151
|
Wang B, Ekblom R, Strand TM, Portela-Bens S, Höglund J. Sequencing of the core MHC region of black grouse (Tetrao tetrix) and comparative genomics of the galliform MHC. BMC Genomics 2012; 13:553. [PMID: 23066932 PMCID: PMC3500228 DOI: 10.1186/1471-2164-13-553] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 09/24/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The MHC, which is regarded as the most polymorphic region in the genomes of jawed vertebrates, plays a central role in the immune system by encoding various proteins involved in the immune response. The chicken MHC-B genomic region has a highly streamlined gene content compared to mammalian MHCs. Its core region includes genes encoding Class I and Class IIB molecules but is only ~92Kb in length. Sequences of other galliform MHCs show varying degrees of similarity as that of chicken. The black grouse (Tetrao tetrix) is a wild galliform bird species which is an important model in conservation genetics and ecology. We sequenced the black grouse core MHC-B region and combined this with available data from related species (chicken, turkey, gold pheasant and quail) to perform a comparative genomics study of the galliform MHC. This kind of analysis has previously been severely hampered by the lack of genomic information on avian MHC regions, and the galliformes is still the only bird lineage where such a comparison is possible. RESULTS In this study, we present the complete genomic sequence of the MHC-B locus of black grouse, which is 88,390 bp long and contains 19 genes. It shows the same simplicity as, and almost perfect synteny with, the corresponding genomic region of chicken. We also use 454-transcriptome sequencing to verify expression in 17 of the black grouse MHC-B genes. Multiple sequence inversions of the TAPBP gene and TAP1-TAP2 gene block identify the recombination breakpoints near the BF and BLB genes. Some of the genes in the galliform MHC-B region also seem to have been affected by selective forces, as inferred from deviating phylogenetic signals and elevated rates of non-synonymous nucleotide substitutions. CONCLUSIONS We conclude that there is large synteny between the MHC-B region of the black grouse and that of other galliform birds, but that some duplications and rearrangements have occurred within this lineage. The MHC-B sequence reported here will provide a valuable resource for future studies on the evolution of the avian MHC genes and on links between immunogenetics and ecology of black grouse.
Collapse
Affiliation(s)
- Biao Wang
- Population Biology and Conservation Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, Uppsala, SE-752 36, Sweden
| | - Robert Ekblom
- Evolutionary Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, Uppsala, SE-752 36, Sweden
| | - Tanja M Strand
- Population Biology and Conservation Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, Uppsala, SE-752 36, Sweden
- Swedish Institute for Communicable Disease Control, Department of Preparedness, Nobels väg, , 18, Solna, SE-171 82, Sweden
| | - Silvia Portela-Bens
- Population Biology and Conservation Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, Uppsala, SE-752 36, Sweden
| | - Jacob Höglund
- Population Biology and Conservation Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, Uppsala, SE-752 36, Sweden
| |
Collapse
|
152
|
Eguchi-Ogawa T, Toki D, Wertz N, Butler JE, Uenishi H. Structure of the genomic sequence comprising the immunoglobulin heavy constant (IGHC) genes from Sus scrofa. Mol Immunol 2012; 52:97-107. [DOI: 10.1016/j.molimm.2012.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/27/2012] [Accepted: 05/01/2012] [Indexed: 11/29/2022]
|
153
|
Huotari T, Korpelainen H. Complete chloroplast genome sequence of Elodea canadensis and comparative analyses with other monocot plastid genomes. Gene 2012; 508:96-105. [PMID: 22841789 DOI: 10.1016/j.gene.2012.07.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/13/2012] [Accepted: 07/15/2012] [Indexed: 02/02/2023]
|
154
|
Massari S, Ciccarese S, Antonacci R. Structural and comparative analysis of the T cell receptor gamma (TRG) locus in Oryctolagus cuniculus. Immunogenetics 2012; 64:773-9. [PMID: 22772779 DOI: 10.1007/s00251-012-0634-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 06/26/2012] [Indexed: 12/13/2022]
Abstract
In mammals, T cells develop along two discrete pathways characterized by expression of either the αβ or the γδT cell receptors. Human, mouse, and dog display a low peripheral blood γδ T cell percentage, while sheep accounts for a high proportion of γδ T lymphocytes. In all these species, the genomic organization of the T cell receptor gamma (TRG) locus is well known. To gain further insight into the evolutionary significance of the γδ T cell lineage, the present study has defined the genomic organization of the TRG locus in rabbit (Oryctolagus cuniculus), another mammalian γδ high species, as deduced from the genome assembly. The rabbit TRG locus spans about 70 kb and consists of ten TRGV, two TRGJ genes, and one TRGC gene located 5' to 3' in the locus. When we compared the rabbit sequence with the human, mouse, sheep, and dog counterparts, a higher identity with human as well as sheep with respect to mouse and dog was evident, providing that in the different mammalian species, the TRG locus appears to have evolved independently without any correlation with the γδ condition. The complete sequence of the rabbit TRG locus described here provides also a resource for supporting functional studies especially in the context of the γδ T cell function.
Collapse
Affiliation(s)
- Serafina Massari
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Universita' del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100, Lecce, Italy.
| | | | | |
Collapse
|
155
|
Wang Y, Guo T, Zhao S, Li Z, Mao Y, Li H, Wang X, Wang R, Xu W, Song R, Jin L, Li X, Irwin DM, Niu G, Tan H. Expression of the human glucokinase gene: important roles of the 5' flanking and intron 1 sequences. PLoS One 2012; 7:e45824. [PMID: 23029263 PMCID: PMC3447760 DOI: 10.1371/journal.pone.0045824] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/24/2012] [Indexed: 02/07/2023] Open
Abstract
Background Glucokinase plays important tissue-specific roles in human physiology, where it acts as a sensor of blood glucose levels in the pancreas, and a few other cells of the gut and brain, and as the rate-limiting step in glucose metabolism in the liver. Liver-specific expression is driven by one of the two tissue-specific promoters, and has an absolute requirement for insulin. The sequences that mediate regulation by insulin are incompletely understood. Methodology/Principal Findings To better understand the liver-specific expression of the human glucokinase gene we compared the structures of this gene from diverse mammals. Much of the sequence located between the 5′ pancreatic beta-cell-specific and downstream liver-specific promoters of the glucokinase genes is composed of repetitive DNA elements that were inserted in parallel on different mammalian lineages. The transcriptional activity of the liver-specific promoter 5′ flanking sequences were tested with and without downstream intronic sequences in two human liver cells lines, HepG2 and L-02. While glucokinase liver-specific 5′ flanking sequences support expression in liver cell lines, a sequence located about 2000 bases 3′ to the liver-specific mRNA start site represses gene expression. Enhanced reporter gene expression was observed in both cell lines when cells were treated with fetal calf serum, but only in the L-02 cells was expression enhanced by insulin. Conclusions/Significance Our results suggest that the normal liver L-02 cell line may be a better model to understand the regulation of the liver-specific expression of the human glucokinase gene. Our results also suggest that sequences downstream of the liver-specific mRNA start site have important roles in the regulation of liver-specific glucokinase gene expression.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Tingting Guo
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Shuyong Zhao
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Zhixin Li
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Yiqing Mao
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Hui Li
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Xi Wang
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Rong Wang
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Wei Xu
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Rongjing Song
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Ling Jin
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Xiuli Li
- Department of Pharmacology, Chifeng College, Chifeng, China
| | - David M. Irwin
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (HT); (DMI)
| | - Gang Niu
- Beijing N&N Genetech Company, Beijing, China
| | - Huanran Tan
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
- * E-mail: (HT); (DMI)
| |
Collapse
|
156
|
Kropinski AM, Lingohr EJ, Moyles DM, Ojha S, Mazzocco A, She YM, Bach SJ, Rozema EA, Stanford K, McAllister TA, Johnson RP. Endemic bacteriophages: a cautionary tale for evaluation of bacteriophage therapy and other interventions for infection control in animals. Virol J 2012; 9:207. [PMID: 22985539 PMCID: PMC3496638 DOI: 10.1186/1743-422x-9-207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/31/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND One of the most effective targets for control of zoonotic foodborne pathogens in the farm to fork continuum is their elimination in food animals destined for market. Phage therapy for Escherichia coli O157:H7 in ruminants, the main animal reservoir of this pathogen, is a popular research topic. Since phages active against this pathogen may be endemic in host animals and their environment, they may emerge during trials of phage therapy or other interventions, rendering interpretation of trials problematic. METHODS During separate phage therapy trials, sheep and cattle inoculated with 109 to 1010 CFU of E. coli O157:H7 soon began shedding phages dissimilar in plaque morphology to the administered therapeutic phages. None of the former was previously identified in the animals or in their environment. The dissimilar "rogue" phage was isolated and characterized by host range, ultrastructure, and genomic and proteomic analyses. RESULTS The "rogue" phage (Phage vB_EcoS_Rogue1) is distinctly different from the administered therapeutic Myoviridae phages, being a member of the Siphoviridae (head: 53 nm; striated tail: 152x8 nm). It has a 45.8 kb genome which is most closely related to coliphage JK06, a member of the "T1-like viruses" isolated in Israel. Detailed bioinformatic analysis reveals that the tail of these phages is related to the tail genes of coliphage lambda. The presence of "rogue" phages resulting from natural enrichments can pose problems in the interpretation of phage therapeutic studies. Similarly, evaluation of any interventions for foodborne or other bacterial pathogens in animals may be compromised unless tests for such phages are included to identify their presence and potential impact.
Collapse
Affiliation(s)
- Andrew M Kropinski
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, 110 Stone Road West, Guelph, ON, N1G 3 W4, Canada
- Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, N1G 2 W1, Canada
| | - Erika J Lingohr
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, 110 Stone Road West, Guelph, ON, N1G 3 W4, Canada
| | - Dianne M Moyles
- Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, N1G 2 W1, Canada
| | - Shivani Ojha
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, 110 Stone Road West, Guelph, ON, N1G 3 W4, Canada
| | - Amanda Mazzocco
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, 110 Stone Road West, Guelph, ON, N1G 3 W4, Canada
| | - Yi-Min She
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, ON, K1A 0 K9, Canada
| | - Susan J Bach
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, BC, V0H 1Z0, Canada
| | - Erica A Rozema
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Alberta Agriculture and Rural Development, Agriculture Centre, Lethbridge, AB, T1J 4 V6, Canada
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, T1J 4B1, Canada
| | - Kim Stanford
- Alberta Agriculture and Rural Development, Agriculture Centre, Lethbridge, AB, T1J 4 V6, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, T1J 4B1, Canada
| | - Roger P Johnson
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, 110 Stone Road West, Guelph, ON, N1G 3 W4, Canada
| |
Collapse
|
157
|
Sumiyama K, Miyake T, Grimwood J, Stuart A, Dickson M, Schmutz J, Ruddle FH, Myers RM, Amemiya CT. Theria-specific homeodomain and cis-regulatory element evolution of the Dlx3-4 bigene cluster in 12 different mammalian species. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:639-50. [PMID: 22951979 DOI: 10.1002/jez.b.22469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/06/2012] [Accepted: 07/10/2012] [Indexed: 11/11/2022]
Abstract
The mammalian Dlx3 and Dlx4 genes are configured as a bigene cluster, and their respective expression patterns are controlled temporally and spatially by cis-elements that largely reside within the intergenic region of the cluster. Previous work revealed that there are conspicuously conserved elements within the intergenic region of the Dlx3-4 bigene clusters of mouse and human. In this paper we have extended these analyses to include 12 additional mammalian taxa (including a marsupial and a monotreme) in order to better define the nature and molecular evolutionary trends of the coding and non-coding functional elements among morphologically divergent mammals. Dlx3-4 regions were fully sequenced from 12 divergent taxa of interest. We identified three theria-specific amino acid replacements in homeodomain of Dlx4 gene that functions in placenta. Sequence analyses of constrained nucleotide sites in the intergenic non-coding region showed that many of the intergenic conserved elements are highly conserved and have evolved slowly within the mammals. In contrast, a branchial arch/craniofacial enhancer I37-2 exhibited accelerated evolution at the branch between the monotreme and therian common ancestor despite being highly conserved among therian species. Functional analysis of I37-2 in transgenic mice has shown that the equivalent region of the platypus fails to drive transcriptional activity in branchial arches. These observations, taken together with our molecular evolutionary data, suggest that theria-specific episodic changes in the I37-2 element may have contributed to craniofacial innovation at the base of the mammalian lineage.
Collapse
Affiliation(s)
- Kenta Sumiyama
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Opazo JC, Butts GT, Nery MF, Storz JF, Hoffmann FG. Whole-genome duplication and the functional diversification of teleost fish hemoglobins. Mol Biol Evol 2012; 30:140-53. [PMID: 22949522 PMCID: PMC3525417 DOI: 10.1093/molbev/mss212] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Subsequent to the two rounds of whole-genome duplication that occurred in the common
ancestor of vertebrates, a third genome duplication occurred in the stem lineage of
teleost fishes. This teleost-specific genome duplication (TGD) is thought to have provided
genetic raw materials for the physiological, morphological, and behavioral diversification
of this highly speciose group. The extreme physiological versatility of teleost fish is
manifest in their diversity of blood–gas transport traits, which reflects the myriad
solutions that have evolved to maintain tissue O2 delivery in the face of
changing metabolic demands and environmental O2 availability during different
ontogenetic stages. During the course of development, regulatory changes in
blood–O2 transport are mediated by the expression of multiple,
functionally distinct hemoglobin (Hb) isoforms that meet the particular
O2-transport challenges encountered by the developing embryo or fetus (in
viviparous or oviparous species) and in free-swimming larvae and adults. The main
objective of the present study was to assess the relative contributions of whole-genome
duplication, large-scale segmental duplication, and small-scale gene duplication in
producing the extraordinary functional diversity of teleost Hbs. To accomplish this, we
integrated phylogenetic reconstructions with analyses of conserved synteny to characterize
the genomic organization and evolutionary history of the globin gene clusters of teleosts.
These results were then integrated with available experimental data on functional
properties and developmental patterns of stage-specific gene expression. Our results
indicate that multiple α- and β-globin genes
were present in the common ancestor of gars (order Lepisoteiformes) and teleosts. The
comparative genomic analysis revealed that teleosts possess a dual set of TGD-derived
globin gene clusters, each of which has undergone lineage-specific changes in gene content
via repeated duplication and deletion events. Phylogenetic reconstructions revealed that
paralogous genes convergently evolved similar functional properties in different teleost
lineages. Consistent with other recent studies of globin gene family evolution in
vertebrates, our results revealed evidence for repeated evolutionary transitions in the
developmental regulation of Hb synthesis.
Collapse
Affiliation(s)
- Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | | | | | | |
Collapse
|
159
|
Abstract
Applications of clustering algorithms in biomedical research are ubiquitous, with typical examples including gene expression data analysis, genomic sequence analysis, biomedical document mining, and MRI image analysis. However, due to the diversity of cluster analysis, the differing terminologies, goals, and assumptions underlying different clustering algorithms can be daunting. Thus, determining the right match between clustering algorithms and biomedical applications has become particularly important. This paper is presented to provide biomedical researchers with an overview of the status quo of clustering algorithms, to illustrate examples of biomedical applications based on cluster analysis, and to help biomedical researchers select the most suitable clustering algorithms for their own applications.
Collapse
Affiliation(s)
- Rui Xu
- Industrial Artificial Intelligence Laboratory, GE Global Research Center, Niskayuna, NY 12309, USA.
| | | |
Collapse
|
160
|
[Genome-wide prediction of interferon family members of tree shrew and their molecular characteristics analysis]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2012; 33:67-74. [PMID: 22345011 DOI: 10.3724/sp.j.1141.2012.01067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Interferons (IFNs) represent proteins with antiviral activities that are secreted from cells in response to a variety of stimuli. In addition to antiviral, antibacterial and anti-parasitic host-defense functions they are now also recognized as crucial regulators of cell proliferation, differentiation, survival and death as well as activators of specialized cell functions particularly in the immune system and play important roles in infectious and inflammatory diseases, autoimmunity and cancer. Tree shrews (Tupaia belangeri) were found to be susceptible to several human viruses and therefore are widely regarded as good models for analyzing mechanism of human diseases. In this report, we have forecasted the interferon family members of tree shrew from its genome mainly using the methods like Blast (whole genome shotgun sequence) and gene prediction. Our data show that tree shrew interferon system includes: type I IFN: α (five subtypes), β, ω, κ, epsilon, δ; type II IFN: γ; type III IFN: λ1, λ2/3. Furthermore, the predicted structures of α and λ have similar character with those of other mammals. However, there are some differences in cysteine position and N-glycosylation numbers between human and Tree shrew IFNs. These results provide fundamental basis for further molecular cloning and function analysis of tree shrew IFNs in future.
Collapse
|
161
|
Featherstone K, White MRH, Davis JRE. The prolactin gene: a paradigm of tissue-specific gene regulation with complex temporal transcription dynamics. J Neuroendocrinol 2012; 24:977-90. [PMID: 22420298 PMCID: PMC3505372 DOI: 10.1111/j.1365-2826.2012.02310.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transcription of numerous mammalian genes is highly pulsatile, with bursts of expression occurring with variable duration and frequency. The presence of this stochastic or 'noisy' expression pattern has been relatively unexplored in tissue systems. The prolactin gene provides a model of tissue-specific gene regulation resulting in pulsatile transcription dynamics in both cell lines and endocrine tissues. In most cell culture models, prolactin transcription appears to be highly variable between cells, with differences in transcription pulse duration and frequency. This apparently stochastic transcription is constrained by a transcriptional refractory period, which may be related to cycles of chromatin remodelling. We propose that prolactin transcription dynamics result from the summation of oscillatory cellular inputs and by regulation through chromatin remodelling cycles. Observations of transcription dynamics in cells within pituitary tissue show reduced transcriptional heterogeneity and can be grouped into a small number of distinct patterns. Thus, it appears that the tissue environment is able to reduce transcriptional noise to enable coordinated tissue responses to environmental change. We review the current knowledge on the complex tissue-specific regulation of the prolactin gene in pituitary and extra-pituitary sites, highlighting differences between humans and rodent experimental animal models. Within this context, we describe the transcription dynamics of prolactin gene expression and how this may relate to specific processes occurring within the cell.
Collapse
Affiliation(s)
- K Featherstone
- Developmental Biomedicine Research Group, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| | | | | |
Collapse
|
162
|
Kurosaki T, Ueda S, Ishida T, Abe K, Ohno K, Matsuura T. The unstable CCTG repeat responsible for myotonic dystrophy type 2 originates from an AluSx element insertion into an early primate genome. PLoS One 2012; 7:e38379. [PMID: 22723857 PMCID: PMC3378579 DOI: 10.1371/journal.pone.0038379] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/04/2012] [Indexed: 02/02/2023] Open
Abstract
Myotonic dystrophy type 2 (DM2) is a subtype of the myotonic dystrophies, caused by expansion of a tetranucleotide CCTG repeat in intron 1 of the zinc finger protein 9 (ZNF9) gene. The expansions are extremely unstable and variable, ranging from 75–11,000 CCTG repeats. This unprecedented repeat size and somatic heterogeneity make molecular diagnosis of DM2 difficult, and yield variable clinical phenotypes. To better understand the mutational origin and instability of the ZNF9 CCTG repeat, we analyzed the repeat configuration and flanking regions in 26 primate species. The 3′-end of an AluSx element, flanked by target site duplications (5′-ACTRCCAR-3′or 5′-ACTRCCARTTA-3′), followed the CCTG repeat, suggesting that the repeat was originally derived from the Alu element insertion. In addition, our results revealed lineage-specific repetitive motifs: pyrimidine (CT)-rich repeat motifs in New World monkeys, dinucleotide (TG) repeat motifs in Old World monkeys and gibbons, and dinucleotide (TG) and tetranucleotide (TCTG and/or CCTG) repeat motifs in great apes and humans. Moreover, these di- and tetra-nucleotide repeat motifs arose from the poly (A) tail of the AluSx element, and evolved into unstable CCTG repeats during primate evolution. Alu elements are known to be the source of microsatellite repeats responsible for two other repeat expansion disorders: Friedreich ataxia and spinocerebellar ataxia type 10. Taken together, these findings raise questions as to the mechanism(s) by which Alu-mediated repeats developed into the large, extremely unstable expansions common to these three disorders.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shintaroh Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takafumi Ishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Koji Abe
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tohru Matsuura
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| |
Collapse
|
163
|
Rossi E, Giorda R, Bonaglia MC, Candia SD, Grechi E, Franzese A, Soli F, Rivieri F, Patricelli MG, Saccilotto D, Bonfante A, Giglio S, Beri S, Rocchi M, Zuffardi O. De novo unbalanced translocations in Prader-Willi and Angelman syndrome might be the reciprocal product of inv dup(15)s. PLoS One 2012; 7:e39180. [PMID: 22720067 PMCID: PMC3375265 DOI: 10.1371/journal.pone.0039180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/21/2012] [Indexed: 11/30/2022] Open
Abstract
The 15q11-q13 region is characterized by high instability, caused by the presence of several paralogous segmental duplications. Although most mechanisms dealing with cryptic deletions and amplifications have been at least partly characterized, little is known about the rare translocations involving this region. We characterized at the molecular level five unbalanced translocations, including a jumping one, having most of 15q transposed to the end of another chromosome, whereas the der(15)(pter->q11-q13) was missing. Imbalances were associated either with Prader-Willi or Angelman syndrome. Array-CGH demonstrated the absence of any copy number changes in the recipient chromosome in three cases, while one carried a cryptic terminal deletion and another a large terminal deletion, already diagnosed by classical cytogenetics. We cloned the breakpoint junctions in two cases, whereas cloning was impaired by complex regional genomic architecture and mosaicism in the others. Our results strongly indicate that some of our translocations originated through a prezygotic/postzygotic two-hit mechanism starting with the formation of an acentric 15qter->q1::q1->qter representing the reciprocal product of the inv dup(15) supernumerary marker chromosome. An embryo with such an acentric chromosome plus a normal chromosome 15 inherited from the other parent could survive only if partial trisomy 15 rescue would occur through elimination of part of the acentric chromosome, stabilization of the remaining portion with telomere capture, and formation of a derivative chromosome. All these events likely do not happen concurrently in a single cell but are rather the result of successive stabilization attempts occurring in different cells of which only the fittest will finally survive. Accordingly, jumping translocations might represent successful rescue attempts in different cells rather than transfer of the same 15q portion to different chromosomes. We also hypothesize that neocentromerization of the original acentric chromosome during early embryogenesis may be required to avoid its loss before cell survival is finally assured.
Collapse
Affiliation(s)
- Elena Rossi
- Medical Genetics, University of Pavia, Pavia, Italy
| | - Roberto Giorda
- Scientific Institute Eugenio Medea, Bosisio Parini, Lecco, Italy
| | | | - Stefania Di Candia
- Department of Pediatrics, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Grechi
- Department of Pediatrics, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Fiorenza Soli
- Medical Genetics Department, APSS Trento, Trento, Italy
| | | | - Maria Grazia Patricelli
- Biologia Molecolare Clinica e Citogenetica, Diagnostica e Ricerca, San Raffaele SPA, Milan, Italy
| | | | - Aldo Bonfante
- Genetica Medica, Ospedale Civile, Bassano del Grappa, Italy
| | - Sabrina Giglio
- Medical Genetics Unit, Meyer Children's Hospital, University of Firenze, Firenze, Italy
| | - Silvana Beri
- Scientific Institute Eugenio Medea, Bosisio Parini, Lecco, Italy
| | | | - Orsetta Zuffardi
- Medical Genetics, University of Pavia, Pavia, Italy
- IRCCS “C. Mondino National Neurological Institute” Foundation, Pavia, Italy
- * E-mail:
| |
Collapse
|
164
|
Jumlongras D, Lachke SA, O’Connell DJ, Aboukhalil A, Li X, Choe SE, Ho JWK, Turbe-Doan A, Robertson EA, Olsen BR, Bulyk ML, Amendt BA, Maas RL. An evolutionarily conserved enhancer regulates Bmp4 expression in developing incisor and limb bud. PLoS One 2012; 7:e38568. [PMID: 22701669 PMCID: PMC3373496 DOI: 10.1371/journal.pone.0038568] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/07/2012] [Indexed: 12/02/2022] Open
Abstract
To elucidate the transcriptional regulation of Bmp4 expression during organogenesis, we used phylogenetic footprinting and transgenic reporter analyses to identify Bmp4 cis-regulatory modules (CRMs). These analyses identified a regulatory region located ∼46 kb upstream of the mouse Bmp4 transcription start site that had previously been shown to direct expression in lateral plate mesoderm. We refined this regulatory region to a 396-bp minimal enhancer, and show that it recapitulates features of endogenous Bmp4 expression in developing mandibular arch ectoderm and incisor epithelium during the initiation-stage of tooth development. In addition, this enhancer directs expression in the apical ectodermal ridge (AER) of the developing limb and in anterior and posterior limb mesenchyme. Transcript profiling of E11.5 mouse incisor dental lamina, together with protein binding microarray (PBM) analyses, allowed identification of a conserved DNA binding motif in the Bmp4 enhancer for Pitx homeoproteins, which are also expressed in the developing mandibular and incisor epithelium. In vitro electrophoretic mobility shift assays (EMSA) and in vivo transgenic reporter mutational analyses revealed that this site supports Pitx binding and that the site is necessary to recapitulate aspects of endogenous Bmp4 expression in developing craniofacial and limb tissues. Finally, Pitx2 chromatin immunoprecipitation (ChIP) demonstrated direct binding of Pitx2 to this Bmp4 enhancer site in a dental epithelial cell line. These results establish a direct molecular regulatory link between Pitx family members and Bmp4 gene expression in developing incisor epithelium.
Collapse
Affiliation(s)
- Dolrudee Jumlongras
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Salil A. Lachke
- Department of Biological Sciences, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
| | - Daniel J. O’Connell
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
| | - Anton Aboukhalil
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Xiao Li
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Sung E. Choe
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
| | - Joshua W. K. Ho
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Annick Turbe-Doan
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
| | - Erin A. Robertson
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
| | - Bjorn R. Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brad A. Amendt
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Richard L. Maas
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
| |
Collapse
|
165
|
Mineccia M, Massari S, Linguiti G, Ceci L, Ciccarese S, Antonacci R. New insight into the genomic structure of dog T cell receptor beta (TRB) locus inferred from expression analysis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:279-293. [PMID: 22465586 DOI: 10.1016/j.dci.2012.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/16/2012] [Accepted: 03/20/2012] [Indexed: 05/31/2023]
Abstract
Here is an updated report on the genomic organization of T cell receptor beta (TRB) locus in the domestic dog (Canis lupus familiaris) as inferred from comparative genomics and expression analysis. The most interesting results we found were a second TRBD-J-C cluster, which is absent from the reference genome sequence, and the annotation of two additional TRBV genes. In dogs, TRB locus consists of a library of 37 TRBV genes positioned at the 5' end of two in tandem aligned D-J-C gene clusters, each composed of a single TRBD, 6 TRBJ and one TRBC genes, followed by a single TRBV gene with an inverted transcriptional orientation. The TRB genes are distributed in less than 300kb, making the canine locus, one of the smaller mammalian TRB locus studied so far. The small size may be ascribed to reduced gene duplication occurrences and a lower density of total interspersed repeats compared to humans and mice. Despite the low TRBV gene content, a large and diversified beta chain repertoire is displayed in the dog peripheral blood. A full usage of TRBV and TRBJ genes, including pseudogenes, and a high level of allelic polymorphism contribute to generate diversity. Finally, this study suggests that the overall TRB locus organization is evolutionarily conserved supporting the dog as a highly suited model system for immune development and diseases.
Collapse
Affiliation(s)
- Micaela Mineccia
- Dipartimento di Biologia, Universita' degli Studi di Bari Aldo Moro, Bari, Italy.
| | | | | | | | | | | |
Collapse
|
166
|
Jeong J, Kim WH, Yoo J, Lee C, Kim S, Cho JH, Jang HK, Kim DW, Lillehoj HS, Min W. Identification and comparative expression analysis of interleukin 2/15 receptor β chain in chickens infected with E. tenella. PLoS One 2012; 7:e37704. [PMID: 22662196 PMCID: PMC3360756 DOI: 10.1371/journal.pone.0037704] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/23/2012] [Indexed: 12/16/2022] Open
Abstract
Background Interleukin (IL) 2 and IL15 receptor β chain (IL2/15Rβ, CD122) play critical roles in signal transduction for the biological activities of IL2 and IL15. Increased knowledge of non-mammalian IL2/15Rβ will enhance the understanding of IL2 and IL15 functions. Methology/Principal Findings Chicken IL2/15Rβ (chIL2/15Rβ) cDNA was cloned using 5′/3′-RACE. The predicted protein sequence contained 576 amino acids and typical features of the type-I cytokine receptor family. COS-7 cells transfected with chIL2/15Rβ produced proteins of approximately 75 and 62.5 kDa under normal and tunicamycin-treated conditions, respectively. The genomic structure of chIL2/15Rβ was similar to its mammalian counterparts. chIL2/15Rβ transcripts were detected in the lymphoblast cell line CU205 and in normal lymphoid organs and at moderate levels in bursa samples. Expression profiles of chIL2/15Rβ and its related cytokines and receptors were examined in ConA-stimulated splenic lymphocytes and in ceca-tonsils of Eimeria tenella-infected chickens using quantitative real-time PCR. Expression levels of chIL2/15Rβ, chIL2Rα, and chIL15Rα were generally elevated in ceca-tonsils and ConA-activated splenic lymphocytes. However, chIL2 and chIL15 expression levels were differentially regulated between the samples. chIL2 expression was upregulated in ConA-activated splenic lymphocytes, but not in ceca-tonsils. In constrast, chIL15 expression was upregulated in ceca-tonsils, but not in ConA-activated splenic lymphocytes. Conclusions/Significance We identified an avian form of IL2/15Rβ and compared its gene expression pattern with those of chIL2, chIL15, chIL2Rα, and chIL15Rα. Our observations suggest that chIL15 and its receptors, including chIL2/15Rβ, play important roles in mucosal immunity to intestinal intracellular parasites such as Eimeria.
Collapse
Affiliation(s)
- Jipseol Jeong
- College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | - Woo H. Kim
- College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | - Jeongmi Yoo
- College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | - Changhwan Lee
- College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | - Suk Kim
- College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | - Jae-Hyeon Cho
- College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | - Hyung-Kwan Jang
- Departments of Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Korea Zoonosis Research Institute, Chonbuk National University, Jeonju, Korea
| | - Dong W. Kim
- National Institute of Animal Science, RDA, Cheonan, Chungnam, Korea
| | - Hyun S. Lillehoj
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Wongi Min
- College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
- * E-mail:
| |
Collapse
|
167
|
Andersen KG, Nissen JK, Betz AG. Comparative Genomics Reveals Key Gain-of-Function Events in Foxp3 during Regulatory T Cell Evolution. Front Immunol 2012; 3:113. [PMID: 22590469 PMCID: PMC3349156 DOI: 10.3389/fimmu.2012.00113] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 04/20/2012] [Indexed: 11/24/2022] Open
Abstract
The immune system has the ability to suppress undesirable responses, such as those against commensal bacteria, food, and paternal antigens in placenta pregnancy. The lineage-specific transcription factor Foxp3 orchestrates the development and function of regulatory T cells underlying this immunological tolerance. Despite the crucial role of Foxp3 in supporting immune homeostasis, little is known about its origin, evolution, and species conservation. We explore these questions using comparative genomics, structural modeling, and functional analyses. Our data reveal that key gain-of-function events occurred during the evolution of Foxp3 in higher vertebrates. We identify key conserved residues in its forkhead domain and show a detailed analysis of the N-terminal region of Foxp3, which is only conserved in mammals. These components are under purifying selection, and our mutational analyses demonstrate that they are essential for Foxp3 function. Our study points to critical functional adaptations in immune tolerance among higher vertebrates, and suggests that Foxp3-mediated transcriptional mechanisms emerged during mammalian evolution as a stepwise gain of functional domains that enabled Foxp3 to interact with a multitude of interaction partners.
Collapse
|
168
|
Kim JA, Kim JS, Hong JK, Lee YH, Choi BS, Seol YJ, Jeon CH. Comparative mapping, genomic structure, and expression analysis of eight pseudo-response regulator genes in Brassica rapa. Mol Genet Genomics 2012; 287:373-88. [PMID: 22466714 DOI: 10.1007/s00438-012-0682-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 02/15/2012] [Indexed: 12/30/2022]
Abstract
Circadian clocks regulate plant growth and development in response to environmental factors. In this function, clocks influence the adaptation of species to changes in location or climate. Circadian-clock genes have been subject of intense study in models such as Arabidopsis thaliana but the results may not necessarily reflect clock functions in species with polyploid genomes, such as Brassica species, that include multiple copies of clock-related genes. The triplicate genome of Brassica rapa retains high sequence-level co-linearity with Arabidopsis genomes. In B. rapa we had previously identified five orthologs of the five known Arabidopsis pseudo-response regulator (PRR) genes that are key regulators of the circadian clock in this species. Three of these B. rapa genes, BrPRR1, BrPPR5, and BrPPR7, are present in two copies each in the B. rapa genome, for a total of eight B. rapa PRR (BrPRR) orthologs. We have now determined sequences and expression characteristics of the eight BrPRR genes and mapped their positions in the B. rapa genome. Although both members of each paralogous pair exhibited the same expression pattern, some variation in their gene structures was apparent. The BrPRR genes are tightly linked to several flowering genes. The knowledge about genome location, copy number variation and structural diversity of these B. rapa clock genes will improve our understanding of clock-related functions in this important crop. This will facilitate the development of Brassica crops for optimal growth in new environments and under changing conditions.
Collapse
Affiliation(s)
- Jin A Kim
- Department of Agricultural Bio-resources, National Academy of Agricultural Science, Rural Development Administration, Suinro Gwonseon-gu, Suwon, Gyeonggi-do, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
169
|
Ye Q, He K, Wu SY, Wan QH. Isolation of a 97-kb minimal essential MHC B locus from a new reverse-4D BAC library of the golden pheasant. PLoS One 2012; 7:e32154. [PMID: 22403630 PMCID: PMC3293878 DOI: 10.1371/journal.pone.0032154] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/19/2012] [Indexed: 12/02/2022] Open
Abstract
The bacterial artificial chromosome (BAC) system is widely used in isolation of large genomic fragments of interest. Construction of a routine BAC library requires several months for picking clones and arraying BACs into superpools in order to employ 4D-PCR to screen positive BACs, which might be time-consuming and laborious. The major histocompatibility complex (MHC) is a cluster of genes involved in the vertebrate immune system, and the classical avian MHC-B locus is a minimal essential one, occupying a 100-kb genomic region. In this study, we constructed a more effective reverse-4D BAC library for the golden pheasant, which first creates sub-libraries and then only picks clones of positive sub-libraries, and identified several MHC clones within thirty days. The full sequencing of a 97-kb reverse-4D BAC demonstrated that the golden pheasant MHC-B locus contained 20 genes and showed good synteny with that of the chicken. The notable differences between these two species were the numbers of class II B loci and NK genes and the inversions of the TAPBP gene and the TAP1-TAP2 region. Furthermore, the inverse TAP2-TAP1 was unique in the golden pheasant in comparison with that of chicken, turkey, and quail. The newly defined genomic structure of the golden pheasant MHC will give an insight into the evolutionary history of the avian MHC.
Collapse
Affiliation(s)
| | | | - Shao-Ying Wu
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qiu-Hong Wan
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
170
|
Yoo CM, Quan L, Blancaflor EB. Divergence and Redundancy in CSLD2 and CSLD3 Function During Arabidopsis Thaliana Root Hair and Female Gametophyte Development. FRONTIERS IN PLANT SCIENCE 2012; 3:111. [PMID: 22661983 PMCID: PMC3361707 DOI: 10.3389/fpls.2012.00111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/08/2012] [Indexed: 05/21/2023]
Abstract
The Arabidopsis cellulose synthase-like D (CSLD) 2 and 3 genes are known to function in root hair development. Here, we show that these genes also play a role in female gametophyte development because csld2 csld3 double mutants were observed to have low seed set that could be traced to defects in female transmission efficiency. Cell biological studies of csld2 csld3 ovules showed synergid cell degeneration during megagametogenesis and reduced pollen tube penetration during fertilization. Although CSLD2 and CSLD3 function redundantly in female gametophyte development, detailed analyses of root hair phenotypes of progeny from genetic crosses between csld2 and csld3, suggest that CSLD3 might play a more prominent role than CSLD2 in root hair development. Phylogenetic and gene duplication studies of CSLD2 and CSLD3 homologs in Arabidopsis lyrata, Populus, Medicago, maize, and Physcomitrella were further performed to investigate the course of evolution for these genes. Our analyses indicate that the ancestor of land plants possibly contained two copies of CSLD genes, one of which developed into the CSLD5 lineage in flowering plants, and the other formed the CSLD1/2/3/4 clade. In addition, CSLD2 and CSLD3 likely originated from a recent genome-wide duplication event explaining their redundancy. Moreover, sliding-window dN/dS analysis showed that most of the coding regions of CSLD2 and CSLD3 have been under strong purifying selection pressure. However, the region that encodes the N-terminus of CSLD3 has been under relatively relaxed selection pressure as indicated by its high dN/dS value, suggesting that CSLD3 might have gained additional functions through more frequent non-synonymous sequence changes at the N-terminus, which could partly explain the more prominent role of CSLD3 during root hair development compared to CSLD2.
Collapse
Affiliation(s)
- Cheol-Min Yoo
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Li Quan
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Elison B. Blancaflor
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
- *Correspondence: Elison B. Blancaflor, Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, USA. e-mail:
| |
Collapse
|
171
|
DNaseI hypersensitivity and ultraconservation reveal novel, interdependent long-range enhancers at the complex Pax6 cis-regulatory region. PLoS One 2011; 6:e28616. [PMID: 22220192 PMCID: PMC3248410 DOI: 10.1371/journal.pone.0028616] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 11/11/2011] [Indexed: 02/01/2023] Open
Abstract
The PAX6 gene plays a crucial role in development of the eye, brain, olfactory system and endocrine pancreas. Consistent with its pleiotropic role the gene exhibits a complex developmental expression pattern which is subject to strict spatial, temporal and quantitative regulation. Control of expression depends on a large array of cis-elements residing in an extended genomic domain around the coding region of the gene. The minimal essential region required for proper regulation of this complex locus has been defined through analysis of human aniridia-associated breakpoints and YAC transgenic rescue studies of the mouse smalleye mutant. We have carried out a systematic DNase I hypersensitive site (HS) analysis across 200 kb of this critical region of mouse chromosome 2E3 to identify putative regulatory elements. Mapping the identified HSs onto a percent identity plot (PIP) shows many HSs correspond to recognisable genomic features such as evolutionarily conserved sequences, CpG islands and retrotransposon derived repeats. We then focussed on a region previously shown to contain essential long range cis-regulatory information, the Pax6 downstream regulatory region (DRR), allowing comparison of mouse HS data with previous human HS data for this region. Reporter transgenic mice for two of the HS sites, HS5 and HS6, show that they function as tissue specific regulatory elements. In addition we have characterised enhancer activity of an ultra-conserved cis-regulatory region located near Pax6, termed E60. All three cis-elements exhibit multiple spatio-temporal activities in the embryo that overlap between themselves and other elements in the locus. Using a deletion set of YAC reporter transgenic mice we demonstrate functional interdependence of the elements. Finally, we use the HS6 enhancer as a marker for the migration of precerebellar neuro-epithelium cells to the hindbrain precerebellar nuclei along the posterior and anterior extramural streams allowing visualisation of migratory defects in both pathways in Pax6(Sey/Sey) mice.
Collapse
|
172
|
Fujimura K, Conte MA, Kocher TD. Circular DNA intermediate in the duplication of Nile tilapia vasa genes. PLoS One 2011; 6:e29477. [PMID: 22216289 PMCID: PMC3245284 DOI: 10.1371/journal.pone.0029477] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/29/2011] [Indexed: 11/19/2022] Open
Abstract
vasa is a highly conserved RNA helicase involved in animal germ cell development. Among vertebrate species, it is typically present as a single copy per genome. Here we report the isolation and sequencing of BAC clones for Nile tilapia vasa genes. Contrary to a previous report that Nile tilapia have a single copy of the vasa gene, we find evidence for at least three vasa gene loci. The vasa gene locus was duplicated from the original site and integrated into two distant novel sites. For one of these insertions we find evidence that the duplication was mediated by a circular DNA intermediate. This mechanism of gene duplication may explain the origin of isolated gene duplicates during the evolution of fish genomes. These data provide a foundation for studying the role of multiple vasa genes in the development of tilapia gonads, and will contribute to investigations of the molecular mechanisms of sex determination and evolution in cichlid fishes.
Collapse
Affiliation(s)
- Koji Fujimura
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Matthew A. Conte
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Thomas D. Kocher
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
173
|
Bacterial classification using genomic fingerprints obtained by virtual hybridization. J Microbiol Methods 2011; 87:286-94. [DOI: 10.1016/j.mimet.2011.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 08/21/2011] [Accepted: 08/24/2011] [Indexed: 11/18/2022]
|
174
|
Abstract
RATIONALE Endothelial cells are developmentally derived from angioblasts specified in the mesodermal germ cell layer. The transcription factor etsrp/etv2 is at the top of the known genetic hierarchy for angioblast development. The transcriptional events that induce etsrp expression and angioblast specification are not well understood. OBJECTIVE We generated etsrp:gfp transgenic zebrafish and used them to identify regulatory regions and transcription factors critical for etsrp expression and angioblast specification from mesoderm. METHODS AND RESULTS To investigate the mechanisms that initiate angioblast cell transcription during embryogenesis, we have performed promoter analysis of the etsrp locus in zebrafish. We describe three enhancer elements sufficient for endothelial gene expression when place in front of a heterologous promoter. The deletion of all 3 regulatory regions led to a near complete loss of endothelial expression from the etsrp promoter. One of the enhancers, located 2.3 kb upstream of etsrp contains a consensus FOX binding site that binds Foxc1a and Foxc1b in vitro by EMSA and in vivo using ChIP. Combined knockdown of foxc1a/b, using morpholinos, led to a significant decrease in etsrp expression at early developmental stages as measured by quantitative reverse transcriptase-polymerase chain reaction and in situ hybridization. Decreased expression of primitive erythrocyte genes scl and gata1 was also observed, whereas pronephric gene pax2a was relatively normal in expression level and pattern. CONCLUSIONS These findings identify mesodermal foxc1a/b as a direct upstream regulator of etsrp in angioblasts. This establishes a new molecular link in the process of mesoderm specification into angioblast.
Collapse
Affiliation(s)
- Matthew B Veldman
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, 621 Charles E Young Dr South, Los Angeles, CA 90095-1606, USA
| | | |
Collapse
|
175
|
Asp T, Byrne S, Gundlach H, Bruggmann R, Mayer KFX, Andersen JR, Xu M, Greve M, Lenk I, Lübberstedt T. Comparative sequence analysis of VRN1 alleles of Lolium perenne with the co-linear regions in barley, wheat, and rice. Mol Genet Genomics 2011; 286:433-47. [PMID: 22081040 DOI: 10.1007/s00438-011-0654-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 10/18/2011] [Indexed: 11/25/2022]
Abstract
Vernalization, a period of low temperature to induce transition from vegetative to reproductive state, is an important environmental stimulus for many cool season grasses. A key gene in the vernalization pathway in grasses is the VRN1 gene. The objective of this study was to identify causative polymorphism(s) at the VRN1 locus in perennial ryegrass (Lolium perenne) for variation in vernalization requirement. Two allelic Bacterial Artificial Chromosome clones of the VRN1 locus from the two genotypes Veyo and Falster with contrasting vernalization requirements were identified, sequenced, and characterized. Analysis of the allelic sequences identified an 8.6-kb deletion in the first intron of the VRN1 gene in the Veyo genotype which has low vernalization requirement. This deletion was in a divergent recurrent selection experiment confirmed to be associated with genotypes with low vernalization requirement. The region surrounding the VRN1 locus in perennial ryegrass showed microcolinearity to the corresponding region on chromosome 3 in Oryza sativa with conserved gene order and orientation, while the micro-colinearity to the corresponding region in Triticum monococcum was less conserved. Our study indicates that the first intron of the VRN1 gene, and in particular the identified 8.6 kb region, is an important regulatory region for vernalization response in perennial ryegrass.
Collapse
Affiliation(s)
- Torben Asp
- Department of Molecular Biology and Genetics, Research Centre Flakkebjerg, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Biglione S, Tsytsykova AV, Goldfeld AE. Monocyte-specific accessibility of a matrix attachment region in the tumor necrosis factor locus. J Biol Chem 2011; 286:44126-44133. [PMID: 22027829 PMCID: PMC3243562 DOI: 10.1074/jbc.m111.272476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of TNF gene expression is cell type- and stimulus-specific. We have previously identified highly conserved noncoding regulatory elements within DNase I-hypersensitive sites (HSS) located 9 kb upstream (HSS-9) and 3 kb downstream (HSS+3) of the TNF gene, which play an important role in the transcriptional regulation of TNF in T cells. They act as enhancers and interact with the TNF promoter and with each other, generating a higher order chromatin structure. Here, we report a novel monocyte-specific AT-rich DNase I-hypersensitive element located 7 kb upstream of the TNF gene (HSS-7), which serves as a matrix attachment region in monocytes. We show that HSS-7 associates with topoisomerase IIα (Top2) in vivo and that induction of endogenous TNF mRNA expression is suppressed by etoposide, a Top2 inhibitor. Moreover, Top2 binds to and cleaves HSS-7 in in vitro analysis. Thus, HSS-7, which is selectively accessible in monocytes, can tether the TNF locus to the nuclear matrix via matrix attachment region formation, potentially promoting TNF gene expression by acting as a Top2 substrate.
Collapse
Affiliation(s)
- Sebastian Biglione
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Alla V Tsytsykova
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Anne E Goldfeld
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
177
|
Lettice LA, Daniels S, Sweeney E, Venkataraman S, Devenney PS, Gautier P, Morrison H, Fantes J, Hill RE, FitzPatrick DR. Enhancer-adoption as a mechanism of human developmental disease. Hum Mutat 2011; 32:1492-9. [PMID: 21948517 DOI: 10.1002/humu.21615] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/01/2011] [Indexed: 01/19/2023]
Abstract
Disruption of the long-range cis-regulation of developmental gene expression is increasingly recognized as a cause of human disease. Here, we report a novel type of long-range cis-regulatory mutation, in which ectopic expression of a gene is driven by an enhancer that is not its own. We have termed this gain of regulatory information as "enhancer adoption." We mapped the breakpoints of a de novo 7q inversion in a child with features of a holoprosencephaly spectrum (HPES) disorder and severe upper limb syndactyly with lower limb synpolydactyly. The HPES plausibly results from the 7q36.3 breakpoint dislocating the sonic hedgehog (SHH) gene from enhancers that are known to drive expression in the early forebrain. However, the limb phenotype cannot be explained by loss of known SHH enhancers. The SHH transcription unit is relocated to 7q22.1, ∼190 kb 3' of a highly conserved noncoding element (HCNE2) within an intron of EMID2. We show that HCNE2 functions as a limb bud enhancer in mouse embryos and drives ectopic expression of Shh in vivo recapitulating the limb phenotype in the child. This developmental genetic mechanism may explain a proportion of the novel or unexplained phenotypes associated with balanced chromosome rearrangements.
Collapse
Affiliation(s)
- Laura A Lettice
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Sequence Analysis of the Segmental Duplication Responsible for Paris Sex-Ratio Drive in Drosophila simulans. G3-GENES GENOMES GENETICS 2011; 1:401-10. [PMID: 22384350 PMCID: PMC3276153 DOI: 10.1534/g3.111.000315] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/25/2011] [Indexed: 12/25/2022]
Abstract
Sex-ratio distorters are X-linked selfish genetic elements that facilitate their own transmission by subverting Mendelian segregation at the expense of the Y chromosome. Naturally occurring cases of sex-linked distorters have been reported in a variety of organisms, including several species of Drosophila; they trigger genetic conflict over the sex ratio, which is an important evolutionary force. However, with a few exceptions, the causal loci are unknown. Here, we molecularly characterize the segmental duplication involved in the Paris sex-ratio system that is still evolving in natural populations of Drosophila simulans. This 37.5 kb tandem duplication spans six genes, from the second intron of the Trf2 gene (TATA box binding protein-related factor 2) to the first intron of the org-1 gene (optomotor-blind-related-gene-1). Sequence analysis showed that the duplication arose through the production of an exact copy on the template chromosome itself. We estimated this event to be less than 500 years old. We also detected specific signatures of the duplication mechanism; these support the Duplication-Dependent Strand Annealing model. The region at the junction between the two duplicated segments contains several copies of an active transposable element, Hosim1, alternating with 687 bp repeats that are noncoding but transcribed. The almost-complete sequence identity between copies made it impossible to complete the sequencing and assembly of this region. These results form the basis for the functional dissection of Paris sex-ratio drive and will be valuable for future studies designed to better understand the dynamics and the evolutionary significance of sex chromosome drive.
Collapse
|
179
|
Park TH, Park BS, Kim JA, Hong JK, Jin M, Seol YJ, Mun JH. Construction of random sheared fosmid library from Chinese cabbage and its use for Brassica rapa genome sequencing project. J Genet Genomics 2011; 38:47-53. [PMID: 21338952 DOI: 10.1016/j.jcg.2010.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/27/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
Abstract
As a part of the Multinational Genome Sequencing Project of Brassica rapa, linkage group R9 and R3 were sequenced using a bacterial artificial chromosome (BAC) by BAC strategy. The current physical contigs are expected to cover approximately 90% euchromatins of both chromosomes. As the project progresses, BAC selection for sequence extension becomes more limited because BAC libraries are restriction enzyme-specific. To support the project, a random sheared fosmid library was constructed. The library consists of 97536 clones with average insert size of approximately 40 kb corresponding to seven genome equivalents, assuming a Chinese cabbage genome size of 550 Mb. The library was screened with primers designed at the end of sequences of nine points of scaffold gaps where BAC clones cannot be selected to extend the physical contigs. The selected positive clones were end-sequenced to check the overlap between the fosmid clones and the adjacent BAC clones. Nine fosmid clones were selected and fully sequenced. The sequences revealed two completed gap filling and seven sequence extensions, which can be used for further selection of BAC clones confirming that the fosmid library will facilitate the sequence completion of B. rapa.
Collapse
Affiliation(s)
- Tae-Ho Park
- Genomics and Functional Bio-Material Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
180
|
Young HA, Lanzatella CL, Sarath G, Tobias CM. Chloroplast genome variation in upland and lowland switchgrass. PLoS One 2011; 6:e23980. [PMID: 21887356 PMCID: PMC3161095 DOI: 10.1371/journal.pone.0023980] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/01/2011] [Indexed: 11/25/2022] Open
Abstract
Switchgrass (Panicum virgatum L.) exists at multiple ploidies and two phenotypically distinct ecotypes. To facilitate interploidal comparisons and to understand the extent of sequence variation within existing breeding pools, two complete switchgrass chloroplast genomes were sequenced from individuals representative of the upland and lowland ecotypes. The results demonstrated a very high degree of conservation in gene content and order with other sequenced plastid genomes. The lowland ecotype reference sequence (Kanlow Lin1) was 139,677 base pairs while the upland sequence (Summer Lin2) was 139,619 base pairs. Alignments between the lowland reference sequence and short-read sequence data from existing sequence datasets identified as either upland or lowland confirmed known polymorphisms and indicated the presence of other differences. Insertions and deletions principally occurred near stretches of homopolymer simple sequence repeats in intergenic regions while most Single Nucleotide Polymorphisms (SNPs) occurred in intergenic regions and introns within the single copy portions of the genome. The polymorphism rate between upland and lowland switchgrass ecotypes was found to be similar to rates reported between chloroplast genomes of indica and japonica subspecies of rice which were believed to have diverged 0.2–0.4 million years ago.
Collapse
Affiliation(s)
- Hugh A. Young
- Genomics and Gene Discovery Research Unit, United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Christina L. Lanzatella
- Genomics and Gene Discovery Research Unit, United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Gautam Sarath
- United States Department of Agriculture, Agricultural Research Service, Central-East Regional Biomass Center, Lincoln, Nebraska, United States of America
| | - Christian M. Tobias
- Genomics and Gene Discovery Research Unit, United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
- * E-mail:
| |
Collapse
|
181
|
Kothapalli NR, Collura KM, Norton DD, Fugmann SD. Separation of mutational and transcriptional enhancers in Ig genes. THE JOURNAL OF IMMUNOLOGY 2011; 187:3247-55. [PMID: 21844395 DOI: 10.4049/jimmunol.1101568] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Secondary Ig gene diversification relies on activation-induced cytidine deaminase (AID) to create U:G mismatches that are subsequently fixed by mutagenic repair pathways. AID activity is focused to Ig loci by cis-regulatory DNA sequences named targeting elements. In this study, we show that in contrast to prevailing thought in the field, the targeting elements in the chicken IGL locus are distinct from classical transcriptional enhancers. These mutational enhancer elements (MEEs) are required over and above transcription to recruit AID-mediated mutagenesis to Ig loci. We identified a small 222-bp fragment in the chicken IGL locus that enhances mutagenesis without boosting transcription, and this sequence represents a key component of an MEE. Lastly, MEEs are evolutionarily conserved among birds, both in sequence and function, and contain several highly conserved sequence modules that are likely involved in recruiting trans-acting targeting factors. We propose that MEEs represent a novel class of cis-regulatory elements for which the function is to control genomic integrity.
Collapse
Affiliation(s)
- Naga Rama Kothapalli
- Molecular Immunology Unit, Laboratory of Molecular Biology and Immunology, National Institute on Aging/National Institutes of Health, Biomedical Research Center, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
182
|
A boundary element between Tsix and Xist binds the chromatin insulator Ctcf and contributes to initiation of X-chromosome inactivation. Genetics 2011; 189:441-54. [PMID: 21840866 DOI: 10.1534/genetics.111.132662] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mammals, X-chromosome inactivation (XCI) equalizes X-linked gene expression between XY males and XX females and is controlled by a specialized region known as the X-inactivation center (Xic). The Xic harbors two chromatin interaction domains, one centered around the noncoding Xist gene and the other around the antisense Tsix counterpart. Previous work demonstrated the existence of a chromatin transitional zone between the two domains. Here, we investigate the region and discover a conserved element, RS14, that presents a strong binding site for Ctcf protein. RS14 possesses an insulatory function suggestive of a boundary element and is crucial for cell differentiation and growth. Knocking out RS14 results in compromised Xist induction and aberrant XCI in female cells. These data demonstrate that a junction element between Tsix and Xist contributes to the initiation of XCI.
Collapse
|
183
|
Variability of sequence surrounding the Xist gene in rodents suggests taxon-specific regulation of X chromosome inactivation. PLoS One 2011; 6:e22771. [PMID: 21826206 PMCID: PMC3149622 DOI: 10.1371/journal.pone.0022771] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 06/29/2011] [Indexed: 11/29/2022] Open
Abstract
One of the two X chromosomes in female mammalian cells is subject to inactivation (XCI) initiated by the Xist gene. In this study, we examined in rodents (voles and rat) the conservation of the microsatellite region DXPas34, the Tsix gene (antisense counterpart of Xist), and enhancer Xite that have been shown to flank Xist and regulate XCI in mouse. We have found that mouse regions of the Tsix gene major promoter and minisatellite repeat DXPas34 are conserved among rodents. We have also shown that in voles and rat the region homologous to the mouse Tsix major promoter, initiates antisense to Xist transcription and terminates around the Xist gene start site as is observed with mouse Tsix. A conservation of Tsix expression pattern in voles, rat and mice suggests a crucial role of the antisense transcription in regulation of Xist and XIC in rodents. Most surprisingly, we have found that voles lack the regions homologous to the regulatory element Xite, which is instead replaced with the Slc7a3 gene that is unassociated with the X-inactivation centre in any other eutherians studied. Furthermore, we have not identified any transcription that could have the same functions as murine Xite in voles. Overall, our data show that not all the functional elements surrounding Xist in mice are well conserved even within rodents, thereby suggesting that the regulation of XCI may be at least partially taxon-specific.
Collapse
|
184
|
Chung BI, Lee KH, Shin KS, Kim WC, Kwon DN, You RN, Lee YK, Cho K, Cho DH. REMiner: a tool for unbiased mining and analysis of repetitive elements and their arrangement structures of large chromosomes. Genomics 2011; 98:381-9. [PMID: 21803149 DOI: 10.1016/j.ygeno.2011.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/21/2011] [Accepted: 07/15/2011] [Indexed: 11/18/2022]
Abstract
Repetitive elements (REs) constitute a substantial portion of the genomes of human and other species; however, the RE profiles (type, density, and arrangement) within the individual genomes have not been fully characterized. In this study, we developed an RE analysis tool, called REMiner, for a chromosome-wide investigation into the occurrence of individual REs and arrangement of clusters of REs, and REMiner's functional features were examined using the human chromosome Y. The algorithm implemented by REMiner focused on unbiased mining of REs in large chromosomes and data interface within a viewer. The data from the chromosome demonstrated that REMiner is an efficient tool in regard to its capacity for a large query size and the availability of a high-resolution viewer, featuring instant retrieval of alignment data and control of magnification and identity ratio. The chromosome-wide survey identified a diverse population of ordered RE arrangements, which may participate in the genome biology.
Collapse
Affiliation(s)
- Byung-Ik Chung
- Division of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
Metazoan genomes encode an abundant collection of mRNA-like, long noncoding (lnc)RNAs. Although lncRNAs greatly expand the transcriptional repertoire, we have a limited understanding of how these RNAs contribute to developmental regulation. Here, we investigate the function of the Drosophila lncRNA called yellow-achaete intergenicRNA (yar). Comparative sequence analyses show that the yar gene is conserved in Drosophila species representing 40–60 million years of evolution, with one of the conserved sequence motifs encompassing the yar promoter. Further, the timing of yar expression in Drosophila virilis parallels that in D. melanogaster, suggesting that transcriptional regulation of yar is conserved. The function of yar was defined by generating null alleles. Flies lacking yar RNAs are viable and show no overt morphological defects, consistent with maintained transcriptional regulation of the adjacent yellow (y) and achaete (ac) genes. The location of yar within a neural gene cluster led to the investigation of effects of yar in behavioral assays. These studies demonstrated that loss of yar alters sleep regulation in the context of a normal circadian rhythm. Nighttime sleep was reduced and fragmented, with yar mutants displaying diminished sleep rebound following sleep deprivation. Importantly, these defects were rescued by a yar transgene. These data provide the first example of a lncRNA gene involved in Drosophila sleep regulation. We find that yar is a cytoplasmic lncRNA, suggesting that yar may regulate sleep by affecting stabilization or translational regulation of mRNAs. Such functions of lncRNAs may extend to vertebrates, as lncRNAs are abundant in neural tissues.
Collapse
|
186
|
Saski CA, Li Z, Feltus FA, Luo H. New genomic resources for switchgrass: a BAC library and comparative analysis of homoeologous genomic regions harboring bioenergy traits. BMC Genomics 2011; 12:369. [PMID: 21767393 PMCID: PMC3160424 DOI: 10.1186/1471-2164-12-369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 07/18/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Switchgrass, a C4 species and a warm-season grass native to the prairies of North America, has been targeted for development into an herbaceous biomass fuel crop. Genetic improvement of switchgrass feedstock traits through marker-assisted breeding and biotechnology approaches calls for genomic tools development. Establishment of integrated physical and genetic maps for switchgrass will accelerate mapping of value added traits useful to breeding programs and to isolate important target genes using map based cloning. The reported polyploidy series in switchgrass ranges from diploid (2X = 18) to duodecaploid (12X = 108). Like in other large, repeat-rich plant genomes, this genomic complexity will hinder whole genome sequencing efforts. An extensive physical map providing enough information to resolve the homoeologous genomes would provide the necessary framework for accurate assembly of the switchgrass genome. RESULTS A switchgrass BAC library constructed by partial digestion of nuclear DNA with EcoRI contains 147,456 clones covering the effective genome approximately 10 times based on a genome size of 3.2 Gigabases (~1.6 Gb effective). Restriction digestion and PFGE analysis of 234 randomly chosen BACs indicated that 95% of the clones contained inserts, ranging from 60 to 180 kb with an average of 120 kb. Comparative sequence analysis of two homoeologous genomic regions harboring orthologs of the rice OsBRI1 locus, a low-copy gene encoding a putative protein kinase and associated with biomass, revealed that orthologous clones from homoeologous chromosomes can be unambiguously distinguished from each other and correctly assembled to respective fingerprint contigs. Thus, the data obtained not only provide genomic resources for further analysis of switchgrass genome, but also improve efforts for an accurate genome sequencing strategy. CONCLUSIONS The construction of the first switchgrass BAC library and comparative analysis of homoeologous harboring OsBRI1 orthologs present a glimpse into the switchgrass genome structure and complexity. Data obtained demonstrate the feasibility of using HICF fingerprinting to resolve the homoeologous chromosomes of the two distinct genomes in switchgrass, providing a robust and accurate BAC-based physical platform for this species. The genomic resources and sequence data generated will lay the foundation for deciphering the switchgrass genome and lead the way for an accurate genome sequencing strategy.
Collapse
Affiliation(s)
- Christopher A Saski
- Clemson University Genomics Institute, Clemson University, Biosystems Research Complex, 51 New Cherry Street, Clemson, SC 29634, USA
| | - Zhigang Li
- Department of Genetics and Biochemisty, Clemson University, 100 Jordan Hall, Clemson, SC 29634, USA
| | - Frank A Feltus
- Clemson University Genomics Institute, Clemson University, Biosystems Research Complex, 51 New Cherry Street, Clemson, SC 29634, USA
- Department of Genetics and Biochemisty, Clemson University, 100 Jordan Hall, Clemson, SC 29634, USA
| | - Hong Luo
- Department of Genetics and Biochemisty, Clemson University, 100 Jordan Hall, Clemson, SC 29634, USA
| |
Collapse
|
187
|
Saski CA, Li Z, Feltus FA, Luo H. New genomic resources for switchgrass: a BAC library and comparative analysis of homoeologous genomic regions harboring bioenergy traits. BMC Genomics 2011. [PMID: 21767393 DOI: 10.1186/1471‐2164‐12‐369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Switchgrass, a C4 species and a warm-season grass native to the prairies of North America, has been targeted for development into an herbaceous biomass fuel crop. Genetic improvement of switchgrass feedstock traits through marker-assisted breeding and biotechnology approaches calls for genomic tools development. Establishment of integrated physical and genetic maps for switchgrass will accelerate mapping of value added traits useful to breeding programs and to isolate important target genes using map based cloning. The reported polyploidy series in switchgrass ranges from diploid (2X = 18) to duodecaploid (12X = 108). Like in other large, repeat-rich plant genomes, this genomic complexity will hinder whole genome sequencing efforts. An extensive physical map providing enough information to resolve the homoeologous genomes would provide the necessary framework for accurate assembly of the switchgrass genome. RESULTS A switchgrass BAC library constructed by partial digestion of nuclear DNA with EcoRI contains 147,456 clones covering the effective genome approximately 10 times based on a genome size of 3.2 Gigabases (~1.6 Gb effective). Restriction digestion and PFGE analysis of 234 randomly chosen BACs indicated that 95% of the clones contained inserts, ranging from 60 to 180 kb with an average of 120 kb. Comparative sequence analysis of two homoeologous genomic regions harboring orthologs of the rice OsBRI1 locus, a low-copy gene encoding a putative protein kinase and associated with biomass, revealed that orthologous clones from homoeologous chromosomes can be unambiguously distinguished from each other and correctly assembled to respective fingerprint contigs. Thus, the data obtained not only provide genomic resources for further analysis of switchgrass genome, but also improve efforts for an accurate genome sequencing strategy. CONCLUSIONS The construction of the first switchgrass BAC library and comparative analysis of homoeologous harboring OsBRI1 orthologs present a glimpse into the switchgrass genome structure and complexity. Data obtained demonstrate the feasibility of using HICF fingerprinting to resolve the homoeologous chromosomes of the two distinct genomes in switchgrass, providing a robust and accurate BAC-based physical platform for this species. The genomic resources and sequence data generated will lay the foundation for deciphering the switchgrass genome and lead the way for an accurate genome sequencing strategy.
Collapse
Affiliation(s)
- Christopher A Saski
- Clemson University Genomics Institute, Clemson University, Biosystems Research Complex, 51 New Cherry Street, Clemson, SC 29634, USA
| | | | | | | |
Collapse
|
188
|
Iwanowski PS, Panasiuk B, Van Buggenhout G, Murdolo M, Myśliwiec M, Maas NM, Lattante S, Korniszewski L, Posmyk R, Pilch J, Zajączek S, Fryns JP, Zollino M, Midro AT. Wolf-Hirschhorn syndrome due to pure and translocation forms of monosomy 4p16.1 → pter. Am J Med Genet A 2011; 155A:1833-47. [DOI: 10.1002/ajmg.a.34005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Accepted: 09/07/2010] [Indexed: 11/11/2022]
|
189
|
Irwin DM, Biegel JM, Stewart CB. Evolution of the mammalian lysozyme gene family. BMC Evol Biol 2011; 11:166. [PMID: 21676251 PMCID: PMC3141428 DOI: 10.1186/1471-2148-11-166] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 06/15/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Lysozyme c (chicken-type lysozyme) has an important role in host defense, and has been extensively studied as a model in molecular biology, enzymology, protein chemistry, and crystallography. Traditionally, lysozyme c has been considered to be part of a small family that includes genes for two other proteins, lactalbumin, which is found only in mammals, and calcium-binding lysozyme, which is found in only a few species of birds and mammals. More recently, additional testes-expressed members of this family have been identified in human and mouse, suggesting that the mammalian lysozyme gene family is larger than previously known. RESULTS Here we characterize the extent and diversity of the lysozyme gene family in the genomes of phylogenetically diverse mammals, and show that this family contains at least eight different genes that likely duplicated prior to the diversification of extant mammals. These duplicated genes have largely been maintained, both in intron-exon structure and in genomic context, throughout mammalian evolution. CONCLUSIONS The mammalian lysozyme gene family is much larger than previously appreciated and consists of at least eight distinct genes scattered around the genome. Since the lysozyme c and lactalbumin proteins have acquired very different functions during evolution, it is likely that many of the other members of the lysozyme-like family will also have diverse and unexpected biological properties.
Collapse
Affiliation(s)
- David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Jason M Biegel
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York 12222, USA
| | - Caro-Beth Stewart
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York 12222, USA
| |
Collapse
|
190
|
17p13.3 microduplications are associated with split-hand/foot malformation and long-bone deficiency (SHFLD). Eur J Hum Genet 2011; 19:1144-51. [PMID: 21629300 DOI: 10.1038/ejhg.2011.97] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Split-hand/foot malformation with long-bone deficiency (SHFLD) is a relatively rare autosomal-dominant skeletal disorder, characterized by variable expressivity and incomplete penetrance. Although several chromosomal loci for SHFLD have been identified, the molecular basis and pathogenesis of most SHFLD cases are unknown. In this study we describe three unrelated kindreds, in which SHFLD segregated with distinct but overlapping duplications in 17p13.3, a region previously linked to SHFLD. In a large three-generation family, the disorder was found to segregate with a 254 kb microduplication; a second microduplication of 527 kb was identified in an affected female and her unaffected mother, and a 430 kb microduplication versus microtriplication was identified in three affected members of a multi-generational family. These findings, along with previously published data, suggest that one locus responsible for this form of SHFLD is located within a 173 kb overlapping critical region, and that the copy gains are incompletely penetrant.
Collapse
|
191
|
Blank M, Kiger L, Thielebein A, Gerlach F, Hankeln T, Marden MC, Burmester T. Oxygen supply from the bird's eye perspective: globin E is a respiratory protein in the chicken retina. J Biol Chem 2011; 286:26507-15. [PMID: 21622558 DOI: 10.1074/jbc.m111.224634] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The visual process in the vertebrate eye requires high amounts of metabolic energy and thus oxygen. Oxygen supply of the avian retina is a challenging task because birds have large eyes, thick retinae, and high metabolic rates but neither deep retinal nor superficial capillaries. Respiratory proteins such as myoglobin may enhance oxygen supply to certain tissues, and thus the mammalian retina harbors high amounts of neuroglobin. Globin E (GbE) was recently identified as an eye-specific globin of chicken (Gallus gallus). Orthologous GbE genes were found in zebra finch and turkey genomes but appear to be absent in non-avian vertebrate classes. Analyses of globin phylogeny and gene synteny showed an ancient origin of GbE but did not help to assign it to any specific globin type. We show that the photoreceptor cells of the chicken retina have a high level of GbE protein, which accumulates to ∼10 μM in the total eye. Quantitative real-time RT-PCR revealed an ∼50,000-fold higher level of GbE mRNA in the eye than in the brain. Spectroscopic analysis and ligand binding kinetics of recombinant chicken GbE reveal a penta-coordinated globin with an oxygen affinity of P(50) = 5.8 torrs at 25 °C and 15 torrs at 41 °C. Together these data suggest that GbE helps to sustain oxygen supply to the avian retina.
Collapse
Affiliation(s)
- Miriam Blank
- Institute of Zoology and Zoological Museum, University of Hamburg, D-20146 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
192
|
Nonaka MI, Aizawa K, Mitani H, Bannai HP, Nonaka M. Retained orthologous relationships of the MHC Class I genes during euteleost evolution. Mol Biol Evol 2011; 28:3099-112. [PMID: 21613237 DOI: 10.1093/molbev/msr139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Major histocompatibility complex (MHC) class I molecules play a pivotal role in immune defense system, presenting the antigen peptides to cytotoxic CD8+ T lymphocytes. Most vertebrates possess multiple MHC class I loci, but the analysis of their evolutionary relationships between distantly related species has difficulties because genetic events such as gene duplication, deletion, recombination, and/or conversion have occurred frequently in these genes. Human MHC class I genes have been conserved only within the primates for up to 46-66 My. Here, we performed comprehensive analysis of the MHC class I genes of the medaka fish, Oryzias latipes, and found that they could be classified into four groups of ancient origin. In phylogenetic analysis using these genes and the classical and nonclassical class I genes of other teleost fishes, three extracellular domains of the class I genes showed quite different evolutionary histories. The α1 domains generated four deeply diverged lineages corresponding to four medaka class I groups with high bootstrap values. These lineages were shared with salmonid and/or other acanthopterygian class I genes, unveiling the orthologous relationships between the classical MHC class I genes of medaka and salmonids, which diverged approximately 260 Ma. This suggested that the lineages must have diverged in the early days of the euteleost evolution and have been maintained for a long time in their genome. In contrast, the α3 domains clustered by species or fish groups, regardless of classical or nonclassical gene types, suggesting that this domain was homogenized in each species during prolonged evolution, possibly retaining the potential for CD8 binding even in the nonclassical genes. On the other hand, the α2 domains formed no apparent clusters with the α1 lineages or with species, suggesting that they were diversified partly by interlocus gene conversion, and that the α1 and α2 domains evolved separately. Such evolutionary mode is characteristic to the teleost MHC class I genes and might have contributed to the long-term conservation of the α1 domain.
Collapse
Affiliation(s)
- Mayumi I Nonaka
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
193
|
O'Quin KE, Smith D, Naseer Z, Schulte J, Engel SD, Loh YHE, Streelman JT, Boore JL, Carleton KL. Divergence in cis-regulatory sequences surrounding the opsin gene arrays of African cichlid fishes. BMC Evol Biol 2011; 11:120. [PMID: 21554730 PMCID: PMC3116502 DOI: 10.1186/1471-2148-11-120] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/09/2011] [Indexed: 11/17/2022] Open
Abstract
Background Divergence within cis-regulatory sequences may contribute to the adaptive evolution of gene expression, but functional alleles in these regions are difficult to identify without abundant genomic resources. Among African cichlid fishes, the differential expression of seven opsin genes has produced adaptive differences in visual sensitivity. Quantitative genetic analysis suggests that cis-regulatory alleles near the SWS2-LWS opsins may contribute to this variation. Here, we sequence BACs containing the opsin genes of two cichlids, Oreochromis niloticus and Metriaclima zebra. We use phylogenetic footprinting and shadowing to examine divergence in conserved non-coding elements, promoter sequences, and 3'-UTRs surrounding each opsin in search of candidate cis-regulatory sequences that influence cichlid opsin expression. Results We identified 20 conserved non-coding elements surrounding the opsins of cichlids and other teleosts, including one known enhancer and a retinal microRNA. Most conserved elements contained computationally-predicted binding sites that correspond to transcription factors that function in vertebrate opsin expression; O. niloticus and M. zebra were significantly divergent in two of these. Similarly, we found a large number of relevant transcription factor binding sites within each opsin's proximal promoter, and identified five opsins that were considerably divergent in both expression and the number of transcription factor binding sites shared between O. niloticus and M. zebra. We also found several microRNA target sites within the 3'-UTR of each opsin, including two 3'-UTRs that differ significantly between O. niloticus and M. zebra. Finally, we examined interspecific divergence among 18 phenotypically diverse cichlids from Lake Malawi for one conserved non-coding element, two 3'-UTRs, and five opsin proximal promoters. We found that all regions were highly conserved with some evidence of CRX transcription factor binding site turnover. We also found three SNPs within two opsin promoters and one non-coding element that had weak association with cichlid opsin expression. Conclusions This study is the first to systematically search the opsins of cichlids for putative cis-regulatory sequences. Although many putative regulatory regions are highly conserved across a large number of phenotypically diverse cichlids, we found at least nine divergent sequences that could contribute to opsin expression differences in cis and stand out as candidates for future functional analyses.
Collapse
Affiliation(s)
- Kelly E O'Quin
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Liu H, Cui P, Zhan K, Lin Q, Zhuo G, Guo X, Ding F, Yang W, Liu D, Hu S, Yu J, Zhang A. Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS) line and its maintainer line. BMC Genomics 2011; 12:163. [PMID: 21443807 PMCID: PMC3079663 DOI: 10.1186/1471-2164-12-163] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 03/29/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant mitochondria, semiautonomous organelles that function as manufacturers of cellular ATP, have their own genome that has a slow rate of evolution and rapid rearrangement. Cytoplasmic male sterility (CMS), a common phenotype in higher plants, is closely associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce F1 hybrid seeds in a variety of valuable crop species. Novel chimeric genes deduced from mtDNA rearrangements causing CMS have been identified in several plants, such as rice, sunflower, pepper, and rapeseed, but there are very few reports about mtDNA rearrangements in wheat. In the present work, we describe the mitochondrial genome of a wheat K-type CMS line and compare it with its maintainer line. RESULTS The complete mtDNA sequence of a wheat K-type (with cytoplasm of Aegilops kotschyi) CMS line, Ks3, was assembled into a master circle (MC) molecule of 647,559 bp and found to harbor 34 known protein-coding genes, three rRNAs (18 S, 26 S, and 5 S rRNAs), and 16 different tRNAs. Compared to our previously published sequence of a K-type maintainer line, Km3, we detected Ks3-specific mtDNA (> 100 bp, 11.38%) and repeats (> 100 bp, 29 units) as well as genes that are unique to each line: rpl5 was missing in Ks3 and trnH was absent from Km3. We also defined 32 single nucleotide polymorphisms (SNPs) in 13 protein-coding, albeit functionally irrelevant, genes, and predicted 22 unique ORFs in Ks3, representing potential candidates for K-type CMS. All these sequence variations are candidates for involvement in CMS. A comparative analysis of the mtDNA of several angiosperms, including those from Ks3, Km3, rice, maize, Arabidopsis thaliana, and rapeseed, showed that non-coding sequences of higher plants had mostly divergent multiple reorganizations during the mtDNA evolution of higher plants. CONCLUSION The complete mitochondrial genome of the wheat K-type CMS line Ks3 is very different from that of its maintainer line Km3, especially in non-coding sequences. Sequence rearrangement has produced novel chimeric ORFs, which may be candidate genes for CMS. Comparative analysis of several angiosperm mtDNAs indicated that non-coding sequences are the most frequently reorganized during mtDNA evolution in higher plants.
Collapse
Affiliation(s)
- Huitao Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Su X, Tian X, Zhang Q, Li H, Li X, Sheng H, Wang Y, Wu H, Zhou R. Complete genome analysis of a novel E3-partial-deleted human adenovirus type 7 strain isolated in Southern China. Virol J 2011; 8:91. [PMID: 21371333 PMCID: PMC3058094 DOI: 10.1186/1743-422x-8-91] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 03/04/2011] [Indexed: 12/29/2022] Open
Abstract
Human adenovirus (HAdV) is a causative agent of acute respiratory disease, which is prevalent throughout the world. Recently there are some reports which found that the HAdV-3 and HAdV-5 genomes were very stable across 50 years of time and space. But more and more recombinant genomes have been identified in emergent HAdV pathogens and it is a pathway for the molecular evolution of types. In our paper, we found a HAdV-7 GZ07 strain isolated from a child with acute respiratory disease, whose genome was E3-partial deleted. The whole genome was 32442 bp with 2864 bp deleted in E3 region and was annotated in detail (GenBank: HQ659699). The growth character was the same as that of another HAdV-7 wild strain which had no gene deletion. By comparison with E3 regions of the other HAdV-B, we found that only left-end two proteins were remained: 12.1 kDa glycoprotein and 16.1 kDa protein. E3 MHC class I antigen-binding glycoprotein, hypothetical 20.6 kDa protein, 20.6 kDa protein, 7.7 kDa protein., 10.3 kDa protein, 14.9 kDa protein and E3 14.7 kDa protein were all missing. It is the first report about E3 deletion in human adenovirus, which suggests that E3 region is also a possible recombination region in adenovirus molecular evolution.
Collapse
Affiliation(s)
- Xiaobo Su
- Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Quraishi UM, Abrouk M, Murat F, Pont C, Foucrier S, Desmaizieres G, Confolent C, Rivière N, Charmet G, Paux E, Murigneux A, Guerreiro L, Lafarge S, Le Gouis J, Feuillet C, Salse J. Cross-genome map based dissection of a nitrogen use efficiency ortho-metaQTL in bread wheat unravels concerted cereal genome evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:745-56. [PMID: 21251102 DOI: 10.1111/j.1365-313x.2010.04461.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Monitoring nitrogen use efficiency (NUE) in plants is becoming essential to maintain yield while reducing fertilizer usage. Optimized NUE application in major crops is essential for long-term sustainability of agriculture production. Here, we report the precise identification of 11 major chromosomal regions controlling NUE in wheat that co-localise with key developmental genes such as Ppd (photoperiod sensitivity), Vrn (vernalization requirement), Rht (reduced height) and can be considered as robust markers from a molecular breeding perspective. Physical mapping, sequencing, annotation and candidate gene validation of an NUE metaQTL on wheat chromosome 3B allowed us to propose that a glutamate synthase (GoGAT) gene that is conserved structurally and functionally at orthologous positions in rice, sorghum and maize genomes may contribute to NUE in wheat and other cereals. We propose an evolutionary model for the NUE locus in cereals from a common ancestral region, involving species specific shuffling events such as gene deletion, inversion, transposition and the invasion of repetitive elements.
Collapse
Affiliation(s)
- Umar Masood Quraishi
- INRA/Université Blaise Pascal UMR 1095 GDEC, Domaine de Crouelle, 234 Avenue du Brézet, 63100 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Oudot-Le Secq MP, Green BR. Complex repeat structures and novel features in the mitochondrial genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. Gene 2011; 476:20-6. [PMID: 21320580 DOI: 10.1016/j.gene.2011.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/12/2010] [Accepted: 02/02/2011] [Indexed: 11/18/2022]
Abstract
The mitochondrial genome of the raphid pennate diatom Phaeodactylum tricornutum has several novel features compared with the mitochondrial genomes of the centric diatom Thalassiosira pseudonana and the araphid pennate diatom Synedra acus. It is almost double the size (77,356 bp) due to a 35,454 bp sequence block consisting of an elaborate combination of direct repeats, making it the largest stramenopile (heterokont) mitochondrial genome known. In addition, the cox1 gene has a +1 translational frameshift involving Pro codons CCC and CCT, the first translational frameshift to be detected in an algal mitochondrial genome. The nad9 and rps14 genes are fused by the insertion of an in-frame sequence and cotranscribed. The nad11 gene is split into two parts corresponding to the FeS and molybdate-binding domains, but both parts are still on the mitochondrial genome, in contrast to the brown algae where the second domain appears to have been transferred to the nucleus. In contrast to P. tricornutum, the repeat region of T. pseudonana consists of a much smaller 4790 bp string of almost identical double-hairpin elements, evidence of slipped-strand mispairing and active gene conversion. The diatom mitochondrial genomes have undergone considerable gene rearrangement since the three lineages of diatoms diverged, but all three have kept their repeat regions segregated from their relatively compact coding regions.
Collapse
Affiliation(s)
- Marie-Pierre Oudot-Le Secq
- Botany Department, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4.
| | | |
Collapse
|
198
|
Kim JH, Park JY, Park MR, Hwang KC, Park KK, Park C, Cho SK, Lee HC, Song H, Park SB, Kim T, Kim JH. Developmental arrest of scNT-derived fetuses by disruption of the developing endometrial gland as a result of impaired trophoblast migration and invasiveness. Dev Dyn 2011; 240:627-39. [PMID: 21305651 DOI: 10.1002/dvdy.22568] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2010] [Indexed: 11/10/2022] Open
Abstract
Somatic cell nuclear transfer (scNT)-derived pig placenta tissues of gestational day 30 displayed avascularization and hypovascularization. Most of the cytotrophoblast-like cells of the developing scNT-derived placenta villi were improperly localized or exhibited impaired migration to their targeting loci. Id-2, Met, MMP-9, and MCM-7 were barely detectable in the cytotrophoblast cells of the scNT-derived placenta villi. Active MMP-2 and MMP-9 expression was significantly down-regulated in the scNT-embryo transferred recipient uteri. scNT clones exhibited a hypermethylated pattern within the pig MMP-9 promoter region and the significance of GC box in the regulation of MMP-9 promoter activity. Marked apoptosis was observed in the developing endometrial gland of scNT-embryo transferred recipient uteri. Collectively, our data strongly indicated that early gestational death of scNT clones is caused, at least in part, by disruption of the developing endometrial gland as a result of impaired trophoblast migration and invasiveness due to the down-regulation of active MMP-9 expression.
Collapse
|
199
|
Rosengarten RD, Moreno MA, Lakkis FG, Buss LW, Dellaporta SL. Genetic diversity of the allodeterminant alr2 in Hydractinia symbiolongicarpus. Mol Biol Evol 2011; 28:933-47. [PMID: 20966116 PMCID: PMC3108555 DOI: 10.1093/molbev/msq282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hydractinia symbiolongicarpus, a colonial cnidarian (class Hydrozoa) epibiont on hermit crab shells, is well established as a model for genetic studies of allorecognition. Recently, two linked loci, allorecognition (alr) 1 and alr2, were identified by positional cloning and shown to be major determinants of histocompatibility. Both genes encode putative transmembrane proteins with hypervariable extracellular domains similar to immunoglobulin (Ig)-like domains. We sought to characterize the naturally occurring variation at the alr2 locus and to understand the origins of this molecular diversity. We examined full-length cDNA coding sequences derived from a sample of 21 field-collected colonies, including 18 chosen haphazardly and two laboratory reference strains. Of the 35 alleles recovered from the 18 unbiased samples, 34 encoded unique gene products. We identified two distinct structural classes of alleles that varied over a large central region of the gene but both possessed highly polymorphic extracellular domains I, similar to an Ig-like V-set domain. The discovery of structurally chimeric alleles provided evidence that interallelic recombination may contribute to alr2 variation. Comparisons of the genomic region encompassing alr2 from two field-derived haplotypes and one laboratory reference sequence revealed a history of structural variation at the haplotype level as well. Maintenance of large numbers of equally rare alleles in a natural population is a hallmark of negative frequency-dependent selection and is expected to produce high levels of heterozygosity. The observed alr2 allelic diversity is comparable with that found in immune recognition molecules such as human leukocyte antigens, B cell Igs, or natural killer cell Ig-like receptors.
Collapse
Affiliation(s)
- Rafael D Rosengarten
- Department of Molecular, Cellular and Developmental Biology, Yale University, Yale, CN, USA.
| | | | | | | | | |
Collapse
|
200
|
Bauer MM, Reed KM. Extended sequence of the turkey MHC B-locus and sequence variation in the highly polymorphic B-G loci. Immunogenetics 2011; 63:209-21. [DOI: 10.1007/s00251-010-0501-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 12/01/2010] [Indexed: 11/25/2022]
|