151
|
Monaghan J, Li X. The HEAT Repeat Protein ILITYHIA is Required for Plant Immunity. ACTA ACUST UNITED AC 2010; 51:742-53. [DOI: 10.1093/pcp/pcq038] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
152
|
Mukherjee M, Larrimore KE, Ahmed NJ, Bedick TS, Barghouthi NT, Traw MB, Barth C. Ascorbic acid deficiency in arabidopsis induces constitutive priming that is dependent on hydrogen peroxide, salicylic acid, and the NPR1 gene. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:340-51. [PMID: 20121455 DOI: 10.1094/mpmi-23-3-0340] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The ascorbic acid (AA)-deficient Arabidopsis thaliana vtc1-1 mutant exhibits increased resistance to the virulent bacterial pathogen Pseudomonas syringae. This response correlates with heightened levels of salicylic acid (SA), which induces antimicrobial pathogenesis-related (PR) proteins. To determine if SA-mediated, enhanced disease resistance is a general phenomenon of AA deficiency, to elucidate the signal that stimulates SA synthesis, and to identify the biosynthetic pathway through which SA accumulates, we studied the four AA-deficient vtc1-1, vtc2-1, vtc3-1, and vtc4-1 mutants. We also studied double mutants defective in the AA-biosynthetic gene VTC1 and the SA signaling pathway genes PAD4, EDS5, and NPR1, respectively. All vtc mutants were more resistant to P. syringae than the wild type. With the exception of vtc4-1, this correlated with constitutively upregulated H(2)O(2), SA, and messenger RNA levels of PR genes. Double mutants exhibited decreased SA levels and enhanced susceptibility to P. syringae compared with the wild type, suggesting that vtc1-1 requires functional PAD4, EDS5, and NPR1 for SA biosynthesis and pathogen resistance. We suggest that AA deficiency causes constitutive priming through a buildup of H(2)O(2) that stimulates SA accumulation, conferring enhanced disease resistance in vtc1-1, vtc2-1, and vtc3-1, whereas vtc4-1 might be sensitized to H(2)O(2) and SA production after infection.
Collapse
Affiliation(s)
- Madhumati Mukherjee
- Department Of Biology, West Virginia University, 53 Campus Drive, Morgantown, USA
| | | | | | | | | | | | | |
Collapse
|
153
|
Kang HG, Oh CS, Sato M, Katagiri F, Glazebrook J, Takahashi H, Kachroo P, Martin GB, Klessig DF. Endosome-associated CRT1 functions early in resistance gene-mediated defense signaling in Arabidopsis and tobacco. THE PLANT CELL 2010; 22:918-36. [PMID: 20332379 PMCID: PMC2861469 DOI: 10.1105/tpc.109.071662] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 02/10/2010] [Accepted: 03/09/2010] [Indexed: 05/18/2023]
Abstract
Resistance gene-mediated immunity confers protection against pathogen infection in a wide range of plants. A genetic screen for Arabidopsis thaliana mutants compromised for recognition of turnip crinkle virus previously identified CRT1, a member of the GHKL ATPase/kinase superfamily. Here, we demonstrate that CRT1 interacts with various resistance proteins from different structural classes, and this interaction is disrupted when these resistance proteins are activated. The Arabidopsis mutant crt1-2 crh1-1, which lacks CRT1 and its closest homolog, displayed compromised resistance to avirulent Pseudomonas syringae and Hyaloperonospora arabidopsidis. Additionally, resistance-associated hypersensitive cell death was suppressed in Nicotiana benthamiana silenced for expression of CRT1 homolog(s). Thus, CRT1 appears to be a general factor for resistance gene-mediated immunity. Since elevation of cytosolic calcium triggered by avirulent P. syringae was compromised in crt1-2 crh1-1 plants, but cell death triggered by Nt MEK2(DD) was unaffected in CRT1-silenced N. benthamiana, CRT1 likely functions at an early step in this pathway. Genome-wide transcriptome analysis led to identification of CRT1-Associated genes, many of which are associated with transport processes, responses to (a)biotic stress, and the endomembrane system. Confocal microscopy and subcellular fractionation revealed that CRT1 localizes to endosome-like vesicles, suggesting a key process in resistance protein activation/signaling occurs in this subcellular compartment.
Collapse
Affiliation(s)
- Hong-Gu Kang
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Chang-Sik Oh
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Masanao Sato
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Fumiaki Katagiri
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Jane Glazebrook
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Hideki Takahashi
- Department of Life Science, Tohoku University, Sendai 981-8555, Japan
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546
| | - Gregory B. Martin
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
154
|
Clarke JD. Phenotypic analysis of Arabidopsis mutants: oomycete pathogens. Cold Spring Harb Protoc 2010; 2009:pdb.prot4984. [PMID: 20147042 DOI: 10.1101/pdb.prot4984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Various fungal pathogens are used in Arabidopsis pathogen studies, including Fusarium oxysporum, Alternaria brassicicola, Botrytis cinerea, and others. The oomycete pathogen Peronospora parasitica has been used by several groups and is described in this protocol. Working with Peronospora is complicated by the fact that it is an obligate biotroph, and consequently cultures must be maintained on living plants. There is no central repository for Peronospora stocks, but most investigators who work with them are willing to provide samples of infected tissue. These can be used to initiate new stock cultures, or they can be maintained as live cultures on seedlings. One of the most important factors in maintaining Peronospora is the humidity of the growth chamber, which must be kept at a minimum of 80%. Various Peronospora isolates are available. These vary with respect to which Arabidopsis ecotypes they can infect, because some combinations trigger gene-for-gene resistance. Thus, it is important that the appropriate ecotype is inoculated with the appropriate strain of pathogen. The extent of infections can be rated or quantitatively measured as the number of spores produced per plant, and frozen tissue stocks can be prepared from heavily infected tissue.
Collapse
|
155
|
Weigel D, Glazebrook J. Phenotypic analysis of Arabidopsis mutants: bacterial pathogens. Cold Spring Harb Protoc 2010; 2009:pdb.prot4983. [PMID: 20147202 DOI: 10.1101/pdb.prot4983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The most commonly used bacterial pathogen of Arabidopsis is Pseudomonas syringae, pathovar tomato strain DC3000 or pathovar maculicola strain ES4326. Plants used for infection with P. syringae should be grown on a short-day light cycle, so that they develop large leaves. For consistent results, it is important that the plants are watered well and do not experience any abiotic stresses. The plants should be grown and tested in a temperature- and humidity-controlled growth chamber, because the extent of bacterial growth is highly dependent on both factors. Gene-for-gene resistance to P. syringae is usually accompanied by the hypersensitive response (HR), a form of localized cell death that occurs in response to pathogen challenge. P. syringae strains carrying one of the avirulence genes avrRpt2, avrRpm1, avrB, avrPphB, and avrRps4 trigger the HR in wild-type Columbia. Other ecotypes may lack one or more of the R genes needed for recognition of these avirulence genes. Bacterial growth can be monitored by grinding up infected tissue, plating serial dilutions on King's B medium, and counting colonies. This protocol describes methods for preparing bacterial cultures, inoculating plants, testing the HR, and assessing bacterial growth.
Collapse
|
156
|
Canet JV, Dobón A, Ibáñez F, Perales L, Tornero P. Resistance and biomass in Arabidopsis: a new model for salicylic acid perception. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:126-41. [PMID: 20040060 DOI: 10.1111/j.1467-7652.2009.00468.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) is an essential hormone for plant defence and development. SA perception is usually measured by counting the number of pathogens that grow in planta upon an exogenous application of the hormone. A biological SA perception model based on plant fresh weight reduction caused by disease resistance in Arabidopsis thaliana is proposed. This effect is more noticeable when a chemical analogue of SA is used, like Benzothiadiazole (BTH). By spraying BTH several times, a substantial difference in plant biomass is observed when compared with the mock treatment. Such difference is dose-dependent and does not require pathogen inoculation. The model is robust and allows for the comparison of different Arabidopsis ecotypes, recombinant inbreed lines, and mutants. Our results show that two mutants, non-expresser of pathogenesis-related genes 1 (npr1) and auxin resistant 3 (axr3), fail to lose biomass when BTH is applied to them. Further experiments show that axr3 responds to SA and BTH in terms of defence induction. NPR1-related genotypes also confirm the pivotal role of NPR1 in SA perception, and suggest an active program of depletion of resources in the infected tissues.
Collapse
Affiliation(s)
- Juan V Canet
- Instituto de Biología Molecular y Celular de Plantas, UPV-CSIC. Avda. de los Naranjos, s/n, Valencia, Spain
| | | | | | | | | |
Collapse
|
157
|
Adams-Phillips L, Briggs AG, Bent AF. Disruption of poly(ADP-ribosyl)ation mechanisms alters responses of Arabidopsis to biotic stress. PLANT PHYSIOLOGY 2010; 152:267-80. [PMID: 19889874 PMCID: PMC2799362 DOI: 10.1104/pp.109.148049] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 10/30/2009] [Indexed: 05/03/2023]
Abstract
Poly(ADP-ribosyl)ation is a posttranslational protein modification in which ADP-ribose (ADP-Rib) units derived from NAD(+) are attached to proteins by poly(ADP-Rib) polymerase (PARP) enzymes. ADP-Rib groups are removed from these polymer chains by the enzyme poly(ADP-Rib) glycohydrolase (PARG). In animals, poly(ADP-ribosyl)ation is associated with DNA damage responses and programmed cell death. Previously, we hypothesized a role for poly(ADP-ribosyl)ation in plant defense responses when we detected defense-associated expression of the poly(ADP-ribosyl)ation-related genes PARG2 and NUDT7 and observed altered callose deposition in the presence of a chemical PARP inhibitor. The role of poly(ADP-ribosyl)ation in plant defenses was more extensively investigated in this study, using Arabidopsis (Arabidopsis thaliana). Pharmacological inhibition of PARP using 3-aminobenzamide perturbs certain innate immune responses to microbe-associated molecular patterns (flg22 and elf18), including callose deposition, lignin deposition, pigment accumulation, and phenylalanine ammonia lyase activity, but does not disrupt other responses, such as the initial oxidative burst and expression of some early defense-associated genes. Mutant parg1 seedlings exhibit exaggerated seedling growth inhibition and pigment accumulation in response to elf18 and are hypersensitive to the DNA-damaging agent mitomycin C. Both parg1 and parg2 knockout plants show accelerated onset of disease symptoms when infected with Botrytis cinerea. Cellular levels of ADP-Rib polymer increase after infection with avirulent Pseudomonas syringae pv tomato DC3000 avrRpt2(+), and pathogen-dependent changes in the poly(ADP-ribosyl)ation of discrete proteins were also observed. We conclude that poly(ADP-ribosyl)ation is a functional component in plant responses to biotic stress.
Collapse
Affiliation(s)
| | | | - Andrew F. Bent
- Department of Plant Pathology (L.A.-P., A.G.B., A.F.B.) and Program in Cellular and Molecular Biology (A.G.B.), University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
158
|
Plant Defense Signaling from the Underground Primes Aboveground Defenses to Confer Enhanced Resistance in a Cost-Efficient Manner. PLANT COMMUNICATION FROM AN ECOLOGICAL PERSPECTIVE 2010. [DOI: 10.1007/978-3-642-12162-3_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
159
|
Gou M, Su N, Zheng J, Huai J, Wu G, Zhao J, He J, Tang D, Yang S, Wang G. An F-box gene, CPR30, functions as a negative regulator of the defense response in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:757-70. [PMID: 19682297 DOI: 10.1111/j.1365-313x.2009.03995.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Arabidopsis gain-of-resistance mutants, which show HR-like lesion formation and SAR-like constitutive defense responses, were used well as tools to unravel the plant defense mechanisms. We have identified a novel mutant, designated constitutive expresser of PR genes 30 (cpr30), that exhibited dwarf morphology, constitutive resistance to the bacterial pathogen Pseudomonas syringae and the dramatic induction of defense-response gene expression. The cpr30-conferred growth defect morphology and defense responses are dependent on ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), PHYTOALEXIN DEFICIENT 4 (PAD4), and NONRACE-SPECIFIC DISEASE RESISTANCE 1 (NDR1). Further studies demonstrated that salicylic acid (SA) could partially account for the cpr30-conferred constitutive PR1 gene expression, but not for the growth defect, and that the cpr30-conferred defense responses were NPR1 independent. We observed a widespread expression of CPR30 throughout the plant, and a localization of CPR30-GFP fusion protein in the cytoplasm and nucleus. As an F-box protein, CPR30 could interact with multiple Arabidopsis-SKP1-like (ASK) proteins in vivo. Co-localization of CPR30 and ASK1 or ASK2 was observed in Arabidopsis protoplasts. Based on these results, we conclude that CPR30, a novel negative regulator, regulates both SA-dependent and SA-independent defense signaling, most likely through the ubiquitin-proteasome pathway in Arabidopsis.
Collapse
Affiliation(s)
- Mingyue Gou
- State Key Laboratory of Agrobiotechnology and National Center for Plant Gene Research (Beijing), China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Gene duplication and hypermutation of the pathogen Resistance gene SNC1 in the Arabidopsis bal variant. Genetics 2009; 183:1227-34. [PMID: 19797048 DOI: 10.1534/genetics.109.105569] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The bal defect in the Arabidopsis thaliana Columbia strain was spontaneously generated in an inbred ddm1 (decrease in DNA methylation 1) mutant background in which various genetic and epigenetic alterations accumulate. The bal variant displays short stature and curled leaves due to the constitutive activation of defense signaling. These bal phenotypes are metastable and phenotypic suppression is evident in more than one-third of ethyl methanesulfonate (EMS)-treated bal M(1) plants. The semidominant bal allele maps to the RPP5 (recognition of Peronospora parasitica 5) locus, which includes a cluster of disease Resistance (R) genes, many of which show an increase in steady-state expression levels in the bal variant. Here, we report that activation of RPP5 locus R genes and dwarfing in the bal variant are caused by a 55-kb duplication within the RPP5 locus. Although many RPP5 locus R genes are duplicated in the bal variant, the duplication of SNC1 alone is necessary and sufficient for the phenotypic changes in the bal variant. Missense mutations in the SNC1 gene were identified in all three phenotypically suppressed EMS-treated bal lines investigated, indicating that the high-frequency phenotypic instability induced by EMS treatment is caused by a genetic mechanism. We propose that the high degree of variation in SNC1-related sequences among Arabidopsis natural accessions follows the two-step mechanism observed in the bal variant: gene duplication followed by hypermutation.
Collapse
|
161
|
Xia S, Zhu Z, Hao L, Chen JG, Xiao L, Zhang Y, Li X. Negative regulation of systemic acquired resistance by replication factor C subunit3 in Arabidopsis. PLANT PHYSIOLOGY 2009; 150:2009-2017. [PMID: 19482917 PMCID: PMC2719121 DOI: 10.1104/pp.109.138321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 05/27/2009] [Indexed: 05/27/2023]
Abstract
Systemic acquired resistance (SAR) is a plant immune response induced by local necrotizing pathogen infections. Expression of SAR in Arabidopsis (Arabidopsis thaliana) plants correlates with accumulation of salicylic acid (SA) and up-regulation of Pathogenesis-Related (PR) genes. SA is an essential and sufficient signal for SAR. In a genetic screen to search for negative regulators of PR gene expression and SAR, we found a new mutant that is hypersensitive to SA and exhibits enhanced induction of PR genes and resistance against the virulent oomycete Hyaloperonospora arabidopsidis Noco2. The enhanced pathogen resistance in the mutant is Nonexpressor of PR genes1 independent. The mutant gene was identified by map-based cloning, and it encodes a protein with high homology to Replication Factor C Subunit3 (RFC3) of yeast and other eukaryotes; thus, the mutant was named rfc3-1. rfc3-1 mutant plants are smaller than wild-type plants and have narrower leaves and petals. On the epidermis of true leaves, there are fewer cells in rfc3-1 compared with the wild type. Cell production rate is reduced in rfc3-1 mutant roots, indicating that the mutated RFC3 slows down cell proliferation. As Replication Factor C is involved in replication-coupled chromatin assembly, our data suggest that chromatin assembly and remodeling may play important roles in the negative control of PR gene expression and SAR.
Collapse
Affiliation(s)
- Shitou Xia
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | | | | | | | |
Collapse
|
162
|
Aboul-Soud MAM, Chen X, Kang JG, Yun BW, Raja MU, Malik SI, Loake GJ. Activation tagging of ADR2 conveys a spreading lesion phenotype and resistance to biotrophic pathogens. THE NEW PHYTOLOGIST 2009; 183:1163-1175. [PMID: 19549129 DOI: 10.1111/j.1469-8137.2009.02902.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An Arabidopsis PR1::luciferase (LUC) transgenic line was transformed with activation T-DNA tags and the resulting population screened for dominant gain-of-function mutants exhibiting constitutive LUC activity. LUC imaging identified activated disease resistance 2 (adr2), which exhibited slowly spreading lesions in the absence of pathogen challenge. Molecular, genetic and histochemical analysis was employed to characterize this mutant in detail. adr2 plants constitutively expressed defence-related and antioxidant genes. Moreover, this line accrued increased quantities of salicylic acid (SA) and exhibited heightened mitogen-activated protein kinase activity. adr2 plants exhibited increased resistance against numerous biotrophic but not necrotrophic pathogens. The adr2 phenotype resulted from the overexpression of a Toll interleukin receptor (TIR) nucleotide binding site (NBS) leucine rich repeat (LRR) gene (At1g56510). Constitutive PR1 expression was completely abolished in adr2 nahG, adr2 npr1 and adr2 eds1 double mutants. Furthermore, heightened resistance against Hyaloperonospora arabidopsis Noco2 was compromised in adr2 nahG and adr2 eds1 double mutants but not in adr2 npr1, adr2 coi1 or adr2 etr1 plants. These data imply that adr2-mediated resistance operates through an Enhanced Disease Susceptibility (EDS) and SA-dependent defence signalling network which functions independently from COI1 or ETR1.
Collapse
Affiliation(s)
- Mourad A M Aboul-Soud
- College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Xinwei Chen
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK
| | - Jeong-Gu Kang
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK
| | - Byung-Wook Yun
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK
| | - M Usman Raja
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK
| | - Saad I Malik
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK
| |
Collapse
|
163
|
Characterization of Arabidopsis 6-Phosphogluconolactonase T-DNA Insertion Mutants Reveals an Essential Role for the Oxidative Section of the Plastidic Pentose Phosphate Pathway in Plant Growth and Development. ACTA ACUST UNITED AC 2009; 50:1277-91. [DOI: 10.1093/pcp/pcp070] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
164
|
Broz AK, Manter DK, Bowman G, Müller-Schärer H, Vivanco JM. Plant origin and ploidy influence gene expression and life cycle characteristics in an invasive weed. BMC PLANT BIOLOGY 2009; 9:33. [PMID: 19309502 PMCID: PMC2670832 DOI: 10.1186/1471-2229-9-33] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 03/23/2009] [Indexed: 05/24/2023]
Abstract
BACKGROUND Ecological, evolutionary and physiological studies have thus far provided an incomplete picture of why some plants become invasive; therefore we used genomic resources to complement and advance this field. In order to gain insight into the invasive mechanism of Centaurea stoebe we compared plants of three geo-cytotypes, native Eurasian diploids, native Eurasian tetraploids and introduced North American tetraploids, grown in a common greenhouse environment. We monitored plant performance characteristics and life cycle habits and characterized the expression of genes related to constitutive defense and genome stability using quantitative PCR. RESULTS Plant origin and ploidy were found to have a significant effect on both life cycle characteristics and gene expression, highlighting the importance of comparing appropriate taxonomic groups in studies of native and introduced plant species. We found that introduced populations of C. stoebe exhibit reduced expression of transcripts related to constitutive defense relative to their native tetraploid counterparts, as might be expected based on ideas of enemy release and rapid evolution. Measurements of several vegetative traits were similar for all geo-cytotypes; however, fecundity of tetraploids was significantly greater than diploids, due in part to their polycarpic nature. A simulation of seed production over time predicts that introduced tetraploids have the highest fecundity of the three geo-cytotypes. CONCLUSION Our results suggest that characterizing gene expression in an invasive species using populations from both its native and introduced range can provide insight into the biology of plant invasion that can complement traditional measurements of plant performance. In addition, these results highlight the importance of using appropriate taxonomic units in ecological genomics investigations.
Collapse
Affiliation(s)
- Amanda K Broz
- Center for Rhizosphere Biology, Colorado State University, Fort Collins, CO 80523-1173, USA
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523-1173, USA
| | - Daniel K Manter
- USDA-ARS, Soil-Plant-Nutrient Research Unit, Fort Collins, CO 80526, USA
| | - Gillianne Bowman
- Département de Biologie/Ecologie & Evolution, Université de Fribourg/Pérolles, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Heinz Müller-Schärer
- Département de Biologie/Ecologie & Evolution, Université de Fribourg/Pérolles, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Jorge M Vivanco
- Center for Rhizosphere Biology, Colorado State University, Fort Collins, CO 80523-1173, USA
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523-1173, USA
| |
Collapse
|
165
|
Matsuda F, Yonekura-Sakakibara K, Niida R, Kuromori T, Shinozaki K, Saito K. MS/MS spectral tag-based annotation of non-targeted profile of plant secondary metabolites. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:96-108. [PMID: 18939963 DOI: 10.1111/j.1365-313x.2008.03663.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The MS/MS spectral tag (MS2T) library-based peak annotation procedure was developed for informative non-targeted metabolic profiling analysis using LC-MS. An MS2T library of Arabidopsis metabolites was created from a set of MS/MS spectra acquired using the automatic data acquisition function of the mass spectrometer. By using this library, we obtained structural information for the detected peaks in the metabolic profile data without performing additional MS/MS analysis; this was achieved by searching for the corresponding MS2T accession in the library. In the case of metabolic profile data for Arabidopsis tissues containing more than 1000 peaks, approximately 50% of the peaks were tagged by MS2Ts, and 90 peaks were identified or tentatively annotated with metabolite information by searching the metabolite databases and manually interpreting the MS2Ts. A comparison of metabolic profiles among the Arabidopsis tissues revealed that many unknown metabolites accumulated in a tissue-specific manner, some of which were deduced to be unusual Arabidopsis metabolites based on the MS2T data. Candidate genes responsible for these biosyntheses could be predicted by projecting the results to the transcriptome data. The method was also used for metabolic phenotyping of a subset of Ds transposon-inserted lines of Arabidopsis, resulting in clarification of the functions of reported genes involved in glycosylation of flavonoids. Thus, non-targeted metabolic profiling analysis using MS2T annotation methods could prove to be useful for investigating novel functions of secondary metabolites in plants.
Collapse
Affiliation(s)
- Fumio Matsuda
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230 0045, Japan
| | | | | | | | | | | |
Collapse
|
166
|
Heil M, Walters DR. Chapter 15 Ecological Consequences of Plant Defence Signalling. ADVANCES IN BOTANICAL RESEARCH 2009. [PMID: 0 DOI: 10.1016/s0065-2296(09)51015-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
167
|
Zhang L, Lavery L, Gill U, Gill K, Steffenson B, Yan G, Chen X, Kleinhofs A. A cation/proton-exchanging protein is a candidate for the barley NecS1 gene controlling necrosis and enhanced defense response to stem rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:385-97. [PMID: 18956175 DOI: 10.1007/s00122-008-0910-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Accepted: 10/02/2008] [Indexed: 05/08/2023]
Abstract
We characterized three lesion mimic necS1 (necrotic Steptoe) mutants, induced by fast neutron (FN) treatment of barley cultivar Steptoe. The three mutants are recessive and allelic. When infected with Puccinia graminis f. sp. tritici pathotypes MCC and QCC and P. graminis f. sp. secalis isolate 92-MN-90, all three mutants exhibited enhanced resistance compared to parent cultivar Steptoe. These results suggested that the lesion mimic mutants carry broad-spectrum resistance to stem rust. In order to identify the mutated gene responsible for the phenotype, transcript-based cloning was used. Two genes, represented by three Barley1 probesets (Contig4211_at and Contig4212_s_at, representing the same gene, and Contig10850_s_at), were deleted in all three mutants. Genetic analysis suggested that the lesion mimic phenotype was due to a mutation in one or both of these genes, named NecS1. Consistent with the increased disease resistance, all three mutants constitutively accumulated elevated transcript levels of pathogenesis-related (PR) genes. Barley stripe mosaic virus (BSMV) has been developed as a virus-induced gene-silencing (VIGS) vector for monocots. We utilized BSMV-VIGS to demonstrate that silencing of the gene represented by Contig4211_at, but not Contig10850_s_at caused the necrotic lesion mimic phenotype on barley seedling leaves. Therefore, Contig4211_at is a strong candidate for the NecS1 gene, which encodes a cation/proton exchanging protein (HvCAX1).
Collapse
Affiliation(s)
- Ling Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | | | | | | | | | | | | | | |
Collapse
|
168
|
DeFraia CT, Schmelz EA, Mou Z. A rapid biosensor-based method for quantification of free and glucose-conjugated salicylic acid. PLANT METHODS 2008; 4:28. [PMID: 19117519 PMCID: PMC2654556 DOI: 10.1186/1746-4811-4-28] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 12/31/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Salicylic acid (SA) is an important signalling molecule in plant defenses against biotrophic pathogens. It is also involved in several other processes such as heat production, flowering, and germination. SA exists in the plant as free SA and as an inert glucose conjugate (salicylic acid 2-O-beta-D-glucoside or SAG). Recently, Huang et al. developed a bacterial biosensor that responds to free SA but not SAG, designated as Acinetobacter sp. ADPWH_lux. In this paper we describe an improved methodology for Acinetobacter sp. ADPWH_lux-based free SA quantification, enabling high-throughput analysis, and present an approach for the quantification of SAG from crude plant extracts. RESULTS On the basis of the original biosensor-based method, we optimized extraction and quantification. SAG content was determined by treating crude extracts with beta-glucosidase, then measuring the released free SA with the biosensor. beta-glucosidase treatment released more SA in acetate buffer extract than in Luria-Bertani (LB) extract, while enzymatic hydrolysis in either solution released more free SA than acid hydrolysis. The biosensor-based method detected higher amounts of SA in pathogen-infected plants than did a GC/MS-based method. SA quantification of control and pathogen-treated wild-type and sid2 (SA induction-deficient) plants demonstrated the efficacy of the method described. Using the methods detailed here, we were able to detect as little as 0.28 mug SA/g FW. Samples typically had a standard deviation of up to 25% of the mean. CONCLUSION The ability of Acinetobacter sp. ADPWH_lux to detect SA in a complex mixture, combined with the enzymatic hydrolysis of SAG in crude extract, allowed the development of a simple, rapid, and inexpensive method to simultaneously measure free and glucose-conjugated SA. This approach is amenable to a high-throughput format, which would further reduce the cost and time required for biosensor-based SA quantification. Possible applications of this approach include characterization of enzymes involved in SA metabolism, analysis of temporal changes in SA levels, and isolation of mutants with aberrant SA accumulation.
Collapse
Affiliation(s)
- Christopher T DeFraia
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL, 32611, USA
| | - Eric A Schmelz
- Center for Medical, Agricultural and Veterinary Entomology, United States Department of Agriculture, Agricultural Research Service, 1700 SW 23rd Drive, Gainesville, FL 32608, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL, 32611, USA
| |
Collapse
|
169
|
Incremental steps toward incompatibility revealed by Arabidopsis epistatic interactions modulating salicylic acid pathway activation. Proc Natl Acad Sci U S A 2008; 106:334-9. [PMID: 19106299 DOI: 10.1073/pnas.0811734106] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant growth is influenced by genetic factors and environmental cues. Genotype-by-environment interactions are governed by complex genetic epistatic networks that are subject to natural selection. Here we describe a novel epistatic interaction modulating growth in response to temperature common to 2 Arabidopsis recombinant inbred line (RIL) populations (Ler x Kas-2 and Ler x Kond). At 14 degrees C, lines with specific allele combinations at interacting loci (incompatible interactions) have severe growth defects. These lines exhibit deregulated cell death programs and enhanced disease resistance. At 20 degrees C, growth defects are suppressed, but a positive trait of enhanced resistance is retained. Mapping of 1 interacting QTL to a cluster of RPP1-like TIR-NB-LRR genes on chromosome 3 is consistent with our finding that environmentally conditioned epistasis depends on activation of the salicylic acid (SA) stress signaling pathway. The nature of the epistatic interaction conforms to the Dobzhansky-Muller model of genetic incompatibility with incomplete penetrance for reproductive isolation. Variation in fitness of different incompatible lines reveals the presence of additional modifiers in the genetic background. We propose that certain interacting loci lead to an optimal balance between growth and resistance to pathogens by modulating SA signaling under specific environments. This could allow the accumulation of additional incompatibilities before reaching complete reproductive isolation.
Collapse
|
170
|
Gopalan S. Reversal of an immunity associated plant cell death program by the growth regulator auxin. BMC Res Notes 2008; 1:126. [PMID: 19055721 PMCID: PMC2626598 DOI: 10.1186/1756-0500-1-126] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 12/02/2008] [Indexed: 11/21/2022] Open
Abstract
Background One form of plant immunity against pathogens involves a rapid host programmed cell death at the site of infection accompanied by the activation of local and systemic resistance to pathogens, termed the hypersensitive response (HR). In this work it was tested (i) if the plant growth regulator auxin can inhibit the cell death elicited by a purified proteinaceous HR elicitor, (ii) how far down the process this inhibition can be achieved, and (iii) if the inhibition affects reporters of immune response. The effect of constitutive modulation of endogenous auxin levels in transgenic plants on this cell death program was also evaluated. Results The HR programmed cell death initiated by a bacterial type III secretion system dependent proteinaceous elicitor harpin (from Erwinia amylovora) can be reversed till very late in the process by the plant growth regulator auxin. Early inhibition or late reversal of this cell death program does not affect marker genes correlated with local and systemic resistance. Transgenic plants constitutively modulated in endogenous levels of auxin are not affected in ability or timing of cell death initiated by harpin. Conclusion These data indicate that the cell death program initiated by harpin can be reversed till late in the process without effect on markers strongly correlated with local and systemic immunity. The constitutive modulation of endogenous auxin does not affect equivalent signaling processes affecting cell death or buffers these signals. The concept and its further study has utility in choosing better strategies for treating mammalian and agricultural diseases.
Collapse
Affiliation(s)
- Suresh Gopalan
- Present address : Department of Molecular Biology, Massachusetts General Hospital & Department of Genetics, Harvard University, Boston, MA 02114, USA.
| |
Collapse
|
171
|
Tedman-Jones JD, Lei R, Jay F, Fabro G, Li X, Reiter WD, Brearley C, Jones JDG. Characterization of Arabidopsis mur3 mutations that result in constitutive activation of defence in petioles, but not leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:691-703. [PMID: 18657237 DOI: 10.1111/j.1365-313x.2008.03636.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A screen was established for mutants in which the plant defence response is de-repressed. The pathogen-inducible isochorismate synthase (ICS1) promoter was fused to firefly luciferase (luc) and a homozygous transgenic line generated in which the ICS1:luc fusion is co-regulated with ICS1. This line was mutagenized and M(2) seedlings screened for constitutive ICS1:luc expression (cie). The cie mutants fall into distinct phenotypic classes based on tissue-specific localization of luciferase activity. One mutant, cie1, that shows constitutive luciferase activity specifically in petioles, was chosen for further analysis. In addition to ICS1, PR and other defence-related genes are constitutively expressed in cie1 plants. The cie1 mutant is also characterized by an increased production of conjugated salicylic acid and reactive oxygen intermediates, as well as spontaneous lesion formation, all confined to petiole tissue. Significantly, defences activated in cie1 are sufficient to prevent infection by a virulent isolate of Hyaloperonospora parasitica, and this enhanced resistance response protects petiole tissue alone. Furthermore, cie1-mediated resistance, along with PR gene expression, is abolished in a sid2-1 mutant background, consistent with a requirement for salicylic acid. A positional cloning approach was used to identify cie1, which carries two point mutations in a gene required for cell wall biosynthesis and actin organization, MUR3. A mur3 knockout mutant also resists infection by H. parasitica in its petioles and this phenotype is complemented by transformation with wild-type MUR3. We propose that perturbed cell wall biosynthesis may activate plant defence and provide a rationale for the cie1 and the mur3 knockout phenotypes.
Collapse
MESH Headings
- Actins/metabolism
- Alleles
- Arabidopsis/genetics
- Arabidopsis/immunology
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Cell Wall/genetics
- Cell Wall/metabolism
- Chromosome Mapping
- Cloning, Molecular
- Galactosyltransferases/genetics
- Galactosyltransferases/metabolism
- Gene Expression Regulation, Plant
- Gene Knockout Techniques
- Genes, Plant
- Genes, Reporter
- Genetic Complementation Test
- Immunity, Innate
- Intramolecular Transferases/genetics
- Intramolecular Transferases/metabolism
- Mutagenesis
- Plant Leaves/genetics
- Plant Leaves/immunology
- Plant Leaves/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- Point Mutation
- Promoter Regions, Genetic
- RNA, Plant/genetics
- Reactive Oxygen Species/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Salicylic Acid/metabolism
Collapse
|
172
|
Weir TL, Stull VJ, Badri D, Trunck LA, Schweizer HP, Vivanco J. Global gene expression profiles suggest an important role for nutrient acquisition in early pathogenesis in a plant model of Pseudomonas aeruginosa infection. Appl Environ Microbiol 2008; 74:5784-91. [PMID: 18641163 PMCID: PMC2547029 DOI: 10.1128/aem.00860-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 06/19/2008] [Indexed: 01/01/2023] Open
Abstract
Although Pseudomonas aeruginosa is an opportunistic pathogen that does not often naturally infect alternate hosts, such as plants, the plant-P. aeruginosa model has become a widely recognized system for identifying new virulence determinants and studying the pathogenesis of the organism. Here, we examine how both host factors and P. aeruginosa PAO1 gene expression are affected in planta after infiltration into incompatible and compatible cultivars of tobacco (Nicotiana tabacum L.). N. tabacum has a resistance gene (N) against tobacco mosaic virus, and although resistance to PAO1 infection is correlated with the presence of a dominant N gene, our data suggest that it is not a factor in resistance against PAO1. We did observe that the resistant tobacco cultivar had higher basal levels of salicylic acid and a stronger salicylic acid response upon infiltration of PAO1. Salicylic acid acts as a signal to activate defense responses in plants, limiting the spread of the pathogen and preventing access to nutrients. It has also been shown to have direct virulence-modulating effects on P. aeruginosa. We also examined host effects on the pathogen by analyzing global gene expression profiles of bacteria removed from the intracellular fluid of the two plant hosts. We discovered that the availability of micronutrients, particularly sulfate and phosphates, is important for in planta pathogenesis and that the amounts of these nutrients made available to the bacteria may in turn have an effect on virulence gene expression. Indeed, there are several reports suggesting that P. aeruginosa virulence is influenced in mammalian hosts by the availability of micronutrients, such as iron and nitrogen, and by levels of O(2).
Collapse
Affiliation(s)
- Tiffany L Weir
- 1173 Campus Delivery, Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523-1173, USA
| | | | | | | | | | | |
Collapse
|
173
|
Ascencio-Ibáñez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, Hanley-Bowdoin L. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. PLANT PHYSIOLOGY 2008; 148:436-54. [PMID: 18650403 PMCID: PMC2528102 DOI: 10.1104/pp.108.121038] [Citation(s) in RCA: 378] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 07/21/2008] [Indexed: 05/18/2023]
Abstract
Geminiviruses are small DNA viruses that use plant replication machinery to amplify their genomes. Microarray analysis of the Arabidopsis (Arabidopsis thaliana) transcriptome in response to cabbage leaf curl virus (CaLCuV) infection uncovered 5,365 genes (false discovery rate <0.005) differentially expressed in infected rosette leaves at 12 d postinoculation. Data mining revealed that CaLCuV triggers a pathogen response via the salicylic acid pathway and induces expression of genes involved in programmed cell death, genotoxic stress, and DNA repair. CaLCuV also altered expression of cell cycle-associated genes, preferentially activating genes expressed during S and G2 and inhibiting genes active in G1 and M. A limited set of core cell cycle genes associated with cell cycle reentry, late G1, S, and early G2 had increased RNA levels, while core cell cycle genes linked to early G1 and late G2 had reduced transcripts. Fluorescence-activated cell sorting of nuclei from infected leaves revealed a depletion of the 4C population and an increase in 8C, 16C, and 32C nuclei. Infectivity studies of transgenic Arabidopsis showed that overexpression of CYCD3;1 or E2FB, both of which promote the mitotic cell cycle, strongly impaired CaLCuV infection. In contrast, overexpression of E2FA or E2FC, which can facilitate the endocycle, had no apparent effect. These results showed that geminiviruses and RNA viruses interface with the host pathogen response via a common mechanism, and that geminiviruses modulate plant cell cycle status by differentially impacting the CYCD/retinoblastoma-related protein/E2F regulatory network and facilitating progression into the endocycle.
Collapse
Affiliation(s)
- José Trinidad Ascencio-Ibáñez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | | | | | | | | | | | |
Collapse
|
174
|
Yuan ZC, Haudecoeur E, Faure D, Kerr KF, Nester EW. Comparative transcriptome analysis of Agrobacterium tumefaciens in response to plant signal salicylic acid, indole-3-acetic acid and gamma-amino butyric acid reveals signalling cross-talk and Agrobacterium--plant co-evolution. Cell Microbiol 2008; 10:2339-54. [PMID: 18671824 DOI: 10.1111/j.1462-5822.2008.01215.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Agrobacterium has evolved sophisticated strategies to perceive and transduce plant-derived cues. Recent studies have found that numerous plant signals, including salicylic acid (SA), indole-3-acetic acid (IAA) and gamma-amino butyric acid (GABA), profoundly affect Agrobacterium-plant interactions. Here we determine and compare the transcriptome profiles of Agrobacterium in response to these three plant signals. Collectively, the transcription of 103, 115 and 95 genes was significantly altered by SA, IAA and GABA respectively. Both distinct cellular responses and overlapping signalling pathways were elicited by these three plant signals. Interestingly, these three plant compounds function additively to shut off the Agrobacterium virulence programme and activate the quorum-quenching machinery. Moreover, the repression of the virulence programme by SA and IAA and the inactivation of quorum-sensing signals by SA and GABA are regulated through independent pathways. Our data indicate that these plant signals, while cross-talk in plant signalling networks, also act as cross-kingdom signals and play redundant roles in tailoring Agrobacterium regulatory pathways, resulting in intensive signalling cross-talk in Agrobacterium. Our results support the notion that Agrobacterium has evolved the ability to hijack plant signals for its own benefit. The complex signalling interplay between Agrobacterium and its plant hosts reflects an exquisite co-evolutionary balance.
Collapse
Affiliation(s)
- Ze-Chun Yuan
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
175
|
Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH, Cho BH, Yang KY, Ryu CM, Kim YC. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1067-75. [PMID: 18616403 DOI: 10.1094/mpmi-21-8-1067] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Root colonization of plants with certain rhizobacteria, such as Pseudomonas chlororaphis O6, induces tolerance to biotic and abiotic stresses. Tolerance to drought was correlated with reduced water loss in P. chlororaphis O6-colonized plants and with stomatal closure, indicated by size of stomatal aperture and percentage of closed stomata. Stomatal closure and drought resistance were mediated by production of 2R,3R-butanediol, a volatile metabolite of P. chlororaphis O6. Root colonization with bacteria deficient in 2R,3R-butanediol production showed no induction of drought tolerance. Studies with Arabidopsis mutant lines indicated that induced drought tolerance required the salicylic acid (SA)-, ethylene-, and jasmonic acid-signaling pathways. Both induced drought tolerance and stomatal closure were dependent on Aba-1 and OST-1 kinase. Increases in free SA after drought stress of P. chlororaphis O6-colonized plants and after 2R,3R-butanediol treatment suggested a primary role for SA signaling in induced drought tolerance. We conclude that the bacterial volatile 2R,3R-butanediol was a major determinant in inducing resistance to drought in Arabidopsis through an SA-dependent mechanism.
Collapse
Affiliation(s)
- Song Mi Cho
- Department of Floriculture, Chunnam Techno College, Jeonnam, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Koornneef A, Leon-Reyes A, Ritsema T, Verhage A, Den Otter FC, Van Loon LC, Pieterse CMJ. Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. PLANT PHYSIOLOGY 2008; 147:1358-68. [PMID: 18539774 PMCID: PMC2442557 DOI: 10.1104/pp.108.121392] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 04/29/2008] [Indexed: 05/18/2023]
Abstract
Cross talk between salicylic acid (SA) and jasmonic acid (JA) signaling pathways plays an important role in the regulation and fine tuning of induced defenses that are activated upon pathogen or insect attack. Pharmacological experiments revealed that transcription of JA-responsive marker genes, such as PDF1.2 and VSP2, is highly sensitive to suppression by SA. This antagonistic effect of SA on JA signaling was also observed when the JA pathway was biologically activated by necrotrophic pathogens or insect herbivores, and when the SA pathway was triggered by a biotrophic pathogen. Furthermore, all 18 Arabidopsis (Arabidopsis thaliana) accessions tested displayed SA-mediated suppression of JA-responsive gene expression, highlighting the potential significance of this phenomenon in induced plant defenses in nature. During plant-attacker interactions, the kinetics of SA and JA signaling are highly dynamic. Mimicking this dynamic response by applying SA and methyl jasmonate (MeJA) at different concentrations and time intervals revealed that PDF1.2 transcription is readily suppressed when the SA response was activated at or after the onset of the JA response, and that this SA-JA antagonism is long lasting. However, when SA was applied more than 30 h prior to the onset of the JA response, the suppressive effect of SA was completely absent. The window of opportunity of SA to suppress MeJA-induced PDF1.2 transcription coincided with a transient increase in glutathione levels. The glutathione biosynthesis inhibitor l-buthionine-sulfoximine strongly reduced PDF1.2 suppression by SA, suggesting that SA-mediated redox modulation plays an important role in the SA-mediated attenuation of the JA signaling pathway.
Collapse
Affiliation(s)
- Annemart Koornneef
- Graduate School Experimental Plant Sciences, Institute of Environmental Biology, Utrecht University, 3508 TB Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
177
|
Schreiber K, Ckurshumova W, Peek J, Desveaux D. A high-throughput chemical screen for resistance to Pseudomonas syringae in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:522-31. [PMID: 18248597 DOI: 10.1111/j.1365-313x.2008.03425.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The study of plant pathogenesis and the development of effective treatments to protect plants from diseases could be greatly facilitated by a high-throughput pathosystem to evaluate small-molecule libraries for inhibitors of pathogen virulence. The interaction between the Gram-negative bacterium Pseudomonas syringae and Arabidopsis thaliana is a model for plant pathogenesis. However, a robust high-throughput assay to score the outcome of this interaction is currently lacking. We demonstrate that Arabidopsis seedlings incubated with P. syringae in liquid culture display a macroscopically visible 'bleaching' symptom within 5 days of infection. Bleaching is associated with a loss of chlorophyll from cotyledonary tissues, and is correlated with bacterial virulence. Gene-for-gene resistance is absent in the liquid environment, possibly because of the suppression of the hypersensitive response under these conditions. Importantly, bleaching can be prevented by treating seedlings with known inducers of plant defence, such as salicylic acid (SA) or a basal defence-inducing peptide of bacterial flagellin (flg22) prior to inoculation. Based on these observations, we have devised a high-throughput liquid assay using standard 96-well plates to investigate the P. syringae-Arabidopsis interaction. An initial screen of small molecules active on Arabidopsis revealed a family of sulfanilamide compounds that afford protection against the bleaching symptom. The most active compound, sulfamethoxazole, also reduced in planta bacterial growth when applied to mature soil-grown plants. The whole-organism liquid assay provides a novel approach to probe chemical libraries in a high-throughput manner for compounds that reduce bacterial virulence in plants.
Collapse
Affiliation(s)
- Karl Schreiber
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | | | | | | |
Collapse
|
178
|
Yi H, Richards EJ. Phenotypic instability of Arabidopsis alleles affecting a disease Resistance gene cluster. BMC PLANT BIOLOGY 2008; 8:36. [PMID: 18410684 PMCID: PMC2374787 DOI: 10.1186/1471-2229-8-36] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 04/14/2008] [Indexed: 05/19/2023]
Abstract
BACKGROUND Three mutations in Arabidopsis thaliana strain Columbia - cpr1, snc1, and bal - map to the RPP5 locus, which contains a cluster of disease Resistance genes. The similar phenotypes, gene expression patterns, and genetic interactions observed in these mutants are related to constitutive activation of pathogen defense signaling. However, these mutant alleles respond differently to various conditions. Exposure to mutagens, such as ethyl methanesulfonate (EMS) and gamma-irradiation, induce high frequency phenotypic instability of the bal allele. In addition, a fraction of the bal and cpr1 alleles segregated from bal x cpr1 F1 hybrids also show signs of phenotypic instability. To gain more insight into the mechanism of phenotypic instability of the bal and cpr1 mutations, we systematically compared the behavior of these unusual alleles with that of the missense gain-of-function snc1 allele in response to DNA damage or passage through F1 hybrids. RESULTS We found that the cpr1 allele is similar to the bal allele in its unstable behavior after EMS mutagenesis. For both the bal and cpr1 mutants, destabilization of phenotypes was observed in more than 10% of EMS-treated plants in the M1 generation. In addition, exceptions to simple Mendelian inheritance were identified in the M2 generation. Like cpr1 x bal F1 hybrids, cpr1 x snc1 F1 hybrids and bal x snc1 F1 hybrids exhibited dwarf morphology. While only dwarf F2 plants were produced from bal x snc1 F1 hybrids, about 10% wild-type F2 progeny were produced from cpr1 x snc1 F1 hybrids, as well as from cpr1 x bal hybrids. Segregation analysis suggested that the cpr1 allele in cpr1 x snc1 crosses was destabilized during the late F1 generation to early F2 generation. CONCLUSION With exposure to EMS or different F1 hybrid contexts, phenotypic instability is induced for the bal and cpr1 alleles, but not for the snc1 allele. Our results suggest that the RPP5 locus can adopt different metastable genetic or epigenetic states, the stability of which is highly susceptible to mutagenesis and pairing of different alleles.
Collapse
Affiliation(s)
- Hankuil Yi
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA
| | - Eric J Richards
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA
| |
Collapse
|
179
|
Ramos Solano B, Barriuso Maicas J, Pereyra de la Iglesia MT, Domenech J, Gutiérrez Mañero FJ. Systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection, and biotic elicitors. PHYTOPATHOLOGY 2008; 98:451-7. [PMID: 18944194 DOI: 10.1094/phyto-98-4-0451] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A study of plant defensive systemic responses induced by three plant growth promoting rhizobacteria (PGPR) on Arabidopsis thaliana Col 0 against Pseudomonas syringae pv. tomato DC3000 at the biochemical and transcriptional levels is reported in this paper. All three strains decreased disease severity when applied to A. thaliana prior to pathogen inoculation. At the biochemical level, each of the three strains induced ethylene (ET) when incubated with 1-amino-cyclopropane-1-carboxylic acid, and salicylic acid (SA) production in the plant. Plants treated with each of the three strains were also reduced in salicylic acid production after pathogen challenge compared to untreated controls. This effect was more marked in plants treated with Chryseobacterium balustinum AUR9, the strain most effective in decreasing disease severity. The expression level of PR1, a transcriptional marker of the SA-dependent pathway in C. balustinum AUR9-treated plants, is fourfold that of controls while the expression of PDF1.2, a transcriptional marker for the SA-independent pathway, is not induced. C. balustinum cell wall lipopolysaccharides, being putative bacterial elicitor molecules, are able to reproduce this systemic induction effect at low doses. From these observations, we hypothesize that certain PGPR strains are capable of stimulating different systemic responses in host plants. With C. balustinum AUR9, the SA-dependent pathway is stimulated first, as indicated by increases in SA levels and PR1 expression, followed by induction of the SA-independent pathway, as indicated by the increases in ET concentrations. The effects of both pathways combined with respect to disease suppression appear to be additive.
Collapse
Affiliation(s)
- B Ramos Solano
- Universidad San Pablo CEU, Facultad de Farmacia, Madrid, Spain.
| | | | | | | | | |
Collapse
|
180
|
Wubben MJE, Jin J, Baum TJ. Cyst nematode parasitism of Arabidopsis thaliana is inhibited by salicylic acid (SA) and elicits uncoupled SA-independent pathogenesis-related gene expression in roots. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:424-32. [PMID: 18321188 DOI: 10.1094/mpmi-21-4-0424] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Compatible plant-nematode interactions involve the formation of an elaborate feeding site within the host root that requires the evasion of plant defense mechanisms by the parasite. Little is known regarding plant defense signaling pathways that limit nematode parasitism during a compatible interaction. Therefore, we utilized Arabidopsis thaliana mutants perturbed in salicylic acid (SA) biosynthesis or signal transduction to investigate the role of SA in inhibiting parasitism by the beet cyst nematode Heterodera schachtii. We determined that SA-deficient mutants (sid2-1, pad4-1, and NahG) exhibited increased susceptibility to H. schachtii. In contrast, SA-treated wild-type plants showed decreased H. schachtii susceptibility. The npr1-2 and npr1-3 mutants, which are impaired in SA signaling, also showed increased susceptibility to H. schachtii, whereas the npr1-suppressor mutation sni1 showed decreased susceptibility. Constitutive pathogenesis-related (PR) gene-expressing mutants (cpr1 and cpr6) did not show altered susceptibility to H. schachtii; however, constitutive PR gene expression was restricted to cpr1 shoots with wild-type levels of PR-1 transcript present in cpr1 roots. Furthermore, we determined that H. schachtii infection elicits SA-independent PR-2 and PR-5 induction in wild-type roots, while PR-1 transcript and total SA levels remained unaltered. This was in contrast to shoots of infected plants where PR-1 transcript abundance and total SA levels were elevated. We conclude that SA acts via NPR1 to inhibit nematode parasitism which, in turn, is negatively regulated by SNI1. Our results show an inverse correlation between root basal PR-1 expression and plant susceptibility to H. schachtii and suggest that successful cyst nematode parasitism may involve a local suppression of SA signaling in roots.
Collapse
Affiliation(s)
- Martin John Evers Wubben
- United States Department of Agriculture-Agricultural Research Service, Crop Science Research Laboratory, Mississippi State, MS 39762, USA.
| | | | | |
Collapse
|
181
|
Hein JW, Wolfe GV, Blee KA. Comparison of rhizosphere bacterial communities in Arabidopsis thaliana mutants for systemic acquired resistance. MICROBIAL ECOLOGY 2008; 55:333-43. [PMID: 17619212 DOI: 10.1007/s00248-007-9279-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 05/15/2007] [Indexed: 05/16/2023]
Abstract
Systemic acquired resistance (SAR) is an inducible systemic plant defense against a broad spectrum of plant pathogens, with the potential to secrete antimicrobial compounds into the soil. However, its impact on rhizosphere bacteria is not known. In this study, we examined fingerprints of bacterial communities in the rhizosphere of the model plant Arabidopsis thaliana to determine the effect of SAR on bacterial community structure and diversity. We compared Arabidopsis mutants that are constitutive and non-inducible for SAR and verified SAR activation by measuring pathogenesis-related protein activity via a beta-glucoronidase (GUS) reporter construct driven by the beta-1-3 glucanase promoter. We used terminal restriction fragment length polymorphism (T-RFLP) analysis of MspI- and HaeIII-digested 16S rDNA to estimate bacterial rhizosphere community diversity, with Lactobacillus sp. added as internal controls. T-RFLP analysis showed a clear rhizosphere effect on community structure, and diversity analysis of both rhizosphere and bulk soil operational taxonomic units (as defined by terminal restriction fragments) using richness, Shannon-Weiner, and Simpson's diversity indices and evenness confirmed that the presence of Arabidopsis roots significantly altered bacterial communities. This effect of altered soil microbial community structure by plants was also seen upon multivariate cluster analysis of the terminal restriction fragments. We also found visible differences in the rhizosphere community fingerprints of different Arabidopsis SAR mutants; however, there was no clear decrease of rhizosphere diversity because of constitutive SAR expression. Our study suggests that SAR can alter rhizosphere bacterial communities, opening the door to further understanding and application of inducible plant defense as a driving force in structuring soil bacterial assemblages.
Collapse
Affiliation(s)
- John W Hein
- Department of Biological Sciences, California State University, Chico, CA 95929-0515, USA
| | | | | |
Collapse
|
182
|
March-Díaz R, García-Domínguez M, Lozano-Juste J, León J, Florencio FJ, Reyes JC. Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:475-87. [PMID: 17988222 DOI: 10.1111/j.1365-313x.2007.03361.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
One of the mechanisms involved in chromatin remodelling is so-called 'histone replacement'. An example of such a mechanism is the substitution of canonical H2A histone by the histone variant H2A.Z. The ATP-dependent chromatin remodelling complex SWR1 is responsible for this action in yeast. We have previously proposed the existence of an SWR1-like complex in Arabidopsis by demonstrating genetic and physical interaction of the components SEF, ARP6 and PIE1, which are homologues of the yeast Swc6 and Arp6 proteins and the core ATPase Swr1, respectively. Here we show that histone variant H2A.Z, but not canonical H2A histone, interacts with PIE1. Plants mutated at loci HTA9 and HTA11 (two of the three Arabidopsis H2A.Z-coding genes) displayed developmental abnormalities similar to those found in pie1, sef and arp6 plants, exemplified by an early-flowering phenotype. Comparison of gene expression profiles revealed that 65% of the genes differentially regulated in hta9 hta11 plants were also mis-regulated in pie1 plants. Detailed examination of the expression data indicated that the majority of mis-regulated genes were related to salicylic acid-dependent immunity. RT-PCR and immunoblotting experiments confirmed constitutive expression of systemic acquired resistance (SAR) marker genes in pie1, hta9 hta11 and sef plants. Variations observed at the molecular level resulted in phenotypic alterations such as spontaneous cell death and enhanced resistance to the phytopathogenic bacteria Pseudomonas syringae pv. tomato. Thus, our results support the existence in Arabidopsis of an SWR1-like chromatin remodelling complex that is functionally related to that described in yeast and human, and attribute to this complex a role in maintaining a repressive state of the SAR response.
Collapse
Affiliation(s)
- Rosana March-Díaz
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-USE), Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
183
|
Asano T, Masuda D, Yasuda M, Nakashita H, Kudo T, Kimura M, Yamaguchi K, Nishiuchi T. AtNFXL1, an Arabidopsis homologue of the human transcription factor NF-X1, functions as a negative regulator of the trichothecene phytotoxin-induced defense response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:450-64. [PMID: 18069941 DOI: 10.1111/j.1365-313x.2007.03353.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Trichothecenes are a closely related family of phytotoxins that are produced by phytopathogenic fungi. In Arabidopsis, expression of AtNFXL1, a homologue of the putative human transcription repressor NF-X1, was significantly induced by application of type A trichothecenes, such as T-2 toxin. An atnfxl1 mutant growing on medium lacking trichothecenes showed no phenotype, whereas a hypersensitivity phenotype was observed in T-2 toxin-treated atnfxl1 mutant plants. Microarray analysis indicated that several defense-related genes (i.e. WRKYs, NBS-LRRs, EDS5, ICS1, etc.) were upregulated in T-2 toxin-treated atnfxl1 mutants compared with wild-type plants. In addition, enhanced salicylic acid (SA) accumulation was observed in T-2 toxin-treated atnfxl1 mutants, which suggests that AtNFXL1 functions as a negative regulator of these defense-related genes via an SA-dependent signaling pathway. We also found that expression of AtNFXL1 was induced by SA and flg22 treatment. Moreover, the atnfxl1 mutant was less susceptible to a compatible phytopathogen, Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000). Taken together, these results indicate that AtNFXL1 plays an important role in the trichothecene response, as well as the general defense response in Arabidopsis.
Collapse
Affiliation(s)
- Tomoya Asano
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-0934, Japan
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Kang HG, Kuhl JC, Kachroo P, Klessig DF. CRT1, an Arabidopsis ATPase that interacts with diverse resistance proteins and modulates disease resistance to turnip crinkle virus. Cell Host Microbe 2008; 3:48-57. [PMID: 18191794 DOI: 10.1016/j.chom.2007.11.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 09/12/2007] [Accepted: 11/26/2007] [Indexed: 01/30/2023]
Abstract
Plant immunity frequently involves the recognition of pathogen-encoded avirulence (avr) factors by their corresponding plant resistance (R) proteins. This triggers the hypersensitive response (HR) where necrotic lesions formed at the site(s) of infection help restrict pathogen spread. HRT is an Arabidopsis R protein required for resistance to turnip crinkle virus (TCV). In a genetic screen for mutants compromised in the recognition of TCV's avr factor, we identified crt1 (compromised recognition of TCV), a mutant that prematurely terminates an ATPase protein. Following TCV infection, crt1 developed a spreading HR and failed to control viral replication and spread. crt1 also suppressed HR-like cell death induced by ssi4, a constitutively active R protein, and by Pseudomonas syringae carrying avrRpt2. Furthermore, CRT1 interacts with HRT, SSI4, and two other R proteins, RPS2 and Rx. These data identify CRT1 as an important mediator of defense signaling triggered by distinct classes of R proteins.
Collapse
Affiliation(s)
- Hong-Gu Kang
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
185
|
Zhou F, Mosher S, Tian M, Sassi G, Parker J, Klessig DF. The Arabidopsis gain-of-function mutant ssi4 requires RAR1 and SGT1b differentially for defense activation and morphological alterations. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:40-49. [PMID: 18052881 DOI: 10.1094/mpmi-21-1-0040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A gain-of-function mutation in resistance (R) gene SSI4 causes constitutive activation of defense responses, spontaneous necrotic lesion formation, enhanced resistance against virulent pathogens, and a severe dwarf phenotype. Genetic analysis revealed that ssi4-induced H(2)O(2) accumulation and spontaneous cell death require RAR1, whereas ssi4-mediated stunting is dependent on SGT1b. By contrast, both RAR1 and SGT1b are required in a genetically additive manner for ssi4-induced disease resistance, SA accumulation, and lesion formation after pathogen infection. These data point to cooperative yet distinct functions of RAR1 and SGT1b in responses conditioned by a deregulated nucleotide-binding leucine-rich repeat protein. We also found that RAR1 and SGT1b together contribute to basal resistance because an ssi4 rar1 sgt1b triple mutant exhibited enhanced susceptibility to virulent pathogen infection compared with wild-type SSI4 plants. All ssi4-induced phenotypes were suppressed when plants were grown at 22 degrees C under high relative humidity. However, low temperature (16 degrees C) triggered ssi4-mediated cell death via an RAR1-dependent pathway even in the presence of high humidity. Thus, multiple environmental factors impact on ssi4 signaling, as has been observed for other constitutive defense mutants and R gene-triggered pathways.
Collapse
Affiliation(s)
- Fasong Zhou
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
186
|
Zhang X, Dai Y, Xiong Y, DeFraia C, Li J, Dong X, Mou Z. Overexpression of Arabidopsis MAP kinase kinase 7 leads to activation of plant basal and systemic acquired resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:1066-79. [PMID: 19704652 DOI: 10.1111/j.1365-313x.2007.03294.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
There is a growing body of evidence indicating that mitogen-activated protein kinase (MAPK) cascades are involved in plant defense responses. Analysis of the completed Arabidopsis thaliana genome sequence has revealed the existence of 20 MAPKs, 10 MAPKKs and 60 MAPKKKs, implying a high level of complexity in MAPK signaling pathways, and making the assignment of gene functions difficult. The MAP kinase kinase 7 (MKK7) gene of Arabidopsis has previously been shown to negatively regulate polar auxin transport. Here we provide evidence that MKK7 positively regulates plant basal and systemic acquired resistance (SAR). The activation-tagged bud1 mutant, in which the expression of MKK7 is increased, accumulates elevated levels of salicylic acid (SA), exhibits constitutive pathogenesis-related (PR) gene expression, and displays enhanced resistance to both Pseudomonas syringae pv. maculicola (Psm) ES4326 and Hyaloperonospora parasitica Noco2. Both PR gene expression and disease resistance of the bud1 plants depend on SA, and partially depend on NPR1. We demonstrate that the constitutive defense response in bud1 plants is a result of the increased expression of MKK7, and requires the kinase activity of the MKK7 protein. We found that expression of the MKK7 gene in wild-type plants is induced by pathogen infection. Reducing mRNA levels of MKK7 by antisense RNA expression not only compromises basal resistance, but also blocks the induction of SAR. Intriguingly, ectopic expression of MKK7 in local tissues induces PR gene expression and resistance to Psm ES4326 in systemic tissues, indicating that activation of MKK7 is sufficient for generating the mobile signal of SAR.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, USA
| | | | | | | | | | | | | |
Collapse
|
187
|
Ogawa D, Nakajima N, Tamaoki M, Aono M, Kubo A, Kamada H, Saji H. The isochorismate pathway is negatively regulated by salicylic acid signaling in O3-exposed Arabidopsis. PLANTA 2007; 226:1277-85. [PMID: 17588170 DOI: 10.1007/s00425-007-0556-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Accepted: 05/15/2007] [Indexed: 05/12/2023]
Abstract
Ozone (O3), a major photochemical oxidant, causes leaf injury in plants. Plants synthesize salicylic acid (SA), which is reported to greatly affect O3 sensitivity. However, the mechanism of SA biosynthesis under O3 exposure remains unclear. Plants synthesize SA either by a pathway involving phenylalanine as a substrate or another involving isochorismate. To clarify how SA is produced in O3-exposed Arabidopsis, we examined the activities of phenylalanine ammonia lyase (PAL) and isochorismate synthase (ICS), which are components of the phenylalanine and isochorismate pathways, respectively. Exposure of Arabidopsis to O3 enhanced the accumulation of SA and the increase of ICS activity but did not affect PAL activity. In sid2 mutants, which have a defect in ICS1, the level of SA and the activity of ICS did not increase in response to O3 exposure. These results suggest that SA is mainly synthesized from isochorismate in Arabidopsis. Furthermore, the level of ICS1 expression and the activity of ICS during O3 exposure elevated in plants deficient for SA signaling (npr1 and eds5 mutants and NahG transgenics). Treatment of plants with SA also suppressed the enhancement of ICS1 expression by O3. These results suggest that SA synthesis is negatively regulated by SA signaling.
Collapse
Affiliation(s)
- Daisuke Ogawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | |
Collapse
|
188
|
Yi H, Richards EJ. A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. THE PLANT CELL 2007; 19:2929-39. [PMID: 17890374 PMCID: PMC2048694 DOI: 10.1105/tpc.107.051821] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 08/14/2007] [Accepted: 09/04/2007] [Indexed: 05/17/2023]
Abstract
The RPP5 (for recognition of Peronospora parasitica 5) locus in the Arabidopsis thaliana Columbia strain contains a cluster of paralogous disease Resistance (R) genes that play important roles in innate immunity. Among the R genes in this locus, RPP4 confers resistance to two races of the fungal pathogen Hyaloperonospora parasitica, while activation of SNC1 (for suppressor of npr1-1, constitutive 1) results in the resistance to another race of H. parasitica and to pathovars of the bacterial pathogen Pseudomonas syringae through the accumulation of salicylic acid (SA). Here, we demonstrate that other Columbia RPP5 locus R genes can be induced by transgenic overexpression of SNC1, which itself is regulated by a positive amplification loop involving SA accumulation. We also show that small RNA species that can target RPP5 locus R genes are produced in wild-type plants and that these R genes can be cosuppressed in transgenic plants overexpressing SNC1. Steady state expression levels of SNC1 increase in some mutants (dcl4-4, ago1-36, and upf1-5) defective in RNA silencing as well as in transgenic plants expressing the P1/Helper Component-Protease viral suppressor of RNA silencing. However, steady state levels of small RNA species do not change in mutants that upregulate SNC1. These data indicate many Columbia RPP5 locus R genes can be coordinately regulated both positively and negatively and suggest that the RPP5 locus is poised to respond to pathogens that disturb RNA silencing.
Collapse
Affiliation(s)
- Hankuil Yi
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | | |
Collapse
|
189
|
Yuan ZC, Edlind MP, Liu P, Saenkham P, Banta LM, Wise AA, Ronzone E, Binns AN, Kerr K, Nester EW. The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium. Proc Natl Acad Sci U S A 2007; 104:11790-5. [PMID: 17606909 PMCID: PMC1905925 DOI: 10.1073/pnas.0704866104] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Indexed: 11/18/2022] Open
Abstract
Agrobacterium tumefaciens is capable of transferring and integrating an oncogenic T-DNA (transferred DNA) from its tumor-inducing (Ti) plasmid into dicotyledonous plants. This transfer requires that the virulence genes (vir regulon) be induced by plant signals such as acetosyringone in an acidic environment. Salicylic acid (SA) is a key signal molecule in regulating plant defense against pathogens. However, how SA influences Agrobacterium and its interactions with plants is poorly understood. Here we show that SA can directly shut down the expression of the vir regulon. SA specifically inhibited the expression of the Agrobacterium virA/G two-component regulatory system that tightly controls the expression of the vir regulon including the repABC operon on the Ti plasmid. We provide evidence suggesting that SA attenuates the function of the VirA kinase domain. Independent of its effect on the vir regulon, SA up-regulated the attKLM operon, which functions in degrading the bacterial quormone N-acylhomoserine lactone. Plants defective in SA accumulation were more susceptible to Agrobacterium infection, whereas plants overproducing SA were relatively recalcitrant to tumor formation. Our results illustrate that SA, besides its well known function in regulating plant defense, can also interfere directly with several aspects of the Agrobacterium infection process.
Collapse
Affiliation(s)
| | - Merritt P. Edlind
- Department of Biology, Williams College, Williamstown, MA 01267; and
| | - Pu Liu
- Departments of *Microbiology and
| | | | - Lois M. Banta
- Department of Biology, Williams College, Williamstown, MA 01267; and
| | - Arlene A. Wise
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018
| | - Erik Ronzone
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018
| | - Andrew N. Binns
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018
| | - Kathleen Kerr
- Biostatistics, University of Washington, Seattle, WA 98195
| | | |
Collapse
|
190
|
Jung HW, Hwang BK. The leucine-rich repeat (LRR) protein, CaLRR1, interacts with the hypersensitive induced reaction (HIR) protein, CaHIR1, and suppresses cell death induced by the CaHIR1 protein. MOLECULAR PLANT PATHOLOGY 2007; 8:503-14. [PMID: 20507517 DOI: 10.1111/j.1364-3703.2007.00410.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Leucine-rich repeat proteins (LRRs) function in a number of signal transduction pathways via protein-protein interactions. The gene encoding a small protein of pepper, CaLRR1, is specifically induced upon pathogen challenge and treatment with pathogen-associated molecular patterns (PAMPs). We identified a pepper hypersensitive induced reaction (CaHIR1) protein that interacts with the LRR domain of the CaLRR1 protein using yeast two-hybrid screening. Ectopic expression of the pepper CaHIR1 gene induces cell death in tobacco and Arabidopsis, indicating that the CaHIR1 protein may be a positive regulator of HR-like cell death. Because transformation is very difficult in pepper plants, we over-expressed CaLRR1 and CaHIR1 in Arabidopsis to determine cellular functions of the two genes. The over-expression of the CaHIR1 gene, but not the CaLRR1 gene, in transgenic Arabidopsis confers disease resistance in response to Pseudomonas syringae infection, accompanied by the strong expression of PR genes, the accumulation of both salicylic acid and H(2)O(2), and K(+) efflux in plant cells. In Arabidopsis and tobacco plants over-expressing both CaHIR1 and CaLRR1, the CaLRR1 protein suppresses not only CaHIR1-induced cell death, but also PR gene expression elicited by CaHIR1 via its association with HIR protein. We propose that the CaLRR1 protein functions as a novel negative regulator of CaHIR1-mediated cell death responses in plants.
Collapse
Affiliation(s)
- Ho Won Jung
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Korea
| | | |
Collapse
|
191
|
Jagadeeswaran G, Raina S, Acharya BR, Maqbool SB, Mosher SL, Appel HM, Schultz JC, Klessig DF, Raina R. Arabidopsis GH3-LIKE DEFENSE GENE 1 is required for accumulation of salicylic acid, activation of defense responses and resistance to Pseudomonas syringae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:234-46. [PMID: 17521413 DOI: 10.1111/j.1365-313x.2007.03130.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In Arabidopsis, the GH3-like gene family consists of 19 members, several of which have been shown to adenylate the plant hormones jasmonic acid, indole acetic acid and salicylic acid (SA). In some cases, this adenylation has been shown to catalyze hormone conjugation to amino acids. Here we report molecular characterization of the GH3-LIKE DEFENSE GENE 1 (GDG1), a member of the GH3-like gene family, and show that GDG1 is an important component of SA-mediated defense against the bacterial pathogen Pseudomonas syringae. Expression of GDG1 is induced earlier and to a higher level in response to avirulent pathogens compared to virulent pathogens. gdg1 null mutants are compromised in several pathogen defense responses, including activation of defense genes and resistance against virulent and avirulent bacterial pathogens. Accumulation of free and glucoside-conjugated SA (SAG) in response to pathogen infection is compromised in gdg1 mutants. All defense-related phenotypes of gdg1 can be rescued by external application of SA, suggesting that gdg1 mutants are defective in the SA-mediated defense pathway(s) and that GDG1 functions upstream of SA. Our results suggest that GDG1 contributes to both basal and resistance gene-mediated inducible defenses against P. syringae (and possibly other pathogens) by playing a critical role in regulating the levels of pathogen-inducible SA. GDG1 is allelic to the PBS3 (avrPphB susceptible) gene.
Collapse
|
192
|
Love AJ, Laval V, Geri C, Laird J, Tomos AD, Hooks MA, Milner JJ. Components of Arabidopsis defense- and ethylene-signaling pathways regulate susceptibility to Cauliflower mosaic virus by restricting long-distance movement. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:659-70. [PMID: 17555274 DOI: 10.1094/mpmi-20-6-0659] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We analyzed the susceptibility of Arabidopsis mutants with defects in salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET) signaling to infection by Cauliflower mosaic virus (CaMV). Mutants cpr1-1 and cpr5-2, in which SA-dependent defense signaling is activated constitutively, were substantially more resistant than the wild type to systemic infection, implicating SA signaling in defense against CaMV. However, SA-deficient NahG, sid2-2, eds5-1, and pad4-1 did not show enhanced susceptibility. A cpr5 eds5 double mutant also was resistant, suggesting that resistance in cpr5 may function partially independently of SA. Treatment of cpr5 and cpr5 eds5, but not cpr1, with salicyl-hydroxamic acid, an inhibitor of alternative oxidase, partially restored susceptibility to wild-type levels. Mutants etr1-1, etr1-3, and ein2-1, and two mutants with lesions in ET/JA-mediated defense, eds4 and eds8, also showed reduced virus susceptibility, demonstrating that ET-dependent responses also play a role in susceptibility. We used a green fluorescent protein (GFP)-expressing CaMV recombinant to monitor virus movement. In mutants with reduced susceptibility, cpr1-1, cpr5-2, and etr1-1, CaMV-GFP formed local lesions similar to the wild type, but systemic spread was almost completely absent in cpr1 and cpr5 and was substantially reduced in etr1-1. Thus, mutations with enhanced systemic acquired resistance or compromised ET signaling show diminished long-distance virus movement.
Collapse
Affiliation(s)
- Andrew J Love
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
193
|
Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:492-9. [PMID: 17506327 DOI: 10.1094/mpmi-20-5-0492] [Citation(s) in RCA: 309] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although 109 WRKY genes have been identified in the rice genome, the functions of most are unknown. Here, we show that OsWRKY13 plays a pivotal role in rice disease resistance. Overexpression of OsWRKY13 can enhance rice resistance to bacterial blight and fungal blast, two of the most devastating diseases of rice worldwide, at both the seedling and adult stages, and shows no influence on the fertility. This overexpression was accompanied by the activation of salicylic acid (SA) synthesis-related genes and SA-responsive genes and the suppression of jasmonic acid (JA) synthesis-related genes and JA-responsive genes. OsWRKY13 bound to the promoters of its own and at least three other genes in SA- and JA-dependent signaling pathways. Its DNA-binding activity was influenced by pathogen infection. These results suggest that OsWRKY13, as an activator of the SA-dependent pathway and a suppressor of JA-dependent pathways, mediates rice resistance by directly or indirectly regulating the expression of a subset of genes acting both upstream and downstream of SA and JA. Furthermore, OsWRKY13 will provide a transgenic tool for engineering wider-spectrum and whole-growth-stage resistance rice in breeding programs.
Collapse
Affiliation(s)
- Deyun Qiu
- National Key Laboratory of Crop Genetic Improvement, National Center for Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Acharya BR, Raina S, Maqbool SB, Jagadeeswaran G, Mosher SL, Appel HM, Schultz JC, Klessig DF, Raina R. Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:488-99. [PMID: 17419849 DOI: 10.1111/j.1365-313x.2007.03064.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Protein kinases play important roles in relaying information from perception of a signal to the effector genes in all organisms. Cysteine-rich receptor-like kinases (CRKs) constitute a sub-family of plant receptor-like kinases (RLKs) with more than 40 members that contain the novel C-X8-C-X2-C motif (DUF26) in the extracellular domains. Here we report molecular characterization of one member of this gene family, CRK13. Expression of this gene is induced more quickly and strongly in response to the avirulent compared with the virulent strains of Pseudomonas syringae, and peaks within 4 h after pathogen infection. In response to dexamethasone (DEX) treatment, plants expressing the CRK13 gene from a DEX-inducible promoter exhibited all tested features of pathogen defense activation, including rapid tissue collapse, accumulation of high levels of several defense-related gene transcripts including PR1, PR5 and ICS1, and accumulation of salicylic acid (SA). In addition, these plants suppressed growth of virulent pathogens by about 20-fold compared with the wild-type Col-0. CRK13-conferred pathogen resistance is salicylic acid-dependent. Gene expression analysis using custom cDNA microarrays revealed a remarkable overlap between the expression profiles of the plants overexpressing CRK13 and the plants treated with Pst DC3000 (avrRpm1). Our studies suggest that upregulation of CRK13 leads to hypersensitive response-associated cell death, and induces defense against pathogens by causing increased accumulation of salicylic acid.
Collapse
Affiliation(s)
- Biswa R Acharya
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Jansen M, Jarosch B, Schaffrath U. The barley mutant emr1 exhibits restored resistance against Magnaporthe oryzae in the hypersusceptible mlo-genetic background. PLANTA 2007; 225:1381-91. [PMID: 17143617 DOI: 10.1007/s00425-006-0447-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 10/31/2006] [Indexed: 05/12/2023]
Abstract
Barley plants having wild-type or mutant alleles at the MLO locus show opposite responses to infection with different pathogens, i.e. plants homozygous for mutant alleles (mlo) are resistant to powdery mildew but hypersusceptible to the rice blast fungus Magnaporthe oryzae and vice versa for plants with at least one wild-type MLO-allele. A mutational analysis was performed in the mlo-genetic background aimed at identifying of individuals with restored resistance against M. oryzae. Here, we describe the barley enhanced Magnaporthe resistance (emr1) mutant which showed restored resistance against blast in the absence of wild-type MLO. The emr1 mutant could be classified as a loss of function mutant. It could be excluded that resistance of emr1 is a back-mutation at the mlo-locus, because emr1 retained resistance against Bgh. The mutant did not display generally increased resistance as was evidenced by infection with either brown rust or net blotch pathogens. Additionally, resistance in emr1 was not associated with constitutively activated defence as confirmed by monitoring PR-gene transcript accumulation. Microscopic analysis showed that resistance of the emr1 mutant against M. oryzae was correlated with blocked penetration in epidermal cells and a concomitantly reduced progression into the mesophyll. These findings are reminiscent of the defence phenotypes against M. oryzae previously described for wild-type barley MLO genotypes. Therefore, it is tempting to speculate that resistance in the emr1 mutant was regained by the knockdown of putative suppressor element(s) acting in the defence scenario against M. oryzae, which diminish resistance only in mlo but not in MLO genotypes.
Collapse
Affiliation(s)
- Marcus Jansen
- Department of Plant Physiology (Biology III), RWTH Aachen University, 52056, Aachen, Germany
| | | | | |
Collapse
|
196
|
Kesarwani M, Yoo J, Dong X. Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. PLANT PHYSIOLOGY 2007; 144:336-46. [PMID: 17369431 PMCID: PMC1913812 DOI: 10.1104/pp.106.095299] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
TGA transcription factors are implicated as regulators of pathogenesis-related (PR) genes because of their physical interaction with the known positive regulator, nonexpresser of PR gene1 (NPR1). A triple-knockout mutant tga2-1 tga5-1 tga6-1 was shown previously to be defective in the induction of PR genes and systemic acquired resistance, confirming their role in disease resistance. However, the contributions of individual TGA factors have been difficult to discern because of functional redundancy among these factors, as well as possible dual functions for some single factors. In this study, we characterized six TGA factors by reverse genetics. We show that TGA3 is required for both basal and 2,6-dichloroisonicotinic acid-induced transcription of PR genes. The tga3-1 mutants were found to be defective in basal pathogen resistance, whereas induced resistance was unaffected. TGA1 and TGA4 play partially redundant roles in regulation of basal resistance, having only moderate effects on PR gene expression. Additionally, an activation-tagged mutant of TGA6 was able to increase basal as well as induced expression of PR1, demonstrating a positive role for TGA6 on PR gene expression. In contrast, TGA2 has repressor activity on PR gene expression even though it can act as a positive regulator in the tga5-1 tga6-1 null mutant background. Finally, we examined the genetic interaction between tga2-2 and suppressor of npr1 inducible1 (sni1-1). TGA2's repressor activity overlaps with SNI1 because the tga2-2 sni1-1 double mutant shows a synergistic effect on PR gene expression.
Collapse
Affiliation(s)
- Meenu Kesarwani
- Department of Biology, Duke University, Durham, NC 27708, USA.
| | | | | |
Collapse
|
197
|
Yang C, Guo R, Jie F, Nettleton D, Peng J, Carr T, Yeakley JM, Fan JB, Whitham SA. Spatial analysis of arabidopsis thaliana gene expression in response to Turnip mosaic virus infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:358-70. [PMID: 17427806 DOI: 10.1094/mpmi-20-4-0358] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Virus-infected leaf tissues comprise a heterogeneous mixture of cells at different stages of infection. The spatial and temporal relationships between sites of virus accumulation and the accompanying host responses, such as altered host gene expression, are not well defined. To address this issue, we utilized Turnip mosaic virus (TuMV) tagged with the green fluorescent protein to guide the dissection of infection foci into four distinct zones. The abundance of Arabidopsis thaliana mRNA transcripts in each of the four zones then was assayed using the Arabidopsis ATH1 GeneChip oligonucleotide microarray (Affymetrix). mRNA transcripts with significantly altered expression profiles were determined across gradients of virus accumulation spanning groups of cells in and around foci at different stages of infection. The extent to which TuMV-responsive genes were up- or downregulated primarily correlated with the amount of virus accumulation regardless of gene function. The spatial analysis also allowed new suites of coordinately regulated genes to be identified that are associated with chloroplast functions (decreased), sulfate assimilation (decreased), cell wall extensibility (decreased), and protein synthesis and turnover (induced). The functions of these downregulated genes are consistent with viral symptoms, such as chlorosis and stunted growth, providing new insight into mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Chunling Yang
- Department of Plant Pathology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Rustérucci C, Espunya MC, Díaz M, Chabannes M, Martínez MC. S-nitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically. PLANT PHYSIOLOGY 2007; 143:1282-92. [PMID: 17277089 PMCID: PMC1820916 DOI: 10.1104/pp.106.091686] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nitric oxide and S-nitrosothiols (SNOs) are widespread signaling molecules that regulate immunity in animals and plants. Levels of SNOs in vivo are controlled by nitric oxide synthesis (which in plants is achieved by different routes) and by S-nitrosoglutathione turnover, which is mainly performed by the S-nitrosoglutathione reductase (GSNOR). GSNOR is encoded by a single-copy gene in Arabidopsis (Arabidopsis thaliana; Martínez et al., 1996; Sakamoto et al., 2002). We report here that transgenic plants with decreased amounts of GSNOR (using antisense strategy) show enhanced basal resistance against Peronospora parasitica Noco2 (oomycete), which correlates with higher levels of intracellular SNOs and constitutive activation of the pathogenesis-related gene, PR-1. Moreover, systemic acquired resistance is impaired in plants overexpressing GSNOR and enhanced in the antisense plants, and this correlates with changes in the SNO content both in local and systemic leaves. We also show that GSNOR is localized in the phloem and, thus, could regulate systemic acquired resistance signal transport through the vascular system. Our data corroborate the data from other authors that GSNOR controls SNO in vivo levels, and shows that SNO content positively influences plant basal resistance and resistance-gene-mediated resistance as well. These data highlight GSNOR as an important and widely utilized component of resistance protein signaling networks conserved in animals and plants.
Collapse
Affiliation(s)
- Christine Rustérucci
- Laboratoire de Génomique Fonctionnelle des Plantes, Université Jules Verne-Picardie Sciences, 80039 Amiens cedex, France
| | | | | | | | | |
Collapse
|
199
|
|
200
|
Katou S, Kuroda K, Seo S, Yanagawa Y, Tsuge T, Yamazaki M, Miyao A, Hirochika H, Ohashi Y. A calmodulin-binding mitogen-activated protein kinase phosphatase is induced by wounding and regulates the activities of stress-related mitogen-activated protein kinases in rice. PLANT & CELL PHYSIOLOGY 2007; 48:332-44. [PMID: 17218330 DOI: 10.1093/pcp/pcm007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are negative regulators of MAPKs. In dicotyledons such as Arabidopsis and tobacco, MKPs have been shown to play pivotal roles in abiotic stress responses, hormone responses and microtubule organization. However, little is known about the role of MKPs in monocotyledons such as rice. Database searches identified five putative MKPs in rice. We investigated their expression in response to wounding, and found that the expression of OsMKP1 is rapidly induced by wounding. In this study, we functionally characterized the involvement of OsMKP1 in wound responses. The deduced amino acid sequence of OsMKP1 shows strong similarity to Arabidopsis AtMKP1 and tobacco NtMKP1. Moreover, OsMKP1 bound calmodulin in a manner similar to NtMKP1. To determine the biological function of OsMKP1, we obtained osmkp1, a loss-of-function mutant, in which retrotransposon Tos17 was inserted in the second exon of OsMKP1. Unlike the Arabidopsis atmkp1 loss-of-function mutant, which shows no abnormal phenotype without stimuli, osmkp1 showed a semi-dwarf phenotype. Exogenous supply of neither gibberellin nor brassinosteroid complemented the semi-dwarf phenotype of osmkp1. Activities of two stress-responsive MAPKs, OsMPK3 and OsMPK6, in osmkp1 were higher than those in the wild type both before and after wounding. Microarray analysis identified 13 up-regulated and eight down-regulated genes in osmkp1. Among the up-regulated genes, the expression of five genes showed clear responses to wounding, indicating that wound responses are constitutively activated in osmkp1. These results suggest that OsMKP1 is involved in the negative regulation of rice wound responses.
Collapse
Affiliation(s)
- Shinpei Katou
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|