purification and basic biochemical characterization of the RNase P holoenzymes of two species of methanogenic Archaea, Methanothermobacter thermoautotrophicus (previously Methanobacterium thermoautotrophicum strain deltaH) and Methanococcus jannaschii, are described. The properties of these enzymes, particularly buoyant density in Cs2SO4 and recent information about the subunit composition of the archaeal enzymes, suggest that RNase P enzymes in Archaea are much more alike than earlier studies in Sulfolobus acidocaldarius and Haloferax volcanii suggested.
Collapse
Affiliation(s)
- A J Andrews
- Department of Microbiology, North Carolina State University, Raleigh 27695-7615, USA
| | | | | |
Collapse
|
152
|
Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Séraphin B. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 2001; 24:218-29. [PMID: 11403571 DOI: 10.1006/meth.2001.1183] [Citation(s) in RCA: 1322] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Identification of components present in biological complexes requires their purification to near homogeneity. Methods of purification vary from protein to protein, making it impossible to design a general purification strategy valid for all cases. We have developed the tandem affinity purification (TAP) method as a tool that allows rapid purification under native conditions of complexes, even when expressed at their natural level. Prior knowledge of complex composition or function is not required. The TAP method requires fusion of the TAP tag, either N- or C-terminally, to the target protein of interest. Starting from a relatively small number of cells, active macromolecular complexes can be isolated and used for multiple applications. Variations of the method to specifically purify complexes containing two given components or to subtract undesired complexes can easily be implemented. The TAP method was initially developed in yeast but can be successfully adapted to various organisms. Its simplicity, high yield, and wide applicability make the TAP method a very useful procedure for protein purification and proteome exploration.
Collapse
Affiliation(s)
- O Puig
- European Molecular Biology Laboratory Meyerhofstrasse 1, Heidelberg, D-69117, Germany
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Srisawat C, Engelke DR. Streptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins. RNA (NEW YORK, N.Y.) 2001; 7:632-41. [PMID: 11345441 PMCID: PMC1370116 DOI: 10.1017/s135583820100245x] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
RNA affinity tags would be very useful for the study of RNAs and ribonucleoproteins (RNPs) as a means for rapid detection, immobilization, and purification. To develop a new affinity tag, streptavidin-binding RNA ligands, termed "aptamers," were identified from a random RNA library using in vitro selection. Individual aptamers were classified into two groups based on common sequences, and representative members of the groups had sufficiently low dissociation constants to suggest they would be useful affinity tools. Binding of the aptamers to streptavidin was blocked by presaturation of the streptavidin with biotin, and biotin could be used to dissociate RNA/streptavidin complexes. To investigate the practicality of using the aptamer as an affinity tag, one of the higher affinity aptamers was inserted into RPR1 RNA, the large RNA subunit of RNase P. The aptamer-tagged RNase P could be specifically isolated using commercially available streptavidin-agarose and recovered in a catalytically active form when biotin was used as an eluting agent under mild conditions. The aptamer tag was also used to demonstrate that RNase P exists in a monomeric form, and is not tightly associated with RNase MRP, a closely related ribonucleoprotein enzyme. These results show that the streptavidin aptamers are potentially powerful tools for the study of RNAs or RNPs.
Collapse
Affiliation(s)
- C Srisawat
- Department of Biological Chemistry, The University of Michigan, Ann Arbor 48109-0606, USA
| | | |
Collapse
|
154
|
Ziehler WA, Morris J, Scott FH, Millikin C, Engelke DR. An essential protein-binding domain of nuclear RNase P RNA. RNA (NEW YORK, N.Y.) 2001; 7:565-75. [PMID: 11345435 PMCID: PMC1370110 DOI: 10.1017/s1355838201001996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Eukaryotic RNase P and RNase MRP are endoribonucleases composed of RNA and protein subunits. The RNA subunits of each enzyme share substantial secondary structural features, and most of the protein subunits are shared between the two. One of the conserved RNA subdomains, designated P3, has previously been shown to be required for nucleolar localization. Phylogenetic sequence analysis suggests that the P3 domain interacts with one of the proteins common to RNase P and RNase MRP, a conclusion strengthened by an earlier observation that the essential domain can be interchanged between the two enzymes. To examine possible functions of the P3 domain, four conserved nucleotides in the P3 domain of Saccharomyces cerevisiae RNase P RNA (RPR1) were randomized to create a library of all possible sequence combinations at those positions. Selection of functional genes in vivo identified permissible variations, and viable clones that caused yeast to exhibit conditional growth phenotypes were tested for defects in RNase P RNA and tRNA biosynthesis. Under nonpermissive conditions, the mutants had reduced maturation of the RPR1 RNA precursor, an expected phenotype in cases where RNase P holoenzyme assembly is defective. This loss of RPR1 RNA maturation coincided, as expected, with a loss of pre-tRNA maturation characteristic of RNase P defects. To test whether mutations at the conserved positions inhibited interactions with a particular protein, specific binding of the individual protein subunits to the RNA subunit was tested in yeast using the three-hybrid system. Pop1p, the largest subunit shared by RNases P and MRP, bound specifically to RPR1 RNA and the isolated P3 domain, and this binding was eliminated by mutations at the conserved P3 residues. These results indicate that Pop1p interacts with the P3 domain common to RNases P and MRP, and that this interaction is critical in the maturation of RNase P holoenzyme.
Collapse
Affiliation(s)
- W A Ziehler
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-0606, USA
| | | | | | | | | |
Collapse
|
155
|
XIAO SHAOHUA, HOUSER-SCOTT FELICIA, ENGELKE DAVIDR. Eukaryotic ribonuclease P: increased complexity to cope with the nuclear pre-tRNA pathway. J Cell Physiol 2001; 187:11-20. [PMID: 11241345 PMCID: PMC3758117 DOI: 10.1002/1097-4652(200104)187:1<11::aid-jcp1055>3.0.co;2-k] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ribonuclease P is an ancient enzyme that cleaves pre-tRNAs to generate mature 5' ends. It contains an essential RNA subunit in Bacteria, Archaea, and Eukarya, but the degree to which the RNA subunit relies on proteins to supplement catalysis is highly variable. The eukaryotic nuclear holoenzyme has recently been found to contain almost twenty times the protein content of the bacterial enzymes, in addition to having split into at least two related enzymes with distinct substrate specificity. In this review, recent progress in understanding the molecular architecture and functions of nuclear forms of RNase P will be considered.
Collapse
Affiliation(s)
| | | | - DAVID R. ENGELKE
- Correspondence: David R. Engelke, Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA.
| |
Collapse
|
156
|
Houser-Scott F, Ziehler WA, Engelke DR. Saccharomyces cerevisiae nuclear ribonuclease P: structure and function. Methods Enzymol 2001; 342:101-17. [PMID: 11586886 DOI: 10.1016/s0076-6879(01)42539-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- F Houser-Scott
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
157
|
Altman S, Gopalan V, Vioque A. Varieties of RNase P: a nomenclature problem? RNA (NEW YORK, N.Y.) 2000; 6:1689-94. [PMID: 11142368 PMCID: PMC1370038 DOI: 10.1017/s1355838200001783] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
MESH Headings
- Archaea/enzymology
- Archaea/genetics
- Archaeal Proteins/chemistry
- Archaeal Proteins/classification
- Archaeal Proteins/genetics
- Archaeal Proteins/isolation & purification
- Bacteria/enzymology
- Bacteria/genetics
- Bacterial Proteins/chemistry
- Bacterial Proteins/classification
- Bacterial Proteins/genetics
- Bacterial Proteins/isolation & purification
- Base Sequence
- Chloroplasts/enzymology
- Endoribonucleases/chemistry
- Endoribonucleases/classification
- Endoribonucleases/genetics
- Endoribonucleases/isolation & purification
- Evolution, Molecular
- Fungal Proteins/chemistry
- Fungal Proteins/classification
- Fungal Proteins/genetics
- Fungal Proteins/isolation & purification
- HeLa Cells/enzymology
- Humans
- Molecular Sequence Data
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/classification
- Neoplasm Proteins/genetics
- Neoplasm Proteins/isolation & purification
- Nucleic Acid Conformation
- Organelles/enzymology
- Plant Proteins/chemistry
- Plant Proteins/classification
- Plant Proteins/isolation & purification
- Protein Subunits
- RNA, Archaeal/chemistry
- RNA, Archaeal/classification
- RNA, Archaeal/genetics
- RNA, Archaeal/isolation & purification
- RNA, Bacterial/chemistry
- RNA, Bacterial/classification
- RNA, Bacterial/genetics
- RNA, Bacterial/isolation & purification
- RNA, Catalytic/chemistry
- RNA, Catalytic/classification
- RNA, Catalytic/genetics
- RNA, Catalytic/isolation & purification
- RNA, Fungal/chemistry
- RNA, Fungal/classification
- RNA, Fungal/genetics
- RNA, Fungal/isolation & purification
- RNA, Neoplasm/chemistry
- RNA, Neoplasm/classification
- RNA, Neoplasm/genetics
- RNA, Neoplasm/isolation & purification
- Ribonuclease P
- Ribonucleoproteins/chemistry
- Ribonucleoproteins/classification
- Ribonucleoproteins/genetics
- Ribonucleoproteins/isolation & purification
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Terminology as Topic
- Zea mays/enzymology
Collapse
Affiliation(s)
- S Altman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA.
| | | | | |
Collapse
|
158
|
Matte-Tailliez O, Zivanovic Y, Forterre P. Mining archaeal proteomes for eukaryotic proteins with novel functions: the PACE case. Trends Genet 2000; 16:533-6. [PMID: 11102699 DOI: 10.1016/s0168-9525(00)02137-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- O Matte-Tailliez
- Institut de Génétique et Microbiologie, UMR C8621, Université Paris-Sud, 91405 Orsay Cedex, France.
| | | | | |
Collapse
|
159
|
Pogacić V, Dragon F, Filipowicz W. Human H/ACA small nucleolar RNPs and telomerase share evolutionarily conserved proteins NHP2 and NOP10. Mol Cell Biol 2000; 20:9028-40. [PMID: 11074001 PMCID: PMC86556 DOI: 10.1128/mcb.20.23.9028-9040.2000] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The H/ACA small nucleolar RNAs (snoRNAs) are involved in pseudouridylation of pre-rRNAs. In the yeast Saccharomyces cerevisiae, four common proteins are associated with H/ACA snoRNAs: Gar1p, Cbf5p, Nhp2p, and Nop10p. In vitro reconstitution studies showed that four proteins also specifically interact with H/ACA snoRNAs in mammalian cell extracts. Two mammalian proteins, NAP57/dyskerin (the ortholog of Cbf5p) and hGAR1, have been characterized. In this work we describe properties of hNOP10 and hNHP2, human orthologs of yeast Nop10p and Nhp2p, respectively, and further characterize hGAR1. hNOP10 and hNHP2 complement yeast cells depleted of Nhp2p and Nop10p, respectively. Immunoprecipitation experiments with extracts from transfected HeLa cells indicated that epitope-tagged hNOP10 and hNHP2 specifically associate with hGAR1 and H/ACA RNAs; they also interact with the RNA subunit of telomerase, which contains an H/ACA-like domain in its 3' moiety. Immunofluorescence microscopy experiments showed that hGAR1, hNOP10, and hNHP2 are localized in the dense fibrillar component of the nucleolus and in Cajal (coiled) bodies. Deletion analysis of hGAR1 indicated that its evolutionarily conserved core domain contains all the signals required for localization, but progressive deletions from either the N or the C terminus of the core domain abolish localization in the nucleolus and/or the Cajal bodies.
Collapse
Affiliation(s)
- V Pogacić
- Friedrich-Miescher Institut, CH-4058 Basel, Switzerland
| | | | | |
Collapse
|
160
|
Tekos A, Tsagla A, Stathopoulos C, Drainas D. Inhibition of eukaryotic ribonuclease P activity by aminoglycosides: kinetic studies. FEBS Lett 2000; 485:71-5. [PMID: 11086168 DOI: 10.1016/s0014-5793(00)02190-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of several aminoglycoside antibiotics on ribonuclease P (RNase P) was investigated using an in vitro experimental system from Dictyostelium discoideum. Detailed kinetic analysis showed that all aminoglycosides tested (tobramycin, gentamicin, kanamycin, paromomycin, neomycin) behave as classical non-competitive inhibitors, with neomycin being the strongest inhibitor. The inhibition effect is attributed to the electrostatic competition of the cationic aminoglycosides with magnesium ions required for catalysis. Increasing Mg(2+) ion concentrations reduced the effect of aminoglycosides on RNase P activity. Detailed kinetic analysis showed that aminoglycosides compete with Mg(2+) for common binding sites on RNase P holoenzyme.
Collapse
Affiliation(s)
- A Tekos
- Department of Biochemistry, School of Medicine, University of Patras, 26500 Patras, Greece
| | | | | | | |
Collapse
|
161
|
Venema J, Vos HR, Faber AW, van Venrooij WJ, Raué HA. Yeast Rrp9p is an evolutionarily conserved U3 snoRNP protein essential for early pre-rRNA processing cleavages and requires box C for its association. RNA (NEW YORK, N.Y.) 2000; 6:1660-71. [PMID: 11105764 PMCID: PMC1370034 DOI: 10.1017/s1355838200001369] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pre-rRNA processing in eukaryotic cells requires participation of several snoRNPs. These include the highly conserved and abundant U3 snoRNP, which is essential for synthesis of 18S rRNA. Here we report the characterization of Rrp9p, a novel yeast U3 protein, identified via its homology to the human U3-55k protein. Epitope-tagged Rrp9p specifically precipitates U3 snoRNA, but Rrp9p is not required for the stable accumulation of this snoRNA. Genetic depletion of Rrp9p inhibits the early cleavages of the primary pre-rRNA transcript at A0, A1, and A2 and, consequently, production of 18S, but not 25S and 5.8S, rRNA. The hU3-55k protein can partially complement a yeast rrp9 null mutant, indicating that the function of this protein has been conserved. Immunoprecipitation of extracts from cells that coexpress epitope-tagged Rrp9p and various mutant forms of U3 snoRNA limits the region required for association of Rrp9p to the U3-specific box B/C motif. Box C is essential, whereas box B plays a supportive role.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Binding Sites
- Cloning, Molecular
- Consensus Sequence
- Evolution, Molecular
- Genes, Fungal
- Humans
- Kinetics
- Molecular Sequence Data
- Phylogeny
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Ribonucleoproteins, Small Nucleolar/chemistry
- Ribonucleoproteins, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/metabolism
- Saccharomyces cerevisiae/genetics
- Sequence Alignment
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- J Venema
- Department of Biochemistry and Molecular Biology, Instituut Moleculaire Biologische Wetenschappen, BioCentrum Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
162
|
Papadimou E, Monastirli A, Tsambaos D, Drainas D. Additive inhibitory effect of calcipotriol and anthralin on ribonuclease P activity. Biochem Pharmacol 2000; 60:91-4. [PMID: 10807949 DOI: 10.1016/s0006-2952(00)00298-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of two antipsoriatic compounds, calcipotriol and anthralin, separately or in combination on ribonuclease P (RNase P), were investigated using a cell-free system from the slime mold Dictyostelium discoideum. RNase P is an ubiquitous and essential enzyme which endonucleolytically cleaves all tRNA precursors to produce the mature 5' end. The substrate for RNase P assays was an in vitro (32)P-labeled transcript of the Schizosaccharomyces pombe tRNA(Ser) gene supS1. Enzyme assays were carried out at 37 degrees in 20 microL 50 mM Tris-HCL 7.6 buffer, containing 10 mM NH(4)Cl, 5 mM MgCl(2), and 10% isopropanol. Calcipotriol or anthralin alone exerted a dose-dependent inhibitory effect on RNase P activity, with the former being more active than the latter in this respect. Simultaneous exposure of the enzyme to both drugs resulted in an enhancement of RNase P inhibition, which was additive. Considering the lack of structural similarities between the substrate (precursor tRNA) of RNase P and the tested drugs, it seems reasonable to suggest that their effects may be due to binding to allosteric inhibition sites of the enzyme. Although our in vitro findings cannot be directly extrapolated to the in vivo human condition, they do suggest that the inhibitory effects of calcipotriol and anthralin on tRNA biogenesis may be implicated in the mechanisms of their antipsoriatic action. Moreover, the additive inhibitory effect of these compounds on RNase P activity provides an experimental basis for their possible combined therapeutic application in the management of psoriasis.
Collapse
Affiliation(s)
- E Papadimou
- Department of Biochemistry, School of Medicine, University of Patras, G26500, Patras, Greece
| | | | | | | |
Collapse
|
163
|
Pfeiffer T, Tekos A, Warnecke JM, Drainas D, Engelke DR, Séraphin B, Hartmann RK. Effects of phosphorothioate modifications on precursor tRNA processing by eukaryotic RNase P enzymes. J Mol Biol 2000; 298:559-65. [PMID: 10788319 DOI: 10.1006/jmbi.2000.3655] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cleavage mechanism has been studied for nuclear RNase P from Saccharomyces cerevisiae, Homo sapiens sapiens and Dictyostelium discoideum, representing distantly related branches of the Eukarya. This was accomplished by using precursor tRNAs (ptRNAs) carrying a single Rp or Sp-phosphorothioate modification at the normal RNase P cleavage site (position -1/+1). All three eukaryotic RNase P enzymes cleaved the Sp-diastereomeric ptRNA exclusively one nucleotide upstream (position -2/-1) of the modified canonical cleavage site. Rp-diastereomeric ptRNA was cleaved with low efficiency at the modified -1/+1 site by human RNase P, at both the -2/-1 and -1/+1 site by yeast RNase P, and exclusively at the -2/-1 site by D. discoideum RNase P. The presence of Mn(2+ )and particularly Cd(2+) inhibited the activity of all three enzymes. Nevertheless, a Mn(2+ )rescue of cleavage at the modified -1/+1 site was observed with yeast RNase P and the Rp-diastereomeric ptRNA, consistent with direct metal ion coordination to the (pro)-Rp substituent during catalysis as observed for bacterial RNase P enzymes. In summary, our results have revealed common active-site constraints for eukaryotic and bacterial RNase P enzymes. In all cases, an Rp as well as an Sp-phosphorothioate modification at the RNase P cleavage site strongly interfered with the catalytic process, whereas substantial functional interference is essentially restricted to one of the two diastereomers in other RNA and protein-catalyzed hydrolysis reactions, such as those catalyzed by the Tetrahymena ribozyme and nuclease P1.
Collapse
Affiliation(s)
- T Pfeiffer
- Institut für Biochemie, Medizinische Universität zu Lübeck, Ratzeburger Allee 160, Lübeck, D-23538, Germany
| | | | | | | | | | | | | |
Collapse
|
164
|
Lindahl L, Fretz S, Epps N, Zengel JM. Functional equivalence of hairpins in the RNA subunits of RNase MRP and RNase P in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2000; 6:653-8. [PMID: 10836786 PMCID: PMC1369945 DOI: 10.1017/s1355838200992574] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
RNase MRP and RNase P are both ribonucleoprotein enzymes performing endonucleolytic cleavage of RNA. RNase MRP cleaves at a specific site in the precursor-rRNA transcript to initiate processing of the 5.8S rRNA. RNase P cleaves precursor tRNAs to create the 5' end of the mature tRNAs. In spite of their different specificities, the two RNases have significant structural similarities. For example, the two enzymes in Saccharomyces cerevisiae share eight protein subunits; only one protein is unique to each enzyme. The RNA components of the two nucleases also show striking secondary-structure similarity. To begin to characterize the role of the RNA subunits in enzyme function and substrate specificity, we swapped two hairpin structures (MRP3 and P3) between RNase MRP RNA and RNase P RNA of S. cerevisiae. The hairpins in the two enzymes could be exchanged without loss of function or specificity. On the other hand, when the MRP3 hairpin in RNase MRP of S. cerevisiae was replaced with the corresponding hairpin from the RNA of Schizosaccharomyces pombe or human RNase MRP, no functional enzyme was assembled. We propose that the MRP3 and P3 hairpins in S. cerevisiae perform similar functions and have coevolved to maintain common features that are different from those of MRP3 and P3 hairpins in other species.
Collapse
Affiliation(s)
- L Lindahl
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore 21250, USA.
| | | | | | | |
Collapse
|
165
|
Dragon F, Pogacić V, Filipowicz W. In vitro assembly of human H/ACA small nucleolar RNPs reveals unique features of U17 and telomerase RNAs. Mol Cell Biol 2000; 20:3037-48. [PMID: 10757788 PMCID: PMC85579 DOI: 10.1128/mcb.20.9.3037-3048.2000] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The H/ACA small nucleolar RNAs (snoRNAs) are involved in pseudouridylation of pre-rRNAs. They usually fold into a two-domain hairpin-hinge-hairpin-tail structure, with the conserved motifs H and ACA located in the hinge and tail, respectively. Synthetic RNA transcripts and extracts from HeLa cells were used to reconstitute human U17 and other H/ACA ribonucleoproteins (RNPs) in vitro. Competition and UV cross-linking experiments showed that proteins of about 60, 29, 23, and 14 kDa interact specifically with U17 RNA. Except for U17, RNPs could be reconstituted only with full-length H/ACA snoRNAs. For U17, the 3'-terminal stem-loop followed by box ACA (U17/3'st) was sufficient to form an RNP, and U17/3'st could compete other full-length H/ACA snoRNAs for assembly. The H/ACA-like domain that constitutes the 3' moiety of human telomerase RNA (hTR), and its 3'-terminal stem-loop (hTR/3'st), also could form an RNP by binding H/ACA proteins. Hence, the 3'-terminal stem-loops of U17 and hTR have some specific features that distinguish them from other H/ACA RNAs. Antibodies that specifically recognize the human GAR1 (hGAR1) protein could immunoprecipitate H/ACA snoRNAs and hTR from HeLa cell extracts, which demonstrates that hGAR1 is a component of H/ACA snoRNPs and telomerase in vivo. Moreover, we show that in vitro-reconstituted RNPs contain hGAR1 and that binding of hGAR1 does not appear to be a prerequisite for the assembly of the other H/ACA proteins.
Collapse
Affiliation(s)
- F Dragon
- Friedrich Miescher-Institut, CH-4058 Basel, Switzerland
| | | | | |
Collapse
|
166
|
Fath S, Milkereit P, Podtelejnikov AV, Bischler N, Schultz P, Bier M, Mann M, Tschochner H. Association of yeast RNA polymerase I with a nucleolar substructure active in rRNA synthesis and processing. J Cell Biol 2000; 149:575-90. [PMID: 10791972 PMCID: PMC2174860 DOI: 10.1083/jcb.149.3.575] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A novel ribonucleoprotein complex enriched in nucleolar proteins was purified from yeast extracts and constituents were identified by mass spectrometry. When isolated from rapidly growing cells, the assembly contained ribonucleic acid (RNA) polymerase (pol) I, and some of its transcription factors like TATA-binding protein (TBP), Rrn3p, Rrn5p, Rrn7p, and Reb1p along with rRNA processing factors, like Nop1p, Cbf5p, Nhp2p, and Rrp5p. The small nucleolar RNAs (snoRNAs) U3, U14, and MRP were also found to be associated with the complex, which supports accurate transcription, termination, and pseudouridylation of rRNA. Formation of the complex did not depend on pol I, and the complex could efficiently recruit exogenous pol I into active ribosomal DNA (rDNA) transcription units. Visualization of the complex by electron microscopy and immunogold labeling revealed a characteristic cluster-forming network of nonuniform size containing nucleolar proteins like Nop1p and Fpr3p and attached pol I. Our results support the idea that a functional nucleolar subdomain formed independently of the state of rDNA transcription may serve as a scaffold for coordinated rRNA synthesis and processing.
Collapse
Affiliation(s)
- S Fath
- Biochemie-Zentrum Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
In eukaryotes, dozens of posttranscriptional modifications are directed to specific nucleotides in ribosomal RNAs (rRNAs) by small nucleolar RNAs (snoRNAs). We identified homologs of snoRNA genes in both branches of the Archaea. Eighteen small sno-like RNAs (sRNAs) were cloned from the archaeon Sulfolobus acidocaldarius by coimmunoprecipitation with archaeal fibrillarin and NOP56, the homologs of eukaryotic snoRNA-associated proteins. We trained a probabilistic model on these sRNAs to search for more sRNAs in archaeal genomic sequences. Over 200 additional sRNAs were identified in seven archaeal genomes representing both the Crenarchaeota and the Euryarchaeota. snoRNA-based rRNA processing was therefore probably present in the last common ancestor of Archaea and Eukarya, predating the evolution of a morphologically distinct nucleolus.
Collapse
MESH Headings
- Archaea/genetics
- Archaeal Proteins/genetics
- Base Sequence
- Chromosomal Proteins, Non-Histone/genetics
- Cloning, Molecular
- Genome, Archaeal
- Methylation
- Models, Statistical
- Molecular Sequence Data
- Nuclear Proteins/genetics
- RNA Processing, Post-Transcriptional
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Sulfolobus acidocaldarius/genetics
- RNA, Small Untranslated
Collapse
Affiliation(s)
- A D Omer
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
168
|
Grosshans H, Simos G, Hurt E. Review: transport of tRNA out of the nucleus-direct channeling to the ribosome? J Struct Biol 2000; 129:288-94. [PMID: 10806079 DOI: 10.1006/jsbi.2000.4226] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although tRNA was the first substrate whose export from the nuclei of eukaryotic cells had been shown to be carrier-mediated and active, it has only been in the last 2 years that the first mechanistic details of this nucleocytoplasmic transport pathway have begun to emerge. A member of the importin/karyopherin beta superfamily, Los1p in yeast and Xpo-t in vertebrates, has been shown to export tRNA in cooperation with the small GTPase Ran (Gsp1p) from the nucleus into the cytoplasm, where tRNA becomes available for translation. However, Los1p is not essential for viability in yeast cells, suggesting that alternative tRNA export pathways exist. Recent results show that aminoacylation and a translation factor are also required for efficient nuclear tRNA export. Thus, protein translation and nuclear export of tRNA appear to be coupled processes.
Collapse
Affiliation(s)
- H Grosshans
- Biochemie-Zentrum Heidelberg (BZH), University of Heidelberg, Im Neuenheimer Feld 328, Heidelberg, D-69120, Germany
| | | | | |
Collapse
|
169
|
Thomas BC, Chamberlain J, Engelke DR, Gegenheimer P. Evidence for an RNA-based catalytic mechanism in eukaryotic nuclear ribonuclease P. RNA (NEW YORK, N.Y.) 2000; 6:554-62. [PMID: 10786846 PMCID: PMC1369936 DOI: 10.1017/s1355838200991477] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ribonuclease P is the enzyme responsible for removing the 5'-leader segment of precursor transfer RNAs in all organisms. All eukaryotic nuclear RNase Ps are ribonucleoproteins in which multiple protein components and a single RNA species are required for activity in vitro as well as in vivo. It is not known, however, which subunits participate directly in phosphodiester-bond hydrolysis. The RNA subunit of nuclear RNase P is evolutionarily related to its catalytically active bacterial counterpart, prompting speculation that in eukaryotes the RNA may be the catalytic component. In the bacterial RNase P reaction, Mg(II) is required to coordinate the nonbridging phosphodiester oxygen(s) of the scissile bond. As a consequence, bacterial RNase P cannot cleave pre-tRNA in which the pro-Rp nonbridging oxygen of the scissile bond is replaced by sulfur. In contrast, the RNase P reaction in plant chloroplasts is catalyzed by a protein enzyme whose mechanism does not involve Mg(II) coordinated by the pro-Rp oxygen. To determine whether the mechanism of nuclear RNase P resembles more closely an RNA- or a protein-catalyzed reaction, we analyzed the ability of Saccharomyces cerevisiae nuclear RNase P to cleave pre-tRNA containing a sulfur substitution of the pro-Rp oxygen at the cleavage site. Sulfur substitution at this position prohibits correct cleavage of pre-tRNA. Cleavage by eukaryotic RNase P thus depends on the presence of a thio-sensitive ligand to the pro-Rp oxygen of the scissile bond, and is consistent with a common, RNA-based mechanism for the bacterial and eukaryal enzymes.
Collapse
MESH Headings
- Base Sequence
- Catalysis
- Cell Nucleus/enzymology
- Chlorides/metabolism
- Endoribonucleases/chemistry
- Endoribonucleases/genetics
- Endoribonucleases/isolation & purification
- Endoribonucleases/metabolism
- Escherichia coli/enzymology
- Escherichia coli Proteins
- Eukaryotic Cells/cytology
- Eukaryotic Cells/enzymology
- Eukaryotic Cells/metabolism
- Magnesium/metabolism
- Manganese Compounds/metabolism
- Mutation/genetics
- Nucleic Acid Conformation
- Organothiophosphorus Compounds/metabolism
- Oxygen/metabolism
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/isolation & purification
- RNA, Catalytic/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- Ribonuclease P
- Saccharomyces cerevisiae/cytology
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Substrate Specificity
Collapse
Affiliation(s)
- B C Thomas
- Department of Molecular Biosciences, The University of Kansas, Lawrence 66045-2106, USA
| | | | | | | |
Collapse
|
170
|
Abstract
Two core small nucleolar RNP (snoRNP) proteins, Nop1p (fibrillarin in vertebrates) and Nop58p (also known as Nop5p) have previously been reported to be specifically associated with the box C+D class of small nucleolar RNAs (snoRNAs). Here we report that Nop56p, a protein related in sequence to Nop58p, is a bona fide box C+D snoRNP component; all tested box C+D snoRNAs were coprecipitated with protein A-tagged Nop56p. Analysis of in vivo snoRNP assembly indicated that Nop56p was stably associated with the snoRNAs only in the presence of Nop1p. In contrast, Nop58p and Nop1p associate independently with the snoRNAs. Genetic depletion of Nop56p resulted in inhibition of early pre-rRNA processing events at sites A(0), A(1), and A(2) and mild depletion of 18S rRNA. However, Nop56p depletion did not lead to codepletion of the box C+D snoRNAs. This is in contrast to Nop58p, which was required for the accumulation of all tested box C+D snoRNAs. Unexpectedly, we found that Nop1p was specifically required for the synthesis and accumulation of box C+D snoRNAs processed from pre-mRNA introns and polycistronic transcripts.
Collapse
Affiliation(s)
- D L Lafontaine
- ICMB, The University of Edinburgh, Edinburgh EH9 3JR, Scotland.
| | | |
Collapse
|
171
|
Abstract
Several perinucleolar structures have been described in recent years. This review primarily summarizes recent studies regarding two of these structures, the perinucleolar compartment (PNC) and the Sam68 nuclear body (SNB). A number of studies have explored their ultrastructure and molecular components. Despite their different nuclear localizations, PNCs and SNBs share some common characteristics. They both are enriched with RNA binding proteins and nucleic acids and are predominantly localized to the periphery of the nucleolus. They are observed mostly in transformed cells, although prevalence differs among different cell types and cell lines. Their structural integrity is influenced by the transcriptional state of the cell. However, the functions of both the PNC and the SNB remain unknown. In addition to the PNC and SNB, a perinucleolar structure immunolabeled with an antibody to hnRNP L will be discussed.
Collapse
Affiliation(s)
- S Huang
- Department of Cell and Molecular Biology, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, Illinois, 60611, USA
| |
Collapse
|
172
|
Grosshans H, Hurt E, Simos G. An aminoacylation-dependent nuclear tRNA export pathway in yeast. Genes Dev 2000; 14:830-40. [PMID: 10766739 PMCID: PMC316491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Yeast Los1p, the homolog of human exportin-t, mediates nuclear export of tRNA. Using fluorescence in situ hybridization, we could show that the export of some intronless tRNA species is not detectably affected by the disruption of LOS1. To find other factors that facilitate tRNA export, we performed a suppressor screen of a synthetically lethal los1 mutant and identified the essential translation elongation factor eEF-1A. Mutations in eEF-1A impaired nuclear export of all tRNAs tested, which included both spliced and intronless species. An even stronger defect in nuclear exit of tRNA was observed under conditions that inhibited tRNA aminoacylation. In all cases, inhibition of tRNA export led to nucleolar accumulation of mature tRNAs. Our data show that tRNA aminoacylation and eEF-1A are required for efficient nuclear tRNA export in yeast and suggest coordination between the protein translation and the nuclear tRNA processing and transport machineries.
Collapse
MESH Headings
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Nucleus/physiology
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Genomic Library
- Humans
- Introns
- Mutagenesis
- Nuclear Pore Complex Proteins
- Nuclear Proteins/metabolism
- Nucleic Acid Conformation
- Nucleocytoplasmic Transport Proteins
- Oligonucleotide Probes
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Ile/chemistry
- RNA, Transfer, Ile/genetics
- RNA, Transfer, Leu/chemistry
- RNA, Transfer, Leu/genetics
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/physiology
- Saccharomyces cerevisiae Proteins
Collapse
Affiliation(s)
- H Grosshans
- Biochemie-Zentrum Heidelberg (BZH), University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
173
|
Qiu H, Hu C, Anderson J, Björk GR, Sarkar S, Hopper AK, Hinnebusch AG. Defects in tRNA processing and nuclear export induce GCN4 translation independently of phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 2000; 20:2505-16. [PMID: 10713174 PMCID: PMC85456 DOI: 10.1128/mcb.20.7.2505-2516.2000] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/1999] [Accepted: 12/30/1999] [Indexed: 11/20/2022] Open
Abstract
Induction of GCN4 translation in amino acid-starved cells involves the inhibition of initiator tRNA(Met) binding to eukaryotic translation initiation factor 2 (eIF2) in response to eIF2 phosphorylation by protein kinase GCN2. It was shown previously that GCN4 translation could be induced independently of GCN2 by overexpressing a mutant tRNA(AAC)(Val) (tRNA(Val*)) or the RNA component of RNase MRP encoded by NME1. Here we show that overexpression of the tRNA pseudouridine 55 synthase encoded by PUS4 also leads to translational derepression of GCN4 (Gcd(-) phenotype) independently of eIF2 phosphorylation. Surprisingly, the Gcd(-) phenotype of high-copy-number PUS4 (hcPUS4) did not require PUS4 enzymatic activity, and several lines of evidence indicate that PUS4 overexpression did not diminish functional initiator tRNA(Met) levels. The presence of hcPUS4 or hcNME1 led to the accumulation of certain tRNA precursors, and their Gcd(-) phenotypes were reversed by overexpressing the RNA component of RNase P (RPR1), responsible for 5'-end processing of all tRNAs. Consistently, overexpression of a mutant pre-tRNA(Tyr) that cannot be processed by RNase P had a Gcd(-) phenotype. Interestingly, the Gcd(-) phenotype of hcPUS4 also was reversed by overexpressing LOS1, required for efficient nuclear export of tRNA, and los1Delta cells have a Gcd(-) phenotype. Overproduced PUS4 appears to impede 5'-end processing or export of certain tRNAs in the nucleus in a manner remedied by increased expression of RNase P or LOS1, respectively. The mutant tRNA(Val*) showed nuclear accumulation in otherwise wild-type cells, suggesting a defect in export to the cytoplasm. We propose that yeast contains a nuclear surveillance system that perceives defects in processing or export of tRNA and evokes a reduction in translation initiation at the step of initiator tRNA(Met) binding to the ribosome.
Collapse
Affiliation(s)
- H Qiu
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
174
|
Grosshans H, Hurt E, Simos G. An aminoacylation-dependent nuclear tRNA export pathway in yeast. Genes Dev 2000. [DOI: 10.1101/gad.14.7.830] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Yeast Los1p, the homolog of human exportin-t, mediates nuclear export of tRNA. Using fluorescence in situ hybridization, we could show that the export of some intronless tRNA species is not detectably affected by the disruption of LOS1. To find other factors that facilitate tRNA export, we performed a suppressor screen of a synthetically lethal los1 mutant and identified the essential translation elongation factor eEF-1A. Mutations in eEF-1A impaired nuclear export of all tRNAs tested, which included both spliced and intronless species. An even stronger defect in nuclear exit of tRNA was observed under conditions that inhibited tRNA aminoacylation. In all cases, inhibition of tRNA export led to nucleolar accumulation of mature tRNAs. Our data show that tRNA aminoacylation and eEF-1A are required for efficient nuclear tRNA export in yeast and suggest coordination between the protein translation and the nuclear tRNA processing and transport machineries.
Collapse
|
175
|
Abstract
The synthesis of ribosomes is one of the major metabolic pathways in all cells. In addition to around 75 individual ribosomal proteins and 4 ribosomal RNAs, synthesis of a functional eukaryotic ribosome requires a remarkable number of trans-acting factors. Here, we will discuss the recent, and often surprising, advances in our understanding of ribosome synthesis in the yeast Saccharomyces cerevisiae. These will underscore the unexpected complexity of eukaryotic ribosome synthesis.
Collapse
Affiliation(s)
- J Venema
- Department of Biochemistry and Molecular Biology, BioCentrum Amsterdam, Vrije Universiteit, The Netherlands
| | | |
Collapse
|
176
|
Shadel GS, Buckenmeyer GA, Clayton DA, Schmitt ME. Mutational analysis of the RNA component of Saccharomyces cerevisiae RNase MRP reveals distinct nuclear phenotypes. Gene 2000; 245:175-84. [PMID: 10713458 DOI: 10.1016/s0378-1119(00)00013-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The 340-nucleotide RNA component of Saccharomyces cerevisiae RNase MRP is encoded by the single-copy essential gene, NME1. To gain additional insight into the proposed structure and functions of this endoribonuclease, we have extensively mutagenized the NME1 gene and characterized yeast strains expressing mutated forms of the RNA using a gene shuffle technique. Strains expressing each of 26 independent mutations in the RNase MRP RNA gene were characterized for their ability to grow at various temperatures and on various carbon sources, stability of the RNase MRP RNA and processing of the 5.8S rRNA (a nuclear function of RNase MRP). 11 of the mutations resulted in a lethal phenotype, six displayed temperature-conditional lethality, and several preferred a non-fermentable carbon source for growth. In those mutants that exhibited altered growth phenotypes, the severity of the growth defect was directly proportional to the severity of the 5.8S rRNA processing defect in the nucleus. Together this analysis has defined essential regions of the RNase MRP RNA and provides evidence that is consistent with the proposed function of the RNase MRP enzyme.
Collapse
Affiliation(s)
- G S Shadel
- Department of Biochemistry, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA, USA
| | | | | | | |
Collapse
|
177
|
Kressler D, Linder P, de La Cruz J. Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19:7897-912. [PMID: 10567516 PMCID: PMC84875 DOI: 10.1128/mcb.19.12.7897] [Citation(s) in RCA: 299] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- D Kressler
- Département de Biochimie Médicale, Centre Médical Universitaire, Université de Genève, 1211 Genève 4, Switzerland
| | | | | |
Collapse
|
178
|
Cai T, Reilly TR, Cerio M, Schmitt ME. Mutagenesis of SNM1, which encodes a protein component of the yeast RNase MRP, reveals a role for this ribonucleoprotein endoribonuclease in plasmid segregation. Mol Cell Biol 1999; 19:7857-69. [PMID: 10523674 PMCID: PMC84863 DOI: 10.1128/mcb.19.11.7857] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNase MRP is a ribonucleoprotein endoribonuclease that has been shown to have roles in both mitochondrial DNA replication and nuclear 5.8S rRNA processing. SNM1 encodes an essential 22.5-kDa protein that is a component of yeast RNase MRP. It is an RNA binding protein that binds the MRP RNA specifically. This 198-amino-acid protein can be divided into three structural regions: a potential leucine zipper near the amino terminus, a binuclear zinc cluster in the middle region, and a serine- and lysine-rich region near the carboxy terminus. We have performed PCR mutagenesis of the SNM1 gene to produce 17 mutants that have a conditional phenotype for growth at different temperatures. Yeast strains carrying any of these mutations as the only copy of snm1 display an rRNA processing defect identical to that in MRP RNA mutants. We have characterized these mutant proteins for RNase MRP function by examining 5.8S rRNA processing, MRP RNA binding in vivo, and the stability of the RNase MRP RNA. The results indicate two separate functional domains of the protein, one responsible for binding the MRP RNA and a second that promotes substrate cleavage. The Snm1 protein appears not to be required for the stability of the MRP RNA, but very low levels of the protein are required for processing of the 5.8S rRNA. Surprisingly, a large number of conditional mutations that resulted from nonsense and frameshift mutations throughout the coding regions were identified. The most severe of these was a frameshift at amino acid 7. These mutations were found to be undergoing translational suppression, resulting in a small amount of full-length Snm1 protein. This small amount of Snm1 protein was sufficient to maintain enough RNase MRP activity to support viability. Translational suppression was accomplished in two ways. First, CEN plasmid missegregation leads to plasmid amplification, which in turn leads to SNM1 mRNA overexpression. Translational suppression of a small amount of the superabundant SNM1 mRNA results in sufficient Snm1 protein to support viability. CEN plasmid missegregation is believed to be the result of a prolonged telophase arrest that has been recently identified in RNase MRP mutants. Either the SNM1 gene is inherently susceptible to translational suppression or extremely small amounts of Snm1 protein are sufficient to maintain essential levels of MRP activity.
Collapse
Affiliation(s)
- T Cai
- Department of Biochemistry, State University of New York Health Science Center at Syracuse, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
179
|
Schmitt ME. Molecular modeling of the three-dimensional architecture of the RNA component of yeast RNase MRP. J Mol Biol 1999; 292:827-36. [PMID: 10525408 DOI: 10.1006/jmbi.1999.3116] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNase mitochondrial RNA processing (MRP) is a ribonucleoprotein endoribonuclease that is involved in RNA processing events in both the nucleus and the mitochondria. The MRP RNA is both structurally and evolutionarily related to RNase P, the ribonucleoprotein endoribonuclease that processes the 5'-end of tRNAs. Previous analysis of the RNase MRP RNA by phylogenetic analysis and chemical modification has revealed strikingly conserved secondary structural elements in all characterized RNase MRP RNAs. Utilizing successive constraint modeling and energy minimization I derived a three-dimensional model of the yeast RNase MRP RNA. The final model predicts several notable features. First, the enzyme appears to contain two separate structural domains, one that is highly conserved among all MRP and P RNAs and a second that is only conserved in MRP RNAs. Second, nearly all of the highly conserved nucleotides cluster in the first domain around a long-range interaction (LRI-I). This LRI-I is characterized by a ubiquitous uridine base, which points into a cleft between these two structural domains generating a potential active site for RNA cleavage. Third, helices III and IV (the yeast equivalent of the To-binding site) model as a long extended helix. This region is believed to be the binding site of shared proteins between RNase P and RNase MRP and would provide a necessary platform for binding these seven proteins. Indeed, several residues conserved between the yeast MRP and P RNAs cluster in the central region of these helixes. Lastly, characterized mutations in the MRP RNA localize in the model based on their severity. Those mutations with little or no effect on the activity of the enzyme localize to the periphery of the model, while the most severe mutations localize to the central portion of the molecule where they would be predicted to cause large structural defects. Press.
Collapse
Affiliation(s)
- M E Schmitt
- Department of Biochemistry and Molecular Biology, State University of New York Health Science Center at Syracuse, 750 East Adams Street, Syracuse, NY, 13210, USA. schmittm@hscsyr
| |
Collapse
|
180
|
Jarrous N, Wolenski JS, Wesolowski D, Lee C, Altman S. Localization in the nucleolus and coiled bodies of protein subunits of the ribonucleoprotein ribonuclease P. J Cell Biol 1999; 146:559-72. [PMID: 10444065 PMCID: PMC2150555 DOI: 10.1083/jcb.146.3.559] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/1999] [Accepted: 07/01/1999] [Indexed: 01/24/2023] Open
Abstract
The precise location of the tRNA processing ribonucleoprotein ribonuclease P (RNase P) and the mechanism of its intranuclear distribution have not been completely delineated. We show that three protein subunits of human RNase P (Rpp), Rpp14, Rpp29 and Rpp38, are found in the nucleolus and that each can localize a reporter protein to nucleoli of cells in tissue culture. In contrast to Rpp38, which is uniformly distributed in nucleoli, Rpp14 and Rpp29 are confined to the dense fibrillar component. Rpp29 and Rpp38 possess functional, yet distinct domains required for subnucleolar localization. The subunit Rpp14 lacks such a domain and appears to be dependent on a piggyback process to reach the nucleolus. Biochemical analysis suggests that catalytically active RNase P exists in the nucleolus. We also provide evidence that Rpp29 and Rpp38 reside in coiled bodies, organelles that are implicated in the biogenesis of several other small nuclear ribonucleoproteins required for processing of precursor mRNA. Because some protein subunits of RNase P are shared by the ribosomal RNA processing ribonucleoprotein RNase MRP, these two evolutionary related holoenzymes may share common intranuclear localization and assembly pathways to coordinate the processing of tRNA and rRNA precursors.
Collapse
Affiliation(s)
- Nayef Jarrous
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Joseph S. Wolenski
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Donna Wesolowski
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Christopher Lee
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Sidney Altman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
181
|
Pannucci JA, Haas ES, Hall TA, Harris JK, Brown JW. RNase P RNAs from some Archaea are catalytically active. Proc Natl Acad Sci U S A 1999; 96:7803-8. [PMID: 10393902 PMCID: PMC22142 DOI: 10.1073/pnas.96.14.7803] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RNA subunits of RNase Ps of Archaea and eukaryotes have been thought to depend fundamentally on protein for activity, unlike those of Bacteria that are capable of efficient catalysis in the absence of protein. Although the eukaryotic RNase P RNAs are quite different than those of Bacteria in both sequence and structure, the archaeal RNAs generally contain the sequences and structures of the bacterial, phylogenetically conserved catalytic core. A spectrum of archaeal RNase P RNAs were therefore tested for activity in a wide range of conditions. Many remain inactive in ionically extreme conditions, but catalytic activity could be detected from those of the methanobacteria, thermococci, and halobacteria. Chimeric holoenzymes, reconstituted from the Methanobacterium RNase P RNA and the Bacillus subtilis RNase P protein subunits, were functional at low ionic strength. The properties of the archaeal RNase P RNAs (high ionic-strength requirement, low affinity for substrate, and catalytic reconstitution by bacterial RNase P protein) are similar to synthetic RNase P RNAs that contain all of the catalytic core of the bacterial RNA but lack phylogenetically variable, stabilizing elements.
Collapse
Affiliation(s)
- J A Pannucci
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
182
|
Abstract
We have constructed S. cerevisiae strains carrying genomic deletions of six ORFs from the left arm of chromosome II (YBL018c, YBL019w, YBL024w, YBL042c, YBL043w and YBL046w) in both FY1679 and W303 backgrounds. We have found that YBL018c is an essential gene in yeast, whereas the other five genes are non-essential. We have developed plasmids carrying deletion cassettes that can be used to delete any of the six genes in S. cerevisiae by transforming to G418-resistance, as well as centromeric plasmids containing the cognate genes.
Collapse
Affiliation(s)
- F Malagón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla 41012 Sevilla, Spain
| | | |
Collapse
|
183
|
Calvo O, Cuesta R, Anderson J, Gutiérrez N, García-Barrio MT, Hinnebusch AG, Tamame M. GCD14p, a repressor of GCN4 translation, cooperates with Gcd10p and Lhp1p in the maturation of initiator methionyl-tRNA in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19:4167-81. [PMID: 10330157 PMCID: PMC104376 DOI: 10.1128/mcb.19.6.4167] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gcd10p and Gcd14p were first identified genetically as repressors of GCN4 mRNA translation in Saccharomyces cerevisiae. Recent findings indicate that Gcd10p and Gcd14p reside in a nuclear complex required for the presence of 1-methyladenosine in tRNAs. Here we show that Gcd14p is an essential protein with predicted binding motifs for S-adenosylmethionine, consistent with a direct function in tRNA methylation. Two different gcd14 mutants exhibit defects in cell growth and accumulate high levels of initiator methionyl-tRNA (tRNAiMet) precursors containing 5' and 3' extensions, suggesting a defect in processing of the primary transcript. Dosage suppressors of gcd10 mutations, encoding tRNAiMet (hcIMT1 to hcIMT4; hc indicates that the gene is carried on a high-copy-number plasmid) or a homologue of human La protein implicated in tRNA 3'-end formation (hcLHP1), also suppressed gcd14 mutations. In fact, the lethality of a GCD14 deletion was suppressed by hcIMT4, indicating that the essential function of Gcd14p is required for biogenesis of tRNAiMet. A mutation in GCD10 or deletion of LHP1 exacerbated the defects in cell growth and expression of mature tRNAiMet in gcd14 mutants, consistent with functional interactions between Gcd14p, Gcd10p, and Lhp1p in vivo. Surprisingly, the amounts of NME1 and RPR1, the RNA components of RNases P and MRP, were substantially lower in gcd14 lhp1::LEU2 double mutants than in the corresponding single mutants, whereas 5S rRNA was present at wild-type levels. Our findings suggest that Gcd14p and Lhp1p cooperate in the maturation of a subset of RNA polymerase III transcripts.
Collapse
Affiliation(s)
- O Calvo
- Instituto de Microbiología Bioquímica del CSIC/Universidad de Salamanca, 37007 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
184
|
Abstract
Ribozymes, or catalytic RNAs, were discovered a little more than 15 years ago. They are found in the organelles of plants and lower eukaryotes, in amphibians, in prokaryotes, in bacteriophages, and in viroids and satellite viruses that infect plants. An example is also known of a ribozyme in hepatitis delta virus, a serious human pathogen. Additional ribozymes are bound to be found in the future, and it is tempting to regard the RNA component(s) of various ribonucleoprotein complexes as the catalytic engine, while the proteins serve as mere scaffolding--an unheard-of notion 15 years ago! In nature, ribozymes are involved in the processing of RNA precursors. However, all the characterized ribozymes have been converted, with some clever engineering, into RNA enzymes that can cleave or modify targeted RNAs (or even DNAs) without becoming altered themselves. While their success in vitro is unquestioned, ribozymes are increasingly used in vivo as valuable tools for studying and regulating gene expression. This review is intended as a brief introduction to the characteristics of the different identified ribozymes and their properties.
Collapse
Affiliation(s)
- N K Tanner
- Département de Biochimie Médicale, Centre Médical Universitaire, Geneva, Switzerland.
| |
Collapse
|
185
|
Cordier A, Schön A. Cyanelle RNase P: RNA structure analysis and holoenzyme properties of an organellar ribonucleoprotein enzyme. J Mol Biol 1999; 289:9-20. [PMID: 10339401 DOI: 10.1006/jmbi.1999.2762] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cyanelle of the primitive alga Cyanophora paradoxa is the only photosynthetic organelle where the ribonucleoprotein nature of ribonuclease P has been functionally proven. To increase our knowledge about RNA structure and overall composition of this enzyme, we have now determined relevant physical parameters and performed RNA accessibility experiments. Buoyant density and relative molecular mass of cyanelle RNase P were more similar to the eukaryotic (nuclear or mitochondrial) than to the bacterial enzyme type, despite the close phylogenetic relationship between plastids and cyanobacteria. Enzymatic and chemical probing was used to establish the secondary structure of cyanelle RNase P RNA. The results obtained with the naked transcript support the previously proposed, phylogenetically derived structure. Probing of the RNA in the holoenzyme resulted in reduced sensitivity at a large number of positions, indicating that these regions might be located in the interior of the ribonucleoprotein. Protection of the RNA in cyanelle RNase P was more extensive than reported for the Escherichia coli holoenzyme, but similar to the pattern observed in yeast nuclear RNase P. Taken together, these results indicate that the protein contribution in cyanelle RNase P is much larger than in the bacterial enzymes, and that the overall composition of the holoenzyme resembles that found in eukaryotes.
Collapse
Affiliation(s)
- A Cordier
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Biozentrum, Würzburg, 97074, Germany
| | | |
Collapse
|
186
|
Pluk H, van Eenennaam H, Rutjes SA, Pruijn GJ, van Venrooij WJ. RNA-protein interactions in the human RNase MRP ribonucleoprotein complex. RNA (NEW YORK, N.Y.) 1999; 5:512-524. [PMID: 10199568 PMCID: PMC1369778 DOI: 10.1017/s1355838299982079] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The eukaryotic nucleolus contains a large number of small RNA molecules that, in the form of small nucleolar ribonucleoprotein complexes (snoRNPs), are involved in the processing and modification of pre-rRNA. One of the snoRNPs that has been shown to possess enzymatic activity is the RNase MRP. RNase MRP is an endoribonuclease involved in the formation of the 5' end of 5.8S rRNA. In this study the association of the hPop1 protein with the RNase MRP complex was investigated. The hPop1 protein seems not to be directly bound to the RNA component, but requires nt 1-86 and 116-176 of the MRP RNA to associate with the RNase MRP complex via protein-protein interactions. UV crosslinking followed by ribonuclease treatment and immunoprecipitation with anti-Th/To antibodies revealed three human proteins of about 20, 25, and 40 kDa that can associate with the RNase MRP complex. The 20- and 25-kDa proteins appear to bind to stem-loop I of the MRP RNA whereas the 40-kDa protein requires the central part of the MRP RNA (nt 86-176) for association with the RNase MRP complex. In addition, we show that the human RNase P proteins Rpp30 and Rpp38 are also associated with the RNase MRP complex. Expression of Vesicular Stomatitis Virus- (VSV) tagged versions of these proteins in HeLa cells followed by anti-VSV immunoprecipitation resulted in coprecipitation of both RNase P and RNase MRP complexes. Furthermore, UV crosslinking followed by anti-Th/To and anti-Rpp38 immunoprecipitation revealed that the 40-kDa protein we detected in UV crosslinking is probably identical to Rpp38.
Collapse
Affiliation(s)
- H Pluk
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
187
|
Jarrous N, Eder PS, Wesolowski D, Altman S. Rpp14 and Rpp29, two protein subunits of human ribonuclease P. RNA (NEW YORK, N.Y.) 1999; 5:153-157. [PMID: 10024167 PMCID: PMC1369747 DOI: 10.1017/s135583829800185x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In HeLa cells, the tRNA processing enzyme ribonuclease P (RNase P) consists of an RNA molecule associated with at least eight protein subunits, hPop1, Rpp14, Rpp20, Rpp25, Rpp29, Rpp30, Rpp38, and Rpp40. Five of these proteins (hPop1p, Rpp20, Rpp30, Rpp38, and Rpp40) have been partially characterized. Here we report on the cDNA cloning and immunobiochemical analysis of Rpp14 and Rpp29. Polyclonal rabbit antibodies raised against recombinant Rpp14 and Rpp29 recognize their corresponding antigens in HeLa cells and precipitate catalytically active RNase P. Rpp29 shows 23% identity with Pop4p, a subunit of yeast nuclear RNase P and the ribosomal RNA processing enzyme RNase MRP. Rpp14, by contrast, exhibits no significant homology to any known yeast gene. Thus, human RNase P differs in the details of its protein composition, and perhaps in the functions of some of these proteins, from the yeast enzyme.
Collapse
Affiliation(s)
- N Jarrous
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
188
|
Affiliation(s)
- S L Wolin
- Departments of Cell Biology and Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536-0812,
| | | |
Collapse
|
189
|
Lafontaine DL, Tollervey D. Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends Biochem Sci 1998; 23:383-8. [PMID: 9810226 DOI: 10.1016/s0968-0004(98)01260-2] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteria and eukaryotes adopt very different strategies to modify their rRNAs. Most sites of eukaryotic rRNA modification are selected by guide small nucleolar RNAs (snoRNAs), while bacteria rely on numerous site-specific modification enzymes. This raises a 'chicken and egg' dilemma: how could a system of modification that requires a large number of snoRNA cofactors have developed? Did it arise in a de novo fashion, or evolve from a pre-existing protein-based system? The rRNA sequences are well conserved in evolution, but the pattern of modification is only moderately conserved, and many more sites are modified in eukaryotes than in bacteria; why is this so? We propose a model for the origins of the modification-guide snoRNAs that attempts to answer these questions.
Collapse
Affiliation(s)
- D L Lafontaine
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | |
Collapse
|
190
|
Bertrand E, Houser-Scott F, Kendall A, Singer RH, Engelke DR. Nucleolar localization of early tRNA processing. Genes Dev 1998; 12:2463-8. [PMID: 9716399 PMCID: PMC317091 DOI: 10.1101/gad.12.16.2463] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/1998] [Accepted: 06/23/1998] [Indexed: 11/24/2022]
Abstract
There is little information as to the location of early tRNA biosynthesis. Using fluorescent in situ hybridization in the budding yeast, Saccharomyces cerevisiae, examples of nuclear pre-tRNAs are shown to reside primarily in the nucleoli. We also probed the RNA subunit of RNase P. The majority of the signal from RNase P probes was nucleolar, with less intense signals in the nucleoplasm. These results demonstrate that a major portion of the tRNA processing pathway is compartmentalized in nucleoli with rRNA synthesis and ribosomal assembly. The spatial juxtaposition suggests the possibility of direct coordination between tRNA and ribosome biosynthesis.
Collapse
Affiliation(s)
- E Bertrand
- Institut de Genetique Moleculaire de Montpellier-Centre National de la Recherche Scientifique (CNRS), 34033 Montpellier Cedex 01, France
| | | | | | | | | |
Collapse
|