151
|
ATR Signaling Uncouples the Role of RAD51 Paralogs in Homologous Recombination and Replication Stress Response. Cell Rep 2019; 29:551-559.e4. [DOI: 10.1016/j.celrep.2019.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/31/2019] [Accepted: 09/04/2019] [Indexed: 01/09/2023] Open
|
152
|
Hustedt N, Álvarez-Quilón A, McEwan A, Yuan JY, Cho T, Koob L, Hart T, Durocher D. A consensus set of genetic vulnerabilities to ATR inhibition. Open Biol 2019; 9:190156. [PMID: 31506018 PMCID: PMC6769295 DOI: 10.1098/rsob.190156] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
The response to DNA replication stress in eukaryotes is under the control of the ataxia-telangiectasia and Rad3-related (ATR) kinase. ATR responds to single-stranded (ss) DNA to stabilize distressed DNA replication forks, modulate DNA replication firing and prevent cells with damaged DNA or incomplete DNA replication from entering into mitosis. Furthermore, inhibitors of ATR are currently in clinical development either as monotherapies or in combination with agents that perturb DNA replication. To gain a genetic view of the cellular pathways requiring ATR kinase function, we mapped genes whose mutation causes hypersensitivity to ATR inhibitors with genome-scale CRISPR/Cas9 screens. We delineate a consensus set of 117 genes enriched in DNA replication, DNA repair and cell cycle regulators that promote survival when ATR kinase activity is suppressed. We validate 14 genes from this set and report genes not previously described to modulate response to ATR inhibitors. In particular we found that the loss of the POLE3/POLE4 proteins, which are DNA polymerase ε accessory subunits, results in marked hypersensitivity to ATR inhibition. We anticipate that this 117-gene set will be useful for the identification of genes involved in the regulation of genome integrity and the characterization of new biological processes involving ATR, and may reveal biomarkers of ATR inhibitor response in the clinic.
Collapse
Affiliation(s)
- Nicole Hustedt
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, CanadaM5G 1X5
| | - Alejandro Álvarez-Quilón
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, CanadaM5G 1X5
| | - Andrea McEwan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, CanadaM5G 1X5
| | - Jing Yi Yuan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, CanadaM5G 1X5
| | - Tiffany Cho
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, CanadaM5G 1X5
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, CanadaM5S 1A8
| | - Lisa Koob
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, CanadaM5G 1X5
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, CanadaM5G 1X5
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, CanadaM5S 1A8
| |
Collapse
|
153
|
Mason JM, Chan YL, Weichselbaum RW, Bishop DK. Non-enzymatic roles of human RAD51 at stalled replication forks. Nat Commun 2019; 10:4410. [PMID: 31562309 PMCID: PMC6764946 DOI: 10.1038/s41467-019-12297-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/22/2019] [Indexed: 01/24/2023] Open
Abstract
The central recombination enzyme RAD51 has been implicated in replication fork processing and restart in response to replication stress. Here, we use a separation-of-function allele of RAD51 that retains DNA binding, but not D-loop activity, to reveal mechanistic aspects of RAD51’s roles in the response to replication stress. Here, we find that cells lacking RAD51’s enzymatic activity protect replication forks from MRE11-dependent degradation, as expected from previous studies. Unexpectedly, we find that RAD51’s strand exchange activity is not required to convert stalled forks to a form that can be degraded by DNA2. Such conversion was shown previously to require replication fork regression, supporting a model in which fork regression depends on a non-enzymatic function of RAD51. We also show RAD51 promotes replication restart by both strand exchange-dependent and strand exchange-independent mechanisms. RAD51 has been implicated in replication fork processing and restart in response to replication stress. Here, authors reveal mechanistic aspects of non-enzymatic roles of RAD51 for fork reversal and cooperation with FBH1.
Collapse
Affiliation(s)
- Jennifer M Mason
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA. .,Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA. .,Center for Human Genetics, Clemson University, Clemson, SC, USA.
| | - Yuen-Ling Chan
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Ralph W Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Douglas K Bishop
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA. .,Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
154
|
Lanz MC, Dibitetto D, Smolka MB. DNA damage kinase signaling: checkpoint and repair at 30 years. EMBO J 2019; 38:e101801. [PMID: 31393028 PMCID: PMC6745504 DOI: 10.15252/embj.2019101801] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/03/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022] Open
Abstract
From bacteria to mammalian cells, damaged DNA is sensed and targeted by DNA repair pathways. In eukaryotes, kinases play a central role in coordinating the DNA damage response. DNA damage signaling kinases were identified over two decades ago and linked to the cell cycle checkpoint concept proposed by Weinert and Hartwell in 1988. Connections between the DNA damage signaling kinases and DNA repair were scant at first, and the initial perception was that the importance of these kinases for genome integrity was largely an indirect effect of their roles in checkpoints, DNA replication, and transcription. As more substrates of DNA damage signaling kinases were identified, it became clear that they directly regulate a wide range of DNA repair factors. Here, we review our current understanding of DNA damage signaling kinases, delineating the key substrates in budding yeast and humans. We trace the progress of the field in the last 30 years and discuss our current understanding of the major substrate regulatory mechanisms involved in checkpoint responses and DNA repair.
Collapse
Affiliation(s)
- Michael Charles Lanz
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Diego Dibitetto
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Marcus Bustamante Smolka
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| |
Collapse
|
155
|
Matsuno Y, Atsumi Y, Shimizu A, Katayama K, Fujimori H, Hyodo M, Minakawa Y, Nakatsu Y, Kaneko S, Hamamoto R, Shimamura T, Miyano S, Tsuzuki T, Hanaoka F, Yoshioka KI. Replication stress triggers microsatellite destabilization and hypermutation leading to clonal expansion in vitro. Nat Commun 2019; 10:3925. [PMID: 31477700 PMCID: PMC6718401 DOI: 10.1038/s41467-019-11760-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Mismatch repair (MMR)-deficient cancers are characterized by microsatellite instability (MSI) and hypermutation. However, it remains unclear how MSI and hypermutation arise and contribute to cancer development. Here, we show that MSI and hypermutation are triggered by replication stress in an MMR-deficient background, enabling clonal expansion of cells harboring ARF/p53-module mutations and cells that are resistant to the anti-cancer drug camptothecin. While replication stress-associated DNA double-strand breaks (DSBs) caused chromosomal instability (CIN) in an MMR-proficient background, they induced MSI with concomitant suppression of CIN via a PARP-mediated repair pathway in an MMR-deficient background. This was associated with the induction of mutations, including cancer-driver mutations in the ARF/p53 module, via chromosomal deletions and base substitutions. Immortalization of MMR-deficient mouse embryonic fibroblasts (MEFs) in association with ARF/p53-module mutations was ~60-fold more efficient than that of wild-type MEFs. Thus, replication stress-triggered MSI and hypermutation efficiently lead to clonal expansion of cells with abrogated defense systems. Mismatch repair (MMR)-deficient cancers are characterized by microsatellite instability (MSI) and hypermutation. Here authors reveal a mechanism by which replication stress induces MSI and associated induction of mutations in vitro.
Collapse
Affiliation(s)
- Yusuke Matsuno
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuko Atsumi
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Atsuhiro Shimizu
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kotoe Katayama
- Human Genome Center, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Haruka Fujimori
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Mai Hyodo
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Yusuke Minakawa
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Yoshimichi Nakatsu
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Syuzo Kaneko
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Chuo-ku, Tokyo, 103-0027, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, Tsurumai-cho, Syouwa-ku, Nagoya, 466-8550, Japan
| | - Satoru Miyano
- Human Genome Center, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Teruhisa Tsuzuki
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Fumio Hanaoka
- Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo, 171-8588, Japan.,National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Ken-Ichi Yoshioka
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
156
|
Byrum AK, Vindigni A, Mosammaparast N. Defining and Modulating 'BRCAness'. Trends Cell Biol 2019; 29:740-751. [PMID: 31362850 DOI: 10.1016/j.tcb.2019.06.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 02/08/2023]
Abstract
The concept of 'BRCAness' defines the pathogenesis and vulnerability of multiple cancers. The canonical definition of BRCAness is a defect in homologous recombination repair, mimicking BRCA1 or BRCA2 loss. In turn, BRCA-deficient cells utilize error-prone DNA-repair pathways, causing increased genomic instability, which may be responsible for their sensitivity to DNA damaging agents and poly-(ADP)-ribose polymerase inhibitors (PARPis). However, recent work has expanded the mechanistic basis of BRCAness, to include defects in replication fork protection (RFP). Here, we broaden the definition of BRCAness to include RFP and regulatory mechanisms that cause synthetic lethality with PARPis. We highlight these recent discoveries, which include mechanisms of RFP regulation, DNA damage checkpoint proteins, as well as kinases that regulate BRCA1/2 function. Importantly, many of these emerging mechanisms may be targeted for inhibition with small molecule inhibitors, thus inducing BRCAness in a much larger subset of BRCA-proficient tumors, with significant translational potential.
Collapse
Affiliation(s)
- Andrea K Byrum
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
157
|
Erber J, Steiner JD, Isensee J, Lobbes LA, Toschka A, Beleggia F, Schmitt A, Kaiser RWJ, Siedek F, Persigehl T, Hucho T, Reinhardt HC. Dual Inhibition of GLUT1 and the ATR/CHK1 Kinase Axis Displays Synergistic Cytotoxicity in KRAS-Mutant Cancer Cells. Cancer Res 2019; 79:4855-4868. [PMID: 31405847 DOI: 10.1158/0008-5472.can-18-3959] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/18/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022]
Abstract
The advent of molecularly targeted therapeutic agents has opened a new era in cancer therapy. However, many tumors rely on nondruggable cancer-driving lesions. In addition, long-lasting clinical benefits from single-agent therapies rarely occur, as most of the tumors acquire resistance over time. The identification of targeted combination regimens interfering with signaling through oncogenically rewired pathways provides a promising approach to enhance efficacy of single-agent-targeted treatments. Moreover, combination drug therapies might overcome the emergence of drug resistance. Here, we performed a focused flow cytometry-based drug synergy screen and identified a novel synergistic interaction between GLUT1-mediated glucose transport and the cell-cycle checkpoint kinases ATR and CHK1. Combined inhibition of CHK1/GLUT1 or ATR/GLUT1 robustly induced apoptosis, particularly in RAS-mutant cancer cells. Mechanistically, combined inhibition of ATR/CHK1 and GLUT1 arrested sensitive cells in S-phase and led to the accumulation of genotoxic damage, particularly in S-phase. In vivo, simultaneous inhibition of ATR and GLUT1 significantly reduced tumor volume gain in an autochthonous mouse model of KrasG12D -driven soft tissue sarcoma. Taken together, these findings pave the way for combined inhibition of GLUT1 and ATR/CHK1 as a therapeutic approach for KRAS-driven cancers. SIGNIFICANCE: Dual targeting of the DNA damage response and glucose transport synergistically induces apoptosis in KRAS-mutant cancer, suggesting this combination treatment for clinical validation in KRAS-stratified tumor patients.
Collapse
Affiliation(s)
- Johanna Erber
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Dusseldorf, Center for Molecular Medicine Cologne, CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Joachim D Steiner
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Dusseldorf, Center for Molecular Medicine Cologne, CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jörg Isensee
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Leonard A Lobbes
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Dusseldorf, Center for Molecular Medicine Cologne, CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - André Toschka
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Dusseldorf, Center for Molecular Medicine Cologne, CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Filippo Beleggia
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Dusseldorf, Center for Molecular Medicine Cologne, CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna Schmitt
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Dusseldorf, Center for Molecular Medicine Cologne, CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Rainer W J Kaiser
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Florian Siedek
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thorsten Persigehl
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Tim Hucho
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hans C Reinhardt
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Dusseldorf, Center for Molecular Medicine Cologne, CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
158
|
Nieminuszczy J, Broderick R, Bellani MA, Smethurst E, Schwab RA, Cherdyntseva V, Evmorfopoulou T, Lin YL, Minczuk M, Pasero P, Gagos S, Seidman MM, Niedzwiedz W. EXD2 Protects Stressed Replication Forks and Is Required for Cell Viability in the Absence of BRCA1/2. Mol Cell 2019; 75:605-619.e6. [PMID: 31255466 PMCID: PMC6695479 DOI: 10.1016/j.molcel.2019.05.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/15/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022]
Abstract
Accurate DNA replication is essential to preserve genomic integrity and prevent chromosomal instability-associated diseases including cancer. Key to this process is the cells' ability to stabilize and restart stalled replication forks. Here, we show that the EXD2 nuclease is essential to this process. EXD2 recruitment to stressed forks suppresses their degradation by restraining excessive fork regression. Accordingly, EXD2 deficiency leads to fork collapse, hypersensitivity to replication inhibitors, and genomic instability. Impeding fork regression by inactivation of SMARCAL1 or removal of RECQ1's inhibition in EXD2-/- cells restores efficient fork restart and genome stability. Moreover, purified EXD2 efficiently processes substrates mimicking regressed forks. Thus, this work identifies a mechanism underpinned by EXD2's nuclease activity, by which cells balance fork regression with fork restoration to maintain genome stability. Interestingly, from a clinical perspective, we discover that EXD2's depletion is synthetic lethal with mutations in BRCA1/2, implying a non-redundant role in replication fork protection.
Collapse
Affiliation(s)
| | | | - Marina A Bellani
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | | | | | - Veronica Cherdyntseva
- Laboratory of Genetics, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Theodora Evmorfopoulou
- Laboratory of Genetics, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Yea-Lih Lin
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Sarantis Gagos
- Laboratory of Genetics, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | | |
Collapse
|
159
|
Kang HJ, Park H, Yoo EJ, Lee JH, Choi SY, Lee-Kwon W, Lee KY, Hur JH, Seo JK, Ra JS, Lee EA, Myung K, Kwon HM. TonEBP Regulates PCNA Polyubiquitination in Response to DNA Damage through Interaction with SHPRH and USP1. iScience 2019; 19:177-190. [PMID: 31376680 PMCID: PMC6677787 DOI: 10.1016/j.isci.2019.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/13/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022] Open
Abstract
Polyubiquitination of proliferating cell nuclear antigen (PCNA) regulates the error-free template-switching mechanism for the bypass of DNA lesions during DNA replication. PCNA polyubiquitination is critical for the maintenance of genomic integrity; however, the underlying mechanism is poorly understood. Here, we demonstrate that tonicity-responsive enhancer-binding protein (TonEBP) regulates PCNA polyubiquitination in response to DNA damage. TonEBP was recruited to DNA damage sites with bulky adducts and sequentially recruited E3 ubiquitin ligase SHPRH, followed by deubiquitinase USP1, to DNA damage sites, in correlation with the dynamics of PCNA polyubiquitination. Similarly, TonEBP was found to be required for replication fork protection in response to DNA damage. The Rel-homology domain of TonEBP, which encircles DNA, was essential for the interaction with SHPRH and USP1, PCNA polyubiquitination, and cell survival after DNA damage. The present findings suggest that TonEBP is an upstream regulator of PCNA polyubiquitination and of the DNA damage bypass pathway.
Collapse
Affiliation(s)
- Hyun Je Kang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hyun Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Eun Jin Yoo
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jun Ho Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Soo Youn Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Whaseon Lee-Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kyoo-Young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Jin-Hoe Hur
- UNIST-Optical Biomed Imaging Center (UOBC), Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Eun-A Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea.
| | - Hyug Moo Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
160
|
Abstract
Mechanisms that limit origin firing are essential as the ˜50,000 origins that replicate the human genome in unperturbed cells are chosen from an excess of ˜500,000 licensed origins. Computational models of the spatiotemporal pattern of replication foci assume that origins fire stochastically with a domino-like progression that places later firing origins near recent fired origins. These stochastic models of origin firing require dormant origin signaling that inhibits origin firing and suppresses licensed origins for passive replication at a distance of ∼7-120 kbp around replication forks. ATR and CHK1 kinase inhibitors increase origin firing and increase origin density in unperturbed cells. Thus, basal ATR and CHK1 kinase-dependent dormant origin signaling inhibits origin firing and there appear to be two thresholds of ATR kinase signaling. A minority of ATR molecules are activated for ATR and CHK1 kinase-dependent dormant origin signaling and this is essential for DNA replication in unperturbed cells. A majority of ATR molecules are activated for ATR and CHK1 kinase-dependent checkpoint signaling in cells treated with DNA damaging agents that target replication forks. Since ATR and CHK1 kinase inhibitors increase origin firing and this is associated with fork stalling and extensive regions of single-stranded DNA, they are DNA damaging agents. Accordingly, the sequence of administration of ATR and CHK1 kinase inhibitors and DNA damaging agents may impact the DNA damage induced by the combination and the efficacy of cell killing by the combination.
Collapse
Affiliation(s)
- Tatiana N Moiseeva
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863, United States.
| | - Christopher J Bakkenist
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863, United States.
| |
Collapse
|
161
|
Merchut-Maya JM, Bartek J, Maya-Mendoza A. Regulation of replication fork speed: Mechanisms and impact on genomic stability. DNA Repair (Amst) 2019; 81:102654. [PMID: 31320249 DOI: 10.1016/j.dnarep.2019.102654] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Replication of DNA is a fundamental biological process that ensures precise duplication of the genome and thus safeguards inheritance. Any errors occurring during this process must be repaired before the cell divides, by activating the DNA damage response (DDR) machinery that detects and corrects the DNA lesions. Consistent with its significance, DNA replication is under stringent control, both spatial and temporal. Defined regions of the genome are replicated at specific times during S phase and the speed of replication fork progression is adjusted to fully replicate DNA in pace with the cell cycle. Insults that impair DNA replication cause replication stress (RS), which can lead to genomic instability and, potentially, to cell transformation. In this perspective, we review the current concept of replication stress, including the recent findings on the effects of accelerated fork speed and their impact on genomic (in)stability. We discuss in detail the Fork Speed Regulatory Network (FSRN), an integrated molecular machinery that regulates the velocity of DNA replication forks. Finally, we explore the potential for targeting FSRN components as an avenue to treat cancer.
Collapse
Affiliation(s)
- Joanna Maria Merchut-Maya
- DNA Replication and Cancer Group, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.
| | - Apolinar Maya-Mendoza
- DNA Replication and Cancer Group, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.
| |
Collapse
|
162
|
Replication fork stalling elicits chromatin compaction for the stability of stalling replication forks. Proc Natl Acad Sci U S A 2019; 116:14563-14572. [PMID: 31262821 DOI: 10.1073/pnas.1821475116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA replication forks in eukaryotic cells stall at a variety of replication barriers. Stalling forks require strict cellular regulations to prevent fork collapse. However, the mechanism underlying these cellular regulations is poorly understood. In this study, a cellular mechanism was uncovered that regulates chromatin structures to stabilize stalling forks. When replication forks stall, H2BK33, a newly identified acetylation site, is deacetylated and H3K9 trimethylated in the nucleosomes surrounding stalling forks, which results in chromatin compaction around forks. Acetylation-mimic H2BK33Q and its deacetylase clr6-1 mutations compromise this fork stalling-induced chromatin compaction, cause physical separation of replicative helicase and DNA polymerases, and significantly increase the frequency of stalling fork collapse. Furthermore, this fork stalling-induced H2BK33 deacetylation is independent of checkpoint. In summary, these results suggest that eukaryotic cells have developed a cellular mechanism that stabilizes stalling forks by targeting nucleosomes and inducing chromatin compaction around stalling forks. This mechanism is named the "Chromsfork" control: Chromatin Compaction Stabilizes Stalling Replication Forks.
Collapse
|
163
|
Peng J, Tang L, Cai M, Chen H, Wong J, Zhang P. RECQL5 plays an essential role in maintaining genome stability and viability of triple-negative breast cancer cells. Cancer Med 2019; 8:4743-4752. [PMID: 31231988 PMCID: PMC6712443 DOI: 10.1002/cam4.2349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022] Open
Abstract
Triple‐negative breast cancer (TNBC) is a malignancy that currently lacks targeted therapies. The majority of TNBCs can be characterized as basal‐like and has an expression profile enriched with genes involved in DNA damage repair and checkpoint response. Here, we report that TNBC cells are under replication stress and are constantly generating DNA double‐strand breaks, which is not seen in non‐TNBC cells. Consequently, we found that RECQL5, which encodes a RecQ family DNA helicase involved in many aspects of DNA metabolism including replication and repair, was essential for TNBC cells to survive and proliferate in vitro and in vivo. Compromising RECQL5 function in TNBC cells results in persistence of DNA damage, G2 arrest, and ultimately, cessation of proliferation. Our results suggest RECQL5 may be a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Jin Peng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.,State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Lichun Tang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Mengjiao Cai
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University Medical College, Xi'an, China
| | - Huan Chen
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Pumin Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
164
|
An ATR and CHK1 kinase signaling mechanism that limits origin firing during unperturbed DNA replication. Proc Natl Acad Sci U S A 2019; 116:13374-13383. [PMID: 31209037 PMCID: PMC6613105 DOI: 10.1073/pnas.1903418116] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The 50,000 origins that replicate the human genome are selected from an excess of licensed origins. Firing licensed origins that would otherwise be passively replicated is a simple mechanism to recover DNA replication between stalled replication forks. This plasticity in origin use promotes genome stability if an unknown mechanism prevents a subset of origins from firing during unperturbed DNA replication. We describe ATR and CHK1 kinase signaling that suppresses a CDK1 kinase-dependent phosphorylation on the chromatin protein RIF1. The CDK1 kinase-dependent phosphorylation of RIF1 disrupts its interaction with PP1 phosphatase. Thus, ATR and CHK1 stabilize an interaction between RIF1 and PP1 that counteracts CDC7 and CDK2 kinase signaling at licensed origins. This mechanism limits origin firing during unperturbed DNA replication. DNA damage-induced signaling by ATR and CHK1 inhibits DNA replication, stabilizes stalled and collapsed replication forks, and mediates the repair of multiple classes of DNA lesions. We and others have shown that ATR kinase inhibitors, three of which are currently undergoing clinical trials, induce excessive origin firing during unperturbed DNA replication, indicating that ATR kinase activity limits replication initiation in the absence of damage. However, the origins impacted and the underlying mechanism(s) have not been described. Here, we show that unperturbed DNA replication is associated with a low level of ATR and CHK1 kinase signaling and that inhibition of this signaling induces dormant origin firing at sites of ongoing replication throughout the S phase. We show that ATR and CHK1 kinase inhibitors induce RIF1 Ser2205 phosphorylation in a CDK1-dependent manner, which disrupts an interaction between RIF1 and PP1 phosphatase. Thus, ATR and CHK1 signaling suppresses CDK1 kinase activity throughout the S phase and stabilizes an interaction between RIF1 and PP1 in replicating cells. PP1 dephosphorylates key CDC7 and CDK2 kinase substrates to inhibit the assembly and activation of the replicative helicase. This mechanism limits origin firing during unperturbed DNA replication in human cells.
Collapse
|
165
|
Adenovirus E1B 55-Kilodalton Protein Targets SMARCAL1 for Degradation during Infection and Modulates Cellular DNA Replication. J Virol 2019; 93:JVI.00402-19. [PMID: 30996091 DOI: 10.1128/jvi.00402-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
Abstract
Here, we show that the cellular DNA replication protein and ATR substrate SMARCAL1 is recruited to viral replication centers early during adenovirus infection and is then targeted in an E1B-55K/E4orf6- and cullin RING ligase-dependent manner for proteasomal degradation. In this regard, we have determined that SMARCAL1 is phosphorylated at S123, S129, and S173 early during infection in an ATR- and CDK-dependent manner, and that pharmacological inhibition of ATR and CDK activities attenuates SMARCAL1 degradation. SMARCAL1 recruitment to viral replication centers was shown to be largely dependent upon SMARCAL1 association with the RPA complex, while Ad-induced SMARCAL1 phosphorylation also contributed to SMARCAL1 recruitment to viral replication centers, albeit to a limited extent. SMARCAL1 was found associated with E1B-55K in adenovirus E1-transformed cells. Consistent with its ability to target SMARCAL1, we determined that E1B-55K modulates cellular DNA replication. As such, E1B-55K expression initially enhances cellular DNA replication fork speed but ultimately leads to increased replication fork stalling and the attenuation of cellular DNA replication. Therefore, we propose that adenovirus targets SMARCAL1 for degradation during infection to inhibit cellular DNA replication and promote viral replication.IMPORTANCE Viruses have evolved to inhibit cellular DNA damage response pathways that possess antiviral activities and utilize DNA damage response pathways that possess proviral activities. Adenovirus has evolved, primarily, to inhibit DNA damage response pathways by engaging with the ubiquitin-proteasome system and promoting the degradation of key cellular proteins. Adenovirus differentially regulates ATR DNA damage response signaling pathways during infection. The cellular adenovirus E1B-55K binding protein E1B-AP5 participates in ATR signaling pathways activated during infection, while adenovirus 12 E4orf6 negates Chk1 activation by promoting the proteasome-dependent degradation of the ATR activator TOPBP1. The studies detailed here indicate that adenovirus utilizes ATR kinase and CDKs during infection to promote the degradation of SMARCAL1 to attenuate normal cellular DNA replication. These studies further our understanding of the relationship between adenovirus and DNA damage and cell cycle signaling pathways during infection and establish new roles for E1B-55K in the modulation of cellular DNA replication.
Collapse
|
166
|
Young LA, O'Connor LO, de Renty C, Veldman-Jones MH, Dorval T, Wilson Z, Jones DR, Lawson D, Odedra R, Maya-Mendoza A, Reimer C, Bartek J, Lau A, O'Connor MJ. Differential Activity of ATR and WEE1 Inhibitors in a Highly Sensitive Subpopulation of DLBCL Linked to Replication Stress. Cancer Res 2019; 79:3762-3775. [DOI: 10.1158/0008-5472.can-18-2480] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/23/2018] [Accepted: 05/20/2019] [Indexed: 11/16/2022]
|
167
|
Chen BR, Quinet A, Byrum AK, Jackson J, Berti M, Thangavel S, Bredemeyer AL, Hindi I, Mosammaparast N, Tyler JK, Vindigni A, Sleckman BP. XLF and H2AX function in series to promote replication fork stability. J Cell Biol 2019; 218:2113-2123. [PMID: 31123184 PMCID: PMC6605786 DOI: 10.1083/jcb.201808134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 04/03/2019] [Accepted: 05/03/2019] [Indexed: 12/21/2022] Open
Abstract
Chen et al. show that XLF functions to limit fork reversal during DNA replication. H2AX prevents MRE11-dependent replication stress in XLF-deficient cells, suggesting that H2AX prevents the resection of regressed arms at reversed forks. XRCC4-like factor (XLF) is a non-homologous end joining (NHEJ) DNA double strand break repair protein. However, XLF deficiency leads to phenotypes in mice and humans that are not necessarily consistent with an isolated defect in NHEJ. Here we show that XLF functions during DNA replication. XLF undergoes cell division cycle 7–dependent phosphorylation; associates with the replication factor C complex, a critical component of the replisome; and is found at replication forks. XLF deficiency leads to defects in replication fork progression and an increase in fork reversal. The additional loss of H2AX, which protects DNA ends from resection, leads to a requirement for ATR to prevent an MRE11-dependent loss of newly synthesized DNA and activation of DNA damage response. Moreover, H2ax−/−:Xlf−/− cells exhibit a marked dependence on the ATR kinase for survival. We propose that XLF and H2AX function in series to prevent replication stress induced by the MRE11-dependent resection of regressed arms at reversed replication forks.
Collapse
Affiliation(s)
- Bo-Ruei Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Annabel Quinet
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Andrea K Byrum
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Jessica Jackson
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Matteo Berti
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Saravanabhavan Thangavel
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Andrea L Bredemeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Issa Hindi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Alessandro Vindigni
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Barry P Sleckman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
168
|
Rickman K, Smogorzewska A. Advances in understanding DNA processing and protection at stalled replication forks. J Cell Biol 2019; 218:1096-1107. [PMID: 30670471 PMCID: PMC6446843 DOI: 10.1083/jcb.201809012] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 11/22/2022] Open
Abstract
The replisome, the molecular machine dedicated to copying DNA, encounters a variety of obstacles during S phase. Without a proper response to this replication stress, the genome becomes unstable, leading to disease, including cancer. The immediate response is localized to the stalled replisome and includes protection of the nascent DNA. A number of recent studies have provided insight into the factors recruited to and responsible for protecting stalled replication forks. In response to replication stress, the SNF2 family of DNA translocases has emerged as being responsible for remodeling replication forks in vivo. The protection of stalled replication forks requires the cooperation of RAD51, BRCA1, BRCA2, and many other DNA damage response proteins. In the absence of these fork protection factors, fork remodeling renders them vulnerable to degradation by nucleases and helicases, ultimately compromising genome integrity. In this review, we focus on the recent progress in understanding the protection, processing, and remodeling of stalled replication forks in mammalian cells.
Collapse
Affiliation(s)
- Kimberly Rickman
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY
| |
Collapse
|
169
|
Rad52 prevents excessive replication fork reversal and protects from nascent strand degradation. Nat Commun 2019; 10:1412. [PMID: 30926821 PMCID: PMC6441034 DOI: 10.1038/s41467-019-09196-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 02/26/2019] [Indexed: 01/02/2023] Open
Abstract
Stabilisation of stalled replication forks prevents excessive fork reversal and their pathological degradation, which can undermine genome integrity. Here we investigate a physiological role of RAD52 at stalled replication forks by using human cell models depleted of RAD52, a specific small-molecule inhibitor of the RAD52-ssDNA interaction, in vitro and single-molecule analyses. We demonstrate that RAD52 prevents excessive degradation of reversed replication forks by MRE11. Mechanistically, RAD52 binds to the stalled replication fork, promotes its occlusion and counteracts loading of SMARCAL1 in vitro and in vivo. Loss of the RAD52 function results in a slightly-defective replication restart, persistence of under-replicated regions and chromosome instability. Moreover, the RAD52-inhibited cells rely on RAD51 for completion of replication and viability upon replication arrest. Collectively, our data suggest an unexpected gatekeeper mechanism by which RAD52 limits excessive remodelling of stalled replication forks, thus indirectly assisting RAD51 and BRCA2 in protecting forks from unscheduled degradation and preventing genome instability. Stabilisation of stalled replication forks prevents excessive fork reversal and genome instability. Here authors reveal a RAD52-dependent replication fork protection mechanism.
Collapse
|
170
|
Falquet B, Rass U. Structure-Specific Endonucleases and the Resolution of Chromosome Underreplication. Genes (Basel) 2019; 10:E232. [PMID: 30893921 PMCID: PMC6470701 DOI: 10.3390/genes10030232] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Complete genome duplication in every cell cycle is fundamental for genome stability and cell survival. However, chromosome replication is frequently challenged by obstacles that impede DNA replication fork (RF) progression, which subsequently causes replication stress (RS). Cells have evolved pathways of RF protection and restart that mitigate the consequences of RS and promote the completion of DNA synthesis prior to mitotic chromosome segregation. If there is entry into mitosis with underreplicated chromosomes, this results in sister-chromatid entanglements, chromosome breakage and rearrangements and aneuploidy in daughter cells. Here, we focus on the resolution of persistent replication intermediates by the structure-specific endonucleases (SSEs) MUS81, SLX1-SLX4 and GEN1. Their actions and a recently discovered pathway of mitotic DNA repair synthesis have emerged as important facilitators of replication completion and sister chromatid detachment in mitosis. As RS is induced by oncogene activation and is a common feature of cancer cells, any advances in our understanding of the molecular mechanisms related to chromosome underreplication have important biomedical implications.
Collapse
Affiliation(s)
- Benoît Falquet
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
- Faculty of Natural Sciences, University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland.
| | - Ulrich Rass
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
171
|
Aning OA, Cheok CF. Drugging in the absence of p53. J Mol Cell Biol 2019; 11:255-264. [PMID: 30865230 PMCID: PMC6478123 DOI: 10.1093/jmcb/mjz012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 01/01/2023] Open
Abstract
Inactivation of the p53 gene is a key driver of tumorigenesis in various cancer cohorts and types. The quest for a successful p53-based therapy that holds the promise of treating more than half of the cancer population has culminated in extensive knowledge about the role and function of p53 and led to new proposed innovative strategies against p53-defective cancers. We will discuss some of these latest studies with a focus on metabolic regulation and DNA damage response and also highlight novel functions of p53 in these pathways that may provide a contemporary rationale for targeting p53 loss in tumors.
Collapse
Affiliation(s)
| | - Chit Fang Cheok
- Institute of Molecular and Cell Biology, A*STAR, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
172
|
Turchick A, Liu Y, Zhao W, Cohen I, Glazer PM. Synthetic lethality of a cell-penetrating anti-RAD51 antibody in PTEN-deficient melanoma and glioma cells. Oncotarget 2019; 10:1272-1283. [PMID: 30863489 PMCID: PMC6407680 DOI: 10.18632/oncotarget.26654] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022] Open
Abstract
PTEN is a tumor suppressor that is highly mutated in a variety of human cancers. Recent studies have suggested a link between PTEN loss and deficiency in the non-homologous end-joining (NHEJ) pathway of DNA double strand break (DSB) repair. As a means to achieve synthetic lethality in this context, we tested the effect of 3E10, a cell-penetrating autoantibody that inhibits RAD51, a key factor in the alternative pathway of DSB repair, homology dependent repair (HDR). We report here that treatment of PTEN-deficient glioma cells with 3E10 leads to an accumulation of DNA damage causing decreased proliferation and increased cell death compared to isogenic PTEN proficient controls. Similarly, 3E10 was synthetically lethal to a series of PTEN-deficient, patient-derived primary melanoma cell populations. Further, 3E10 was found to synergize with a small molecule inhibitor of the ataxia telangiectasia and Rad3-related (ATR) protein, a DNA damage checkpoint kinase, in both PTEN-deficient glioma cells and primary melanoma cells. These results point to a targeted synthetic lethal strategy to treat PTEN-deficient cancers through a combination designed to disrupt both DNA repair and DNA damage checkpoint signaling.
Collapse
Affiliation(s)
- Audrey Turchick
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Weixi Zhao
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Inessa Cohen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Peter M. Glazer
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
173
|
Zhang T, Zhang Z, Shengzhao G, Li X, Liu H, Zhao Y. Strand break-induced replication fork collapse leads to C-circles, C-overhangs and telomeric recombination. PLoS Genet 2019; 15:e1007925. [PMID: 30716077 PMCID: PMC6382176 DOI: 10.1371/journal.pgen.1007925] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/20/2019] [Accepted: 01/01/2019] [Indexed: 12/16/2022] Open
Abstract
Telomerase-independent ALT (alternative lengthening of telomeres) cells are characterized by high frequency of telomeric homologous recombination (HR), C-rich extrachromosomal circles (C-circles) and C-rich terminal 5' overhangs (C-overhangs). However, underlying mechanism is poorly understood. Here, we show that both C-circle and C-overhang form when replication fork collapse is induced by strand break at telomeres. We find that endogenous DNA break predominantly occur on C-rich strand of telomeres in ALT cells, resulting in high frequency of replication fork collapse. While collapsed forks could be rescued by replication fork regression leading to telomeric homologous recombination, those unresolved are converted to C-circles and C-overhang at lagging and leading synthesized strand, respectively. Meanwhile, multiple hallmarks of ALT are provoked, suggesting that strand break-induced replication stress underlies ALT. These findings provide a molecular basis underlying telomeric HR and biogenesis of C-circle and C-overhang, thus implicating the specific mechanism to resolve strand break-induced replication defect at telomeres in ALT cells. 10 to 15% human cancers utilize telomerase-independent alternative lengthening of telomeres (ALT) to maintain their telomere length. Unexpectedly, we find that endogenous C-strand breaks predominantly exist in telomeres of ALT cells, which induce high frequency of replication fork collapse. While collapsed fork triggers fork regression machinery to restart the replication, leading to telomeric homologous recombination; those unresolved are converted to C-circle and C-overhang. These findings suggest that the formation of C-circle and C-overhang represents a unique manner for ALT cells to prevent chromosome instability induced by replication defect at telomeres. Moreover, multiple hallmarks of ALT are provoked during this process, demonstrating that DNA strand break at telomeres underlies ALT mechanism.
Collapse
Affiliation(s)
- Tianpeng Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zepeng Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gong Shengzhao
- School of Chemical Engineering and Technology, Guangdong Engineering Technical Research Center for Green Household Chemicals, Guangdong Industry Technical College, Guangzhou, P.R.China
| | - Xiaocui Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yong Zhao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| |
Collapse
|
174
|
Abstract
The maintenance of genome stability in eukaryotic cells relies on accurate and efficient replication along each chromosome following every cell division. The terminal position, repetitive sequence, and structural complexities of the telomeric DNA make the telomere an inherently difficult region to replicate within the genome. Thus, despite functioning to protect genome stability mammalian telomeres are also a source of replication stress and have been recognized as common fragile sites within the genome. Telomere fragility is exacerbated at telomeres that rely on the Alternative Lengthening of Telomeres (ALT) pathway. Like common fragile sites, ALT telomeres are prone to chromosome breaks and are frequent sites of recombination suggesting that ALT telomeres are subjected to chronic replication stress. Here, we will review the features of telomeric DNA that challenge the replication machinery and also how the cell overcomes these challenges to maintain telomere stability and ensure the faithful duplication of the human genome.
Collapse
Affiliation(s)
- Emily Mason-Osann
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Himabindu Gali
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Rachel Litman Flynn
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
- Department of Medicine, Cancer Center, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
175
|
Schoonen PM, Guerrero Llobet S, van Vugt MATM. Replication stress: Driver and therapeutic target in genomically instable cancers. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 115:157-201. [PMID: 30798931 DOI: 10.1016/bs.apcsb.2018.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genomically instable cancers are characterized by progressive loss and gain of chromosomal fragments, and the acquisition of complex genomic rearrangements. Such cancers, including triple-negative breast cancers and high-grade serous ovarian cancers, typically show aggressive behavior and lack actionable driver oncogenes. Increasingly, oncogene-induced replication stress or defective replication fork maintenance is considered an important driver of genomic instability. Paradoxically, while replication stress causes chromosomal instability and thereby promotes cancer development, it intrinsically poses a threat to cellular viability. Apparently, tumor cells harboring high levels of replication stress have evolved ways to cope with replication stress. As a consequence, therapeutic targeting of such compensatory mechanisms is likely to preferentially target cancers with high levels of replication stress and may prove useful in potentiating chemotherapeutic approaches that exert their effects by interfering with DNA replication. Here, we discuss how replication stress drives chromosomal instability, and the cell cycle-regulated mechanisms that cancer cells employ to deal with replication stress. Importantly, we discuss how mechanisms involving DNA structure-specific resolvases, cell cycle checkpoint kinases and mitotic processing of replication intermediates offer possibilities in developing treatments for difficult-to-treat genomically instable cancers.
Collapse
Affiliation(s)
- Pepijn M Schoonen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sergi Guerrero Llobet
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
176
|
A tough row to hoe: when replication forks encounter DNA damage. Biochem Soc Trans 2018; 46:1643-1651. [PMID: 30514768 DOI: 10.1042/bst20180308] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 01/12/2023]
Abstract
Eukaryotic cells continuously experience DNA damage that can perturb key molecular processes like DNA replication. DNA replication forks that encounter DNA lesions typically slow and may stall, which can lead to highly detrimental fork collapse if appropriate protective measures are not executed. Stabilization and protection of stalled replication forks ensures the possibility of effective fork restart and prevents genomic instability. Recent efforts from multiple laboratories have highlighted several proteins involved in replication fork remodeling and DNA damage response pathways as key regulators of fork stability. Homologous recombination factors such as RAD51, BRCA1, and BRCA2, along with components of the Fanconi Anemia pathway, are now known to be crucial for stabilizing stalled replication forks and preventing nascent strand degradation. Several checkpoint proteins have additionally been implicated in fork protection. Ongoing work in this area continues to shed light on a sophisticated molecular pathway that balances the action of DNA resection and fork protection to maintain genomic integrity, with important implications for the fate of both normal and malignant cells following replication stress.
Collapse
|
177
|
CtIP-Mediated Fork Protection Synergizes with BRCA1 to Suppress Genomic Instability upon DNA Replication Stress. Mol Cell 2018; 72:568-582.e6. [DOI: 10.1016/j.molcel.2018.09.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/08/2018] [Accepted: 09/12/2018] [Indexed: 12/30/2022]
|
178
|
Sethy R, Rakesh R, Patne K, Arya V, Sharma T, Haokip DT, Kumari R, Muthuswami R. Regulation of ATM and ATR by SMARCAL1 and BRG1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:1076-1092. [PMID: 30317028 DOI: 10.1016/j.bbagrm.2018.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 11/25/2022]
Abstract
The G2/M checkpoint is activated on DNA damage by the ATM and ATR kinases that are regulated by post-translational modifications. In this paper, the transcriptional co-regulation of ATM and ATR by SMARCAL1 and BRG1, both members of the ATP-dependent chromatin remodeling protein family, is described. SMARCAL1 and BRG1 co-localize on the promoters of ATM and ATR; downregulation of SMARCAL1 and BRG1 results in transcriptional repression of ATM/ATR and overriding of the G2/M checkpoint leading to mitotic abnormalities. On doxorubicin-induced DNA damage, SMARCAL1 and BRG1 are upregulated and these two proteins in turn, upregulate the expression of ATM/ATR. The transcriptional response to DNA damage is feedback regulated by phospho-ATM as it binds to the promoters of SMARCAL1, BRG1, ATM and ATR on DNA damage. The regulation of ATM/ATR is rendered non-functional in Schimke Immuno-Osseous Dysplasia where SMARCAL1 is mutated and in Coffin-Siris Syndrome where BRG1 is mutated. Thus, an intricate transcriptional regulation of DNA damage response genes mediated by SMARCAL1 and BRG1 is present in mammalian cells.
Collapse
Affiliation(s)
| | | | - Ketki Patne
- School of Life Sciences, JNU, New Delhi, India
| | | | | | | | | | | |
Collapse
|
179
|
Abstract
The SLX4/FANCP tumor suppressor has emerged as a key player in the maintenance of genome stability, making pivotal contributions to the repair of interstrand cross-links, homologous recombination, and in response to replication stress genome-wide as well as at specific loci such as common fragile sites and telomeres. SLX4 does so in part by acting as a scaffold that controls and coordinates the XPF-ERCC1, MUS81-EME1, and SLX1 structure-specific endonucleases in different DNA repair and recombination mechanisms. It also interacts with other important DNA repair and cell cycle control factors including MSH2, PLK1, TRF2, and TOPBP1 as well as with ubiquitin and SUMO. This review aims at providing an up-to-date and comprehensive view on the key functions that SLX4 fulfills to maintain genome stability as well as to highlight and discuss areas of uncertainty and emerging concepts.
Collapse
Affiliation(s)
- Jean-Hugues Guervilly
- a CRCM, CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes , Marseille , France
| | - Pierre Henri Gaillard
- a CRCM, CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes , Marseille , France
| |
Collapse
|
180
|
da Silva RB, Machado CR, Rodrigues ARA, Pedrosa AL. Selective human inhibitors of ATR and ATM render Leishmania major promastigotes sensitive to oxidative damage. PLoS One 2018; 13:e0205033. [PMID: 30265735 PMCID: PMC6161909 DOI: 10.1371/journal.pone.0205033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022] Open
Abstract
All cellular processes, including those involved in normal cell metabolism to those responsible for cell proliferation or death, are finely controlled by cell signaling pathways, whose core proteins constitute the family of phosphatidylinositol 3-kinase-related kinases (PIKKs). Ataxia Telangiectasia Mutated (ATM) and Ataxia Telangiectasia and Rad3 related (ATR) are two important PIKK proteins that act in response to DNA damage, phosphorylating a large number of proteins to exert control over genomic integrity. The genus Leishmania belongs to a group of early divergent eukaryotes in evolution and has a highly plastic genome, probably owing to the existence of signaling pathways designed to maintain genomic integrity. The objective of this study was to evaluate the use of specific human inhibitors of ATR and ATM in Leishmania major. Bioinformatic analyses revealed the existence of the putative PIKK genes ATR and ATM, in addition to mTOR and DNA-PKcs in Leishmania spp. Moreover, it was possible to suggest that the inhibitors VE-821 and KU-55933 have binding affinity for the catalytic sites of putative L. major ATR and ATM, respectively. Promastigotes of L. major exposed to these inhibitors show slight growth impairment and minor changes in cell cycle and morphology. It is noteworthy that treatment of promastigotes with inhibitors VE-821 and KU-55933 enhanced the oxidative damage caused by hydrogen peroxide. These inhibitors could significantly reduce the number of surviving L. major cells following H2O2 exposure whilst also decreasing their evaluated IC50 to H2O2 to less than half of that observed for non-treated cells. These results suggest that the use of specific inhibitors of ATR and ATM in Leishmania interferes in the signaling pathways of this parasite, which can impair its tolerance to DNA damage and affect its genome integrity. ATR and ATM could constitute novel targets for drug development and/or repositioning for treatment of leishmaniases.
Collapse
Affiliation(s)
- Raíssa Bernardes da Silva
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aldo Rogelis Aquiles Rodrigues
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - André Luiz Pedrosa
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
181
|
Moiseeva TN, Bakkenist CJ. Regulation of the initiation of DNA replication in human cells. DNA Repair (Amst) 2018; 72:99-106. [PMID: 30266203 DOI: 10.1016/j.dnarep.2018.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022]
Abstract
The origin of species would not have been possible without high fidelity DNA replication and complex genomes evolved with mechanisms that control the initiation of DNA replication at multiple origins on multiple chromosomes such that the genome is duplicated once and only once. The mechanisms that control the assembly and activation of the replicative helicase and the initiation of DNA replication in yeast and Xenopus egg extract systems have been identified and reviewed [1,2]. The goal of this review is to organize currently available data on the mechanisms that control the initiation of DNA replication in human cells.
Collapse
Affiliation(s)
- Tatiana N Moiseeva
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Christopher J Bakkenist
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
182
|
Haynes B, Murai J, Lee JM. Restored replication fork stabilization, a mechanism of PARP inhibitor resistance, can be overcome by cell cycle checkpoint inhibition. Cancer Treat Rev 2018; 71:1-7. [PMID: 30269007 DOI: 10.1016/j.ctrv.2018.09.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 02/06/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibition serves as a potent therapeutic option eliciting synthetic lethality in cancers harboring homologous recombination (HR) repair defects, such as BRCA mutations. However, the development of resistance to PARP inhibitors (PARPis) poses a clinical challenge. Restoration of HR competency is one of the many molecular factors contributing to PARPi resistance. Combination therapy with cell cycle checkpoint (ATR, CHK1, and WEE1) inhibitors is being investigated clinically in many cancers, particularly in ovarian cancer, to enhance the efficacy and circumvent resistance to PARPis. Ideally, inhibition of ATR, CHK1 and WEE1 proteins will abrogate G2 arrest and subsequent DNA repair via restored HR in PARPi-treated cells. Replication fork stabilization has recently been identified as a potential compensatory PARPi resistance mechanism, found in the absence of restored HR. ATR, CHK1, and WEE1 each possess different roles in replication fork stabilization, providing different mechanisms to consider when developing combination therapies to avoid continued development of drug resistance. This review examines the impact of ATR, CHK1, and WEE1 on replication fork stabilization. We also address the therapeutic potential for combining PARPis with cell cycle inhibitors and the possible consequence of combination therapies which do not adequately address both restored HR and replication fork stabilization as PARPi resistance mechanisms.
Collapse
Affiliation(s)
- Brittany Haynes
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Junko Murai
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
183
|
Abstract
The chemical treatment of cancer started with the realization that DNA damaging agents such as mustard gas present notable antitumoural properties. Consequently, early drug development focused on genotoxic chemicals, some of which are still widely used in the clinic. However, the efficacy of such therapies is often limited by the side effects of these drugs on healthy cells. A refinement to this approach is to use compounds that can exploit the presence of DNA damage in cancer cells. Given that replication stress (RS) is a major source of genomic instability in cancer, targeting the RS-response kinase ataxia telangiectasia and Rad3-related protein (ATR) has emerged as a promising alternative. With ATR inhibitors now entering clinical trials, we here revisit the biology behind this strategy and discuss potential biomarkers that could be used for a better selection of patients who respond to therapy.
Collapse
Affiliation(s)
- Emilio Lecona
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
184
|
Gorgoulis VG, Pefani D, Pateras IS, Trougakos IP. Integrating the DNA damage and protein stress responses during cancer development and treatment. J Pathol 2018; 246:12-40. [PMID: 29756349 PMCID: PMC6120562 DOI: 10.1002/path.5097] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/16/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
During evolution, cells have developed a wide spectrum of stress response modules to ensure homeostasis. The genome and proteome damage response pathways constitute the pillars of this interwoven 'defensive' network. Consequently, the deregulation of these pathways correlates with ageing and various pathophysiological states, including cancer. In the present review, we highlight: (1) the structure of the genome and proteome damage response pathways; (2) their functional crosstalk; and (3) the conditions under which they predispose to cancer. Within this context, we emphasize the role of oncogene-induced DNA damage as a driving force that shapes the cellular landscape for the emergence of the various hallmarks of cancer. We also discuss potential means to exploit key cancer-related alterations of the genome and proteome damage response pathways in order to develop novel efficient therapeutic modalities. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational and Kapodistrian University of AthensAthensGreece
- Biomedical Research Foundation of the Academy of AthensAthensGreece
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Dafni‐Eleftheria Pefani
- CRUK/MRC Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
185
|
Sokka M, Koalick D, Hemmerich P, Syväoja JE, Pospiech H. The ATR-Activation Domain of TopBP1 Is Required for the Suppression of Origin Firing during the S Phase. Int J Mol Sci 2018; 19:ijms19082376. [PMID: 30104465 PMCID: PMC6121618 DOI: 10.3390/ijms19082376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 11/23/2022] Open
Abstract
The mammalian DNA replication program is controlled at two phases, the licensing of potential origins of DNA replication in early gap 1 (G1), and the selective firing of a subset of licenced origins in the synthesis (S) phase. Upon entry into the S phase, serine/threonine-protein kinase ATR (ATR) is required for successful completion of the DNA replication program by limiting unnecessary dormant origin activation. Equally important is its activator, DNA topoisomerase 2-binding protein 1 (TopBP1), which is also required for the initiation of DNA replication after a rise in S-phase kinase levels. However, it is unknown how the ATR activation domain of TopBP1 affects DNA replication dynamics. Using human cells conditionally expressing a TopBP1 mutant deficient for ATR activation, we show that functional TopBP1 is required in suppressing local dormant origin activation. Our results demonstrate a regulatory role for TopBP1 in the local balancing of replication fork firing within the S phase.
Collapse
Affiliation(s)
- Miiko Sokka
- Department of Biology, University of Eastern Finland, FI-80101 Joensuu, Finland.
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland.
| | - Dennis Koalick
- Leibniz Institute on Aging-Fritz Lipmann Institute, DE-07745 Jena, Germany.
| | - Peter Hemmerich
- Leibniz Institute on Aging-Fritz Lipmann Institute, DE-07745 Jena, Germany.
| | - Juhani E Syväoja
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland.
| | - Helmut Pospiech
- Leibniz Institute on Aging-Fritz Lipmann Institute, DE-07745 Jena, Germany.
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland.
| |
Collapse
|
186
|
Liao H, Ji F, Helleday T, Ying S. Mechanisms for stalled replication fork stabilization: new targets for synthetic lethality strategies in cancer treatments. EMBO Rep 2018; 19:embr.201846263. [PMID: 30108055 DOI: 10.15252/embr.201846263] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/06/2018] [Accepted: 07/20/2018] [Indexed: 01/24/2023] Open
Abstract
Timely and faithful duplication of the entire genome depends on completion of replication. Replication forks frequently encounter obstacles that may cause genotoxic fork stalling. Nevertheless, failure to complete replication rarely occurs under normal conditions, which is attributed to an intricate network of proteins that serves to stabilize, repair and restart stalled forks. Indeed, many of the components in this network are encoded by tumour suppressor genes, and their loss of function by mutation or deletion generates genomic instability, a hallmark of cancer. Paradoxically, the same fork-protective network also confers resistance of cancer cells to chemotherapeutic drugs that induce high-level replication stress. Here, we review the mechanisms and major pathways rescuing stalled replication forks, with a focus on fork stabilization preventing fork collapse. A coherent understanding of how cells protect their replication forks will not only provide insight into how cells maintain genome stability, but also unravel potential therapeutic targets for cancers refractory to conventional chemotherapies.
Collapse
Affiliation(s)
- Hongwei Liao
- Department of Pharmacology & Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Ji
- Department of Pharmacology & Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden .,Sheffield Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Songmin Ying
- Department of Pharmacology & Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
187
|
Manic G, Sistigu A, Corradi F, Musella M, De Maria R, Vitale I. Replication stress response in cancer stem cells as a target for chemotherapy. Semin Cancer Biol 2018; 53:31-41. [PMID: 30081229 DOI: 10.1016/j.semcancer.2018.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 02/08/2023]
Abstract
Cancer stem cells (CSCs) are subpopulations of multipotent stem cells (SCs) responsible for the initiation, long-term clonal maintenance, growth and spreading of most human neoplasms. Reportedly, CSCs share a very robust DNA damage response (DDR) with embryonic and adult SCs, which allows them to survive endogenous and exogenous genotoxins. A range of experimental evidence indicates that CSCs have high but heterogeneous levels of replication stress (RS), arising from, and being boosted by, endogenous causes, such as specific genetic backgrounds (e.g., p53 deficiency) and/or aberrant karyotypes (e.g., supernumerary chromosomes). A multipronged RS response (RSR) is put in place by CSCs to limit and ensure tolerability to RS. The characteristics of such dedicated cascade have two opposite consequences, both relevant for cancer therapy. On the one hand, RSR efficiency often increases the reliance of CSCs on specific DDR components. On the other hand, the functional redundancy of pathways of the RSR can paradoxically promote the acquisition of resistance to RS- and/or DNA damage-inducing agents. Here, we provide an overview of the molecular mechanisms of the RSR in cancer cells and CSCs, focusing on the role of CHK1 and some emerging players, such as PARP1 and components of the homologous recombination repair, whose targeting can represent a long-term effective anti-CSC strategy.
Collapse
Affiliation(s)
- Gwenola Manic
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.
| | - Antonella Sistigu
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome, Italy; Institute of General Pathology, Catholic University and Gemelli Polyclinic, Rome, Italy
| | - Francesca Corradi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Martina Musella
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome, Italy; Department of Molecular Medicine, University "La Sapienza", Rome, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Catholic University and Gemelli Polyclinic, Rome, Italy.
| | - Ilio Vitale
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
188
|
|
189
|
Hafsi H, Dillon MT, Barker HE, Kyula JN, Schick U, Paget JT, Smith HG, Pedersen M, McLaughlin M, Harrington KJ. Combined ATR and DNA-PK Inhibition Radiosensitizes Tumor Cells Independently of Their p53 Status. Front Oncol 2018; 8:245. [PMID: 30057890 PMCID: PMC6053502 DOI: 10.3389/fonc.2018.00245] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/18/2018] [Indexed: 02/02/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a significant cause of cancer deaths. Cisplatin-based chemoradiotherapy is a standard of care for locally advanced disease. ATR and DNA-PK inhibition (DNA-PKi) are actively being investigated in clinical trials with preclinical data supporting clinical translation as radiosensitizers. Here, we hypothesized that targeting both ATR and DNA-PK with small molecule inhibitors would increase radiosensitization of HNSCC cell lines. Radiosensitization was assessed by Bliss independence analysis of colony survival data. Strong cell cycle perturbing effects were observed with ATR inhibition reversing the G2/M arrest observed for radiation-DNA-PKi. Increased apoptosis in combination groups was measured by Sub-G1 DNA populations. DNA-PKi increased radiation-induced RAD51 and gamma-H2Ax foci, with the addition of ATR inhibition reducing levels of both. A sharp increase in nuclear fragmentation after aberrant mitotic transit appears to be the main driver of decreased survival due to irradiation and dual ATR/DNA-PKi. Dual inhibition of DNA-PK and ATR represents a novel approach in combination with radiation, with efficacy appearing to be independent of p53 status. Due to toxicity concerns, careful assessment is necessary in any future translation of single or dual radiosensitization approaches. Ongoing clinical trials into the ATR inhibitor AZD6738 plus radiation, and the phenotypically similar combination of AZD6738 and the PARP inhibitor olaparib, are likely to be key in ascertaining the toxicity profile of such combinations.
Collapse
Affiliation(s)
- Hind Hafsi
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Magnus T. Dillon
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Holly E. Barker
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Joan N. Kyula
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Ulrike Schick
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- Radiation Oncology Department, University Hospital Morvan, Brest, France
| | - James T. Paget
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Henry G. Smith
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Malin Pedersen
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Martin McLaughlin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Kevin J. Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
190
|
Pasero P, Vindigni A. Nucleases Acting at Stalled Forks: How to Reboot the Replication Program with a Few Shortcuts. Annu Rev Genet 2018; 51:477-499. [PMID: 29178820 DOI: 10.1146/annurev-genet-120116-024745] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a lifetime, a human being synthesizes approximately 2×1016 meters of DNA, a distance that corresponds to 130,000 times the distance between the Earth and the Sun. This daunting task is executed by thousands of replication forks, which progress along the chromosomes and frequently stall when they encounter DNA lesions, unusual DNA structures, RNA polymerases, or tightly-bound protein complexes. To complete DNA synthesis before the onset of mitosis, eukaryotic cells have evolved complex mechanisms to process and restart arrested forks through the coordinated action of multiple nucleases, topoisomerases, and helicases. In this review, we discuss recent advances in understanding the role and regulation of nucleases acting at stalled forks with a focus on the nucleolytic degradation of nascent DNA, a process commonly referred to as fork resection. We also discuss the effects of deregulated fork resection on genomic instability and on the unscheduled activation of the interferon response under replication stress conditions.
Collapse
Affiliation(s)
- Philippe Pasero
- Institute of Human Genetics, CNRS UMR9002, University of Montpellier, 34396 Montpellier, France;
| | - Alessandro Vindigni
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA;
| |
Collapse
|
191
|
Fanconi-Anemia-Associated Mutations Destabilize RAD51 Filaments and Impair Replication Fork Protection. Cell Rep 2018; 21:333-340. [PMID: 29020621 DOI: 10.1016/j.celrep.2017.09.062] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/25/2017] [Accepted: 09/18/2017] [Indexed: 12/13/2022] Open
Abstract
Fanconi anemia (FA) is a genetic disorder characterized by a defect in DNA interstrand crosslink (ICL) repair, chromosomal instability, and a predisposition to cancer. Recently, two RAD51 mutations were reported to cause an FA-like phenotype. Despite the tight association of FA/HR proteins with replication fork (RF) stabilization during normal replication, it remains unknown how FA-associated RAD51 mutations affect replication beyond ICL lesions. Here, we report that these mutations fail to protect nascent DNA from MRE11-mediated degradation during RF stalling in Xenopus laevis egg extracts. Reconstitution of DNA protection in vitro revealed that the defect arises directly due to altered RAD51 properties. Both mutations induce pronounced structural changes and RAD51 filament destabilization that is not rescued by prevention of ATP hydrolysis due to aberrant ATP binding. Our results further interconnect the FA pathway with DNA replication and provide mechanistic insight into the role of RAD51 in recombination-independent mechanisms of genome maintenance.
Collapse
|
192
|
Bhat KP, Cortez D. RPA and RAD51: fork reversal, fork protection, and genome stability. Nat Struct Mol Biol 2018; 25:446-453. [PMID: 29807999 PMCID: PMC6006513 DOI: 10.1038/s41594-018-0075-z] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 01/23/2023]
Abstract
Replication protein A (RPA) and RAD51 are DNA-binding proteins that help maintain genome stability during DNA replication. These proteins regulate nucleases, helicases, DNA translocases, and signaling proteins to control replication, repair, recombination, and the DNA damage response. Their different DNA-binding mechanisms, enzymatic activities, and binding partners provide unique functionalities that cooperate to ensure that the appropriate activities are deployed at the right time to overcome replication challenges. Here we review and discuss the latest discoveries of the mechanisms by which these proteins work to preserve genome stability, with a focus on their actions in fork reversal and fork protection.
Collapse
Affiliation(s)
- Kamakoti P Bhat
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
193
|
Diplas BH, He X, Brosnan-Cashman JA, Liu H, Chen LH, Wang Z, Moure CJ, Killela PJ, Loriaux DB, Lipp ES, Greer PK, Yang R, Rizzo AJ, Rodriguez FJ, Friedman AH, Friedman HS, Wang S, He Y, McLendon RE, Bigner DD, Jiao Y, Waitkus MS, Meeker AK, Yan H. The genomic landscape of TERT promoter wildtype-IDH wildtype glioblastoma. Nat Commun 2018; 9:2087. [PMID: 29802247 PMCID: PMC5970234 DOI: 10.1038/s41467-018-04448-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/26/2018] [Indexed: 12/26/2022] Open
Abstract
The majority of glioblastomas can be classified into molecular subgroups based on mutations in the TERT promoter (TERTp) and isocitrate dehydrogenase 1 or 2 (IDH). These molecular subgroups utilize distinct genetic mechanisms of telomere maintenance, either TERTp mutation leading to telomerase activation or ATRX-mutation leading to an alternative lengthening of telomeres phenotype (ALT). However, about 20% of glioblastomas lack alterations in TERTp and IDH. These tumors, designated TERTpWT-IDHWT glioblastomas, do not have well-established genetic biomarkers or defined mechanisms of telomere maintenance. Here we report the genetic landscape of TERTpWT-IDHWT glioblastoma and identify SMARCAL1 inactivating mutations as a novel genetic mechanism of ALT. Furthermore, we identify a novel mechanism of telomerase activation in glioblastomas that occurs via chromosomal rearrangements upstream of TERT. Collectively, our findings define novel molecular subgroups of glioblastoma, including a telomerase-positive subgroup driven by TERT-structural rearrangements (IDHWT-TERTSV), and an ALT-positive subgroup (IDHWT-ALT) with mutations in ATRX or SMARCAL1. Glioblastoma can be classified based on IDH and TERT promoter mutations, but ~20% of glioblastoma do not have these mutations (TERTpWT-IDHWT glioblastoma). Here, the authors present a genetic landscape of TERTpWT-IDHWT glioblastoma, identifying a telomerase-positive subgroup driven by TERT-structural rearrangements and an ALT-positive subgroup with mutations in ATRX or SMARCAL1.
Collapse
Affiliation(s)
- Bill H Diplas
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Xujun He
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA.,Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Jacqueline A Brosnan-Cashman
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, 21231, MD, USA
| | - Heng Liu
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Lee H Chen
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Zhaohui Wang
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Casey J Moure
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Patrick J Killela
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Daniel B Loriaux
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Eric S Lipp
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA
| | - Paula K Greer
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Rui Yang
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Anthony J Rizzo
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, 21231, MD, USA
| | - Fausto J Rodriguez
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, 21231, MD, USA
| | - Allan H Friedman
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Neurosurgery, Duke University Medical Center, Durham, 27710, NC, USA
| | - Henry S Friedman
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA
| | - Sizhen Wang
- Genetron Health (Beijing) Co. Ltd, Beijing, 102208, China
| | - Yiping He
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Roger E McLendon
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Darell D Bigner
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Neurosurgery, Duke University Medical Center, Durham, 27710, NC, USA
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Matthew S Waitkus
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA. .,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA.
| | - Alan K Meeker
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, 21231, MD, USA.
| | - Hai Yan
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, 27710, NC, USA. .,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA.
| |
Collapse
|
194
|
Fordham SE, Blair HJ, Elstob CJ, Plummer R, Drew Y, Curtin NJ, Heidenreich O, Pal D, Jamieson D, Park C, Pollard J, Fields S, Milne P, Jackson GH, Marr HJ, Menne T, Jones GL, Allan JM. Inhibition of ATR acutely sensitizes acute myeloid leukemia cells to nucleoside analogs that target ribonucleotide reductase. Blood Adv 2018; 2:1157-1169. [PMID: 29789314 PMCID: PMC5965047 DOI: 10.1182/bloodadvances.2017015214] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/09/2018] [Indexed: 12/20/2022] Open
Abstract
The ataxia telangiectasia and Rad3-related (ATR) protein kinase promotes cancer cell survival by signaling stalled replication forks generated by replication stress, a common feature of many cancers including acute myeloid leukemia (AML). Here we show that the antileukemic activity of the chemotherapeutic nucleoside analogs hydroxyurea and gemcitabine was significantly potentiated by ATR inhibition via a mechanism involving ribonucleotide reductase (RNR) abrogation and inhibition of replication fork progression. When administered in combination with gemcitabine, an inhibitor of the M1 RNR subunit, the ATR inhibitor VX-970, eradicated disseminated leukemia in an orthotopic mouse model, eliciting long-term survival and effective cure. These data identify a synergistic interaction between ATR inhibition and RNR loss that will inform the deployment of small molecule inhibitors for the treatment of AML and other hematologic malignancies.
Collapse
Affiliation(s)
- Sarah E Fordham
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen J Blair
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Claire J Elstob
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ruth Plummer
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yvette Drew
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nicola J Curtin
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Olaf Heidenreich
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Deepali Pal
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Jamieson
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Catherine Park
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John Pollard
- Vertex Pharmaceuticals (Europe) Ltd, Abingdon, Oxfordshire, United Kingdom
| | - Scott Fields
- Vertex Pharmaceuticals (Europe) Ltd, Abingdon, Oxfordshire, United Kingdom
| | - Paul Milne
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| | - Graham H Jackson
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Helen J Marr
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Tobias Menne
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Gail L Jones
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - James M Allan
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
195
|
Ng N, Purshouse K, Foskolou IP, Olcina MM, Hammond EM. Challenges to DNA replication in hypoxic conditions. FEBS J 2018; 285:1563-1571. [PMID: 29288533 DOI: 10.1111/febs.14377] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/05/2017] [Accepted: 12/22/2017] [Indexed: 12/30/2022]
Abstract
The term hypoxia refers to any condition where insufficient oxygen is available and therefore encompasses a range of actual oxygen concentrations. The regions of tumours adjacent to necrotic areas are at almost anoxic levels and are known to be extremely therapy resistant (radiobiological hypoxia). The biological response to radiobiological hypoxia includes the rapid accumulation of replication stress and subsequent DNA damage response, including both ATR- and ATM-mediated signalling, despite the absence of detectable DNA damage. The causes and consequences of hypoxia-induced replication stress will be discussed.
Collapse
Affiliation(s)
- Natalie Ng
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, UK
| | - Karin Purshouse
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, UK
| | - Iosifina P Foskolou
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, UK
| | - Monica M Olcina
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, CA, USA
| | - Ester M Hammond
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, UK
| |
Collapse
|
196
|
Kotsantis P, Petermann E, Boulton SJ. Mechanisms of Oncogene-Induced Replication Stress: Jigsaw Falling into Place. Cancer Discov 2018; 8:537-555. [PMID: 29653955 DOI: 10.1158/2159-8290.cd-17-1461] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 12/31/2022]
Abstract
Oncogene activation disturbs cellular processes and accommodates a complex landscape of changes in the genome that contribute to genomic instability, which accelerates mutation rates and promotes tumorigenesis. Part of this cellular turmoil involves deregulation of physiologic DNA replication, widely described as replication stress. Oncogene-induced replication stress is an early driver of genomic instability and is attributed to a plethora of factors, most notably aberrant origin firing, replication-transcription collisions, reactive oxygen species, and defective nucleotide metabolism.Significance: Replication stress is a fundamental step and an early driver of tumorigenesis and has been associated with many activated oncogenes. Deciphering the mechanisms that contribute to the replication stress response may provide new avenues for targeted cancer treatment. In this review, we discuss the latest findings on the DNA replication stress response and examine the various mechanisms through which activated oncogenes induce replication stress. Cancer Discov; 8(5); 537-55. ©2018 AACR.
Collapse
Affiliation(s)
| | - Eva Petermann
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | |
Collapse
|
197
|
Abstract
Proper regulation of the immune system is required for protection against pathogens and preventing autoimmune disorders. Inborn errors of the immune system due to inherited or de novo germline mutations can lead to the loss of protective immunity, aberrant immune homeostasis, and the development of autoimmune disease, or combinations of these. Forward genetic screens involving clinical material from patients with primary immunodeficiencies (PIDs) can vary in severity from life-threatening disease affecting multiple cell types and organs to relatively mild disease with susceptibility to a limited range of pathogens or mild autoimmune conditions. As central mediators of innate and adaptive immune responses, T cells are critical orchestrators and effectors of the immune response. As such, several PIDs result from loss of or altered T cell function. PID-associated functional defects range from complete absence of T cell development to uncontrolled effector cell activation. Furthermore, the gene products of known PID causal genes are involved in diverse molecular pathways ranging from T cell receptor signaling to regulators of protein glycosylation. Identification of the molecular and biochemical cause of PIDs can not only guide the course of treatment for patients, but also inform our understanding of the basic biology behind T cell function. In this chapter, we review PIDs with known genetic causes that intrinsically affect T cell function with particular focus on perturbations of biochemical pathways.
Collapse
Affiliation(s)
- William A Comrie
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States.
| |
Collapse
|
198
|
53BP1 Mediates ATR-Chk1 Signaling and Protects Replication Forks under Conditions of Replication Stress. Mol Cell Biol 2018; 38:MCB.00472-17. [PMID: 29378830 DOI: 10.1128/mcb.00472-17] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
Complete replication of the genome is an essential prerequisite for normal cell division, but a variety of factors can block the replisome, triggering replication stress and potentially causing mutation or cell death. The cellular response to replication stress involves recruitment of proteins to stabilize the replication fork and transmit a stress signal to pause the cell cycle and allow fork restart. We find that the ubiquitously expressed DNA damage response factor 53BP1 is required for the normal response to replication stress. Using primary, ex vivo B cells, we showed that a population of 53BP1-/- cells in early S phase is hypersensitive to short-term exposure to three different agents that induce replication stress. 53BP1 localizes to a subset of replication forks following induced replication stress, and an absence of 53BP1 leads to defective ATR-Chk1-p53 signaling and caspase 3-mediated cell death. Nascent replicated DNA additionally undergoes degradation in 53BP1-/- cells. These results show that 53BP1 plays an important role in protecting replication forks during the cellular response to replication stress, in addition to the previously characterized role of 53BP1 in DNA double-strand break repair.
Collapse
|
199
|
Flach J, Milyavsky M. Replication stress in hematopoietic stem cells in mouse and man. Mutat Res 2018; 808:74-82. [PMID: 29079268 DOI: 10.1016/j.mrfmmm.2017.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/31/2017] [Accepted: 10/12/2017] [Indexed: 04/14/2023]
Abstract
Life-long blood regeneration relies on a rare population of self-renewing hematopoietic stem cells (HSCs). These cells' nearly unlimited self-renewal potential and lifetime persistence in the body signifies the need for tight control of their genome integrity. Their quiescent state, tightly linked with low metabolic activity, is one of the main strategies employed by HSCs to preserve an intact genome. On the other hand, HSCs need to be able to quickly respond to increased blood demands and rapidly increase their cellular output in order to fight infection-associated inflammation or extensive blood loss. This increase in proliferation rate, however, comes at the price of exposing HSCs to DNA damage inevitably associated with the process of DNA replication. Any interference with normal replication fork progression leads to a specialized molecular response termed replication stress (RS). Importantly, increased levels of RS are a hallmark feature of aged HSCs, where an accumulating body of evidence points to causative relationships between RS and the aging-associated impairment of the blood system's functional capacity. In this review, we present an overview of RS in HSCs focusing on its causes and consequences for the blood system of mice and men.
Collapse
Affiliation(s)
- Johanna Flach
- Department of Hematology and Medical Oncology & Institute of Molecular Oncology, University Medical Center Goettingen, Germany; Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany.
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
200
|
Bhattacharya D, Hiregange D, Rao BJ. ATR kinase regulates its attenuation via PPM1D phosphatase recruitment to chromatin during recovery from DNA replication stress signalling. J Biosci 2018; 43:25-47. [PMID: 29485113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In eukaryotes, in response to replication stress, DNA damage response kinase, ATR is activated, whose signalling abrogation leads to cell lethality due to aberrant fork remodelling and excessive origin firing. Here we report that inhibition of ATR kinase activity specifically during replication stress recovery results in persistent ATR signalling, evidenced by the presence of ATR-dependent phosphorylation marks (gamma H2AX, pChk1 and pRad17) and delayed cell cycle re-entry. Further, such disruption of ATR signalling attenuation leads to double-strand breaks, fork collapse and thereby 'replication catastrophe'. PPM1D phosphatase, a nucleolar localized protein, relocates to chromatin during replication stress and reverts back to nucleolus following stress recovery, under the control of ATR kinase action. Inhibition of ATR kinase activity, specifically during post replication stress, triggers dislodging of the chromatin-bound PPM1D from nucleus to cytoplasm followed by its degradation, thereby leading to persistence of activated ATR marks in the nuclei. Chemical inhibition of PPM1D activity or SiRNA mediated depletion of the protein during post replication stress recovery 'phenocopies' ATR kinase inhibition by failing to attenuate ATR signalling. Collectively, our observations suggest a novel role of ATR kinase in mediating its own signal attenuation via PPM1D recruitment to chromatin as an essential mechanism for restarting the stalled forks, cell-cycle re-entry and cellular recovery from replication stress.
Collapse
Affiliation(s)
- Debadrita Bhattacharya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400 005, India
| | | | | |
Collapse
|