151
|
Gangar A, Raychaudhuri S, Rajasekharan R. Alteration in the cytosolic triacylglycerol biosynthetic machinery leads to decreased cell growth and triacylglycerol synthesis in oleaginous yeast. Biochem J 2002; 365:577-89. [PMID: 11972450 PMCID: PMC1222718 DOI: 10.1042/bj20011654] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2001] [Revised: 03/27/2002] [Accepted: 04/24/2002] [Indexed: 11/17/2022]
Abstract
Altered nutrient content (levels of glucose) caused a drastic reduction in cell growth and triacylglycerol (TAG) production in the wild-type (WT) Rhodotorula glutinis. This was due to the decreased level of synthesis of TAG biosynthetic enzymes, reflected by a reduction in enzyme activity. A similar observation was made in the case of non-lethal mutants of TAG-deficient oleaginous yeast, namely TAG1 and TAG2, which were generated by ethyl methane sulphonate mutagenesis. Metabolic labelling of TAG-deficient cells with [(14)C]acetate, [(32)P]orthophosphate and [(14)C]mevalonate showed a negligible TAG formation with minimal alterations in phospholipid and sterol compositions. Assays on the activities of cytosolic TAG biosynthetic enzymes revealed that lysophosphatidic acid and diacylglycerol acyltransferases (ATs) were defective in TAG1 and TAG2 respectively. The activity of membrane-bound isoforms of TAG biosynthetic enzymes remains unaltered in the mutants. Analysis of cytosolic TAG biosynthetic enzymes by immunoblotting and immunoprecipitation indicated that the defective ATs were a part of the TAG biosynthetic multienzyme complex. Quantitatively, the cytosolic lysophosphatidic acid-AT was comparable between TAG1 and the WT. However, diacylglycerol-AT was relatively less in TAG2 than the WT. These results demonstrated that either by decreasing the nutrient content or mutating the enzymes of the soluble TAG biosynthetic pathway, TAG production was decreased with concomitant reduction in the cell growth.
Collapse
Affiliation(s)
- Akanksha Gangar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
152
|
Ramli US, Baker DS, Quant PA, Harwood JL. Control analysis of lipid biosynthesis in tissue cultures from oil crops shows that flux control is shared between fatty acid synthesis and lipid assembly. Biochem J 2002; 364:393-401. [PMID: 12023882 PMCID: PMC1222584 DOI: 10.1042/bj20010203] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Top-Down (Metabolic) Control Analysis (TDCA) was used to examine, quantitatively, lipid biosynthesis in tissue cultures from two commercially important oil crops, olive (Olea europaea L.) and oil palm (Elaeis guineensis Jacq.). A conceptually simplified system was defined comprising two blocks of reactions: fatty acid synthesis (Block A) and lipid assembly (Block B), which produced and consumed, respectively, a common and unique system intermediate, cytosolic acyl-CoA. We manipulated the steady-state levels of the system intermediate by adding exogenous oleic acid and, using two independent assays, measured the effect of the addition on the system fluxes (J(A) and J(B)). These were the rate of incorporation of radioactivity: (i) through Block A from [1-(14)C]acetate into fatty acids and (ii) via Block B from [U-(14)C]glycerol into complex lipids respectively. The data showed that fatty acid formation (Block A) exerted higher control than lipid assembly (Block B) in both tissues with the following group flux control coefficients (C):(i) Oil palm: *C(J(TL))(BlkA)=0.64+/-0.05 and *C(J(TL))(BlkB)=0.36+/-0.05(ii) Olive: *C(J(TL))(BlkA)=0.57+/-0.10 and *C(J(TL))(BlkB)=0.43+/-0.10where *C indicates the group flux control coefficient over the lipid biosynthesis flux (J(TL)) and the subscripts BlkA and BlkB refer to defined blocks of the system, Block A and Block B. Nevertheless, because both parts of the lipid biosynthetic pathway exert significant flux control, we suggest strongly that manipulation of single enzyme steps will not affect product yield appreciably. The present study represents the first use of TDCA to examine the overall lipid biosynthetic pathway in any tissue, and its findings are of immediate academic and economic relevance to the yield and nutritional quality of oil crops.
Collapse
Affiliation(s)
- Umi S Ramli
- School of Biosciences, Cardiff University, P.O. Box 911, Cardiff CF10 3US, Wales, UK
| | | | | | | |
Collapse
|
153
|
Dunwell JM. Novel food products from genetically modified crop plants: methods and future prospects. Int J Food Sci Technol 2002. [DOI: 10.1046/j.1365-2621.1998.00163.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
154
|
Abstract
Fatty acids are the most abundant form of reduced carbon chains available from nature and have diverse uses ranging from food to industrial feedstocks. Plants represent a significant renewable source of fatty acids because many species accumulate them in the form of triacylglycerol as major storage components in seeds. With the advent of plant transformation technology, metabolic engineering of oilseed fatty acids has become possible and transgenic plant oils represent some of the first successes in design of modified plant products. Directed gene down-regulation strategies have enabled the specific tailoring of common fatty acids in several oilseed crops. In addition, transfer of novel fatty acid biosynthetic genes from noncommercial plants has allowed the production of novel oil compositions in oilseed crops. These and future endeavors aim to produce seeds higher in oil content as well as new oils that are more stable, are healthier for humans, and can serve as a renewable source of industrial commodities. Large-scale new industrial uses of engineered plant oils are on the horizon but will require a better understanding of factors that limit the accumulation of unusual fatty acid structures in seeds.
Collapse
Affiliation(s)
- Jay J Thelen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
155
|
Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, Covello PS, Taylor DC. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. PLANT PHYSIOLOGY 2001; 126:861-74. [PMID: 11402213 PMCID: PMC111175 DOI: 10.1104/pp.126.2.861] [Citation(s) in RCA: 340] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2001] [Accepted: 03/12/2001] [Indexed: 05/17/2023]
Abstract
We recently reported the cloning and characterization of an Arabidopsis (ecotype Columbia) diacylglycerol acyltransferase cDNA (Zou et al., 1999) and found that in Arabidopsis mutant line AS11, an ethyl methanesulfonate-induced mutation at a locus on chromosome II designated as Tag1 consists of a 147-bp insertion in the DNA, which results in a repeat of the 81-bp exon 2 in the Tag1 cDNA. This insertion mutation is correlated with an altered seed fatty acid composition, reduced diacylglycerol acyltransferase (DGAT; EC 2.3.1.20) activity, reduced seed triacylglycerol content, and delayed seed development in the AS11 mutant. The effect of the insertion mutation on microsomal acyl-coenzyme A-dependent DGAT is examined with respect to DGAT activity and its substrate specificity in the AS11 mutant relative to wild type. We demonstrate that transformation of mutant AS11 with a single copy of the wild-type Tag1 DGAT cDNA can complement the fatty acid and reduced oil phenotype of mutant AS11. More importantly, we show for the first time that seed-specific over-expression of the DGAT cDNA in wild-type Arabidopsis enhances oil deposition and average seed weight, which are correlated with DGAT transcript levels. The DGAT activity in developing seed of transgenic lines was enhanced by 10% to 70%. Thus, the current study confirms the important role of DGAT in regulating the quantity of seed triacylglycerols and the sink size in developing seeds.
Collapse
Affiliation(s)
- C Jako
- Seed Oil Biotechnology Group, National Research Council of Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, Saskatchewan S7N 0W9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Han J, Lühs W, Sonntag K, Zähringer U, Borchardt DS, Wolter FP, Heinz E, Frentzen M. Functional characterization of beta-ketoacyl-CoA synthase genes from Brassica napus L. PLANT MOLECULAR BIOLOGY 2001; 46:229-39. [PMID: 11442062 DOI: 10.1023/a:1010665121980] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Seed-specifically expressed beta-ketoacyl-CoA synthase genes of Brassica napus (Bn-FAE1.1 genes) were cloned from two cultivars, namely Askari, a high-erucic-acid type, and Drakkar, a low-erucic-acid type. The genes from the two cultivars were found to be nearly identical. They encode proteins of 507 amino acids, the sequences of which differ only at position 282. The Bn-FAE1.1 gene of Askari, unlike that of Drakkar, was functionally expressed in yeast cells suggesting that the single amino acid exchange effects the low erucic acid phenotype at the E1 gene locus. In yeast cells the beta-ketoacyl-CoA synthase of Askari elongated not only oleoyl but also palmitoleoyl groups as well as saturated acyl groups in such a way that monounsaturated acyl groups of 22 carbons and saturated ones of 26 carbons were formed as main products. A reporter gene fused to the promoter region of the Bn-FAE1.1 gene from Askari showed seed-specific expression in transgenic rapeseed plants. Over-expression of the coding region of the Askari gene in developing seeds of transgenic Drakkar plants resulted in a significant increase in the levels of eicosenoic acid and erucic acid esterified in the seed oil. On the other hand, in transgenic high-erucic-acid rapeseed plants the increase in erucic acid level was at most 60% although the chimeric Bn-FAE1.1 gene was co-expressed with an erucoyl-CoA-specific lysophosphatidate acyltransferase gene enabling trierucoyl glycerol to accumulate in the seed oil.
Collapse
Affiliation(s)
- J Han
- Universität Hamburg, Institut für Allgemeine Botanik, Germany
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Coleman RA, Lewin TM, Muoio DM. Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annu Rev Nutr 2001; 20:77-103. [PMID: 10940327 DOI: 10.1146/annurev.nutr.20.1.77] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although triacylglycerol stores play the critical role in an organism's ability to withstand fuel deprivation and are strongly associated with such disorders as diabetes, obesity, and atherosclerotic heart disease, information concerning the enzymes of triacylglycerol synthesis, their regulation by hormones, nutrients, and physiological conditions, their mechanisms of action, and the roles of specific isoforms has been limited by a lack of cloned cDNAs and purified proteins. Fortunately, molecular tools for several key enzymes in the synthetic pathway are becoming available. This review summarizes recent studies of these enzymes, their regulation under varying physiological conditions, their purported roles in synthesis of triacylglycerol and related glycerolipids, the possible functions of different isoenzymes, and the evidence for specialized cellular pools of triacylglycerol and glycerolipid intermediates.
Collapse
Affiliation(s)
- R A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
158
|
Weber S, Zarhloul K, Friedt W. Modification of Oilseed Quality by Genetic Transformation. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/978-3-642-56849-7_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
159
|
Periappuram C, Steinhauer L, Barton DL, Taylor DC, Chatson B, Zou J. The plastidic phosphoglucomutase from Arabidopsis. A reversible enzyme reaction with an important role in metabolic control. PLANT PHYSIOLOGY 2000; 122:1193-9. [PMID: 10759515 PMCID: PMC58954 DOI: 10.1104/pp.122.4.1193] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/1999] [Accepted: 11/22/1999] [Indexed: 05/19/2023]
Abstract
An Arabidopsis cDNA (AtPGMp) encoding the plastidic phosphoglucomutase (PGM) predicted a 623-amino acid protein with an N-terminal sequence typical of a plastid signal peptide. Expression of a recombinant protein in Escherichia coli confirmed its enzyme activity. The recombinant enzyme had an apparent K(m) value of 98.5 microM and a V(max) of 4.48 micromol min(-1) (mg protein)(-1). The Calvin cycle intermediates fructose-1,6-bisphosphate and ribulose-1, 5-bisphosphate exerted an inhibitory effect on PGM activity, supporting its proposed involvement in controlling photosynthetic carbon flow. A point mutation was identified in the AtPGMp gene of the Arabidopsis pgm-1 mutant. The mutation in the mutant transcript generated a stop codon at about one third of the wild-type open reading frame, and thus rendered the polypeptide nonfunctional. Storage lipid analysis of the pgm-1 mutant seeds showed a 40% reduction in oil content compared with that of wild type. Our results indicate that plastidic PGM is an important factor affecting carbon flux in triacylglycerol accumulation in oilseed plants, most likely through its essential role in starch synthesis.
Collapse
Affiliation(s)
- C Periappuram
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK S7N OW9, Canada
| | | | | | | | | | | |
Collapse
|
160
|
Grec S, Wang Y, Le Guen L, Negrouk V, Boutry M. Cryptic polyadenylation sites within the coding sequence of three yeast genes expressed in tobacco. Gene 2000; 242:87-95. [PMID: 10721700 DOI: 10.1016/s0378-1119(99)00544-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Three yeast genes, MIP (mitochondrial DNA polymerase) and two genes, YCF1 (yeast cadmium factor 1) and PDR5 (pleiotropic drug resistance 5), conferring multidrug resistance, were provided with the cauliflower mosaic virus 35S transcription promoter and introduced into tobacco using an Agrobacterium tumefaciens T-DNA-derived vector. Transcripts of each gene much shorter than those expected were found in the transgenic plants. RT-PCR and S1 nuclease mapping of the PDR5 and MIP transcripts demonstrated the presence of one (PDR5), or several close (MIP), cryptic polyadenylation site(s) within the coding sequence of these yeast genes. Possible sequences involved in polyadenylation are discussed.
Collapse
Affiliation(s)
- S Grec
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Louvain la Neuve, Belgium
| | | | | | | | | |
Collapse
|
161
|
Bouvier-Navé P, Benveniste P, Oelkers P, Sturley SL, Schaller H. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:85-96. [PMID: 10601854 DOI: 10.1046/j.1432-1327.2000.00961.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the course of a search for cDNAs encoding plant sterol acyltransferases, an expressed sequence tag clone presenting substantial identity with yeast and animal acyl CoA:cholesterol acyltransferases was used to screen cDNA libraries from Arabidopsis and tobacco. This resulted in the isolation of two full-length cDNAs encoding proteins of 520 and 532 amino acids, respectively. Attempts to complement the yeast double-mutant are1 are2 defective in acyl CoA:cholesterol acyltransferase were unsuccessful, showing that neither gene encodes acyl CoA:cholesterol acyltransferase. Their deduced amino acid sequences were then shown to have 40 and 38% identity, respectively, with a murine acyl CoA:diacylglycerol acyltransferase and their expression in are1 are2 or wild-type yeast resulted in a strong increase in the incorporation of oleyl CoA into triacylglycerols. Incorporation was 2-3 times higher in microsomes from yeast transformed with these plant cDNAs than in yeast transformed with the void vector, clearly showing that these cDNAs encode acyl CoA:diacylglycerol acyltransferases. Moreover, during the preparation of microsomes from the Arabidopsis DGAT-transformed yeast, a floating layer was observed on top of the 100 000 g supernatant. This fraction was enriched in triacylglycerols and exhibited strong acyl CoA:diacylglycerol acyltransferase activity, whereas almost no activity was detected in the corresponding clear fraction from the control yeast. Thanks to the use of this active fraction and dihexanoylglycerol as a substrate, the de novo synthesis of 1,2-dihexanoyl 3-oleyl glycerol by AtDGAT could be demonstrated. Transformation of tobacco with AtDGAT was also performed. Analysis of 19 primary transformants allowed detection, in several individuals, of a marked increase (up to seven times) of triacylglycerol content which correlated with the AtDGAT mRNA expression. Furthermore, light-microscopy observations of leaf epidermis cells, stained with a lipid-specific dye, showed the presence of lipid droplets in the cells of triacylglycerol-overproducer plants, thus illustrating the potential application of acyl CoA:diacylglycerol acyltransferase-transformed plants.
Collapse
Affiliation(s)
- P Bouvier-Navé
- Institut de Biologie Moléculaire des Plantes, Strasbourg, France.
| | | | | | | | | |
Collapse
|
162
|
Zou J, Qi Q, Katavic V, Marillia EF, Taylor DC. Effects of antisense repression of an Arabidopsis thaliana pyruvate dehydrogenase kinase cDNA on plant development. PLANT MOLECULAR BIOLOGY 1999; 41:837-849. [PMID: 10737148 DOI: 10.1023/a:1006393726018] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pyruvate dehydrogenase kinase (PDHK), a negative regulator of the mitochondrial pyruvate dehydrogenase (PDH) complex (mtPDC), plays a pivotal role in controlling mtPDC activity, and hence, the TCA cycle and cell respiration. This report describes the cloning of a pyruvate dehydrogenase kinase cDNA (AtPDHK) from Arabidopsis thaliana and focuses on the effects of antisense down-regulation of its expression on plant growth and development. The deduced amino acid sequence of AtPDHK exhibits extensive similarity to other plant and mammalian PDHKs, containing conserved domains typical of two-component histidine protein kinases. The Escherichia coli expressed AtPDHK specifically phosphorylated mammalian PDH E1 in a time-dependent manner. Antisense expression of the AtPDHK cDNA led to marked elevation of mtPDC activity in transgenic plants with increases ranging from 137% to 330% compared to control plants. Immunoblot analyses performed with a monoclonal antibody to the E1alpha mtPDH component (the subunit phosphorylated by PDHK) indicated that the increased mtPDC activity was not the result of an increase in the level of PDH protein. MtPDC from transgenic plants showed a reduced sensitivity to ATP-dependent inactivation compared to that observed in wild-type plants. Collectively, these data suggest that the antisense partial silencing of the negative regulator, PDHK, was responsible for the increased mtPDC activity observed in the antisense PDHK plants. Transgenic plants with partially repressed AtPDHK also displayed altered vegetative growth with reduced accumulation of vegetative tissues, early flower development and shorter generation time. The potential role for AtPDHK gene manipulation in crop improvement is discussed.
Collapse
MESH Headings
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Cloning, Molecular
- DNA, Antisense/genetics
- DNA, Antisense/physiology
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Escherichia coli/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Humans
- Mitochondria/enzymology
- Mitochondria/genetics
- Molecular Sequence Data
- Phenotype
- Phosphorylation
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Protein Serine-Threonine Kinases
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase
- Pyruvate Dehydrogenase Complex/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Analysis, DNA
- Substrate Specificity
Collapse
Affiliation(s)
- J Zou
- National Research Council of Canada, Plant Biotechnology Institute, Saskatoon, Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
163
|
Athenstaedt K, Daum G. Phosphatidic acid, a key intermediate in lipid metabolism. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:1-16. [PMID: 10542045 DOI: 10.1046/j.1432-1327.1999.00822.x] [Citation(s) in RCA: 255] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphatidic acid (PtdOH) is a key intermediate in glycerolipid biosynthesis. Two different pathways are known for de novo formation of this compound, namely (a) the Gro3P (glycerol 3-phosphate) pathway, and (b) the GrnP (dihydroxyacetone phosphate) pathway. Whereas the former route of PtdOH synthesis is present in bacteria and all types of eukaryotes, the GrnP pathway is restricted to yeast and mammalian cells. In this review article, we describe the enzymes catalyzing de novo formation of PtdOH, their properties and their occurrence in different cell types and organelles. Much attention has recently been paid to the subcellular localization of enzymes involved in the biosynthesis of PtdOH. In all eukaryotic cells, microsomes (ER) harbour the complete set of enzymes catalyzing these pathways and are thus the usual organelle for PtdOH formation. In contrast, the contribution of mitochondria to PtdOH synthesis is restricted to certain enzymes and depends on the cell type. In addition, chloroplasts of plants, lipid particles of the yeast, and peroxisomes of mammalian cells are significantly involved in PtdOH biosynthesis. Redundant systems of acyltransferases, the interplay of organelles, regulation of the pathway on the compartmental level, and finally the contribution of alternative pathways (phosphorylation of diacylglycerol and cleavage of phospholipids by phospholipases) to PtdOH biosynthesis appear to be required for the balanced formation of this important lipid intermediate. Dysfunction of enzymes involved in PtdOH synthesis can result in severe defects of various cellular processes. In this context, the possible physiological role(s) of PtdOH and its related metabolites, lysophosphatidic acid and diacylglycerol, will be discussed.
Collapse
Affiliation(s)
- K Athenstaedt
- Institut für Biochemie, Technische Universität, Graz, Austria
| | | |
Collapse
|
164
|
Routaboul JM, Benning C, Bechtold N, Caboche M, Lepiniec L. The TAG1 locus of Arabidopsis encodes for a diacylglycerol acyltransferase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 1999; 37:831-840. [PMID: 10580283 DOI: 10.1016/s0981-9428(99)00115-1] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) is a membrane enzyme that drives the final step in the formation of oils using diacylglycerol (DAG) and acyl-CoA to yield triacylglycerol (TAG). We identified a putative plant DGAT gene (TRIACYLGLYCEROL1: TAG1) and demonstrated its function by the cloning of two mutated alleles, designated AS11 (tag1-1) and ABX45 (tag1-2). One allele, AS11, has been previously characterised at the biochemical level. Mutant seeds contained less oil with a modified fatty acid profile and have reduced germination rates compared to wild-type controls. The TAG1 cDNA encodes for a 520-aa protein that possesses multiple putative transmembrane domains and shows 70 % similarity to a human DGAT cDNA.
Collapse
Affiliation(s)
- JM Routaboul
- Laboratoire de biologie des semences, INRA-INAPG, route de Saint-Cyr, 78026 Versailles cedex, France
| | | | | | | | | |
Collapse
|
165
|
Weselake RJ, Taylor DC. The study of storage lipid biosynthesis using microspore-derived cultures of oil seed rape. Prog Lipid Res 1999; 38:401-60. [PMID: 10793890 DOI: 10.1016/s0163-7827(99)00011-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- R J Weselake
- Department of Chemistry and Biochemistry, University of Lethbridge, Alberta, Canada.
| | | |
Collapse
|
166
|
Bao X, Ohlrogge J. Supply of fatty acid is one limiting factor in the accumulation of triacylglycerol in developing embryos. PLANT PHYSIOLOGY 1999; 120:1057-62. [PMID: 10444089 PMCID: PMC59339 DOI: 10.1104/pp.120.4.1057] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/1999] [Accepted: 04/20/1999] [Indexed: 05/18/2023]
Abstract
The metabolic factors that determine oil yield in seeds are still not well understood. To begin to examine the limits on triacylglycerol (TAG) production, developing Cuphea lanceolata, Ulmus carpinifolia, and Ulmus parvifolia embryos were incubated with factors whose availability might limit oil accumulation. The addition of glycerol or sucrose did not significantly influence the rate of TAG synthesis. However, the rate of (14)C-TAG synthesis upon addition of 2.1 mM (14)C-decanoic acid (10:0) was approximately four times higher than the in vivo rate of TAG accumulation in C. lanceolata and two times higher than the in vivo rate in U. carpinifolia and U. parvifolia. In C. lanceolata embryos, the highest rate of (14)C-TAG synthesis (14.3 nmol h(-1) embryo(-1)) was achieved with the addition of 3.6 mM decanoic acid. (14)C-Decanoic acid was incorporated equally well in all three acyl positions of TAG. The results suggest that C. lanceolata, U. carpinifolia, and U. parvifolia embryos have sufficient acyltransferase activities and glycerol-3-phosphate levels to support rates of TAG synthesis in excess of those found in vivo. Consequently, the amount of TAG synthesized in these oilseeds may be in part determined by the amount of fatty acid produced in plastids.
Collapse
Affiliation(s)
- X Bao
- Department of Botany and Plant Pathology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
167
|
Abstract
We have now isolated the great majority of genes encoding enzymes of storage oil biosynthesis in plants. In the past two years, particular progress has been made with acyltransferases, ketoacyl-acyl carrier protein synthetases and with desaturases and their relatives. In some cases, these enzymes have been reengineered to create novel products. Nevertheless, the single or multiple insertion of such transgenes into oil crops has not always led to the desired phenotype. We are only now beginning to appreciate some of the complexities of storage and membrane lipid formation, such as acyl group remodelling and the turnover of unusual fatty acids. This understanding will be vital for future attempts at the rational engineering of transgenic oil crops. In parallel with this, the domestication of plants already synthesising useful fatty acids should be considered as a real alternative to the transgenic approach to producing novel oil crops.
Collapse
Affiliation(s)
- D J Murphy
- Brassica and Oilseeds Research Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
168
|
|
169
|
Leech MJ, May K, Hallard D, Verpoorte R, De Luca V, Christou P. Expression of two consecutive genes of a secondary metabolic pathway in transgenic tobacco: molecular diversity influences levels of expression and product accumulation. PLANT MOLECULAR BIOLOGY 1998; 38:765-74. [PMID: 9862494 DOI: 10.1023/a:1006000229229] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have created a population of transgenic tobacco plants carrying cDNAs encoding two consecutive enzymes from early stages in monoterpenoid alkaloid biosynthesis in Catharanthus roseus. The cDNAs, encoding tryptophan decarboxylase (tdc) and strictosidine synthase (str1) together with a selectable marker gene, were introduced on a single transforming plasmid into tobacco leaves by particle bombardment. Analysis of 150 independent transgenic plants at the DNA and RNA levels demonstrated a range of integration events and steady-state transcript levels for the tdc and str1 transgenes. Southern blot analysis indicated that the tdc and str1 transgenes were integrated at least once in all 150 transformants giving a 100% co-integration frequency of the two unselected genes carried on the same plasmid. A comparison of Southern and northern data suggested that in 26% of the plants, both tdc and str1 transgenes were silenced, 41% demonstrated a preferential silencing of either the tdc or the str1 transgene, with the remaining 33% of the plants expressing both transgenes. We observed no clear correlation between the number of integration events of a specific transgene and the levels of accumulated transcript. Twenty plants representing the range of molecular diversity in the transgenic population were selected for further analysis. Seeds were collected from self-fertilised transformants and germinated on medium containing kanamycin. Seedlings were harvested after 7 weeks and TDC and STR1 enzymatic assays were carried out. We observed a 24- and 110-fold variation in levels of TDC and STR1 activities, respectively. Our data correlate molecular diversity with biochemistry and accumulation of end-product and provide a detailed molecular and biochemical characterization of transgenic plants transformed with a single plasmid carrying two genes of secondary metabolism.
Collapse
Affiliation(s)
- M J Leech
- John Innes Centre, Norwich Research Park, Colney, UK
| | | | | | | | | | | |
Collapse
|
170
|
Bao, Pollard, Ohlrogge. The biosynthesis of erucic acid in developing embryos of brassica rapa. PLANT PHYSIOLOGY 1998; 118:183-90. [PMID: 9733537 PMCID: PMC34854 DOI: 10.1104/pp.118.1.183] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/1998] [Accepted: 06/02/1998] [Indexed: 05/17/2023]
Abstract
The prevailing hypothesis on the biosynthesis of erucic acid in developing seeds is that oleic acid, produced in the plastid, is activated to oleoyl-coenzyme A (CoA) for malonyl-CoA-dependent elongation to erucic acid in the cytosol. Several in vivo-labeling experiments designed to probe and extend this hypothesis are reported here. To examine whether newly synthesized oleic acid is directly elongated to erucic acid in developing seeds of Brassica rapa L., embryos were labeled with [14C]acetate, and the ratio of radioactivity of carbon atoms C-5 to C-22 (de novo fatty acid synthesis portion) to carbon atoms C-1 to C-4 (elongated portion) of erucic acid was monitored with time. If newly synthesized 18:1 (oleate) immediately becomes a substrate for elongation to erucic acid, this ratio would be expected to remain constant with incubation time. However, if erucic acid is produced from a pool of preexisting oleic acid, the ratio of 14C in the 4 elongation carbons to 14C in the methyl-terminal 18 carbons would be expected to decrease with time. This labeling ratio decreased with time and, therefore, suggests the existence of an intermediate pool of 18:1, which contributes at least part of the oleoyl precursor for the production of erucic acid. The addition of 2-[3-chloro-5-(trifluromethyl)-2-pyridinyloxyphenoxy] propanoic acid, which inhibits the homodimeric acetyl-CoA carboxylase, severely inhibited the synthesis of [14C]erucic acid, indicating that essentially all malonyl-CoA for elongation of 18:1 to erucate was produced by homodimeric acetyl-CoA carboxylase. Both light and 2-[3-chloro-5-(trifluromethyl)-2-pyridinyloxyphenoxy]-propanoic acid increased the accumulation of [14C]18:1 and the parallel accumulation of [14C]phosphatidylcholine. Taken together, these results show an additional level of complexity in the biosynthesis of erucic acid.
Collapse
Affiliation(s)
- Bao
- Department of Botany and Plant Pathology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
171
|
Abstract
The past two years have seen a marked increase in patent applications for novel methods of altering the level and spectrum of commercially important products in plants. Results from these studies have proven surprising, showing that in many cases those enzymes traditionally thought of as flux-controlling have no impact on product formation when they are directly altered by genetic manipulation. In many cases, successful induction of increased flux throughout an entire pathway has been achieved by targeting one of the terminal enzymes in the pathway.
Collapse
Affiliation(s)
- A J Kinney
- DuPont Experimental Station, P.O. Box 80402, Wilmington, DE 19880-0402, USA.
| |
Collapse
|