151
|
Klimko PG, Sharif NA. Discovery, characterization and clinical utility of prostaglandin agonists for the treatment of glaucoma. Br J Pharmacol 2018; 176:1051-1058. [PMID: 29665040 DOI: 10.1111/bph.14327] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/19/2018] [Accepted: 03/26/2018] [Indexed: 11/28/2022] Open
Abstract
Topical ophthalmic formulations of analogues of the endogenous arachidonic acid cyclooxygenase metabolite, PGF2α , are the standard of care treatment for the blinding disease glaucoma. These are the most potent and efficacious medical therapies for lowering intraocular pressure (IOP), the most important risk factor identified for disease progression. They have few side effects and offer the convenience of once-a-day dosing. It was initially believed that endogenous PGs raised IOP and caused substantial ocular surface adverse effects. However, carefully designed experiments demonstrated that esterification of the carboxylic acid afforded potent and efficacious topical ocular hypotensive activity. The final hurdle to be overcome was improvement of the side effect profile. A hypothesis was advanced that the IOP-lowering effect of PGF2α isopropyl ester was due to activation of its cognate PG-FP receptor, while side effects were largely due to promiscuous interaction with other PG receptors. This hypothesis was validated by modification of the ω chain (carbons 13-20) to a phenyl group. This provided the first marketed FP-class PG agonist analogue (FP-PGA) ocular hypotensive agent, latanoprost. Since the introduction of latanoprost into clinical medicine to lower and control IOP, a number of additional FP-PGAs have been discovered, characterized and marketed, including travoprost, tafluprost, unoprostone isopropyl ester and bimatoprost (an amide). LINKED ARTICLES: This article is part of a themed section on Eicosanoids 35 years from the 1982 Nobel: where are we now? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.8/issuetoc.
Collapse
Affiliation(s)
- Peter G Klimko
- Novartis Pharmaceuticals Corporation, Fort Worth, TX, 76134, USA
| | | |
Collapse
|
152
|
Gjestad C, Haslemo T, Andreassen OA, Molden E. Gjestad et al. reply to 'Was 4β-hydroxycholesterol ever going to be a useful marker of CYP3A4 activity?' by Neuhoff and Tucker. Br J Clin Pharmacol 2018; 84:1624-1625. [PMID: 29749106 DOI: 10.1111/bcp.13606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/25/2018] [Accepted: 04/02/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Caroline Gjestad
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Tore Haslemo
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
153
|
Espejo-Porras F, García-Toscano L, Rodríguez-Cueto C, Santos-García I, de Lago E, Fernandez-Ruiz J. Targeting glial cannabinoid CB 2 receptors to delay the progression of the pathological phenotype in TDP-43 (A315T) transgenic mice, a model of amyotrophic lateral sclerosis. Br J Pharmacol 2018; 176:1585-1600. [PMID: 29574689 DOI: 10.1111/bph.14216] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/14/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Cannabinoid CB2 receptors are up-regulated in reactive microglia in the spinal cord of TDP-43 (A315T) transgenic mice, an experimental model of amyotrophic lateral sclerosis. To determine whether this up-regulation can be exploited pharmacologically, we investigated the effects of different treatments that affect CB2 receptor function. EXPERIMENTAL APPROACH We treated TDP-43 (A315T) transgenic mice with the non-selective agonist WIN55,212-2, alone or combined with selective CB1 or CB2 antagonists, as well as with the selective CB2 agonist HU-308, and evaluated their effects on the pathological phenotype. KEY RESULTS WIN55,212-2 had modest beneficial effects in the rotarod test, Nissl staining of motor neurons, and GFAP and Iba-1 immunostainings in the spinal cord, which were mediated in part by CB2 receptor activation. HU-308 significantly improved the rotarod performance of the transgenic mice, with complete preservation of Nissl-stained motor neurons in the ventral horn. Reactive astrogliosis labelled with GFAP was also attenuated by HU-308 in the dorsal and ventral horns, in which CB2 receptors colocalize with this astroglial marker. Furthermore, HU-308 reduced the elevated Iba-1 immunostaining in the ventral horn of TDP-43 transgenic mice, but did not affect this immunoreactivity in white matter, in which CB2 receptors also colocalize with this microglial marker. CONCLUSIONS AND IMPLICATIONS Our study shows an important role for glial CB2 receptors in limiting the progression of the pathological phenotype in TDP-43 (A315T) transgenic mice. Such benefits appear to derive from the activation of CB2 receptors concentrated in astrocytes and reactive microglia located in spinal dorsal and ventral horns. LINKED ARTICLES This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Francisco Espejo-Porras
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Laura García-Toscano
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Irene Santos-García
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Eva de Lago
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernandez-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
154
|
Ferrantini C, Pioner JM, Mazzoni L, Gentile F, Tosi B, Rossi A, Belardinelli L, Tesi C, Palandri C, Matucci R, Cerbai E, Olivotto I, Poggesi C, Mugelli A, Coppini R. Late sodium current inhibitors to treat exercise-induced obstruction in hypertrophic cardiomyopathy: an in vitro study in human myocardium. Br J Pharmacol 2018; 175:2635-2652. [PMID: 29579779 PMCID: PMC6003658 DOI: 10.1111/bph.14223] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose In 30–40% of hypertrophic cardiomyopathy (HCM) patients, symptomatic left ventricular (LV) outflow gradients develop only during exercise due to catecholamine‐induced LV hypercontractility (inducible obstruction). Negative inotropic pharmacological options are limited to β‐blockers or disopyramide, with low efficacy and tolerability. We assessed the potential of late sodium current (INaL)‐inhibitors to treat inducible obstruction in HCM. Experimental Approach The electrophysiological and mechanical responses to β‐adrenoceptor stimulation were studied in human myocardium from HCM and control patients. Effects of INaL‐inhibitors (ranolazine and GS‐967) in HCM samples were investigated under conditions simulating rest and exercise. Key Results In cardiomyocytes and trabeculae from 18 surgical septal samples of patients with obstruction, the selective INaL‐inhibitor GS‐967 (0.5 μM) hastened twitch kinetics, decreased diastolic [Ca2+] and shortened action potentials, matching the effects of ranolazine (10μM). Mechanical responses to isoprenaline (inotropic and lusitropic) were comparable in HCM and control myocardium. However, isoprenaline prolonged action potentials in HCM myocardium, while it shortened them in controls. Unlike disopyramide, neither GS‐967 nor ranolazine reduced force at rest. However, in the presence of isoprenaline, they reduced Ca2+‐transient amplitude and twitch tension, while the acceleration of relaxation was maintained. INaL‐inhibitors were more effective than disopyramide in reducing contractility during exercise. Finally, INaL‐inhibitors abolished arrhythmias induced by isoprenaline. Conclusions and Implications Ranolazine and GS‐967 reduced septal myocardium tension during simulated exercise in vitro and therefore have the potential to ameliorate symptoms caused by inducible obstruction in HCM patients, with some advantages over disopyramide and β‐blockers.
Collapse
Affiliation(s)
- Cecilia Ferrantini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Josè Manuel Pioner
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Luca Mazzoni
- Department NeuroFarBa, University of Florence, Florence, Italy
| | - Francesca Gentile
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Benedetta Tosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandra Rossi
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | | | - Chiara Tesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Chiara Palandri
- Department NeuroFarBa, University of Florence, Florence, Italy
| | - Rosanna Matucci
- Department NeuroFarBa, University of Florence, Florence, Italy
| | | | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | | |
Collapse
|
155
|
Navarrete F, Aracil-Fernández A, Manzanares J. Cannabidiol regulates behavioural alterations and gene expression changes induced by spontaneous cannabinoid withdrawal. Br J Pharmacol 2018; 175:2676-2688. [PMID: 29624642 DOI: 10.1111/bph.14226] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/18/2018] [Accepted: 03/18/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabidiol (CBD) represents a promising therapeutic tool for treating cannabis use disorder (CUD). This study aimed to evaluate the effects of CBD on the behavioural and gene expression alterations induced by spontaneous cannabinoid withdrawal. EXPERIMENTAL APPROACH Spontaneous cannabinoid withdrawal was evaluated 12 h after cessation of CP-55,940 treatment (0.5 mg·kg-1 every 12 h, i.p.; 7 days) in C57BL/6J mice. The effects of CBD (5, 10 and 20 mg·kg-1 , i.p.) on withdrawal-related behavioural signs were evaluated by measuring motor activity, somatic signs and anxiety-like behaviour. Furthermore, gene expression changes in TH in the ventral tegmental area, and in the opioid μ receptor (Oprm1), cannabinoid CB1 receptor (Cnr1) and CB2 receptor (Cnr2) in the nucleus accumbens, were also evaluated using the real-time PCR technique. KEY RESULTS The administration of CBD significantly blocked the increase in motor activity and the increased number of rearings, rubbings and jumpings associated with cannabinoid withdrawal, and it normalized the decrease in the number of groomings. However, CBD did not change somatic signs in vehicle-treated animals. In addition, the anxiogenic-like effect observed in abstinent mice disappeared with CBD administration, whereas CBD induced an anxiolytic-like effect in non-abstinent animals. Moreover, CBD normalized gene expression changes induced by CP-55,940-mediated spontaneous withdrawal. CONCLUSIONS AND IMPLICATIONS The results suggest that CBD alleviates spontaneous cannabinoid withdrawal and normalizes associated gene expression changes. Future studies are needed to determine the relevance of CBD as a potential therapeutic tool for treating CUD.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Auxiliadora Aracil-Fernández
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
156
|
Kang JW, Choi HS, Lee SM. Resolvin D1 attenuates liver ischaemia/reperfusion injury through modulating thioredoxin 2-mediated mitochondrial quality control. Br J Pharmacol 2018; 175:2441-2453. [PMID: 29569721 DOI: 10.1111/bph.14212] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/19/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Liver ischaemia and reperfusion (IR) injury is a sterile inflammatory response involving production of ROS. Mitochondrial homeostasis is maintained by mitochondrial quality control (QC). Thioredoxin (TRX) 2 is a key mitochondrial redox-sensitive protein. Resolvin D1 (RvD1), a specialized pro-resolving lipid mediator, exerts anti-inflammatory and antioxidant activities. We investigated mechanisms of RvD1 protection against IR-induced oxidative damage to the liver, focusing on TRX2-mediated mitochondrial QC. EXPERIMENTAL APPROACH Mice underwent partial warm IR. RvD1 was administered 1 h before ischaemia and immediately prior to reperfusion. Human liver carcinoma HepG2 cells were exposed to hypoxia/reoxygenation and transfected with TRX2 siRNA. Immunohistochemistry, Western blotting and enzyme assays were used to follow changes in mitochondrial structure and function. KEY RESULTS RvD1 attenuated hepatocellular damage following IR, assessed by serum aminotransferase activities and histology. RvD1 reduced mitochondrial swelling, lipid peroxidation and glutamate dehydrogenase release. Impaired activities of mitochondrial complexes I and III were restored by RvD1. RvD1 enhanced expression of the mitophagy-related protein, Parkin and inhibited accumulation of PTEN-induced putative kinase 1. RvD1 restored levels of mitochondrial biogenesis proteins including PPARγ coactivator 1α, nuclear respiratory factor 1 and mitochondrial transcription factor A and mtDNA level. RvD1 attenuated the increase in levels of the mitochondrial fission-related protein, dynamin-related protein 1. IR reduced TRX2 levels while increasing TRX2 association with TRX-interacting protein. RvD1 attenuated these changes. The regulatory effects of RvD1 on mitochondrial QC were abolished by TRX2 knockdown. CONCLUSIONS AND IMPLICATIONS We suggest that RvD1 ameliorated IR-induced hepatocellular damage by regulating TRX2-mediated mitochondrial QC.
Collapse
Affiliation(s)
- Jung-Woo Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, Republic of Korea
| | - Hyo-Sun Choi
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, Republic of Korea
| | - Sun-Mee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, Republic of Korea
| |
Collapse
|
157
|
Francisco V, Pino J, Gonzalez‐Gay MA, Mera A, Lago F, Gómez R, Mobasheri A, Gualillo O. Adipokines and inflammation: is it a question of weight? Br J Pharmacol 2018; 175:1569-1579. [PMID: 29486050 PMCID: PMC5913397 DOI: 10.1111/bph.14181] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 12/25/2022] Open
Abstract
Obesity has reached epidemic proportions in the Western society and is increasing in the developing world. It is considered as one of the major contributors to the global burden of disability and chronic diseases, including autoimmune, inflammatory and degenerative diseases. Research conducted on obesity and its complications over the last two decades has transformed the outdated concept of white adipose tissue (WAT) merely serving as an energy depot. WAT is now recognized as an active and inflammatory organ capable of producing a wide variety of factors known as adipokines. These molecules participate through endocrine, paracrine, autocrine or juxtacrine crosstalk mechanisms in a great variety of physiological or pathophysiological processes, regulating food intake, insulin sensitivity, immunity and inflammation. Although initially restricted to metabolic activities (regulation of glucose and lipid metabolism), adipokines currently represent a new family of proteins that can be considered key players in the complex network of soluble mediators involved in the pathophysiology of immune/inflammatory diseases. However, the complexity of the adipokine network in the pathogenesis and progression of inflammatory diseases has posed, since the beginning, the important question of whether it may be possible to target the mechanism(s) by which adipokines contribute to disease selectively without suppressing their physiological functions. Here, we explore in depth the most recent findings concerning the involvement of adipokines in inflammation and immune responses, in particular in rheumatic, inflammatory and degenerative diseases. We also highlight several possible strategies for therapeutic development and propose that adipokines and their signalling pathways may represent innovative therapeutic strategies for inflammatory disorders.
Collapse
Affiliation(s)
- Vera Francisco
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalBuilding C, Travesía da Choupana S/NSantiago de Compostela15706Spain
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalBuilding C, Travesía da Choupana S/NSantiago de Compostela15706Spain
| | - Miguel Angel Gonzalez‐Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory DiseasesUniversidad de Cantabria and IDIVAL, Hospital Universitario Marqués de ValdecillaAv. ValdecillaSantander39008Spain
| | - Antonio Mera
- SERGAS (Servizo Galego de Saude), Division of RheumatologySantiago University Clinical HospitalTravesía da Choupana S/NSantiago de Compostela15706Spain
| | - Francisca Lago
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Department of Cellular and Molecular CardiologyCIBERCV (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares), Building CTravesía da Choupana S/NSantiago de Compostela15706Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group. SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9Santiago University Clinical HospitalSantiago de CompostelaSpain
| | - Ali Mobasheri
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyGU2 7XHUK
- School of Veterinary MedicineUniversity of SurreyGuildfordGU2 7ALUK
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Centre for Musculoskeletal Ageing ResearchQueen's Medical CentreNottinghamNG7 2UHUK
- State Research Institute Centre for Innovative MedicineSantariskiu 5Vilnius0866Republic of Lithuania
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalBuilding C, Travesía da Choupana S/NSantiago de Compostela15706Spain
| |
Collapse
|
158
|
Ko MC, Lee MC, Tang TH, Amstislavskaya TG, Tikhonova MA, Yang YL, Lu KT. Bumetanide blocks the acquisition of conditioned fear in adult rats. Br J Pharmacol 2018; 175:1580-1589. [PMID: 29235092 PMCID: PMC5913399 DOI: 10.1111/bph.14125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Bumetanide has anxiolytic effects in rat models of conditioned fear. As a loop diuretic, bumetanide blocks cation-chloride co-transport and this property may allow bumetanide to act as an anxiolytic by modulating GABAergic synaptic transmission in the CNS. Its potential for the treatment of anxiety disorders deserves further investigation. In this study, we evaluated the possible involvement of the basolateral nucleus of the amygdala in the anxiolytic effect of bumetanide. EXPERIMENTAL APPROACH Brain slices were prepared from Wistar rats. extracellular recording, stereotaxic surgery, fear-potentiated startle response, locomotor activity monitoring and Western blotting were applied in this study. KEY RESULTS Systemic administration of bumetanide (15.2 mg·kg-1 , i.v.), 30 min prior to fear conditioning, significantly inhibited the acquisition of the fear-potentiated startle response. Phosphorylation of ERK in the basolateral nucleus of amygdala was reduced after bumetanide administration. In addition, suprafusion of bumetanide (5 or 10 μM) attenuated long-term potentiation in the amygdala in a dose-dependent manner. Intra-amygdala infusion of bumetanide, 15 min prior to fear conditioning, also blocked the acquisition of the fear-potentiated startle response. Finally, the possible off-target effect of bumetanide on conditioned fear was excluded by side-by-side control experiments. CONCLUSIONS AND IMPLICATIONS These results suggest the basolateral nucleus of amygdala plays a critical role in the anxiolytic effects of bumetanide.
Collapse
Affiliation(s)
- Meng-Chang Ko
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ming-Chung Lee
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Tso-Hao Tang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Tamara G Amstislavskaya
- Laboratory of Experimental Models of Neurodegenerative Processes, Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" (SRIPhBM), Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Maria A Tikhonova
- Laboratory of Experimental Models of Neurodegenerative Processes, Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" (SRIPhBM), Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Yi-Ling Yang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Kwok-Tung Lu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
159
|
Kuypers DRJ, Vanhove T. Kuypers and Vanhove reply to 'Was 4β-hydroxycholesterol ever going to be a useful marker of CYP3A4 activity?' by Neuhoff and Tucker. Br J Clin Pharmacol 2018; 84:1622-1623. [PMID: 29691891 DOI: 10.1111/bcp.13592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/09/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dirk R J Kuypers
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|
160
|
Valdés-Tovar M, Estrada-Reyes R, Solís-Chagoyán H, Argueta J, Dorantes-Barrón AM, Quero-Chávez D, Cruz-Garduño R, Cercós MG, Trueta C, Oikawa-Sala J, Dubocovich ML, Benítez-King G. Circadian modulation of neuroplasticity by melatonin: a target in the treatment of depression. Br J Pharmacol 2018; 175:3200-3208. [PMID: 29512136 DOI: 10.1111/bph.14197] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 02/15/2018] [Accepted: 02/21/2018] [Indexed: 01/03/2023] Open
Abstract
Mood disorders are a spectrum of neuropsychiatric disorders characterized by changes in the emotional state. In particular, major depressive disorder is expected to have a worldwide prevalence of 20% in 2020, representing a huge socio-economic burden. Currently used antidepressant drugs have poor efficacy with only 30% of the patients in remission after the first line of treatment. Importantly, mood disorder patients present uncoupling of circadian rhythms. In this regard, melatonin (5-methoxy-N-acetyltryptamine), an indolamine synthesized by the pineal gland during the night, contributes to synchronization of body rhythms with the environmental light/dark cycle. In this review, we describe evidence supporting antidepressant-like actions of melatonin related to the circadian modulation of neuroplastic changes in the hippocampus. We also present evidence for the role of melatonin receptors and their signalling pathways underlying modulatory effects in neuroplasticity. Finally, we briefly discuss the detrimental consequences of circadian disruption on neuroplasticity and mood disorders, due to the modern human lifestyle. Together, data suggest that melatonin's stimulation of neurogenesis and neuronal differentiation is beneficial to patients with mood disorders. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Marcela Valdés-Tovar
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Rosa Estrada-Reyes
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Jesús Argueta
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Ana María Dorantes-Barrón
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Daniel Quero-Chávez
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Ricardo Cruz-Garduño
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Montserrat G Cercós
- Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Citlali Trueta
- Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Julián Oikawa-Sala
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Margarita L Dubocovich
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| |
Collapse
|
161
|
Chiew AL, Wright DFB, Dobos NM, McArdle K, Mostafa AA, Newth A, Roberts MS, Isbister GK. 'Massive' metformin overdose. Br J Clin Pharmacol 2018. [PMID: 29534338 DOI: 10.1111/bcp.13582] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Massive metformin overdose can cause metabolic acidosis with hyperlactatemia. A 55-year-old woman presented 5 h after multidrug overdose, including 132 g extended-release metformin. Continuous venovenous haemodiafiltration (CVVHDF) and noradrenaline were commenced due to metabolic acidosis (pH 7.0, lactate 17 mmol l-1 ) and shock. Despite 3 h of CVVHDF, her acidosis worsened (pH 6.83, lactate 24 mmol l-1 ). Intermittent haemodialysis (IHD) improved acidosis (pH 7.13, lactate 26 mmol l-1 ) but again worsened (pH 6.91, lactate 30 mmol l-1 ) with CVVHDF recommencement. IHD (12 h), CVVHDF (26 h) and vasopressor support for 7 days resulted in survival. Measured metformin concentrations were extremely high with a peak of 292 μg ml-1 at 8 h postingestion. IHD, but not CVVHDF in this case, was associated with improvement in metabolic acidosis and hyperlactataemia. Pharmacokinetic analysis of metformin concentrations found a reduced apparent oral clearance of 8.2 l h-1 and a half-life of approximately 30 h. During IHD, the apparent oral clearance increased to 22.2 l h-1 with an approximate half-life of 10 h. The impact of prolonged oral absorption from a pharmacobezoar and redistribution of metformin from peripheral sites (including erythrocytes) on the pharmacokinetic profile cannot be determined from the data available.
Collapse
Affiliation(s)
- Angela L Chiew
- New South Wales Poisons Information Centre, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | | | - Nicola M Dobos
- Intensive Care Unit, Western Health, Melbourne, Victoria, Australia
| | - Kylie McArdle
- New South Wales Poisons Information Centre, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Ahmed A Mostafa
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.,Pharmaceutical Chemistry Department, Helwan University, Helwan, Egypt
| | - Annemarie Newth
- Emergency Department and Victorian Poisons Information Centre, The Austin Hospital, Melbourne, Victoria, Australia
| | - Michael S Roberts
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.,Translational Research Institute, Diamantina Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Geoffrey K Isbister
- New South Wales Poisons Information Centre, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Clinical Toxicology Research Group, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
162
|
Ueshima S, Hira D, Kimura Y, Fujii R, Tomitsuka C, Yamane T, Tabuchi Y, Ozawa T, Itoh H, Ohno S, Horie M, Terada T, Katsura T. Population pharmacokinetics and pharmacogenomics of apixaban in Japanese adult patients with atrial fibrillation. Br J Clin Pharmacol 2018; 84:1301-1312. [PMID: 29457840 DOI: 10.1111/bcp.13561] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 12/16/2022] Open
Abstract
AIMS This study aimed to analyse the effects of genetic polymorphisms in drug transporters and metabolizing enzymes, and clinical laboratory data on the pharmacokinetic parameters of apixaban. METHODS Data were collected from 81 Japanese patients with atrial fibrillation. Pharmacogenomic data were stratified by ABCB1, ABCG2 and CYP3A5 polymorphisms. The pharmacokinetic profile of apixaban was described by a one-compartment model with first-order absorption. Population pharmacokinetic analysis was conducted using a nonlinear mixed effect modelling (NONMEM™) program. RESULTS The nonlinear relationship between oral clearance (CL/F) of apixaban and creatinine clearance (Ccr) was observed. The population mean of CL/F for a typical patient (Ccr value of 70 ml min-1 ) with the CYP3A5*1/*1 and ABCG2 421C/C or C/A genotypes was estimated to be 3.06 l h-1 . When Ccr values were set to the typical value, the population mean of CL/F was 1.52 times higher in patients with the CYP3A5*1/*1 genotype compared with patients with the CYP3A5*1/*3 or *3/*3 genotype, while the population mean of CL/F was 1.49 times higher in patients with the ABCG2 421C/C or C/A genotype compared with patients with the ABCG2 421A/A genotype. However, no covariates affected the population mean of the apparent volume of distribution (Vd/F) of apixaban. The population mean of Vd/F was estimated to be 24.7 l. CONCLUSION The present study suggests that the ABCG2 421A/A and CYP3A5*3 genotypes and renal function are intrinsic factors affecting apixaban pharmacokinetics. These findings may provide useful information for precision medicine using apixaban, to avoid the risk of adverse reactions.
Collapse
Affiliation(s)
- Satoshi Ueshima
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Daiki Hira
- Department of Pharmacy, Shiga University of Medical Science Hospital, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Yuuma Kimura
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Ryo Fujii
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Chiho Tomitsuka
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Takuya Yamane
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yohei Tabuchi
- Department of Pharmacy, Shiga University of Medical Science Hospital, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Tomoya Ozawa
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Hideki Itoh
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Seiko Ohno
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Toshiya Katsura
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
163
|
Winters BL, Rawling T, Vandenberg RJ, Christie MJ, Bhola RF, Imlach WL. Activity of novel lipid glycine transporter inhibitors on synaptic signalling in the dorsal horn of the spinal cord. Br J Pharmacol 2018; 175:2337-2347. [PMID: 29500820 DOI: 10.1111/bph.14189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 02/03/2018] [Accepted: 02/06/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Inhibitory neurotransmission plays an important role in controlling excitability within nociceptive circuits of the spinal cord dorsal horn. Loss of inhibitory signalling is thought to contribute to the development of pathological pain. Preclinical studies suggest that increasing inhibitory glycinergic signalling is a good therapeutic strategy for treating pain. One approach to increase synaptic glycine is to inhibit the activity of the glycine transporter 2 (GlyT2) on inhibitory nerve terminals. These transporters are involved in regulating glycine concentrations and recycling glycine into presynaptic terminals. Inhibiting activity of GlyT2 increases synaptic glycine, which decreases excitability in nociceptive circuits and provides analgesia in neuropathic and inflammatory pain models. EXPERIMENTAL APPROACH We investigated the effects of reversible and irreversible GlyT2 inhibitors on inhibitory glycinergic and NMDA receptor-mediated excitatory neurotransmission in the rat dorsal horn. The effect of these drugs on synaptic signalling was determined using patch-clamp electrophysiology techniques to measure glycine- and NMDA-mediated postsynaptic currents in spinal cord slices in vitro. KEY RESULTS We compared activity of four compounds that increase glycinergic tone with a corresponding increase in evoked glycinergic postsynaptic currents. These compounds did not deplete synaptic glycine release over time. Interestingly, none of these compounds increased glycine-mediated excitatory signalling through NMDA receptors. The results suggest that these compounds preferentially inhibit GlyT2 over G1yT1 with no potentiation of the glycine receptor and without inducing spillover from inhibitory to excitatory synapses. CONCLUSIONS AND IMPLICATIONS GlyT2 inhibitors increase inhibitory neurotransmission in the dorsal horn and have potential as pain therapeutics. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Bryony L Winters
- Pain Management Research Institute, Kolling Institute of Medical Research, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Robert J Vandenberg
- Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Macdonald J Christie
- Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Rebecca F Bhola
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Wendy L Imlach
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
164
|
West EE, Afzali B, Kemper C. Unexpected Roles for Intracellular Complement in the Regulation of Th1 Responses. Adv Immunol 2018; 138:35-70. [PMID: 29731006 DOI: 10.1016/bs.ai.2018.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The complement system is generally recognized as an evolutionarily ancient and critical part of innate immunity required for the removal of pathogens that have breached the protective host barriers. It was originally defined as a liver-derived serum surveillance system that induces the opsonization and killing of invading microbes and amplifies the general inflammatory reactions. However, studies spanning the last four decades have established complement also as a vital bridge between innate and adaptive immunity. Furthermore, recent work on complement, and in particular its impact on human T helper 1 (Th1) responses, has led to the unexpected findings that the complement system also functions within cells and that it participates in the regulation of basic processes of the cell, including metabolism. These recent new insights into the unanticipated noncanonical activities of this ancient system suggest that the functions of complement extend well beyond mere host protection and into cellular physiology.
Collapse
Affiliation(s)
- Erin E West
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, MD, United States
| | - Behdad Afzali
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, MD, United States; Lymphocyte Cell Biology Section (Molecular Immunology and Inflammation Branch), National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Claudia Kemper
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, MD, United States; Division of Transplant Immunology and Mucosal Biology, King's College London, London, United Kingdom; Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
165
|
MacEachern SJ, Keenan CM, Papakonstantinou E, Sharkey KA, Patel BA. Alterations in melatonin and 5-HT signalling in the colonic mucosa of mice with dextran-sodium sulfate-induced colitis. Br J Pharmacol 2018; 175:1535-1547. [PMID: 29447434 DOI: 10.1111/bph.14163] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 01/16/2018] [Accepted: 02/03/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Inflammatory bowel disease (IBD) is characterized by pain, bleeding, cramping and altered gastrointestinal (GI) function. Changes in mucosal 5-HT (serotonin) signalling occur in animal models of colitis and in humans suffering from IBD. Melatonin is co-released with 5-HT from the mucosa and has a wide variety of actions in the GI tract. Here, we examined how melatonin signalling is affected by colitis and determined how this relates to 5-HT signalling. EXPERIMENTAL APPROACH Using electroanalytical approaches, we investigated how 5-HT release, reuptake and availability as well as melatonin availability are altered in dextran sodium sulfate (DSS)-induced colitis in mice. Studies were conducted to explore if melatonin treatment during active colitis could reduce the severity of colitis. KEY RESULTS We observed an increase in 5-HT and a decrease in melatonin availability in DSS-induced colitis. A significant reduction in 5-HT reuptake was observed in DSS-induced colitis animals. A reduction in the content of 5-HT was observed, but no difference in tryptophan levels were observed. A reduction in deoxycholic acid-stimulated 5-HT availability and a significant reduction in mechanically-stimulated 5-HT and melatonin availability were observed in DSS-induced colitis. Orally or rectally administered melatonin once colitis was established did not significantly suppress inflammation. CONCLUSION AND IMPLICATIONS Our data suggest that DSS-induced colitis results in a reduction in melatonin availability and an increase in 5-HT availability, due to a reduction/loss of tryptophan hydroxylase 1 enzyme, 5-HT content and 5-HT transporters. Mechanosensory release was more susceptible to inflammation when compared with chemosensory release.
Collapse
Affiliation(s)
- Sarah J MacEachern
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Catherine M Keenan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | - Keith A Sharkey
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Bhavik Anil Patel
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Brighton, UK.,Centre for Stress and Age-related Diseases, University of Brighton, Huxley Building, Brighton, UK
| |
Collapse
|
166
|
Sloop KW, Emmerson PJ, Statnick MA, Willard FS. The current state of GPCR-based drug discovery to treat metabolic disease. Br J Pharmacol 2018; 175:4060-4071. [PMID: 29394497 DOI: 10.1111/bph.14157] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/14/2017] [Accepted: 01/19/2018] [Indexed: 02/06/2023] Open
Abstract
One approach of modern drug discovery is to identify agents that enhance or diminish signal transduction cascades in various cell types and tissues by modulating the activity of GPCRs. This strategy has resulted in the development of new medicines to treat many conditions, including cardiovascular disease, psychiatric disorders, HIV/AIDS, certain forms of cancer and Type 2 diabetes mellitus (T2DM). These successes justify further pursuit of GPCRs as disease targets and provide key learning that should help guide identifying future therapeutic agents. This report reviews the current landscape of GPCR drug discovery with emphasis on efforts aimed at developing new molecules for treating T2DM and obesity. We analyse historical efforts to generate GPCR-based drugs to treat metabolic disease in terms of causal factors leading to success and failure in this endeavour. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Kyle W Sloop
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Paul J Emmerson
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Michael A Statnick
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Francis S Willard
- Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| |
Collapse
|
167
|
Siemian JN, Wang K, Zhang Y, Li JX. Mechanisms of imidazoline I 2 receptor agonist-induced antinociception in rats: involvement of monoaminergic neurotransmission. Br J Pharmacol 2018; 175:1519-1534. [PMID: 29451703 DOI: 10.1111/bph.14161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/17/2017] [Accepted: 02/04/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Although the antinociceptive efficacies of imidazoline I2 receptor agonists have been established, the exact post-receptor mechanisms remain unknown. This study tested the hypothesis that monoaminergic transmission is critical for I2 receptor agonist-induced antinociception. EXPERIMENTAL APPROACH von Frey filaments were used to assess antinociceptive effects of two I2 receptor agonists, 2-BFI and CR4056 on chronic constriction injury (CCI)-induced neuropathic pain or complete Freund's adjuvant (CFA)-induced inflammatory pain in rats. Rectal temperature was measured to assess hypothermic effects of 2-BFI. A two-lever drug discrimination paradigm in which rats were trained to discriminate 5.6 mg·kg-1 2-BFI (i.p.) from its vehicle was used to examine the discriminative stimulus effects of 2-BFI. In each experiment, pharmacological mechanisms were investigated by combining 2-BFI or CR4056 with various pharmacological manipulations of the monoaminergic system including selective reuptake inhibition, monoamine depletion and monoamine receptor antagonism. KEY RESULTS In the CCI model, selective reuptake inhibitors of 5-HT (fluoxetine) or noradrenaline (desipramine), but not dopamine (GBR12909), enhanced 2-BFI-induced antinociception. Selective depletion of 5-HT or noradrenaline almost abolished 2-BFI-induced antinociception. 5-HT1A , 5-HT2A and α1 -adrenoceptor antagonists, but not other monoaminergic antagonists, attenuated 2-BFI and CR4056-induced antinociception in CCI and/or CFA models. However, none of these monoamine receptor antagonists significantly altered 2-BFI-induced hypothermia or discriminative stimulus effects. CONCLUSIONS AND IMPLICATIONS Antinociception induced by I2 receptor agonists was mediated by serotonergic and noradrenergic mechanisms with 5-HT1A , 5-HT2A and α1 -adrenoceptor being particularly important. In contrast, the hypothermic and discriminative stimulus effects of I2 receptor agonists were mediated by distinct, independent mechanisms.
Collapse
Affiliation(s)
- Justin N Siemian
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Kaixuan Wang
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA.,School of Pharmacy, Yantai University, Yantai, Shandong Province, China
| |
Collapse
|
168
|
Ma C, Zhang W, Yang X, Liu Y, Liu L, Feng K, Zhang X, Yang S, Sun L, Yu M, Yang J, Li X, Hu W, Miao RQ, Zhu Y, Li L, Han J, Chen Y, Duan Y. Functional interplay between liver X receptor and AMP-activated protein kinase α inhibits atherosclerosis in apolipoprotein E-deficient mice - a new anti-atherogenic strategy. Br J Pharmacol 2018; 175:1486-1503. [PMID: 29394501 DOI: 10.1111/bph.14156] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE The liver X receptor (LXR) agonist T317 reduces atherosclerosis but induces fatty liver. Metformin activates energy metabolism by activating AMPKα. In this study, we determined if interactions between metformin and T317 could inhibit atherosclerosis without activation of hepatic lipogenesis. EXPERIMENTAL APPROACH Apolipoprotein E-deficient mice were treated with T317, metformin or both agents, in a high-fat diet for 16 weeks. Then, samples of aorta, liver, macrophage and serum were collected to determine atherosclerotic lesions, fatty liver, lipid profiles and expression of related proteins. Techniques used included immunohistochemistry, histology, qRT-PCR and Western blot. KEY RESULTS T317 inhibited en face and aortic root sinus lesions, and the inhibition was further enhanced by addition of metformin. Co-treatment with metformin and T317 increased lesion stability, by increasing collagen content, and reducing necrotic cores and calcification. Formation of macrophages/foam cells and their accumulation in arterial wall were inhibited by the co-treatment, which was accompanied by increased ABCA1/ABCG1 expression, reduced monocyte adhesion and apparent local proliferation of macrophages. Metformin blocked T317-induced fatty liver by inhibiting T317-induced hepatic LXRα nuclear translocation and expression of lipogenic genes and by activating AMPKα. Moreover, co-treatment with T317 and metformin improved triglyceride metabolism by inducing expression of adipose triglyceride lipase, hormone-sensitive lipase, PPARα and carnitine acetyltransferase and by inhibiting acyl-CoA:diacylglycerol acyltransferase 1 expression. CONCLUSIONS AND IMPLICATIONS Co-treatment with T317 and metformin inhibited the development of atherosclerosis without activation of lipogenesis, suggesting that combined treatment with T317 and metformin may be a novel approach to inhibition of atherosclerosis.
Collapse
Affiliation(s)
- Chuanrui Ma
- College of Biomedical Engineering, Hefei University of Technology, Hefei, China.,College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Wenwen Zhang
- Research Institute of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Xiaoxiao Yang
- College of Biomedical Engineering, Hefei University of Technology, Hefei, China
| | - Ying Liu
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Lipei Liu
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Ke Feng
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Xiaomeng Zhang
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Shu Yang
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Lei Sun
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Miao Yu
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Jie Yang
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Xiaoju Li
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Wenquan Hu
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert Q Miao
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yan Zhu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Jihong Han
- College of Biomedical Engineering, Hefei University of Technology, Hefei, China.,College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yuanli Chen
- College of Biomedical Engineering, Hefei University of Technology, Hefei, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yajun Duan
- College of Biomedical Engineering, Hefei University of Technology, Hefei, China.,College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| |
Collapse
|
169
|
Zhao W, Leroux S, Biran V, Jacqz-Aigrain E. Developmental pharmacogenetics of CYP2C19 in neonates and young infants: omeprazole as a probe drug. Br J Clin Pharmacol 2018; 84:997-1005. [PMID: 29377228 DOI: 10.1111/bcp.13526] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 12/13/2017] [Accepted: 12/22/2017] [Indexed: 12/13/2022] Open
Abstract
AIMS Although substantial progress has been made in understanding of ontogeny of drug metabolism, there is still a gap of knowledge in developmental pharmacogenetics in neonates. We hypothesized that both age and pharmacogenetics might explain the developmental pattern of CYP2C19. We conducted a population pharmacokinetic-pharmacogenetic study to quantify the developmental pharmacogenetics of CYP2C19 in neonates and young infants using omeprazole as a probe drug. METHODS Pharmacokinetic samples were collected from 51 Caucasian neonates and young infants, who were receiving omeprazole treatment. Population pharmacokinetic-pharmacogenetic analysis of omeprazole and its metabolites was performed using NONMEM. RESULTS Data fitted a one-compartment parent and metabolite model with first-order absorption and elimination. CYP2C19 and CYP3A4 are predominantly involved in the metabolism of omeprazole despite their relatively low activities compared to adults. The clearance of omeprazole converted to 5-hydroxy-omeprazole (CLOMZ-M1 ) increases with postnatal age. In CYP2C19 poor and intermediate metabolizers, model-predicted CLOMZ-M1 are 12.5% (5-95% percentile: 3-14.9%) and 44.9% (5-95% percentile: 29.9-72.6%) of the value in extensive/ultrarapid metabolizer, respectively. Model-predicted absorption rate constant of omeprazole is 6.93 (5-95% percentile: 3.01-14.61) times higher in ABCB1 homozygous mutant patients, 1.86 (5-95% percentile: 0.86-3.47) times higher in ABCB1 heterozygous patients than that in ABCB1 homozygous wild-type patients. CONCLUSIONS Developmental pharmacogenetics of CYP2C19 was quantitatively described in neonates and young infants using omeprazole as a probe drug. Our findings emphasize the importance of semiphysiological developmental pharmacokinetic modelling approach when evaluating developmental pharmacogenetics of drugs with multiple routes of biotransformation.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China.,Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,Department of Paediatric Pharmacology and Pharmacogenetics, Robert Debré University Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Stéphanie Leroux
- Department of Paediatric Pharmacology and Pharmacogenetics, Robert Debré University Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France.,Department of Neonatology, Rennes University Hospital, Rennes, France
| | - Valérie Biran
- Department of Neonatology, Robert Debré University Hospital, Assistance Publiqqiue - Hôpitaux de Paris, Paris, France
| | - Evelyne Jacqz-Aigrain
- Department of Paediatric Pharmacology and Pharmacogenetics, Robert Debré University Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France.,Clinical Investigation Center CIC1426, INSERM, Paris, France.,EA7323, University Paris Diderot - Sorbonne Paris Cité, Paris, France
| |
Collapse
|
170
|
Myers AM, Siegele PB, Foss JD, Tuma RF, Ward SJ. Single and combined effects of plant-derived and synthetic cannabinoids on cognition and cannabinoid-associated withdrawal signs in mice. Br J Pharmacol 2018; 176:1552-1567. [PMID: 29338068 DOI: 10.1111/bph.14147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/04/2017] [Accepted: 10/11/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE It has been suggested that the non-euphorogenic phytocannabinoid cannabidiol (CBD) can ameliorate adverse effects of Δ9 -tetrahydrocannabinol (THC). We determined whether CBD ameliorates cognitive deficits and withdrawal signs induced by cannabinoid CB1 /CB2 receptor agonists or produces these pharmacological effects on its own. EXPERIMENTAL APPROACH The effects of THC or the CB1 /CB2 receptor full agonist WIN55212 alone, CBD alone or their combination were tested across a range of doses. Cognitive effects were assessed in C57BL/6 mice in a conditional discrimination task and in the Barnes maze. Cannabinoid withdrawal signs were assessed following precipitated withdrawal by acute administration of the CB1 receptor antagonist SR141716, the 5-HT1A receptor antagonist WAY100635, the TRPV1 receptor antagonist capsazepine or the adenosine A2A receptor antagonist SCH58261. KEY RESULTS THC produced significant motor and cognitive impairment in the Barnes maze task, none of which were attenuated by the addition of CBD. CBD alone did not affect cognitive performance. Precipitation of withdrawal signs by SR141716 occurred in mice chronically treated with THC or WIN55,212. These withdrawal signs were not attenuated by addition of chronic CBD. Chronic treatment with CBD alone did not induce withdrawal signs precipitated by SR141716 or WAY100635. Chronic CBD treatment also produced anxiolysis, which was not altered by attempting to precipitate withdrawal-induced anxiety with a range of antagonists. CONCLUSIONS AND IMPLICATIONS CBD as a monotherapy may prove to be a safer pharmacological agent, than CB1 receptor agonists alone or in combination with CBD, for the treatment of several disorders. LINKED ARTICLES This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Alyssa M Myers
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Patrick B Siegele
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jeffrey D Foss
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ronald F Tuma
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sara Jane Ward
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
171
|
Santoro AB, Botton MR, Struchiner CJ, Suarez-Kurtz G. Influence of pharmacogenetic polymorphisms and demographic variables on metformin pharmacokinetics in an admixed Brazilian cohort. Br J Clin Pharmacol 2018; 84:987-996. [PMID: 29352482 DOI: 10.1111/bcp.13522] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/07/2017] [Accepted: 01/12/2018] [Indexed: 12/15/2022] Open
Abstract
AIMS To identify pharmacogenetic and demographic variables that influence the systemic exposure to metformin in an admixed Brazilian cohort. METHODS The extreme discordant phenotype was used to select 106 data sets from nine metformin bioequivalence trials, comprising 256 healthy adults. Eleven single-nucleotide polymorphisms in SLC22A1, SLC22A2, SLC47A1 SLC47A2 and in transcription factor SP1 were genotyped and a validated panel of ancestry informative markers was used to estimate the individual proportions of biogeographical ancestry. Two-step (univariate followed by multivariate) regression modelling was developed to identify covariates associated with systemic exposure to metformin, accessed by the area under the plasma concentration-time curve, between 0 and 48 h (AUC0-48h ), after single oral doses of metformin (500 or 1000 mg). RESULTS The individual proportions of African, Amerindian and European ancestry varied widely, as anticipated from the structure of the Brazilian population The dose-adjusted, log-transformed AUC0-48h 's (ng h ml-1 mg-1 ) differed largely in the two groups at the opposite ends of the distribution histogram, namely 0.82, 0.79-0.85 and 1.08, 1.06-1.11 (mean, 95% confidence interval; P = 6.10-26 , t test). Multivariate modelling revealed that metformin AUC0-48h increased with age, food and carriage of rs12208357 in SLC22A1 but was inversely associated with body surface area and individual proportions of African ancestry. CONCLUSIONS A pharmacogenetic marker in OCT1 (SLC22A1 rs12208357), combined with demographic covariates (age, body surface area and individual proportion of African ancestry) and a food effect explained 29.7% of the variability in metformin AUC0-48h .
Collapse
|
172
|
Deljehier T, Pariente A, Miremont-Salamé G, Haramburu F, Nguyen L, Rubin S, Rigothier C, Théophile H. Rhabdomyolysis after co-administration of a statin and fusidic acid: an analysis of the literature and of the WHO database of adverse drug reactions. Br J Clin Pharmacol 2018; 84:1057-1063. [PMID: 29337401 DOI: 10.1111/bcp.13515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/16/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022] Open
Abstract
Following a severe case of rhabdomyolysis in our University Hospital after a co-administration of atorvastatin and fusidic acid, we describe this interaction as this combination is not clearly contraindicated in some countries, particularly for long-term treatment by fusidic acid. All cases of rhabdomyolysis during a co-administration of a statin and fusidic acid were identified in the literature and in the World and Health Organization database, VigiBase® . In the literature, 29 cases of rhabdomyolysis were identified; mean age was 66 years, median duration of co-administration before rhabdomyolysis occurrence was 21 days, 28% of cases were fatal. In the VigiBase® , 182 cases were retrieved; mean age was 68 years, median duration of co-administration before rhabdomyolysis was 31 days and 24% of cases were fatal. Owing to the high fatality associated with this co-administration and the long duration of treatment before rhabdomyolysis occurrence, fusidic acid should be used if there is no appropriate alternative, as long as statin therapy is interrupted for the duration of fusidic acid therapy, and perhaps a week longer. Rarely will interruption of this sort have adverse consequences for the patient.
Collapse
Affiliation(s)
- Thomas Deljehier
- Department of Medical Pharmacology, Regional Pharmacovigilance Centre, CHU Bordeaux, F-33000, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Antoine Pariente
- Department of Medical Pharmacology, Regional Pharmacovigilance Centre, CHU Bordeaux, F-33000, Bordeaux, France.,University of Bordeaux, Bordeaux, France.,team Pharmacoepidemiology, University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
| | - Ghada Miremont-Salamé
- Department of Medical Pharmacology, Regional Pharmacovigilance Centre, CHU Bordeaux, F-33000, Bordeaux, France.,team Pharmacoepidemiology, University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
| | - Françoise Haramburu
- Department of Medical Pharmacology, Regional Pharmacovigilance Centre, CHU Bordeaux, F-33000, Bordeaux, France.,team Pharmacoepidemiology, University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
| | - Linh Nguyen
- University of Bordeaux, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, CHU Bordeaux, Bordeaux, France.,INSERM, BioTis, UMR 1026, University of Bordeaux, Bordeaux, France
| | - Sébastien Rubin
- University of Bordeaux, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, CHU Bordeaux, Bordeaux, France.,INSERM, BioTis, UMR 1026, University of Bordeaux, Bordeaux, France
| | - Claire Rigothier
- University of Bordeaux, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, CHU Bordeaux, Bordeaux, France.,INSERM, BioTis, UMR 1026, University of Bordeaux, Bordeaux, France
| | - Hélène Théophile
- Department of Medical Pharmacology, Regional Pharmacovigilance Centre, CHU Bordeaux, F-33000, Bordeaux, France
| |
Collapse
|
173
|
Campbell EJ, Marchant NJ. The use of chemogenetics in behavioural neuroscience: receptor variants, targeting approaches and caveats. Br J Pharmacol 2018; 175:994-1003. [PMID: 29338070 DOI: 10.1111/bph.14146] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/13/2017] [Accepted: 12/27/2017] [Indexed: 12/18/2022] Open
Abstract
The last decade has seen major advances in neuroscience tools allowing us to selectively modulate cellular pathways in freely moving animals. Chemogenetic approaches such as designer receptors exclusively activated by designer drugs (DREADDs) permit the remote control of neuronal function by systemic drug administration. These approaches have dramatically advanced our understanding of the neural control of behaviour. Here, we review the different techniques and genetic approaches available for the restriction of chemogenetic receptors to defined neuronal populations. We highlight the use of a dual virus approach to target specific circuitries and the effectiveness of different routes of administration of designer drugs. Finally, we discuss the potential caveats associated with DREADDs including off-target effects of designer drugs, the effects of chronic chemogenetic receptor activation and the issue of collateral projections associated with DREADD activation and inhibition.
Collapse
Affiliation(s)
- Erin J Campbell
- The Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Nathan J Marchant
- The Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
174
|
Hohlbaum AM, Gille H, Trentmann S, Kolodziejczyk M, Rattenstetter B, Laarakkers CM, Katzmann G, Christian HJ, Andersen N, Allersdorfer A, Olwill SA, Meibohm B, Audoly LP, Swinkels DW, van Swelm RPL. Sustained plasma hepcidin suppression and iron elevation by Anticalin-derived hepcidin antagonist in cynomolgus monkey. Br J Pharmacol 2018; 175:1054-1065. [PMID: 29329501 DOI: 10.1111/bph.14143] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Anaemia of chronic disease (ACD) has been linked to iron-restricted erythropoiesis imposed by high circulating levels of hepcidin, a 25 amino acid hepatocyte-derived peptide that controls systemic iron homeostasis. Here, we report the engineering of the human lipocalin-derived, small protein-based anticalin PRS-080 hepcidin antagonist with high affinity and selectivity. EXPERIMENTAL APPROACH Anticalin- and hepcidin-specific pharmacokinetic (PK)/pharmacodynamic modelling (PD) was used to design and select the suitable drug candidate based on t1/2 extension and duration of hepcidin suppression. The development of a novel free hepcidin assay enabled accurate analysis of bioactive hepcidin suppression and elucidation of the observed plasma iron levels after PRS-080-PEG30 administration in vivo. KEY RESULTS PRS-080 had a hepcidin-binding affinity of 0.07 nM and, after coupling to 30 kD PEG (PRS-080-PEG30), a t1/2 of 43 h in cynomolgus monkeys. Dose-dependent iron mobilization and hepcidin suppression were observed after a single i.v. dose of PRS-080-PEG30 in cynomolgus monkeys. Importantly, in these animals, suppression of free hepcidin and subsequent plasma iron elevation were sustained during repeated s.c. dosing. After repeated dosing and followed by a treatment-free interval, all iron parameters returned to pre-dose values. CONCLUSIONS AND IMPLICATIONS In conclusion, we developed a dose-dependent and safe approach for the direct suppression of hepcidin, resulting in prolonged iron mobilization to alleviate iron-restricted erythropoiesis that can address the root cause of ACD. PRS-080-PEG30 is currently in early clinical development.
Collapse
Affiliation(s)
| | | | | | | | | | - Coby M Laarakkers
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands.,Hepcidinanalysis.com, Nijmegen, The Netherlands
| | | | | | | | | | | | - Bernd Meibohm
- University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Dorine W Swinkels
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands.,Hepcidinanalysis.com, Nijmegen, The Netherlands
| | - Rachel P L van Swelm
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands.,Hepcidinanalysis.com, Nijmegen, The Netherlands
| |
Collapse
|
175
|
Huang AY, Wu SY. Substance P as a putative efferent transmitter mediates GABAergic inhibition in mouse taste buds. Br J Pharmacol 2018; 175:1039-1053. [PMID: 29328505 DOI: 10.1111/bph.14142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/21/2017] [Accepted: 12/23/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Capsaicin-mediated modulation of taste nerve responses is thought to be produced indirectly by the actions of neuropeptides, for example, CGRP and substance P (SP), on taste cells implying they play a role in taste sensitivity. During the processing of gustatory information in taste buds, CGRP shapes peripheral taste signals via serotonergic signalling. The underlying assumption has been that SP exerts its effects on taste transmitter secretion in taste buds of mice. EXPERIMENTAL APPROACH To test this assumption, we investigated the net effect of SP on taste-evoked ATP secretion from mouse taste buds, using functional calcium imaging with CHO cells expressing high-affinity transmitter receptors as cellular biosensors. KEY RESULTS Our results showed that SP elicited PLC activation-dependent intracellular Ca2+ transients in taste cells via neurokinin 1 receptors, most likely on glutamate-aspartate transporter-expressing Type I cells. Furthermore, SP caused Type I cells to secrete GABA. CONCLUSION AND IMPLICATIONS Combined with the recent findings that GABA depresses taste-evoked ATP secretion, the current results indicate that SP elicited secretion of GABA, which provided negative feedback onto Type II (receptor) cells to reduce taste-evoked ATP secretion. These findings are consistent with a role for SP as an inhibitory transmitter that shapes the peripheral taste signals, via GABAergic signalling, during the processing of gustatory information in taste buds. Notably, the results suggest that SP is intimately associated with GABA in mammalian taste signal processing and demonstrate an unanticipated route for sensory information flow within the taste bud.
Collapse
Affiliation(s)
- Anthony Y Huang
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Science, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Sandy Y Wu
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA
| |
Collapse
|
176
|
Neuhoff S, Tucker GT. Was 4β-hydroxycholesterol ever going to be a useful marker of CYP3A4 activity? Br J Clin Pharmacol 2018; 84:1620-1621. [PMID: 29464732 DOI: 10.1111/bcp.13538] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/15/2018] [Accepted: 01/21/2018] [Indexed: 12/11/2022] Open
|
177
|
Marra F, Höner Zu Siederdissen C, Khoo S, Back D, Schlag M, Ouwerkerk-Mahadevan S, Bicer C, Lonjon-Domanec I, Jessner W, Beumont-Mauviel M, Kalmeijer R, Cornberg M. Clinical impact of pharmacokinetic interactions between the HCV protease inhibitor simeprevir and frequently used concomitant medications. Br J Clin Pharmacol 2018; 84:961-971. [PMID: 29345798 PMCID: PMC5903235 DOI: 10.1111/bcp.13519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/03/2018] [Accepted: 01/14/2018] [Indexed: 12/21/2022] Open
Abstract
AIMS Direct-acting antiviral agents (DAAs) for the treatment of hepatitis C (HCV) can be associated with drug-drug interactions (DDIs) with concomitant medications. The practical clinical implications of such DDIs are poorly understood. We assessed the clinical impact of possible pharmacokinetic (PK) interactions between simeprevir and frequently prescribed concomitant medications. METHODS This post hoc analysis pooled data from nine studies which evaluated simeprevir (SMV)-based interferon-free HCV treatment. Three classes of frequently used concomitant medications of interest (CMOIs) were analysed [antihypertensive drugs (AHDs), anxiolytic drugs (AXDs) and lipid-lowering drugs (LLDs)] and categorized as amber or green according to their DDI potential with SMV (green: no DDIs; amber: potential/known PK interactions). Concomitant medications not recommended to be coadministered with SMV were not included. The composite primary endpoint was defined as the frequency of either discontinuation, interruption or dose modification of the CMOI during 12 weeks of SMV treatment. RESULTS Few patients met the composite endpoint in the various subgroups. Patients on amber CMOIs tended to experience CMOI modification more often (13.4-19.4%) than those on green CMOIs (3.1-10.8%). There was no difference in the frequency of adverse events between patients taking green and those taking amber CMOIs. CONCLUSIONS In this large pooled analysis, coadministration of the evaluated commonly prescribed medications with known or potential PK interactions with SMV was manageable and resulted in few adjustments of concomitant medications. Our method could serve as a blueprint for the evaluation of the impact of DDIs.
Collapse
Affiliation(s)
- Fiona Marra
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Christoph Höner Zu Siederdissen
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Saye Khoo
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - David Back
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Michael Schlag
- Janssen Cilag Pharma GmbH, EMEA Medical Affairs, Vorgartenstraße 206B, 1020, Vienna, Austria
| | | | - Ceyhun Bicer
- BICER Consulting & Research, Oosterveldlaan 12 A, 2610, Antwerp, Belgium
| | | | | | | | - Ronald Kalmeijer
- Janssen Global Services LLC, 1125 Trenton-Harbourton Road, Titusville, NJ, 08560, USA
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
178
|
Ayalasomayajula S, Schuehly U, Pal P, Chen F, Zhou W, Sunkara G, Langenickel TH. Effect of the angiotensin receptor-neprilysin inhibitor sacubitril/valsartan on the pharmacokinetics and pharmacodynamics of a single dose of furosemide. Br J Clin Pharmacol 2018; 84:926-936. [PMID: 29318651 PMCID: PMC5903241 DOI: 10.1111/bcp.13505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/05/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022] Open
Abstract
Aims Sacubitril/valsartan is indicated for the treatment of heart failure and reduced ejection fraction (HFrEF). Furosemide, a loop diuretic commonly used for the treatment of HFrEF, may be coadministered with sacubitril/valsartan in clinical practice. The effect of sacubitril/valsartan on the pharmacokinetics and pharmacodynamics of furosemide was evaluated in this open label, two‐period, single‐sequence study in healthy subjects. Methods All subjects (n = 28) received 40 mg oral single‐dose furosemide during period 1, followed by a washout of 2 days. In period 2, sacubitril/valsartan 200 mg (97/103 mg) was administered twice daily for 5 days and a single dose of 40 mg furosemide was coadministered on day 6. Serial plasma and urine samples were collected to determine the pharmacokinetics of furosemide and sacubitril/valsartan and the pharmacodynamics of furosemide. The point estimates and the associated 90% confidence intervals for pharmacokinetic parameters were evaluated. Results Coadministration of furosemide with sacubitril/valsartan decreased the maximum observed plasma concentration (Cmax) [estimated geometric mean ratio (90% confidence interval): 0.50 (0.44, 0.56)], area under the plasma concentration–time curve (AUC) from time 0 to infinity [0.72 (0.67, 0.77)] and 24‐h urinary excretion of furosemide [0.74 (0.69, 0.79)]. When coadministered with sacubitril/valsartan, 0–4‐h, 4–8‐h and 0–24‐h diuresis in response to furosemide was reduced by ~7%, 21% and 0.2%, respectively, while natriuresis was reduced by ~ 28.5%, 7% and 15%, respectively. Post hoc analysis of the pivotal phase III Prospective comparison of ARNI with ACEI to Determine Impact on Global Mortality and morbidity in Heart Failure trial (PARADIGM‐HF) indicated that the median furosemide dose was similar at baseline and at the end of the study in the sacubitril/valsartan group. Conclusions Sacubitril/valsartan reduced plasma Cmax and AUC and 24‐h urinary excretion of furosemide, while not significantly affecting its pharmacodynamic effects in healthy subjects.
Collapse
Affiliation(s)
| | - Uwe Schuehly
- Translational Medicine, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Parasar Pal
- Biostatistical Sciences, Novartis Healthcare Pvt. Ltd., Hyderabad, India
| | - Fabian Chen
- Clinical Development, Novartis Pharmaceuticals, East Hanover, NJ, USA
| | - Wei Zhou
- Novartis Institutes for BioMedical Research, East Hanover, NJ, USA
| | | | - Thomas H Langenickel
- Translational Medicine, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
179
|
Wright DFB, Dalbeth N, Phipps-Green AJ, Merriman TR, Barclay ML, Drake J, Tan P, Horne A, Stamp LK. The impact of diuretic use and ABCG2 genotype on the predictive performance of a published allopurinol dosing tool. Br J Clin Pharmacol 2018; 84:937-943. [PMID: 29341237 DOI: 10.1111/bcp.13516] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/31/2017] [Accepted: 01/09/2018] [Indexed: 01/12/2023] Open
Abstract
AIM This research aims to evaluate the predictive performance of a published allopurinol dosing tool. METHODS Allopurinol dose predictions were compared to the actual dose required to achieve serum urate (SU) <0.36 mmol l-1 using mean prediction error. The influence of patient factors on dose predictions was explored using multilinear regression. RESULTS Allopurinol doses were overpredicted by the dosing tool; however, this was minimal in patients without diuretic therapy (MPE 63 mg day-1 , 95% CI 40-87) compared to those receiving diuretics (MPE 295 mg day-1 , 95% CI 260-330, P < 0.0001). ABCG2 genotype (rs2231142, G>T) had an important impact on the dose predictions (MPE 201, 107, 15 mg day-1 for GG, GT and TT, respectively, P < 0.0001). Diuretic use and ABCG2 genotype explained 53% of the variability in prediction error (R2 = 0.53, P = 0.0004). CONCLUSIONS The dosing tool produced acceptable maintenance dose predictions for patients not taking diuretics. Inclusion of ABCG2 genotype and a revised adjustment for diuretics would further improve the performance of the dosing tool.
Collapse
Affiliation(s)
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | | | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Murray L Barclay
- Department of Medicine, University of Otago, Christchurch, New Zealand.,Department of Clinical Pharmacology, Christchurch Hospital, Christchurch, New Zealand
| | - Jill Drake
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Paul Tan
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Anne Horne
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
180
|
Zhang Z, Chu S, Wang S, Jiang Y, Gao Y, Yang P, Ai Q, Chen N. RTP801 is a critical factor in the neurodegeneration process of A53T α-synuclein in a mouse model of Parkinson's disease under chronic restraint stress. Br J Pharmacol 2018; 175:590-605. [PMID: 29130486 PMCID: PMC5786460 DOI: 10.1111/bph.14091] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Recently, the incidence of Parkinson's disease has shown a tendency to move to a younger population, linked to the constantly increasing stressors of modern society. However, this relationship remains obscure. Here, we have investigated the contribution of stress and the mechanisms underlying this change. EXPERIMENTAL APPROACH Ten-month-old α-synuclein A53T mice, a model of Parkinson's disease (PD), were treated with chronic restraint stress (CRS) to simulate a PD-sensitive person with constant stress stimulation. PD-like behavioural tests and pathological changes were evaluated. Differentiated PC12-A53T cells were treated with corticosterone in vitro. We used Western blot, microRNA expression analysis, immunofluorescence staining, dual luciferase reporter assay and HPLC electrochemical detection to assess cellular and molecular networks after stress treatment. In vivo, stereotaxic injection of shRNA lentivirus was used to confirm our in vitro results. KEY RESULTS The protein RTP801 is encoded by DNA-damage-inducible transcript 4, and it was specifically increased in dopaminergic neurons of the substantia nigra after CRS treatment. RTP801 was post-transcriptionally inhibited by the down-regulation of miR-7. Delayed turnover of RTP801, through the inhibition of proteasome degradation also contributed to its high content. Elevated RTP801 blocked autophagy, thus increasing accumulation of oligomeric α-synuclein and aggravating endoplasmic reticulum stress. RTP801 inhibition alleviated the symptoms of neurodegeneration during this process. CONCLUSIONS AND IMPLICATIONS RTP801 is a promising target for the treatment of PD, especially for PD-sensitive patients who live under increased social pressure. Down-regulation of RTP801 could inhibit the current tendency to an earlier onset of PD.
Collapse
Affiliation(s)
- Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience CenterChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shi‐Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience CenterChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Sha‐Sha Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience CenterChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- School of Basic MedicineShanxi University of Traditional Chinese MedicineShanxiChina
| | - Yi‐Na Jiang
- College of PharmacyHunan University of Chinese MedicineChangshaChina
| | - Yan Gao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience CenterChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Peng‐Fei Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience CenterChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qi‐Di Ai
- College of PharmacyHunan University of Chinese MedicineChangshaChina
| | - Nai‐Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience CenterChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- College of PharmacyHunan University of Chinese MedicineChangshaChina
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
- School of Basic MedicineShanxi University of Traditional Chinese MedicineShanxiChina
| |
Collapse
|
181
|
Flores-Costa R, Alcaraz-Quiles J, Titos E, López-Vicario C, Casulleras M, Duran-Güell M, Rius B, Diaz A, Hall K, Shea C, Sarno R, Currie M, Masferrer JL, Clària J. The soluble guanylate cyclase stimulator IW-1973 prevents inflammation and fibrosis in experimental non-alcoholic steatohepatitis. Br J Pharmacol 2018; 175:953-967. [PMID: 29281143 PMCID: PMC5825296 DOI: 10.1111/bph.14137] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Non-alcoholic steatohepatitis (NASH) is the hepatic manifestation of metabolic syndrome and is characterized by steatosis, inflammation and fibrosis. Soluble guanylate cyclase (sGC) stimulation reduces inflammation and fibrosis in experimental models of lung, kidney and heart disease. Here, we tested whether sGC stimulation is also effective in experimental NASH. EXPERIMENTAL APPROACH NASH was induced in mice by feeding a choline-deficient, l-amino acid-defined, high-fat diet. These mice received either placebo or the sGC stimulator IW-1973 at two different doses (1 and 3 mg·kg-1 ·day-1 ) for 9 weeks. IW-1973 was also tested in high-fat diet (HFD)-induced obese mice. Steatosis, inflammation and fibrosis were assessed by Oil Red O, haematoxylin-eosin, Masson's trichrome, Sirius Red, F4/80 and α-smooth muscle actin staining. mRNA expression was assessed by quantitative PCR. Levels of IW-1973, cytokines and cGMP were determined by LC-MS/MS, Luminex and enzyme immunoassay respectively. KEY RESULTS Mice with NASH showed reduced cGMP levels and sGC expression, increased steatosis, inflammation, fibrosis, TNF-α and MCP-1 levels and up-regulated collagen types I α1 and α2, MMP2, TGF-β1 and tissue metallopeptidase inhibitor 1 expression. IW-1973 restored hepatic cGMP levels and sGC expression resulting in a dose-dependent reduction of hepatic inflammation and fibrosis. IW-1973 levels were ≈40-fold higher in liver tissue than in plasma. IW-1973 also reduced hepatic steatosis and adipocyte hypertrophy secondary to enhanced autophagy in HFD-induced obese mice. CONCLUSIONS AND IMPLICATIONS Our data indicate that sGC stimulation prevents hepatic steatosis, inflammation and fibrosis in experimental NASH. These findings warrant further evaluation of IW-1973 in the clinical setting.
Collapse
Affiliation(s)
- Roger Flores-Costa
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - José Alcaraz-Quiles
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Esther Titos
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain.,CIBERehd, Barcelona, Spain
| | - Cristina López-Vicario
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain.,CIBERehd, Barcelona, Spain
| | - Mireia Casulleras
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Marta Duran-Güell
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Bibiana Rius
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Alba Diaz
- Department of Pathology, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | | | | | - Renee Sarno
- Ironwood Pharmaceuticals Inc., Cambridge, MA, USA
| | - Mark Currie
- Ironwood Pharmaceuticals Inc., Cambridge, MA, USA
| | | | - Joan Clària
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain.,CIBERehd, Barcelona, Spain.,Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain.,European Foundation for the Study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain
| |
Collapse
|
182
|
Yang F, Wang Y, Li G, Xue J, Chen ZL, Jin F, Luo L, Zhou X, Ma Q, Cai X, Li HR, Zhao L. Effects of corilagin on alleviating cholestasis via farnesoid X receptor-associated pathways in vitro and in vivo. Br J Pharmacol 2018; 175:810-829. [PMID: 29235094 DOI: 10.1111/bph.14126] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to investigate the ameliorative effects of corilagin on intrahepatic cholestasis induced by regulating liver farnesoid X receptor (FXR)-associated pathways in vitro and in vivo. EXPERIMENTAL APPROACH Cellular and animal models were treated with different concentrations of corilagin. In the cellular experiments, FXR expression was up-regulated by either lentiviral transduction or GW4064 treatment and down-regulated by either siRNA technology or treatment with guggulsterones. Real-time PCR and Western blotting were employed to detect the mRNA and protein levels of FXR, SHP1, SHP2, UGT2B4, BSEP, CYP7A1, CYP7B1, NTCP, MRP2 and SULT2A1. Immunohistochemistry was used to examine the expression of BSEP in liver tissues. Rat liver function and pathological changes in hepatic tissue were assessed using biochemical tests and haematoxylin and eosin staining. RESULTS Corilagin increased the mRNA and protein levels of FXR, SHP1, SHP2, UGT2B4, BSEP, MRP2 and SULT2A1, and decreased those of CYP7A1, CYP7B1 and NTCP. After either up- or down-regulating FXR using different methods, corilagin could still increase the mRNA and protein levels of FXR, SHP1, SHP2, UGT2B4, BSEP, MRP2 and SULT2A1 and decrease the protein levels of CYP7A1, CYP7B1 and NTCP, especially when administered at a high concentration. Corilagin also exerted a notable effect on the pathological manifestations of intrahepatic cholestasis, BSEP staining in liver tissues and liver function. CONCLUSIONS AND IMPLICATIONS Corilagin exerts a protective effect in hepatocytes and can prevent the deleterious activities of intrahepatic cholestasis by stimulating FXR-associated pathways.
Collapse
Affiliation(s)
- Fan Yang
- Department of Hepatology, Hubei Provincial Hospital of Chinese Medicine, Wuhan, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Li
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Juan Xue
- Department of Gastroenterology, Hubei Province Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, China
| | - Zhi-Lin Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Jin
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University and Shangdong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong, China
| | - Lei Luo
- School of First Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Xuan Zhou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Ma
- School of Life Science, Hubei University, Wuhan, China
| | - Xin Cai
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University and Shangdong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong, China
| | - Hua-Rong Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
183
|
Fernandez-Chas M, Curtis MJ, Niederer SA. Mechanism of doxorubicin cardiotoxicity evaluated by integrating multiple molecular effects into a biophysical model. Br J Pharmacol 2018; 175:763-781. [PMID: 29161764 DOI: 10.1111/bph.14104] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Doxorubicin (DOX) is an effective cancer therapeutic agent but causes therapy-limiting cardiotoxicity. The effects of DOX and its metabolite doxorubicinol (DOXL) on individual channels have been well characterized in isolation. However, it is unknown how the action and interaction of affected channels combine to generate the phenotypic cardiotoxic outcome. We sought to develop an in silico model that links drug effects on channels to action potential duration (APD) and intracellular Ca2+ concentration in order to address this gap in knowledge. EXPERIMENTAL APPROACH We first propose two methods to obtain, from published values, consensus drug effects on the currents of individual channels, transporters and pumps. Separately, we obtained equivalent values for APD and Ca2+ concentration (the readouts used as surrogates for cardiotoxicity). Once derived, the consensus effects on the currents were incorporated into established biophysical models of the cardiac myocyte and were refined adjusting the sarcoplasmic reticulum Ca2+ leak current (ILeak ) until the consensus effects on APD and Ca2+ dynamics were replicated. Using factorial analysis, we then quantified the relative contribution of each channel to DOX and DOXL cardiotoxicity. KEY RESULTS The factorial analysis identified the rapid delayed rectifying K+ current, the L-type Ca2+ current and the sarcoplasmic reticulum ILeak as the targets primarily responsible for the cardiotoxic effects on APD and Ca2+ dynamics. CONCLUSIONS AND IMPLICATIONS This study provides insight into the mechanisms of DOX-induced cardiotoxicity and a framework for the development of future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- M Fernandez-Chas
- Division of Imaging Sciences and Biomedical Engineering (MF, SAN) and Cardiovascular Division (MJC), King's College London, London, UK
| | - M J Curtis
- Division of Imaging Sciences and Biomedical Engineering (MF, SAN) and Cardiovascular Division (MJC), King's College London, London, UK
| | - S A Niederer
- Division of Imaging Sciences and Biomedical Engineering (MF, SAN) and Cardiovascular Division (MJC), King's College London, London, UK
| |
Collapse
|
184
|
Dehvari N, da Silva Junior ED, Bengtsson T, Hutchinson DS. Mirabegron: potential off target effects and uses beyond the bladder. Br J Pharmacol 2018; 175:4072-4082. [PMID: 29243229 DOI: 10.1111/bph.14121] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/16/2017] [Accepted: 11/16/2017] [Indexed: 12/31/2022] Open
Abstract
The β3 -adrenoceptor was initially an attractive target for several pharmaceutical companies due to its high expression in rodent adipose tissue, where its activation resulted in decreased adiposity and improved metabolic outputs (such as glucose handling) in animal models of obesity and Type 2 diabetes. However, several drugs acting at the β3 -adrenoceptor failed in clinical trials. This was thought to be due to their lack of efficacy at the human receptor. Recently, mirabegron, a β3 -adrenoceptor agonist with human efficacy, was approved in North America, Europe, Japan and Australia for the treatment of overactive bladder syndrome. There are indications that mirabegron may act at other receptors/targets, but whether they have any clinical relevance is relatively unknown. Besides overactive bladder syndrome, mirabegron may have other uses such as in the treatment of heart failure or metabolic disease. This review gives an overview of the off-target effects of mirabegron and its potential use in the treatment of other diseases. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Nodi Dehvari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | - Edilson Dantas da Silva Junior
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | - Dana Sabine Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
185
|
Rickli A, Liakoni E, Hoener MC, Liechti ME. Opioid-induced inhibition of the human 5-HT and noradrenaline transporters in vitro: link to clinical reports of serotonin syndrome. Br J Pharmacol 2018; 175:532-543. [PMID: 29210063 PMCID: PMC5773950 DOI: 10.1111/bph.14105] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 01/27/2023] Open
Abstract
Background and Purpose Opioids may inhibit the 5‐HT transporter (SERT) and the noradrenaline transporter (NET). NET inhibition may contribute to analgesia, and SERT inhibition or interactions with 5‐HT receptors may cause serotonergic toxicity. However, the effects of different opioids on the human SERT, NET and 5‐HT receptors have not been sufficiently studied. Experimental Approach We determined the potencies of different opioids to inhibit the SERT and NET in vitro using human transporter‐transfected HEK293 cells. We also tested binding affinities at 5‐HT1A, 5‐HT2A and 5‐HT2C receptors. Additionally, we assessed clinical cases of the serotonin syndrome associated with each opioid reported by PubMed and a World Health Organization database. Key Results Dextromethorphan, l(R)‐methadone, racemic methadone, pethidine, tramadol and tapentadol inhibited the SERT at or close to observed drug plasma or estimated brain concentrations in patients. Tapentadol was the most potent NET inhibitor. Pethidine, tramadol, l(R)‐methadone, racemic methadone, dextromethorphan and O‐desmethyltramadol also inhibited the NET. 6‐Monoacetylmorphine, buprenorphine, codeine, dihydrocodeine, heroin, hydrocodone, hydromorphone, morphine, oxycodone and oxymorphone did not inhibit the SERT or NET. Fentanyl interacted with 5‐HT1A receptors and methadone, pethidine and fentanyl with 5‐HT2A receptors, in the low micromolar range. Opioids most frequently associated with the serotonin syndrome are tramadol, fentanyl, tapentadol, oxycodone, methadone and dextromethorphan. Conclusions and Implications Some synthetic opioids interact with the SERT and NET at potentially clinically relevant concentrations. SERT inhibition by tramadol, tapentadol, methadone, dextromethorphan and pethidine may contribute to the serotonin syndrome. Direct effects on 5‐HT1A and/or 5‐HT2A receptors could be involved with methadone and pethidine.
Collapse
Affiliation(s)
- Anna Rickli
- Clinical Pharmacology and Toxicology, Department of Biomedicine, Department of Internal Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Evangelia Liakoni
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marius C Hoener
- Neuroscience Research, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Matthias E Liechti
- Clinical Pharmacology and Toxicology, Department of Biomedicine, Department of Internal Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
186
|
Talmon M, Rossi S, Pastore A, Cattaneo CI, Brunelleschi S, Fresu LG. Vortioxetine exerts anti-inflammatory and immunomodulatory effects on human monocytes/macrophages. Br J Pharmacol 2018; 175:113-124. [PMID: 29057467 PMCID: PMC5740236 DOI: 10.1111/bph.14074] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/05/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE A crosstalk between the immune system and depression has been postulated, with monocytes/macrophages and cytokines having a key role in this interaction. In this study, we examined whether vortioxetine, a multimodal anti-depressive drug, was endowed with anti-inflammatory and antioxidative activity, leading to immunomodulatory effects on human monocytes and macrophages. EXPERIMENTAL APPROACH Human monocytes were isolated from buffy coats and used as such or differentiated into M1 and M2 macrophages. Cells were treated with vortioxetine before or after differentiation, and their responsiveness was evaluated. This included oxy-radical and TNFα production, TNFα and PPARγ gene expression and NF-κB translocation. KEY RESULTS Vortioxetine significantly reduced the PMA-induced oxidative burst in monocytes and in macrophages (M1 and M2), causing a concomitant shift of macrophages from the M1 to the M2 phenotype, demonstrated by a significant decrease in the expression of the surface marker CD86 and an increase in CD206. Moreover, treatment of monocytes with vortioxetine rendered macrophages derived from this population less sensitive to PMA, as it reduced the oxidative burst, NF-kB translocation, TNFα release and expression while inducing PPARγ gene expression. FACS analysis showed a significant decrease in the CD14+ /CD16+ /CD86+ M1 population. CONCLUSIONS AND IMPLICATIONS These results demonstrate that in human monocytes/macrophages, vortioxetine has antioxidant activity and anti-inflammatory effects driving the polarization of macrophages towards their alternative phenotype. These findings suggest that vortioxetine, alongside its antidepressive effect, may have immunomodulatory properties.
Collapse
Affiliation(s)
- Maria Talmon
- Department of Health Sciences, School of MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Silvia Rossi
- Department of Health Sciences, School of MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Anna Pastore
- Department of Health Sciences, School of MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Carlo Ignazio Cattaneo
- Department of Health Sciences, School of MedicineUniversity of Piemonte OrientaleNovaraItaly
- Department of Mental Health, ASL NOCentre of Mental HealthNovaraItaly
| | - Sandra Brunelleschi
- Department of Health Sciences, School of MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Luigia Grazia Fresu
- Department of Health Sciences, School of MedicineUniversity of Piemonte OrientaleNovaraItaly
| |
Collapse
|
187
|
Abstract
Synthetic cathinones are derivatives of the naturally occurring compound cathinone, the main psychoactive ingredient in the khat plant Catha edulis. Cathinone is the β-keto analog of amphetamine, and all synthetic cathinones display a β-keto moiety in their structure. Several synthetic cathinones are widely prescribed medications (e.g., bupropion, Wellbutrin®), while others are problematic drugs of abuse (e.g., 4-methylmethcathinone, mephedrone). Similar to amphetamines, synthetic cathinones are psychomotor stimulants that exert their effects by impairing the normal function of plasma membrane transporters for dopamine (DAT), norepinephrine (NET), and 5-HT (SERT). Ring-substituted cathinones like mephedrone are transporter substrates that evoke neurotransmitter release by reversing the normal direction of transporter flux (i.e., releasers), whereas pyrrolidine-containing cathinones like 3,4-methylenedioxypyrovalerone (MDPV) are potent transporter inhibitors that block neurotransmitter uptake (i.e., blockers). Regardless of molecular mechanism, all synthetic cathinones increase extracellular monoamine concentrations in the brain, thereby enhancing cell-to-cell monoamine signaling. Here, we briefly review the mechanisms of action, structure-activity relationships, and in vivo pharmacology of synthetic cathinones. Overall, the findings show that certain synthetic cathinones are powerful drugs of abuse that could pose significant risk to users.
Collapse
|
188
|
Sun Y, Xia M, Yan H, Han Y, Zhang F, Hu Z, Cui A, Ma F, Liu Z, Gong Q, Chen X, Gao J, Bian H, Tan Y, Li Y, Gao X. Berberine attenuates hepatic steatosis and enhances energy expenditure in mice by inducing autophagy and fibroblast growth factor 21. Br J Pharmacol 2017; 175:374-387. [PMID: 29065221 DOI: 10.1111/bph.14079] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Berberine, a compound from rhizome coptidis, is traditionally used to treat gastrointestinal infections, such as bacterial diarrhoea. Recently, berberine was shown to have hypoglycaemic and hypolipidaemic effects. We investigated the mechanisms by which berberine regulates hepatic lipid metabolism and energy expenditure in mice. EXPERIMENTAL APPROACH Liver-specific SIRT1 knockout mice and their wild-type littermates were fed a high-fat, high-sucrose (HFHS) diet and treated with berberine by i.p. injection for five weeks. Mouse primary hepatocytes and human HepG2 cells were treated with berberine and then subjected to immunoblotting analysis and Oil Red O staining. KEY RESULTS Berberine attenuated hepatic steatosis and controlled energy balance in mice by inducing autophagy and FGF21. These beneficial effects of berberine on autophagy and hepatic steatosis were abolished by a deficiency of the nutrient sensor SIRT1 in the liver of HFHS diet-fed obese mice and in mouse primary hepatocytes. SIRT1 is essential for berberine to potentiate autophagy and inhibit lipid storage in mouse livers in response to fasting. Mechanistically, the berberine stimulates SIRT1 deacetylation activity and induces autophagy in an autophagy protein 5-dependent manner. Moreover, the administration of berberine was shown to promote hepatic gene expression and circulating levels of FGF21 and ketone bodies in mice in a SIRT1-dependent manner. CONCLUSIONS AND IMPLICATIONS Berberine acts in the liver to regulate lipid utilization and maintain whole-body energy metabolism by mediating autophagy and FGF21 activation. Hence, it has therapeutic potential for treating metabolic defects under nutritional overload, such as fatty liver diseases, type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Yixuan Sun
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Hongmei Yan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Yamei Han
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Feifei Zhang
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhimin Hu
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Aoyuan Cui
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhengshuai Liu
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qi Gong
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xuqing Chen
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Gao
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Pediatric Research Institute at the Department of Pediatrics, Wendy L. Novak Diabetes Care Center, University of Louisville, Louisville, KY, USA
| | - Yu Li
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| |
Collapse
|
189
|
Alexander SP, Kelly E, Marrion NV, Peters JA, Faccenda E, Harding SD, Pawson AJ, Sharman JL, Southan C, Davies JA. THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Transporters. Br J Pharmacol 2017; 174 Suppl 1:S360-S446. [PMID: 29055035 PMCID: PMC5650669 DOI: 10.1111/bph.13883] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2017/18 provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13883/full. Transporters are one of the eight major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2017, and supersedes data presented in the 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature Committee of the Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
Collapse
Affiliation(s)
- Stephen Ph Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Neil V Marrion
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Elena Faccenda
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Simon D Harding
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Adam J Pawson
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Joanna L Sharman
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Christopher Southan
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Jamie A Davies
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| |
Collapse
|
190
|
Cheung SYA, Rodgers T, Aarons L, Gueorguieva I, Dickinson GL, Murby S, Brown C, Collins B, Rowland M. Whole body physiologically based modelling of β-blockers in the rat: events in tissues and plasma following an i.v. bolus dose. Br J Pharmacol 2017; 175:67-83. [PMID: 29053169 DOI: 10.1111/bph.14071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 09/29/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Whole body physiologically based pharmacokinetic (PBPK) models have been increasingly applied in drug development to describe kinetic events of therapeutic agents in animals and humans. The advantage of such modelling is the ability to incorporate vast amounts of physiological information, such as organ blood flow and volume, to ensure that the model is as close to reality as possible. EXPERIMENTAL APPROACH Previous PBPK model development of enantiomers of a series of seven racemic β-blockers, namely, acebutolol, betaxolol, bisoprolol, metoprolol, oxprenolol, pindolol and propranolol, together with S-timolol in rat was based on tissue and blood concentration data at steady state. Compounds were administered in several cassettes with the composition mix and blood and tissue sampling times determined using a D-optimal design. KEY RESULTS Closed-loop PBPK models were developed initially based on the application of open loop forcing function models to individual tissues and compounds. For the majority of compounds and tissues, distribution kinetics was adequately characterized by perfusion rate-limited models. For some compounds in the testes and gut, a permeability rate-limited distribution model was required to best fit the data. Parameter estimates of the tissue-to-blood partition coefficient through fitting of individual enantiomers and of racemic pair were generally in agreement and also concur with those from previous steady-state experiments. CONCLUSIONS AND IMPLICATIONS PBPK modelling is a very powerful tool to aid drug discovery and development of therapeutic agents in animals and humans. However, careful consideration of the assumptions made during the modelling exercise is essential.
Collapse
Affiliation(s)
- S Y A Cheung
- Quantitative Clinical Pharmacology, Early Clinical Development, iMED AstraZeneca, Cambridge, UK
| | - T Rodgers
- Icon Development Solutions, Manchester, UK
| | - L Aarons
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Manchester, UK
| | | | | | - S Murby
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Manchester, UK
| | - C Brown
- Redx Pharma, Macclesfield, UK
| | - B Collins
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Manchester, UK
| | - M Rowland
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Manchester, UK
| |
Collapse
|