151
|
Eroglu FK, Aerts Kaya F, Cagdas D, Özgür TT, Yılmaz T, Tezcan İ, Sanal Ö. B lymphocyte subsets and outcomes in patients with an initial diagnosis of transient hypogammaglobulinemia of infancy. Scand J Immunol 2018; 88:e12709. [PMID: 30152873 DOI: 10.1111/sji.12709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/18/2018] [Accepted: 08/20/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE Transient hypogammaglobulinemia of infancy (THI) is a common immunodeficiency, but definitive diagnosis can only be made retrospectively. While the pathogenesis is still unknown, abnormalities have been reported in the B cell compartment. In this study, we analysed the B cell subsets of patients with an initial THI diagnosis (n = 20) and compared them with those of healthy age-matched Turkish children (n = 72). METHODS Flow cytometric analyses of the B subsets were performed by staining with anti-CD27-PE, anti-CD19-PerCP, anti-IgD-FITC and anti-IgM-APC antibodies. RESULTS During a median follow-up of 6.6 years, 13 patients whose IgG levels had normalized before they reached four years of age were diagnosed with definitive THI. The memory subsets of these patients were lower but not statistically different from the healthy controls (HC). The remaining seven patients had prolonged hypogammaglobulinemia after the age of four and had significantly lower memory B cell subsets compared to the HC. On follow-up, these patients had not experienced recurrent infections or autoimmunity. Re-evaluation of patients' B cell subsets six years later showed that the memory B cell ratios had increased to levels comparable to HC, despite the patients still having mildly low IgG levels. CONCLUSION Patients with prolonged hypogammaglobulinemia had lower levels of memory B cells despite having a similar clinical course to patients who had been diagnosed with definitive THI. This subgroup of putative THI patients poses a diagnostic and classification dilemma. Our results suggested that these patients' memory B cells and IgG levels may recover over time.
Collapse
Affiliation(s)
- Fehime K Eroglu
- Department of Pediatric Nephrology, Dr. Sami Ulus Maternity and Children Training and Research Hospital, Ankara, Turkey
| | - Fatima Aerts Kaya
- Center for Stem Cell Research and Development (PEDI-STEM), Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Deniz Cagdas
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Tuba Turul Özgür
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Togay Yılmaz
- Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - İlhan Tezcan
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Özden Sanal
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
152
|
Nechvatalova J, Bartol SJW, Chovancova Z, Boon L, Vlkova M, van Zelm MC. Absence of Surface IgD Does Not Impair Naive B Cell Homeostasis or Memory B Cell Formation in IGHD Haploinsufficient Humans. THE JOURNAL OF IMMUNOLOGY 2018; 201:1928-1935. [DOI: 10.4049/jimmunol.1800767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
|
153
|
Schramm CA, Douek DC. Beyond Hot Spots: Biases in Antibody Somatic Hypermutation and Implications for Vaccine Design. Front Immunol 2018; 9:1876. [PMID: 30154794 PMCID: PMC6102386 DOI: 10.3389/fimmu.2018.01876] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/30/2018] [Indexed: 11/15/2022] Open
Abstract
The evolution of antibodies in an individual during an immune response by somatic hypermutation (SHM) is essential for the ability of the immune system to recognize and remove the diverse spectrum of antigens that may be encountered. These mutations are not produced at random; nucleotide motifs that result in increased or decreased rates of mutation were first reported in 1992. Newer models that estimate the propensity for mutation for every possible 5- or 7-nucleotide motif have emphasized the complexity of SHM targeting and suggested possible new hot spot motifs. Even with these fine-grained approaches, however, non-local context matters, and the mutations observed at a specific nucleotide motif varies between species and even by locus, gene segment, and position along the gene segment within a single species. An alternative method has been provided to further abstract away the molecular mechanisms underpinning SHM, prompted by evidence that certain stereotypical amino acid substitutions are favored at each position of a particular V gene. These "substitution profiles," whether obtained from a single B cell lineage or an entire repertoire, offer a simplified approach to predict which substitutions will be well-tolerated and which will be disfavored, without the need to consider path-dependent effects from neighboring positions. However, this comes at the cost of merging the effects of two distinct biological processes, the generation of mutations, and the selection acting on those mutations. Since selection is contingent on the particular antigens an individual has been exposed to, this suggests that SHM may have evolved to prefer mutations that are most likely to be useful against pathogens that have co-evolved with us. Alternatively, the ability to select favorable mutations may be strongly limited by the biases of SHM targeting. In either scenario, the sequence space explored by SHM is significantly limited and this consequently has profound implications for the rational design of vaccine strategies.
Collapse
Affiliation(s)
- Chaim A. Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| |
Collapse
|
154
|
Avery DT, Kane A, Nguyen T, Lau A, Nguyen A, Lenthall H, Payne K, Shi W, Brigden H, French E, Bier J, Hermes JR, Zahra D, Sewell WA, Butt D, Elliott M, Boztug K, Meyts I, Choo S, Hsu P, Wong M, Berglund LJ, Gray P, O'Sullivan M, Cole T, Holland SM, Ma CS, Burkhart C, Corcoran LM, Phan TG, Brink R, Uzel G, Deenick EK, Tangye SG. Germline-activating mutations in PIK3CD compromise B cell development and function. J Exp Med 2018; 215:2073-2095. [PMID: 30018075 PMCID: PMC6080914 DOI: 10.1084/jem.20180010] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/15/2018] [Accepted: 06/20/2018] [Indexed: 11/04/2022] Open
Abstract
Gain-of-function (GOF) mutations in PIK3CD, encoding the p110δ subunit of phosphatidylinositide 3-kinase (PI3K), cause a primary immunodeficiency. Affected individuals display impaired humoral immune responses following infection or immunization. To establish mechanisms underlying these immune defects, we studied a large cohort of patients with PIK3CD GOF mutations and established a novel mouse model using CRISPR/Cas9-mediated gene editing to introduce a common pathogenic mutation in Pik3cd In both species, hyperactive PI3K severely affected B cell development and differentiation in the bone marrow and the periphery. Furthermore, PI3K GOF B cells exhibited intrinsic defects in class-switch recombination (CSR) due to impaired induction of activation-induced cytidine deaminase (AID) and failure to acquire a plasmablast gene signature and phenotype. Importantly, defects in CSR, AID expression, and Ig secretion were restored by leniolisib, a specific p110δ inhibitor. Our findings reveal key roles for balanced PI3K signaling in B cell development and long-lived humoral immunity and memory and establish the validity of treating affected individuals with p110δ inhibitors.
Collapse
Affiliation(s)
- Danielle T Avery
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Alisa Kane
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia.,Department of Immunology and Allergy, Liverpool Hospital, Liverpool, New South Wales, Australia.,South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia.,Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia
| | - Tina Nguyen
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia
| | - Anthony Lau
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia
| | - Akira Nguyen
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia
| | - Helen Lenthall
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Kathryn Payne
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Wei Shi
- Molecular Immunology and Bioinformatics Divisions, Walter & Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia.,University of Melbourne, Parkville, Victoria, Australia
| | - Henry Brigden
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Elise French
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Julia Bier
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia
| | - Jana R Hermes
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - David Zahra
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - William A Sewell
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia.,Immunology Department, SydPath, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - Danyal Butt
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia
| | - Michael Elliott
- Sydney Medical School, University of Sydney, Sydney, Australia.,Chris O'Brien Lifehouse Cancer Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,St. Anna Children's Hospital and Children's Cancer Research Institute, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Isabelle Meyts
- Department of Immunology and Microbiology, Childhood Immunology, Department of Pediatrics, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Sharon Choo
- Department of Allergy and Immunology, Royal Children's Hospital Melbourne, Victoria, Australia
| | - Peter Hsu
- Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia.,Children's Hospital at Westmead, New South Wales, Australia
| | - Melanie Wong
- Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia.,Children's Hospital at Westmead, New South Wales, Australia
| | - Lucinda J Berglund
- Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia.,Immunopathology Department, Westmead Hospital, Westmead, New South Wales, Australia.,Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Paul Gray
- Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia.,University of New South Wales School of Women's and Children's Health, New South Wales, Australia
| | - Michael O'Sullivan
- Department of Immunology and Allergy, Princess Margaret Hospital, Subiaco, Western Australia, Australia
| | - Theresa Cole
- Department of Allergy and Immunology, Royal Children's Hospital Melbourne, Victoria, Australia
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia.,Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia
| | - Christoph Burkhart
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Lynn M Corcoran
- Molecular Immunology and Bioinformatics Divisions, Walter & Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia.,University of Melbourne, Parkville, Victoria, Australia
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia.,Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia.,Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Elissa K Deenick
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia .,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia.,Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia .,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia.,Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia
| |
Collapse
|
155
|
Piper CJM, Wilkinson MGL, Deakin CT, Otto GW, Dowle S, Duurland CL, Adams S, Marasco E, Rosser EC, Radziszewska A, Carsetti R, Ioannou Y, Beales PL, Kelberman D, Isenberg DA, Mauri C, Nistala K, Wedderburn LR. CD19 +CD24 hiCD38 hi B Cells Are Expanded in Juvenile Dermatomyositis and Exhibit a Pro-Inflammatory Phenotype After Activation Through Toll-Like Receptor 7 and Interferon-α. Front Immunol 2018; 9:1372. [PMID: 29988398 PMCID: PMC6024011 DOI: 10.3389/fimmu.2018.01372] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/04/2018] [Indexed: 01/12/2023] Open
Abstract
Juvenile dermatomyositis (JDM) is a rare form of childhood autoimmune myositis that presents with proximal muscle weakness and skin rash. B cells are strongly implicated in the pathogenesis of the disease, but the underlying mechanisms are unknown. Therefore, the main objective of our study was to investigate mechanisms driving B cell lymphocytosis and define pathological features of B cells in JDM patients. Patients were recruited through the UK JDM Cohort and Biomarker study. Peripheral blood B cell subpopulations were immunophenotyped by flow cytometry. The results identified that immature transitional B cells were significantly expanded in active JDM, actively dividing, and correlated positively with disease activity. Protein and RNAseq analysis revealed high interferon alpha (IFNα) and TLR7-pathway signatures pre-treatment. Stimulation of B cells through TLR7/8 promoted both IL-10 and IL-6 production in controls but failed to induce IL-10 in JDM patient cells. Interrogation of the CD40–CD40L pathway (known to induce B cell IL-10 and IL-6) revealed similar expression of IL-10 and IL-6 in B cells cultured with CD40L from both JDM patients and controls. In conclusion, JDM patients with active disease have a significantly expanded immature transitional B cell population which correlated with the type I IFN signature. Activation through TLR7 and IFNα may drive the expansion of immature transitional B cells in JDM and skew the cells toward a pro-inflammatory phenotype.
Collapse
Affiliation(s)
| | - Meredyth G Ll Wilkinson
- Centre for Rheumatology, University College London, London, United Kingdom.,Centre for Adolescent Rheumatology, Arthritis Research UK, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom
| | - Claire T Deakin
- Centre for Adolescent Rheumatology, Arthritis Research UK, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom.,Infection, Inflammation and Rheumatology Section, University College London, Great Ormond Street Institute of Child Health, London, United Kingdom.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Georg W Otto
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom.,Experimental and Personalised Medicine, Genetics and Genomic Medicine, University College London, Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Stefanie Dowle
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom.,Experimental and Personalised Medicine, Genetics and Genomic Medicine, University College London, Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Chantal L Duurland
- Infection, Inflammation and Rheumatology Section, University College London, Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Stuart Adams
- Haematology, Specialist Integrated Haematological Malignancy Diagnostic Service (SIHMDS), Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Emiliano Marasco
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino Gesù IRCSS, Rome, Italy
| | - Elizabeth C Rosser
- Infection, Inflammation and Rheumatology Section, University College London, Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Anna Radziszewska
- Centre for Rheumatology, University College London, London, United Kingdom.,Centre for Adolescent Rheumatology, Arthritis Research UK, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom
| | - Rita Carsetti
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino Gesù IRCSS, Rome, Italy
| | - Yiannis Ioannou
- Centre for Rheumatology, University College London, London, United Kingdom.,Centre for Adolescent Rheumatology, Arthritis Research UK, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom
| | - Philip L Beales
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom.,Experimental and Personalised Medicine, Genetics and Genomic Medicine, University College London, Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Daniel Kelberman
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom.,Experimental and Personalised Medicine, Genetics and Genomic Medicine, University College London, Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David A Isenberg
- Centre for Rheumatology, University College London, London, United Kingdom.,Centre for Adolescent Rheumatology, Arthritis Research UK, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom
| | - Claudia Mauri
- Centre for Rheumatology, University College London, London, United Kingdom
| | - Kiran Nistala
- Centre for Rheumatology, University College London, London, United Kingdom
| | - Lucy R Wedderburn
- Centre for Adolescent Rheumatology, Arthritis Research UK, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom.,Infection, Inflammation and Rheumatology Section, University College London, Great Ormond Street Institute of Child Health, London, United Kingdom.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
156
|
Bigley V, Maisuria S, Cytlak U, Jardine L, Care MA, Green K, Gunawan M, Milne P, Dickinson R, Wiscombe S, Parry D, Doffinger R, Laurence A, Fonseca C, Stoevesandt O, Gennery A, Cant A, Tooze R, Simpson AJ, Hambleton S, Savic S, Doody G, Collin M. Biallelic interferon regulatory factor 8 mutation: A complex immunodeficiency syndrome with dendritic cell deficiency, monocytopenia, and immune dysregulation. J Allergy Clin Immunol 2018; 141:2234-2248. [PMID: 29128673 PMCID: PMC5986711 DOI: 10.1016/j.jaci.2017.08.044] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/08/2017] [Accepted: 08/31/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND The homozygous K108E mutation of interferon regulatory factor 8 (IRF8) is reported to cause dendritic cell (DC) and monocyte deficiency. However, more widespread immune dysfunction is predicted from the multiple roles ascribed to IRF8 in immune cell development and function. OBJECTIVE We sought to describe the effect on hematopoiesis and immunity of the compound heterozygous R83C/R291Q mutation of IRF8, which is present in a patient with recurrent viral infection, granuloproliferation, and intracerebral calcification. METHODS Variant IRF8 alleles were identified by means of exome sequencing, and their function was tested by using reporter assays. The cellular phenotype was studied in detail by using flow cytometry, functional immunologic assay transcriptional profiling, and antigen receptor profiling. RESULTS Both mutations affected conserved residues, and R291Q is orthologous to R294, which is mutated in the BXH2 IRF8-deficient mouse. R83C showed reduced nuclear translocation, and neither mutant was able to regulate the Ets/IRF composite element or interferon-stimulated response element, whereas R291Q retained BATF/JUN interactions. DC deficiency and monocytopenia were observed in blood, dermis, and lung lavage fluid. Granulocytes were consistently increased, dysplastic, and hypofunctional. Natural killer cell development and maturation were arrested. TH1, TH17, and CD8+ memory T-cell differentiation was significantly reduced, and T cells did not express CXCR3. B-cell development was impaired, with fewer memory cells, reduced class-switching, and lower frequency and complexity of somatic hypermutation. Cell-specific gene expression was widely disturbed in interferon- and IRF8-regulated transcripts. CONCLUSIONS This analysis defines the clinical features of human biallelic IRF8 deficiency, revealing a complex immunodeficiency syndrome caused by DC and monocyte deficiency combined with widespread immune dysregulation.
Collapse
Affiliation(s)
- Venetia Bigley
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
| | - Sheetal Maisuria
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Urszula Cytlak
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Laura Jardine
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Matthew A Care
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Kile Green
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Merry Gunawan
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paul Milne
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel Dickinson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sarah Wiscombe
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Parry
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Arian Laurence
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Claudia Fonseca
- Cambridge Protein Arrays, Babraham Research Campus, Cambridge, United Kingdom
| | - Oda Stoevesandt
- Cambridge Protein Arrays, Babraham Research Campus, Cambridge, United Kingdom
| | - Andrew Gennery
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Andrew Cant
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Reuben Tooze
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - A John Simpson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Sophie Hambleton
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Sinisa Savic
- National Institute for Health Research-Leeds Musculoskeletal Biomedical Research Unit and Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Gina Doody
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Matthew Collin
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
157
|
Blanco E, Pérez-Andrés M, Arriba-Méndez S, Contreras-Sanfeliciano T, Criado I, Pelak O, Serra-Caetano A, Romero A, Puig N, Remesal A, Torres Canizales J, López-Granados E, Kalina T, Sousa AE, van Zelm M, van der Burg M, van Dongen JJ, Orfao A. Age-associated distribution of normal B-cell and plasma cell subsets in peripheral blood. J Allergy Clin Immunol 2018; 141:2208-2219.e16. [DOI: 10.1016/j.jaci.2018.02.017] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/15/2017] [Accepted: 02/05/2018] [Indexed: 01/12/2023]
|
158
|
Ding Y, Zhou L, Xia Y, Wang W, Wang Y, Li L, Qi Z, Zhong L, Sun J, Tang W, Liang F, Xiao H, Qin T, Luo Y, Zhao X, Shu Z, Ru Y, Dai R, Wang H, Wang Y, Zhang Y, Zhang S, Gao C, Du H, Zhang X, Chen Z, Wang X, Song H, Yang J, Zhao X. Reference values for peripheral blood lymphocyte subsets of healthy children in China. J Allergy Clin Immunol 2018; 142:970-973.e8. [PMID: 29746882 DOI: 10.1016/j.jaci.2018.04.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 04/23/2018] [Accepted: 04/30/2018] [Indexed: 11/25/2022]
Affiliation(s)
- Yuan Ding
- Ministry of Education, Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- Ministry of Education, Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Xia
- Department of Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Wei Wang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ying Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Li Li
- Ministry of Education, Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongxiang Qi
- Department of Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Linqing Zhong
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Wenjing Tang
- Ministry of Education, Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Fangfang Liang
- Department of Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Haijuan Xiao
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tao Qin
- Ministry of Education, Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Luo
- Department of Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xuezhen Zhao
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhou Shu
- Ministry of Education, Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Ru
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rongxin Dai
- Ministry of Education, Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanping Wang
- Ministry of Education, Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yongjie Zhang
- Ministry of Education, Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Suqian Zhang
- Ministry of Education, Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Cong Gao
- Ministry of Education, Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongqiang Du
- Ministry of Education, Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan Zhang
- Ministry of Education, Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaolong Chen
- Ministry of Education, Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China.
| | - Hongmei Song
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Jun Yang
- Department of Immunology, Shenzhen Children's Hospital, Shenzhen, China.
| | - Xiaodong Zhao
- Ministry of Education, Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
159
|
Katikaneni DS, Jin L. B cell MHC class II signaling: A story of life and death. Hum Immunol 2018; 80:37-43. [PMID: 29715484 DOI: 10.1016/j.humimm.2018.04.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/08/2018] [Accepted: 04/25/2018] [Indexed: 01/17/2023]
Abstract
MHC class II regulates B cell activation, proliferation, and differentiation during cognate B cell-T cell interaction. This is, in part, due to the MHC class II signaling in B cells. Activation of MHC Class II in human B cells or "primed" murine B cells leads to tyrosine phosphorylation, calcium mobilization, AKT, ERK, JNK activation. In addition, crosslinking MHC class II with monoclonal Abs kill malignant human B cells. Several humanized anti-HLA-DR/MHC class II monoclonal Abs entered clinical trials for lymphoma/leukemia and MHC class II-expressing melanomas. Mechanistically, MHC class II is associated with a wealth of transmembrane proteins including the B cell-specific signaling proteins CD79a/b, CD19 and a group of four-transmembrane proteins including tetraspanins and the apoptotic protein MPYS/STING. Furthermore, MHC class II signals are compartmentalized in the tetraspanin-enriched microdomains. In this review, we discuss our current understanding of MHC class II signaling in B cells focusing on its physiological significance and the therapeutic potential.
Collapse
Affiliation(s)
- Divya Sai Katikaneni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
160
|
Waltari E, Jia M, Jiang CS, Lu H, Huang J, Fernandez C, Finzi A, Kaufmann DE, Markowitz M, Tsuji M, Wu X. 5' Rapid Amplification of cDNA Ends and Illumina MiSeq Reveals B Cell Receptor Features in Healthy Adults, Adults With Chronic HIV-1 Infection, Cord Blood, and Humanized Mice. Front Immunol 2018; 9:628. [PMID: 29632541 PMCID: PMC5879793 DOI: 10.3389/fimmu.2018.00628] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/13/2018] [Indexed: 12/17/2022] Open
Abstract
Using 5′ rapid amplification of cDNA ends, Illumina MiSeq, and basic flow cytometry, we systematically analyzed the expressed B cell receptor (BCR) repertoire in 14 healthy adult PBMCs, 5 HIV-1+ adult PBMCs, 5 cord blood samples, and 3 HIS-CD4/B mice, examining the full-length variable region of μ, γ, α, κ, and λ chains for V-gene usage, somatic hypermutation (SHM), and CDR3 length. Adding to the known repertoire of healthy adults, Illumina MiSeq consistently detected small fractions of reads with high mutation frequencies including hypermutated μ reads, and reads with long CDR3s. Additionally, the less studied IgA repertoire displayed similar characteristics to that of IgG. Compared to healthy adults, the five HIV-1 chronically infected adults displayed elevated mutation frequencies for all μ, γ, α, κ, and λ chains examined and slightly longer CDR3 lengths for γ, α, and λ. To evaluate the reconstituted human BCR sequences in a humanized mouse model, we analyzed cord blood and HIS-CD4/B mice, which all lacked the typical SHM seen in the adult reference. Furthermore, MiSeq revealed identical unmutated IgM sequences derived from separate cell aliquots, thus for the first time demonstrating rare clonal members of unmutated IgM B cells by sequencing.
Collapse
Affiliation(s)
- Eric Waltari
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| | - Manxue Jia
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| | - Caroline S Jiang
- Hospital Biostatistics, The Rockefeller University, New York, NY, United States
| | - Hong Lu
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| | - Jing Huang
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| | - Cristina Fernandez
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| | - Andrés Finzi
- Centre de Recherche du CHUM, Université de Montréal, Montreal, QC, Canada
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Université de Montréal, Montreal, QC, Canada.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, United States
| | - Martin Markowitz
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| | - Xueling Wu
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| |
Collapse
|
161
|
Dzangué-Tchoupou G, Corneau A, Blanc C, Benveniste O, Allenbach Y. Analysis of cell surface and intranuclear markers on non-stimulated human PBMC using mass cytometry. PLoS One 2018; 13:e0194593. [PMID: 29566047 PMCID: PMC5864033 DOI: 10.1371/journal.pone.0194593] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/06/2018] [Indexed: 11/21/2022] Open
Abstract
Mass cytometry is a powerful tool that allows simultaneous analysis of more than 37 markers at the single cell level. Mass cytometry is of particular interest in the identification of a wide variety of cell phenotypes in autoimmune diseases. Moreover, cells can be labelled with palladium isotopes and pooled before staining (barcoding). Nevertheless, immunologists often face an important problem concerning the choice of markers to be included in a panel. This problem arises due to the incompatibility of different buffers used for the fixation and permeabilization of cells with various cell surface epitopes. In this study, we used a panel of 27 markers (19 surface markers and 8 intranuclear markers) to demonstrate disparities in the detection of cell surface antigens when comparing different buffers to stain unstimulated peripheral blood mononuclear cells. These disparities range from mild differences to very important differences in population frequencies depending on the buffers. Finally, we demonstrate the harmful effects of permeabilization prior to barcoding on the detection of some cell surface antigens. Here, we optimize a protocol that is suitable to use when targeting a large panel including both cell surface and intranuclear markers on unstimulated human peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Gaëlle Dzangué-Tchoupou
- Centre of research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR 974, Pitié-Salpêtrière University hospital, Paris, France
- * E-mail:
| | - Aurélien Corneau
- Plateforme de Cytométrie (CyPS), Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR 1135, Paris, France
| | - Catherine Blanc
- Plateforme de Cytométrie (CyPS), Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR 1135, Paris, France
| | - Olivier Benveniste
- Centre of research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR 974, Pitié-Salpêtrière University hospital, Paris, France
- Department of Internal medicine and clinical immunology, Pitié-Salpêtrière University hospital, DHU I2B, AP-HP, INSERM, UMR 974, Paris, France
| | - Yves Allenbach
- Centre of research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR 974, Pitié-Salpêtrière University hospital, Paris, France
- Department of Internal medicine and clinical immunology, Pitié-Salpêtrière University hospital, DHU I2B, AP-HP, INSERM, UMR 974, Paris, France
| |
Collapse
|
162
|
Ceronie B, Jacobs BM, Baker D, Dubuisson N, Mao Z, Ammoscato F, Lock H, Longhurst HJ, Giovannoni G, Schmierer K. Cladribine treatment of multiple sclerosis is associated with depletion of memory B cells. J Neurol 2018; 265:1199-1209. [PMID: 29550884 PMCID: PMC5937883 DOI: 10.1007/s00415-018-8830-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 12/13/2022]
Abstract
Background The mechanism of action of oral cladribine, recently licensed for relapsing multiple sclerosis, is unknown. Objective To determine whether cladribine depletes memory B cells consistent with our recent hypothesis that effective, disease-modifying treatments act by physical/functional depletion of memory B cells. Methods A cross-sectional study examined 40 people with multiple sclerosis at the end of the first cycle of alemtuzumab or injectable cladribine. The relative proportions and absolute numbers of peripheral blood B lymphocyte subsets were measured using flow cytometry. Cell-subtype expression of genes involved in cladribine metabolism was examined from data in public repositories. Results Cladribine markedly depleted class-switched and unswitched memory B cells to levels comparable with alemtuzumab, but without the associated initial lymphopenia. CD3+ T cell depletion was modest. The mRNA expression of metabolism genes varied between lymphocyte subsets. A high ratio of deoxycytidine kinase to group I cytosolic 5′ nucleotidase expression was present in B cells and was particularly high in mature, memory and notably germinal centre B cells, but not plasma cells. Conclusions Selective B cell cytotoxicity coupled with slow repopulation kinetics results in long-term, memory B cell depletion by cladribine. These may offer a new target, possibly with potential biomarker activity, for future drug development. Electronic supplementary material The online version of this article (10.1007/s00415-018-8830-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bryan Ceronie
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Benjamin M Jacobs
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - David Baker
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.
| | - Nicolas Dubuisson
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Zhifeng Mao
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Francesca Ammoscato
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Helen Lock
- Haematology Unit, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Hilary J Longhurst
- Haematology Unit, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Gavin Giovannoni
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.,Emergency Care and Acute Medicine Clinical Academic Group Neuroscience, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Klaus Schmierer
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.,Emergency Care and Acute Medicine Clinical Academic Group Neuroscience, The Royal London Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
163
|
|
164
|
Demoersman J, Pochard P, Framery C, Simon Q, Boisramé S, Soueidan A, Pers JO. B cell subset distribution is altered in patients with severe periodontitis. PLoS One 2018; 13:e0192986. [PMID: 29447240 PMCID: PMC5814041 DOI: 10.1371/journal.pone.0192986] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/01/2018] [Indexed: 01/10/2023] Open
Abstract
Several studies have recently highlighted the implication of B cells in physiopathogenesis of periodontal disease by showing that a B cell deficiency leads to improved periodontal parameters. However, the detailed profiles of circulating B cell subsets have not yet been investigated in patients with severe periodontitis (SP). We hypothesised that an abnormal distribution of B cell subsets could be detected in the blood of patients with severe periodontal lesions, as already reported for patients with chronic inflammatory diseases as systemic autoimmune diseases. Fifteen subjects with SP and 13 subjects without periodontitis, according to the definition proposed by the CDC periodontal disease surveillance work group, were enrolled in this pilot observational study. Two flow cytometry panels were designed to analyse the circulating B and B1 cell subset distribution in association with the RANKL expression. A significantly higher percentage of CD27+ memory B cells was observed in patients with SP. Among these CD27+ B cells, the proportion of the switched memory subset was significantly higher. At the same time, human B1 cells, which were previously associated with a regulatory function (CD20+CD69-CD43+CD27+CD11b+), decreased in SP patients. The RANKL expression increased in every B cell subset from the SP patients and was significantly greater in activated B cells than in the subjects without periodontitis. These preliminary results demonstrate the altered distribution of B cells in the context of severe periodontitis. Further investigations with a larger cohort of patients can elucidate if the analysis of the B cell compartment distribution can reflect the periodontal disease activity and be a reliable marker for its prognosis (clinical trial registration number: NCT02833285, B cell functions in periodontitis).
Collapse
Affiliation(s)
- Julien Demoersman
- UMR1227, Université de Brest, Inserm, Brest, France
- LabEx IGO, Brest, France
| | - Pierre Pochard
- UMR1227, Université de Brest, Inserm, Brest, France
- LabEx IGO, Brest, France
| | | | - Quentin Simon
- UMR1227, Université de Brest, Inserm, Brest, France
- LabEx IGO, Brest, France
| | | | - Assem Soueidan
- Department of Periodontology, CHU de Nantes, Nantes, France
- Rmes Inserm U1229/UIC11, Université de Nantes, Nantes, France
| | - Jacques-Olivier Pers
- UMR1227, Université de Brest, Inserm, Brest, France
- LabEx IGO, Brest, France
- Service d’odontologie, CHU Brest, Brest, France
- * E-mail:
| |
Collapse
|
165
|
Glaesener S, Jaenke C, Habener A, Geffers R, Hagendorff P, Witzlau K, Imelmann E, Krueger A, Meyer-Bahlburg A. Decreased production of class-switched antibodies in neonatal B cells is associated with increased expression of miR-181b. PLoS One 2018; 13:e0192230. [PMID: 29389970 PMCID: PMC5794184 DOI: 10.1371/journal.pone.0192230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/18/2018] [Indexed: 01/11/2023] Open
Abstract
The increased susceptibility to infections of neonates is caused by an immaturity of the immune system as a result of both qualitative and quantitative differences between neonatal and adult immune cells. With respect to B cells, neonatal antibody responses are known to be decreased. Accountable for this is an altered composition of the neonatal B cell compartment towards more immature B cells. However, it remains unclear whether the functionality of individual neonatal B cell subsets is altered as well. In the current study we therefore compared phenotypical and functional characteristics of corresponding neonatal and adult B cell subpopulations. No phenotypic differences could be identified with the exception of higher IgM expression in neonatal B cells. Functional analysis revealed differences in proliferation, survival, and B cell receptor signaling. Most importantly, neonatal B cells showed severely impaired class-switch recombination (CSR) to IgG and IgA. This was associated with increased expression of miR-181b in neonatal B cells. Deficiency of miR-181b resulted in increased CSR. With this, our results highlight intrinsic differences that contribute to weaker B cell antibody responses in newborns.
Collapse
Affiliation(s)
- Stephanie Glaesener
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Christine Jaenke
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anika Habener
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Hagendorff
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Katrin Witzlau
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Esther Imelmann
- Institute for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Andreas Krueger
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Almut Meyer-Bahlburg
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- * E-mail:
| |
Collapse
|
166
|
Farmer JR, Ong MS, Barmettler S, Yonker LM, Fuleihan R, Sullivan KE, Cunningham-Rundles C, Walter JE. Common Variable Immunodeficiency Non-Infectious Disease Endotypes Redefined Using Unbiased Network Clustering in Large Electronic Datasets. Front Immunol 2018; 8:1740. [PMID: 29375540 PMCID: PMC5767273 DOI: 10.3389/fimmu.2017.01740] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/23/2017] [Indexed: 02/02/2023] Open
Abstract
Common variable immunodeficiency (CVID) is increasingly recognized for its association with autoimmune and inflammatory complications. Despite recent advances in immunophenotypic and genetic discovery, clinical care of CVID remains limited by our inability to accurately model risk for non-infectious disease development. Herein, we demonstrate the utility of unbiased network clustering as a novel method to analyze inter-relationships between non-infectious disease outcomes in CVID using databases at the United States Immunodeficiency Network (USIDNET), the centralized immunodeficiency registry of the United States, and Partners, a tertiary care network in Boston, MA, USA, with a shared electronic medical record amenable to natural language processing. Immunophenotypes were comparable in terms of native antibody deficiencies, low titer response to pneumococcus, and B cell maturation arrest. However, recorded non-infectious disease outcomes were more substantial in the Partners cohort across the spectrum of lymphoproliferation, cytopenias, autoimmunity, atopy, and malignancy. Using unbiased network clustering to analyze 34 non-infectious disease outcomes in the Partners cohort, we further identified unique patterns of lymphoproliferative (two clusters), autoimmune (two clusters), and atopic (one cluster) disease that were defined as CVID non-infectious endotypes according to discrete and non-overlapping immunophenotypes. Markers were both previously described {high serum IgE in the atopic cluster [odds ratio (OR) 6.5] and low class-switched memory B cells in the total lymphoproliferative cluster (OR 9.2)} and novel [low serum C3 in the total lymphoproliferative cluster (OR 5.1)]. Mortality risk in the Partners cohort was significantly associated with individual non-infectious disease outcomes as well as lymphoproliferative cluster 2, specifically (OR 5.9). In contrast, unbiased network clustering failed to associate known comorbidities in the adult USIDNET cohort. Together, these data suggest that unbiased network clustering can be used in CVID to redefine non-infectious disease inter-relationships; however, applicability may be limited to datasets well annotated through mechanisms such as natural language processing. The lymphoproliferative, autoimmune, and atopic Partners CVID endotypes herein described can be used moving forward to streamline genetic and biomarker discovery and to facilitate early screening and intervention in CVID patients at highest risk for autoimmune and inflammatory progression.
Collapse
Affiliation(s)
| | - Mei-Sing Ong
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA, United States
| | | | - Lael M Yonker
- Massachusetts General Hospital, Boston, MA, United States
| | - Ramsay Fuleihan
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | | | | | | | - Jolan E Walter
- Massachusetts General Hospital, Boston, MA, United States.,University of South Florida, St. Petersburg, FL, United States.,Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| |
Collapse
|
167
|
Sawaisorn P, Tangchaikeeree T, Polpanich D, Midoeng P, Udomsangpetch R, Elaissari A, Jangpatarapongsa K. Enrichment of human Vγ9Vδ2 T lymphocytes by magnetic poly(divinylbenzene-co-glycidyl methacrylate) colloidal particles conjugated with specific antibody. RSC Adv 2018; 8:14393-14400. [PMID: 35540746 PMCID: PMC9079956 DOI: 10.1039/c8ra01468j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/12/2018] [Indexed: 11/21/2022] Open
Abstract
γδ T cells play a significant role in protection against cancer. Purification of γδ T cells is needed for insight when studying their anti-cancer functionality and their utilization in adoptive cell therapy. To improve the purification of γδ T cells, in this work, a composite material based on magnetic nanoparticles was developed for purification of Vγ9Vδ2 T cells, the predominant subset of γδ T lymphocytes in human peripheral blood. The epoxy-functionalized magnetic poly(divinylbenzene-co-glycidyl methacrylate) particles (mPDGs) were bio-conjugated with anti-human Vδ2 antibody to provide specific recognition sites for T cell receptors of Vγ9Vδ2 T cells. Using fluorescence-activated cell sorting (FACS) analysis, separation of Vγ9Vδ2 T cells from peripheral blood mononuclear cells of healthy donors was confirmed with high purity [89.77% (range 87.00–91.80, n = 3)]. More interestingly, the immobilized particles did not affect the viability of purified cells as high cell viability was indicated (>90%). By combining the properties of magnetic nanoparticles with specific antibodies, these immobilized particles were shown to be used as a cell-friendly purification tool of Vγ9Vδ2 T lymphocytes without any limits for the further use of cells. The purified Vγ9Vδ2 T cells using the antibody-immobilized epoxy-functionalized mPDGs could be used directly without a detachment step for further cultivation and expansion. This highlights the advantages of this method in allowing the study of cell function and further investigation of such rare T cell populations in immunotherapy. Schematic procedure of Vγ9Vδ2 T cell purification using antibody-immobilized epoxy-functionalized mPDGs.![]()
Collapse
Affiliation(s)
- Piamsiri Sawaisorn
- Center for Research and Innovation
- Faculty of Medical Technology
- Mahidol University
- Bangkok 10700
- Thailand
| | - Tienrat Tangchaikeeree
- Center for Research and Innovation
- Faculty of Medical Technology
- Mahidol University
- Bangkok 10700
- Thailand
| | - Duangporn Polpanich
- National Nanotechnology Center
- National Science and Technology Development Agency (NSTDA)
- Thailand Science Park
- Thailand
| | - Panuwat Midoeng
- Department of Pathology
- Army Institute of Pathology
- Phramongkutklao Hospital
- Bangkok 10700
- Thailand
| | - Rachanee Udomsangpetch
- Center for Research and Innovation
- Faculty of Medical Technology
- Mahidol University
- Bangkok 10700
- Thailand
| | | | | |
Collapse
|
168
|
Mims MP. Lymphocytosis, Lymphocytopenia, Hypergammaglobulinemia, and Hypogammaglobulinemia. Hematology 2018. [PMCID: PMC7152059 DOI: 10.1016/b978-0-323-35762-3.00049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
169
|
Giovannoni G, Hawkes C, Levy M, Lublin F, Waubant E. Editors’ Welcome. Mult Scler Relat Disord 2018; 19:A1-A2. [DOI: 10.1016/j.msard.2018.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
170
|
Königs C, Schultze-Strasser S, Quaiser A, Bochennek K, Schwabe D, Klingebiel TE, Koehl U, Cappel C, Rolle U, Bader P, Bremm M, Huenecke S, Bakhtiar S. An Exponential Regression Model Reveals the Continuous Development of B Cell Subpopulations Used as Reference Values in Children. Front Pediatr 2018; 6:121. [PMID: 29780793 PMCID: PMC5945839 DOI: 10.3389/fped.2018.00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
B lymphocytes are key players in humoral immunity, expressing diverse surface immunoglobulin receptors directed against specific antigenic epitopes. The development and profile of distinct subpopulations have gained awareness in the setting of primary immunodeficiency disorders, primary or secondary autoimmunity and as therapeutic targets of specific antibodies in various diseases. The major B cell subpopulations in peripheral blood include naïve (CD19+ or CD20+IgD+CD27-), non-switched memory (CD19+ or CD20+IgD+CD27+) and switched memory B cells (CD19+ or CD20+IgD-CD27+). Furthermore, less common B cell subpopulations have also been described as having a role in the suppressive capacity of B cells to maintain self-tolerance. Data on reference values for B cell subpopulations are limited and only available for older age groups, neglecting the continuous process of human B cell development in children and adolescents. This study was designed to establish an exponential regression model to produce continuous reference values for main B cell subpopulations to reflect the dynamic maturation of the human immune system in healthy children.
Collapse
Affiliation(s)
- Christoph Königs
- Department of Pediatric and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | | | - Andrea Quaiser
- Department of Pediatric and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Konrad Bochennek
- Department of Pediatric and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Dirk Schwabe
- Department of Pediatric and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Thomas E Klingebiel
- Department of Pediatric and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Ulrike Koehl
- GMP Development, Integriertes Forschungs- und Behandlungszentrum Transplantation (IFB-TX), Hannover Medical School, Institute of Cellular Therapeutics, Hannover, Germany
| | - Claudia Cappel
- Department of Pediatric and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Udo Rolle
- Department of Pediatric Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Peter Bader
- Department of Pediatric and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Melanie Bremm
- Department of Pediatric and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Sabine Huenecke
- Department of Pediatric and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Shahrzad Bakhtiar
- Department of Pediatric and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
171
|
Yoon JY, Lee Y, Yu SL, Yoon HK, Park HY, Joung CI, Park SR, Kwon M, Kang J. Aberrant expression of interleukin-10 and activation-induced cytidine deaminase in B cells from patients with Behçet's disease. Biomed Rep 2017; 7:520-526. [PMID: 29188055 PMCID: PMC5702955 DOI: 10.3892/br.2017.996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/19/2017] [Indexed: 01/10/2023] Open
Abstract
Despite extensive studies, the pathogenesis of Behçet's disease (BD) remains unclear. In particular, the roles of B cells in patients with BD have not been elucidated. Activation-induced cytidine deaminase (AID) is a critical enzyme for immunoglobulin (Ig) heavy chain class switching and somatic hypermutation in B cells and the abnormal expression of AID in various immune conditions has previously been studied. B10 cells, an interleukin (IL)-10-secreting subset of regulatory B cells, function to downregulate inflammation and autoimmunity. Thus, in the present study, the relevance of B cells in patients with BD was investigated. The plasma levels of IL-10 and IgA and the proportions of cluster of differentiation (CD)43+ B cells, excluding naïve B cells, were measured in 16 patients with BD and 16 age- and sex-matched healthy controls (HCs). Additionally, the mRNA levels of IL-10 and AID were assessed in B cells from fresh peripheral blood samples of the BD patients and HCs. The plasma level of IL-10 in patients with BD did not differ significantly from that in HCs. Similarly, there was no significant difference in the plasma level of IgA, although a slight increase was observed in patients with BD compared with that in HCs. There were no differences in CD43+CD19+ B cell numbers between patients with BD and HCs. However, IL-10 mRNA levels were significantly reduced (P<0.05), while AID mRNA levels were significantly increased (P<0.01) in the B cells of patients with BD compared with those in HCs. These results provide insight into the role of B cells in patients with BD.
Collapse
Affiliation(s)
- Jeong-Yun Yoon
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Yeojin Lee
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Seong-Lan Yu
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Hee-Kyung Yoon
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Ha-Yan Park
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Chung-Il Joung
- Department of Internal Medicine, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Seok-Rae Park
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Mihye Kwon
- Department of Internal Medicine, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Jaeku Kang
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| |
Collapse
|
172
|
Effective "activated PI3Kδ syndrome"-targeted therapy with the PI3Kδ inhibitor leniolisib. Blood 2017; 130:2307-2316. [PMID: 28972011 DOI: 10.1182/blood-2017-08-801191] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 09/23/2017] [Indexed: 01/17/2023] Open
Abstract
Pathogenic gain-of-function variants in the genes encoding phosphoinositide 3-kinase δ (PI3Kδ) lead to accumulation of transitional B cells and senescent T cells, lymphadenopathy, and immune deficiency (activated PI3Kδ syndrome [APDS]). Knowing the genetic etiology of APDS afforded us the opportunity to explore PI3Kδ inhibition as a precision-medicine therapy. Here, we report in vitro and in vivo effects of inhibiting PI3Kδ in APDS. Treatment with leniolisib (CDZ173), a selective PI3Kδ inhibitor, caused dose-dependent suppression of PI3Kδ pathway hyperactivation (measured as phosphorylation of AKT/S6) in cell lines ectopically expressing APDS-causative p110δ variants and in T-cell blasts derived from patients. A clinical trial with 6 APDS patients was conducted as a 12-week, open-label, multisite, within-subject, dose-escalation study of oral leniolisib to assess safety, pharmacokinetics, and effects on lymphoproliferation and immune dysregulation. Oral leniolisib led to a dose-dependent reduction in PI3K/AKT pathway activity assessed ex vivo and improved immune dysregulation. We observed normalization of circulating transitional and naive B cells, reduction in PD-1+CD4+ and senescent CD57+CD4- T cells, and decreases in elevated serum immunoglobulin M and inflammatory markers including interferon γ, tumor necrosis factor, CXCL13, and CXCL10 with leniolisib therapy. After 12 weeks of treatment, all patients showed amelioration of lymphoproliferation with lymph node sizes and spleen volumes reduced by 39% (mean; range, 26%-57%) and 40% (mean; range, 13%-65%), respectively. Thus, leniolisib was well tolerated and improved laboratory and clinical parameters in APDS, supporting the specific inhibition of PI3Kδ as a promising new targeted therapy in APDS and other diseases characterized by overactivation of the PI3Kδ pathway. This trial was registered at www.clinicaltrials.gov as #NCT02435173.
Collapse
|
173
|
Ectopic ILT3 controls BCR-dependent activation of Akt in B-cell chronic lymphocytic leukemia. Blood 2017; 130:2006-2017. [PMID: 28931525 DOI: 10.1182/blood-2017-03-775858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022] Open
Abstract
The high proportion of long-term nonprogressors among chronic lymphocytic leukemia (CLL) patients suggests the existence of a regulatory network that restrains the proliferation of tumor B cells. The identification of molecular determinants composing such network is hence fundamental for our understanding of CLL pathogenesis. Based on our previous finding establishing a deficiency in the signaling adaptor p66Shc in CLL cells, we undertook to identify unique phenotypic traits caused by this defect. Here we show that a lack of p66Shc shapes the transcriptional profile of CLL cells and leads to an upregulation of the surface receptor ILT3, the immunoglobulin-like transcript 3 that is normally found on myeloid cells. The ectopic expression of ILT3 in CLL was a distinctive feature of neoplastic B cells and hematopoietic stem cells, thus identifying ILT3 as a selective marker of malignancy in CLL and the first example of phenotypic continuity between mature CLL cells and their progenitors in the bone marrow. ILT3 expression in CLL was found to be driven by Deltex1, a suppressor of antigen receptor signaling in lymphocytes. Triggering of ILT3 inhibited the activation of Akt kinase upon B-cell receptor (BCR) stimulation. This effect was achieved through the dynamic coalescence of ILT3, BCRs, and phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1 into inhibitory clusters at the cell surface. Collectively, our findings identify ILT3 as a signature molecule of p66Shc deficiency in CLL and indicate that ILT3 may functionally contribute to a regulatory network controlling tumor progression by suppressing the Akt pathway.
Collapse
|
174
|
Tooze JA, Hamzic E, Willis F, Pettengell R. Differences between chronic lymphocytic leukaemia and small lymphocytic lymphoma cells by proteomic profiling and SNP microarray analysis. Cancer Genet 2017; 218-219:20-38. [PMID: 29153094 DOI: 10.1016/j.cancergen.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/04/2017] [Accepted: 09/06/2017] [Indexed: 12/21/2022]
Abstract
The majority of malignant cells in chronic lymphocytic leukaemia (CLL) circulate in the peripheral blood whereas small lymphocytic lymphoma (SLL) cells reside in tissues. The aim of this study was to detect differences in chemokine receptor expression, DNA single nucleotide polymorphism (SNP) microarray analysis and proteomic profiling to help elucidate why the cells remain in their respective environments. We identified by flow cytometric studies of chemokine receptors and DNA SNP microarray analysis significant differences between cells from CLL and SLL patients. Proteomic analysis revealed two potential markers (m/z 3091 and 8707) to distinguish the two disorders. There was a significantly greater expression of leucocyte trafficking receptor CXCR3 (CD183) and migration and homing receptor CXCR4 (CD184), and significantly lower expression of cell adhesion molecule integrin α4 chain (CD49d), on CLL cells, compared with SLL cells. Conversely, SNP microarrays revealed greater numbers of copy-neutral loss of heterozygosity chromosomal aberrations, as well as gross chromosomal aberrations, in the SLL group, compared with the CLL group. These findings revealed that there was a significantly greater expression of trafficking, migration and homing receptors and significantly lower expression of adhesion molecules on CLL cells than on SLL cells, and that SLL may be a more progressive disease than CLL, with a more complex genotype.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Female
- Gene Expression Profiling/methods
- Humans
- Integrin alpha4/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/classification
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Male
- Middle Aged
- Polymorphism, Single Nucleotide
- Proteomics/methods
- Receptors, CXCR3/genetics
- Receptors, CXCR4/genetics
Collapse
Affiliation(s)
- Jennifer A Tooze
- Department of Haematology, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Edita Hamzic
- Department of Haematology, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Fenella Willis
- Department of Haematology, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Ruth Pettengell
- Department of Haematology, St George's University of London, Cranmer Terrace, London SW17 0RE, UK.
| |
Collapse
|
175
|
Meeuwsen JAL, van Duijvenvoorde A, Gohar A, Kozma MO, van de Weg SM, Gijsberts CM, Haitjema S, Björkbacka H, Fredrikson GN, de Borst GJ, den Ruijter HM, Pasterkamp G, Binder CJ, Hoefer IE, de Jager SCA. High Levels of (Un)Switched Memory B Cells Are Associated With Better Outcome in Patients With Advanced Atherosclerotic Disease. J Am Heart Assoc 2017; 6:e005747. [PMID: 28882820 PMCID: PMC5634255 DOI: 10.1161/jaha.117.005747] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/07/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Atherosclerosis is an inflammatory lipid disorder and the main underlying pathology of acute ischemic events. Despite a vast amount of data from murine atherosclerosis models, evidence of B-cell involvement in human atherosclerotic disease is limited. We therefore investigated the association of circulating B-cell subtypes with the occurrence of secondary cardiovascular events in advanced atherosclerotic disease. METHODS AND RESULTS This cohort study consists of 168 patients who were included in the Athero-Express biobank between 2009 and 2011. Before surgery, peripheral blood mononuclear cells were isolated and stored in liquid nitrogen. After gentle thawing of the peripheral blood mononuclear cells, different B-cell subtypes including naïve, (un)switched memory, and CD27+CD43+ B1-like B cells, were analyzed by flow cytometry. Univariable and multivariable Cox proportional hazard models were used to analyze associations between B-cell subtypes, circulating antibodies and secondary cardiovascular manifestations during the 3-year follow-up period. Mean age was 70.1±9.6 years, males represented 62.8% of the population, and 54 patients had secondary manifestations during follow-up. High numbers of unswitched memory cells were protective against secondary outcome (hazard ratio, 0.30 [95% CI, 0.13-0.69]; P<0.01). Similar results were obtained for the switched memory cells that also showed to be protective against secondary outcome (hazard ratio, 0.33 [95% CI, 0.14-0.77]; P=0.01). CONCLUSIONS A high number of (un)switched memory B cells is associated with better outcome following carotid artery endarterectomy. These findings suggest a potential role for B-cell subsets in prediction and prevention of secondary cardiovascular events in patients with atherosclerosis.
Collapse
Affiliation(s)
- John A L Meeuwsen
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Amerik van Duijvenvoorde
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Aisha Gohar
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maria O Kozma
- Department of Laboratory Medicine, Medical University of Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sander M van de Weg
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Crystel M Gijsberts
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Saskia Haitjema
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Harry Björkbacka
- Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Gunilla N Fredrikson
- Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Gert J de Borst
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hester M den Ruijter
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gerard Pasterkamp
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Laboratory for Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Imo E Hoefer
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Laboratory for Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Saskia C A de Jager
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
176
|
Stathopoulos P, Kumar A, Nowak RJ, O'Connor KC. Autoantibody-producing plasmablasts after B cell depletion identified in muscle-specific kinase myasthenia gravis. JCI Insight 2017; 2:94263. [PMID: 28878127 DOI: 10.1172/jci.insight.94263] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/25/2017] [Indexed: 12/24/2022] Open
Abstract
Myasthenia gravis (MG) is a B cell-mediated autoimmune disorder of neuromuscular transmission. Pathogenic autoantibodies to muscle-specific tyrosine kinase (MuSK) can be found in patients with MG who do not have detectable antibodies to the acetylcholine receptor (AChR). MuSK MG includes immunological and clinical features that are generally distinct from AChR MG, particularly regarding responsiveness to therapy. B cell depletion has been shown to affect a decline in serum autoantibodies and to induce sustained clinical improvement in the majority of MuSK MG patients. However, the duration of this benefit may be limited, as we observed disease relapse in MuSK MG patients who had achieved rituximab-induced remission. We investigated the mechanisms of such relapses by exploring autoantibody production in the reemerging B cell compartment. Autoantibody-expressing CD27+ B cells were observed within the reconstituted repertoire during relapse but not during remission or in controls. Using two complementary approaches, which included production of 108 unique human monoclonal recombinant immunoglobulins, we demonstrated that antibody-secreting CD27hiCD38hi B cells (plasmablasts) contribute to the production of MuSK autoantibodies during relapse. The autoantibodies displayed hallmarks of antigen-driven affinity maturation. These collective findings introduce potential mechanisms for understanding both MuSK autoantibody production and disease relapse following B cell depletion.
Collapse
|
177
|
Heeringa JJ, Karim AF, van Laar JAM, Verdijk RM, Paridaens D, van Hagen PM, van Zelm MC. Expansion of blood IgG 4+ B, T H2, and regulatory T cells in patients with IgG 4-related disease. J Allergy Clin Immunol 2017; 141:1831-1843.e10. [PMID: 28830675 DOI: 10.1016/j.jaci.2017.07.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND IgG4-related disease (IgG4-RD) is a systemic fibroinflammatory condition affecting various organs and has a diverse clinical presentation. Fibrosis and accumulation of IgG4+ plasma cells in tissue are hallmarks of the disease, and IgG4-RD is associated with increased IgG4 serum levels. However, disease pathogenesis is still unclear, and these cellular and molecular parameters are neither sensitive nor specific for the diagnosis of IgG4-RD. OBJECTIVE Here we sought to develop a flow cytometric gating strategy to reliably identify blood IgG4+ B cells to study their cellular and molecular characteristics and investigate their contribution in disease pathogenesis. METHODS Sixteen patients with histologically confirmed IgG4-RD, 11 patients with sarcoidosis, and 30 healthy subjects were included for 11-color flow cytometric analysis of peripheral blood for IgG4-expressing B cells and TH subsets. In addition, detailed analysis of activation markers and chemokine receptors was performed on IgG4-expressing B cells, and IgG4 transcripts were analyzed for somatic hypermutations. RESULTS Cellular and molecular analyses revealed increased numbers of blood IgG4+ memory B cells in patients with IgG4-RD. These cells showed reduced expression of CD27 and CXCR5 and increased signs of antibody maturation. Furthermore, patients with IgG4-RD, but not patients with sarcoidosis, had increased numbers of circulating plasmablasts and CD21low B cells, as well as TH2 and regulatory T cells, indicating a common disease pathogenesis in patients with IgG4-RD. CONCLUSION These results provide new insights into the dysregulated IgG4 response in patients with IgG4-RD. A specific "peripheral lymphocyte signature" observed in patients with IgG4-RD, could support diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Jorn J Heeringa
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - A Faiz Karim
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jan A M van Laar
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Dion Paridaens
- Department of Oculoplastic & Orbital Surgery, The Rotterdam Eye Hospital, Rotterdam, The Netherlands
| | - P Martin van Hagen
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Australia.
| |
Collapse
|
178
|
Chovancova Z, Kralickova P, Pejchalova A, Bloomfield M, Nechvatalova J, Vlkova M, Litzman J. Selective IgM Deficiency: Clinical and Laboratory Features of 17 Patients and a Review of the Literature. J Clin Immunol 2017; 37:559-574. [PMID: 28730517 DOI: 10.1007/s10875-017-0420-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE Primary selective IgM deficiency (sIgMD) is a primary immunodeficiency with unclear pathogenesis and a low number of published cases. METHODS We reviewed clinical and laboratory manifestations of 17 sIgMD patients. Serum IgM, IgG, and its subclasses, IgA, IgE, antibodies against tetanus toxoid, pneumococcal polysaccharides and Haemophilus influenzae type b, isohemagglutinins, and T and B lymphocyte subsets, expressions of IgM on B cells and B lymphocyte production of IgM were compared with previously reported case reports and a small series of patients, which included 81 subjects in total. RESULTS We found that some patients in our cohort (OC) and published cases (PC) had increased IgE levels (OC 7/15; PC 21/37), decreased IgG4 levels (OC 5/14), very low titers of isohemagglutinins (OC 8/8; PC 18/21), increased transitional B cell counts (OC 8/9), decreased marginal zone B cell counts (OC 8/9), and increased 21low B cell counts (OC 7/9). Compared with the PC (20/20), only two of five OC patients showed very low or undetectable production of IgM after stimulation. A majority of the patients had normal antibody production to protein and polysaccharide antigens, basic lymphocyte subset counts, and expression of surface IgM molecules on B cells. CONCLUSIONS Low IgM levels are associated with various immunopathological disorders; however, pathogenic mechanisms leading to decreased IgM serum level in selective IgM deficiency remain unclear. Moreover, it is difficult to elucidate how strong these associations are and if these immunopathological conditions are primary or secondary.
Collapse
Affiliation(s)
- Zita Chovancova
- Department of Clinical Immunology and Allergy, St. Anne's University Hospital in Brno, Pekarska 53, 65691, Brno, Czech Republic. .,Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Pavlina Kralickova
- Charles University in Prague School of Medicine and University Hospital, Institute of Clinical Immunology and Allergology, Hradec Kralove, Czech Republic
| | - Alena Pejchalova
- Transfusion and Tissue Department, University Hospital Brno, Brno, Czech Republic
| | - Marketa Bloomfield
- Department of Immunology, Motol University Hospital, Prague, Czech Republic
| | - Jana Nechvatalova
- Department of Clinical Immunology and Allergy, St. Anne's University Hospital in Brno, Pekarska 53, 65691, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcela Vlkova
- Department of Clinical Immunology and Allergy, St. Anne's University Hospital in Brno, Pekarska 53, 65691, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiri Litzman
- Department of Clinical Immunology and Allergy, St. Anne's University Hospital in Brno, Pekarska 53, 65691, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
179
|
Schepp J, Proietti M, Frede N, Buchta M, Hübscher K, Rojas Restrepo J, Goldacker S, Warnatz K, Pachlopnik Schmid J, Duppenthaler A, Lougaris V, Uriarte I, Kelly S, Hershfield M, Grimbacher B. Screening of 181 Patients With Antibody Deficiency for Deficiency of Adenosine Deaminase 2 Sheds New Light on the Disease in Adulthood. Arthritis Rheumatol 2017; 69:1689-1700. [DOI: 10.1002/art.40147] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 05/04/2017] [Indexed: 12/22/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ignacio Uriarte
- Child & Mother Hospital Vitorio Tetamanti; Mar del Plata Argentina
| | - Susan Kelly
- Duke University School of Medicine; Durham North Carolina
| | | | - Bodo Grimbacher
- University of Freiburg, Freiburg, Germany, and Royal Free Hospital, University College London; London UK
| |
Collapse
|
180
|
Czarnowicki T, Esaki H, Gonzalez J, Renert-Yuval Y, Brunner P, Oliva M, Estrada Y, Xu H, Zheng X, Talasila S, Haugh I, Huynh T, Lyon S, Tran G, Sampson H, Suárez-Fariñas M, Krueger JG, Guttman-Yassky E, Paller AS. Alterations in B-cell subsets in pediatric patients with early atopic dermatitis. J Allergy Clin Immunol 2017; 140:134-144.e9. [DOI: 10.1016/j.jaci.2016.09.060] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/05/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022]
|
181
|
Agammaglobulinaemia despite terminal B-cell differentiation in a patient with a novel LRBA mutation. Clin Transl Immunology 2017; 6:e144. [PMID: 28690850 PMCID: PMC5493589 DOI: 10.1038/cti.2017.20] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 01/01/2023] Open
Abstract
Mutations in lipopolysaccharide-responsive vesicle trafficking, beach and anchor-containing protein (LRBA) cause immune deficiency and inflammation. Here, we are reporting a novel homozygous mutation in LRBA allele in 7-year-old Omani boy, born to consanguineous parents. He presented with type 1 diabetes, autoimmune haematological cytopenia, recurrent chest infections and lymphocytic interstitial lung disease. The patient was treated with CTLA4-Ig (abatacept) with good outcome every 2 weeks for a period of 3 months. He developed complete IgG deficiency, but remarkably, histological examination revealed germinal centres and plasma cells in lymphoid and inflamed lung tissue. Further charatecterisation showed these cells to express IgM but not IgG. This ex vivo analysis suggests that LRBA mutation confers a defect in class switching despite plasma cell formation.
Collapse
|
182
|
Azarsiz E, Karaca NE, Aksu G, Kutukculer N. Reference values for B-cell surface markers and co-receptors associated with primary immune deficiencies in healthy Turkish children. Int J Immunopathol Pharmacol 2017; 30:194-200. [PMID: 28449602 PMCID: PMC5806800 DOI: 10.1177/0394632017707609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In order to evaluate B-lymphocyte subsets of patients with primary immunodeficiencies, the normal values for national healthy children have to be used as a reference. Recently, B-cell co-receptor markers (CD19, CD21, and CD81) and CD20, CD22, and CD27 deficiencies have been reported in relation with different primary immunodeficiency diseases. The objective of this study was to establish national reference values for B-lymphocyte co-receptors and some surface markers, CD20, CD22, CD27, as well as classic lymphocyte subsets in the peripheral blood of healthy children. A total of 90 healthy children were included in this study. Complete blood counts were performed and cells with CD3, CD4, CD8, CD19, CD16/56, CD20, CD21, CD22, CD27, and CD81 surface markers were simultaneously detected by flow cytometry. The children were evaluated in three age subgroups, 0–1, 1–6, and >6 years, and minimum, maximum, mean, mean minus standard deviation, and 2.5–97.5 percentile values were all determined. By establishing reliable reference ranges for these surface markers, we hoped to help identifying and classifying some primary immunodeficiency patients, especially those defined as unclassified hypogammaglobulinemia and those without definite diagnosis.
Collapse
Affiliation(s)
- Elif Azarsiz
- Department of Pediatric Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Neslihan Edeer Karaca
- Department of Pediatric Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Guzide Aksu
- Department of Pediatric Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Necil Kutukculer
- Department of Pediatric Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
183
|
Davies EG, Cheung M, Gilmour K, Maimaris J, Curry J, Furmanski A, Sebire N, Halliday N, Mengrelis K, Adams S, Bernatoniene J, Bremner R, Browning M, Devlin B, Erichsen HC, Gaspar HB, Hutchison L, Ip W, Ifversen M, Leahy TR, McCarthy E, Moshous D, Neuling K, Pac M, Papadopol A, Parsley KL, Poliani L, Ricciardelli I, Sansom DM, Voor T, Worth A, Crompton T, Markert ML, Thrasher AJ. Thymus transplantation for complete DiGeorge syndrome: European experience. J Allergy Clin Immunol 2017; 140:1660-1670.e16. [PMID: 28400115 PMCID: PMC5716670 DOI: 10.1016/j.jaci.2017.03.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 03/03/2017] [Accepted: 03/15/2017] [Indexed: 12/17/2022]
Abstract
Background Thymus transplantation is a promising strategy for the treatment of athymic complete DiGeorge syndrome (cDGS). Methods Twelve patients with cDGS underwent transplantation with allogeneic cultured thymus. Objective We sought to confirm and extend the results previously obtained in a single center. Results Two patients died of pre-existing viral infections without having thymopoiesis, and 1 late death occurred from autoimmune thrombocytopenia. One infant had septic shock shortly after transplantation, resulting in graft loss and the need for a second transplant. Evidence of thymopoiesis developed from 5 to 6 months after transplantation in 10 patients. Median circulating naive CD4 counts were 44 × 106/L (range, 11-440 × 106/L) and 200 × 106/L (range, 5-310 × 106/L) at 12 and 24 months after transplantation and T-cell receptor excision circles were 2,238/106 T cells (range, 320-8,807/106 T cells) and 4,184/106 T cells (range, 1,582-24,596/106 T cells). Counts did not usually reach normal levels for age, but patients were able to clear pre-existing infections and those acquired later. At a median of 49 months (range, 22-80 months), 8 have ceased prophylactic antimicrobials, and 5 have ceased immunoglobulin replacement. Histologic confirmation of thymopoiesis was seen in 7 of 11 patients undergoing biopsy of transplanted tissue, including 5 showing full maturation through to the terminal stage of Hassall body formation. Autoimmune regulator expression was also demonstrated. Autoimmune complications were seen in 7 of 12 patients. In 2 patients early transient autoimmune hemolysis settled after treatment and did not recur. The other 5 experienced ongoing autoimmune problems, including thyroiditis (3), hemolysis (1), thrombocytopenia (4), and neutropenia (1). Conclusions This study confirms the previous reports that thymus transplantation can reconstitute T cells in patients with cDGS but with frequent autoimmune complications in survivors.
Collapse
Affiliation(s)
- E Graham Davies
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Immunology, Great Ormond Street Hospital, London, United Kingdom.
| | - Melissa Cheung
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Kimberly Gilmour
- Department of Immunology, Great Ormond Street Hospital, London, United Kingdom
| | - Jesmeen Maimaris
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Joe Curry
- Department of Immunology, Great Ormond Street Hospital, London, United Kingdom
| | - Anna Furmanski
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; School of Life Sciences, University of Bedfordshire, Luton, United Kingdom
| | - Neil Sebire
- Department of Immunology, Great Ormond Street Hospital, London, United Kingdom
| | - Neil Halliday
- Institute of Immunity and Transplantation, Division of Infection & Immunity, School of Life and Medical Sciences, Royal Free Hospital, University College London, London, United Kingdom
| | - Konstantinos Mengrelis
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Stuart Adams
- Department of Immunology, Great Ormond Street Hospital, London, United Kingdom
| | - Jolanta Bernatoniene
- Department of Paediatric Immunology and Infectious Diseases, Bristol Children's Hospital, Bristol, United Kingdom
| | - Ronald Bremner
- Department of Gastroenterology, Birmingham Children's Hospital, Birmingham, United Kingdom
| | - Michael Browning
- Department of Immunology, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Blythe Devlin
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC
| | - Hans Christian Erichsen
- Division of Paediatric and Adolescent Medicine, Section of Paediatric Medicine and Transplantation, Oslo University Hospital, Oslo, Norway
| | - H Bobby Gaspar
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Immunology, Great Ormond Street Hospital, London, United Kingdom
| | - Lizzie Hutchison
- Department of Paediatric Immunology and Infectious Diseases, Bristol Children's Hospital, Bristol, United Kingdom
| | - Winnie Ip
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Immunology, Great Ormond Street Hospital, London, United Kingdom
| | - Marianne Ifversen
- Paediatric Clinic II, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - T Ronan Leahy
- Department of Paediatric Immunology and Infectious Diseases, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Elizabeth McCarthy
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC
| | - Despina Moshous
- Paediatric Immunology, Haematology and Rheumatology Unit, Hopital Necker, Paris, France
| | - Kim Neuling
- Department of Paediatrics, University Hospital, Coventry, United Kingdom
| | - Malgorzata Pac
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Alina Papadopol
- Paediatric Clinic, Polyclinic Regina Maria Baneasa, Bucharest, Romania
| | - Kathryn L Parsley
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Immunology, Great Ormond Street Hospital, London, United Kingdom
| | - Luigi Poliani
- Institute of Immunity and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ida Ricciardelli
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David M Sansom
- Institute of Immunity and Transplantation, Division of Infection & Immunity, School of Life and Medical Sciences, Royal Free Hospital, University College London, London, United Kingdom
| | - Tiia Voor
- The Children's Clinic, Tartu University Hospital, Tartu, Estonia
| | - Austen Worth
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Immunology, Great Ormond Street Hospital, London, United Kingdom
| | - Tessa Crompton
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - M Louise Markert
- Department of Immunology, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
184
|
van den Heuvel D, Jansen MAE, Bell AI, Rickinson AB, Jaddoe VWV, van Dongen JJM, Moll HA, van Zelm MC. Transient reduction in IgA + and IgG + memory B cell numbers in young EBV-seropositive children: the Generation R Study. J Leukoc Biol 2017; 101:949-956. [PMID: 27821468 DOI: 10.1189/jlb.5vmab0616-283r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/09/2016] [Accepted: 10/13/2016] [Indexed: 11/24/2022] Open
Abstract
The EBV is known to persist in memory B cells, but it remains unclear how this affects cell numbers and humoral immunity. We here studied EBV persistence in memory B cell subsets and consequences on B cell memory in young children. EBV genome loads were quantified in 6 memory B cell subsets in EBV+ adults. The effects of EBV infection on memory B cell numbers and vaccination responses were studied longitudinally in children within the Generation R population cohort between 14 mo and 6 yr of age. EBV genomes were more numerous in CD27+IgG+, CD27+IgA+, and CD27-IgA+ memory B cells than in IgM-only, natural effector, and CD27-IgG+ B cells. The blood counts of IgM-only, CD27+IgA+, CD27-IgG+, and CD27+IgG+ memory B cells were significantly lower in EBV+ children than in uninfected controls at 14 mo of age-the age when these cells peak in numbers. At 6 yr, all of these memory B cell counts had normalized, as had plasma IgG levels to previous primary measles and booster tetanus vaccinations. In conclusion, EBV persists predominantly in Ig class-switched memory B cells, even when derived from T cell-independent responses (CD27-IgA+), and EBV infection results in a transient depletion of these cells in young children.
Collapse
Affiliation(s)
- Diana van den Heuvel
- Department of Immunology, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Michelle A E Jansen
- The Generation R Study Group, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus Medical Center-Sophia, Rotterdam, the Netherlands
| | - Andrew I Bell
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Alan B Rickinson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus Medical Center-Sophia, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands; and
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Henriette A Moll
- Department of Pediatrics, Erasmus Medical Center-Sophia, Rotterdam, the Netherlands
| | - Menno C van Zelm
- Department of Immunology, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands;
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
185
|
Zhang D, Broyles D, Hunt EA, Dikici E, Daunert S, Deo SK. A paper-based platform for detection of viral RNA. Analyst 2017; 142:815-823. [PMID: 28194453 PMCID: PMC5772759 DOI: 10.1039/c6an02452a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Viral detection presents a host of challenges for even the most sensitive analytical techniques, and the complexity of common detection platforms typically preclude portability. With these considerations in mind, we designed a paper microzone plate-based virus detection system for the detection of viral genetic material that can be performed with simple instruments. The sensing system can detect viral cDNA reverse-transcribed from total RNA extraction by utilizing a biotinylated capture probe and an Alexa Fluor® 647-labeled reporter probe. The biotinylated capture probe was linked to the paper surface via NeutrAvidin® that was physically adsorbed on the paper. After addition of reverse-transcribed sample and reporter probe in sequence, the reverse-transcribed target captured the reporter probe and tethered it to the capture probe in a bridged format. Fluorescence intensity was imaged using a Western blot imaging system, and higher target concentration was visible by the increased emission intensity from Alexa Fluor® 647. By utilizing paper, this detection setup could also serve as a sample concentration method via evaporation, which could remarkably lower the detection limit if needed. This detection platform used Epstein-Barr virus (EBV) RNA as a proof-of-concept by sensing cDNA resulting from reverse transcription and can be further expanded as a general method for other pathogens. EBV is a well-known human tumor virus, which has also recently been linked to the development of cervical cancer. The assay was accomplished within two hours including the room-temperature RNA extraction and reverse transcription steps. Also, this paper microzone plate-based platform can potentially be applicable for the development of point-of-care (POC) detection kits or devices due to its robust design, convenient interface, and easy portability. The experiment could be stopped after each step, and continued at a later time. The shelf-life of the modified paper plate setup was at least 3 months without a discernible change in signal, and the result from day 1 could be read at 3 months - both of which are important criteria for POC analytical testing tools, especially in resource-poor settings. All of the required assay steps could potentially be performed without any significant equipment using inexpensive paper microzone plates, which will be ideal for further development of POC testing devices. Although, this platform is not at the stage where it can be directly used in a point-of-care setting, it does have fundamental characteristics such as a stable platform, a simple detection method, and relatively common reagents that align closely with a POC system.
Collapse
Affiliation(s)
- Daohong Zhang
- Department of Biochemistry and Molecular Biology, University of Miami - Miller School of Medicine, 1011 NW 15th Street, Miami, Florida 33136, USA. and Department of Chemistry, University of Miami, Coral Gables, Miami, Florida 33146, USA
| | - David Broyles
- Department of Biochemistry and Molecular Biology, University of Miami - Miller School of Medicine, 1011 NW 15th Street, Miami, Florida 33136, USA.
| | - Eric A Hunt
- Department of Biochemistry and Molecular Biology, University of Miami - Miller School of Medicine, 1011 NW 15th Street, Miami, Florida 33136, USA. and Department of Chemistry, University of Miami, Coral Gables, Miami, Florida 33146, USA
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami - Miller School of Medicine, 1011 NW 15th Street, Miami, Florida 33136, USA.
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami - Miller School of Medicine, 1011 NW 15th Street, Miami, Florida 33136, USA.
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, University of Miami - Miller School of Medicine, 1011 NW 15th Street, Miami, Florida 33136, USA.
| |
Collapse
|
186
|
Coulter TI, Chandra A, Bacon CM, Babar J, Curtis J, Screaton N, Goodlad JR, Farmer G, Steele CL, Leahy TR, Doffinger R, Baxendale H, Bernatoniene J, Edgar JDM, Longhurst HJ, Ehl S, Speckmann C, Grimbacher B, Sediva A, Milota T, Faust SN, Williams AP, Hayman G, Kucuk ZY, Hague R, French P, Brooker R, Forsyth P, Herriot R, Cancrini C, Palma P, Ariganello P, Conlon N, Feighery C, Gavin PJ, Jones A, Imai K, Ibrahim MAA, Markelj G, Abinun M, Rieux-Laucat F, Latour S, Pellier I, Fischer A, Touzot F, Casanova JL, Durandy A, Burns SO, Savic S, Kumararatne DS, Moshous D, Kracker S, Vanhaesebroeck B, Okkenhaug K, Picard C, Nejentsev S, Condliffe AM, Cant AJ. Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: A large patient cohort study. J Allergy Clin Immunol 2017; 139:597-606.e4. [PMID: 27555459 PMCID: PMC5292996 DOI: 10.1016/j.jaci.2016.06.021] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 05/02/2016] [Accepted: 06/03/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Activated phosphoinositide 3-kinase δ syndrome (APDS) is a recently described combined immunodeficiency resulting from gain-of-function mutations in PIK3CD, the gene encoding the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ). OBJECTIVE We sought to review the clinical, immunologic, histopathologic, and radiologic features of APDS in a large genetically defined international cohort. METHODS We applied a clinical questionnaire and performed review of medical notes, radiology, histopathology, and laboratory investigations of 53 patients with APDS. RESULTS Recurrent sinopulmonary infections (98%) and nonneoplastic lymphoproliferation (75%) were common, often from childhood. Other significant complications included herpesvirus infections (49%), autoinflammatory disease (34%), and lymphoma (13%). Unexpectedly, neurodevelopmental delay occurred in 19% of the cohort, suggesting a role for PI3Kδ in the central nervous system; consistent with this, PI3Kδ is broadly expressed in the developing murine central nervous system. Thoracic imaging revealed high rates of mosaic attenuation (90%) and bronchiectasis (60%). Increased IgM levels (78%), IgG deficiency (43%), and CD4 lymphopenia (84%) were significant immunologic features. No immunologic marker reliably predicted clinical severity, which ranged from asymptomatic to death in early childhood. The majority of patients received immunoglobulin replacement and antibiotic prophylaxis, and 5 patients underwent hematopoietic stem cell transplantation. Five patients died from complications of APDS. CONCLUSION APDS is a combined immunodeficiency with multiple clinical manifestations, many with incomplete penetrance and others with variable expressivity. The severity of complications in some patients supports consideration of hematopoietic stem cell transplantation for severe childhood disease. Clinical trials of selective PI3Kδ inhibitors offer new prospects for APDS treatment.
Collapse
Affiliation(s)
- Tanya I Coulter
- Department of Immunology, School of Medicine, Trinity College, Dublin, and St James's Hospital, Dublin, Ireland; Department of Paediatric Immunology and Infectious Diseases, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Anita Chandra
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, United Kingdom; Lymphocyte Signalling & Development, Babraham Institute, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Chris M Bacon
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom; Northern England Haemato-Oncology Diagnostic Service, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Judith Babar
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - James Curtis
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nick Screaton
- Department of Radiology, Papworth Hospital NHS Foundation Trust, Papworth Everard Hospital, Cambridge, United Kingdom
| | - John R Goodlad
- Department of Pathology, Western General Hospital, Edinburgh, United Kingdom
| | | | | | - Timothy Ronan Leahy
- Department of Paediatric Immunology and Infectious Diseases, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, United Kingdom; National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Helen Baxendale
- Papworth Hospital NHS trust, Papworth Everard, Cambridge, United Kingdom
| | - Jolanta Bernatoniene
- Department of Infectious Disease and Immunology, University Hospitals Bristol NHS Foundation Trust, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - J David M Edgar
- Regional Immunology Service, The Royal Hospitals, Belfast, United Kingdom
| | | | - Stephan Ehl
- Center for Chronic Immunodeficiency, University Hospital Freiburg, Freiburg, Germany
| | - Carsten Speckmann
- Center for Chronic Immunodeficiency, University Hospital Freiburg, Freiburg, Germany; Department of Pediatrics and Adolescent Medicine, University Medical Center, Freiburg, Germany
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, University Hospital Freiburg, Freiburg, Germany
| | - Anna Sediva
- Institute of Immunology, University Hospital Motol, Prague, Czech Republic
| | - Tomas Milota
- Institute of Immunology, University Hospital Motol, Prague, Czech Republic
| | - Saul N Faust
- Faculty of Medicine and Institute of Life Sciences, University of Southampton, Southampton, United Kingdom; NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Anthony P Williams
- Faculty of Medicine and Institute of Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Grant Hayman
- Department of Immunology, Epsom & St Helier University Hospitals NHS Trust, Surrey, United Kingdom
| | - Zeynep Yesim Kucuk
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rosie Hague
- Department of Royal Hospital for Children, Glasgow, United Kingdom
| | - Paul French
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Richard Brooker
- Royal Aberdeen Childrens' Hospital, Aberdeen, United Kingdom
| | | | - Richard Herriot
- Royal Aberdeen Childrens' Hospital, Aberdeen, United Kingdom
| | - Caterina Cancrini
- Department of Pediatrics, Ospedale Pediatrico Bambino Gesù and University of Rome "Tor Vergata", Rome, Italy
| | - Paolo Palma
- Department of Pediatrics, Ospedale Pediatrico Bambino Gesù and University of Rome "Tor Vergata", Rome, Italy
| | - Paola Ariganello
- Department of Pediatrics, Ospedale Pediatrico Bambino Gesù and University of Rome "Tor Vergata", Rome, Italy
| | - Niall Conlon
- Department of Immunology, School of Medicine, Trinity College, Dublin, and St James's Hospital, Dublin, Ireland
| | - Conleth Feighery
- Department of Immunology, School of Medicine, Trinity College, Dublin, and St James's Hospital, Dublin, Ireland
| | - Patrick J Gavin
- Department of Paediatric Immunology and Infectious Diseases, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Alison Jones
- Department of Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mohammad A A Ibrahim
- King's College London, King's Health Partners, King's College Hospital NHS Foundation Trust, School of Medicine, Division of Asthma, Allergy & Lung Biology, Department of Immunological Medicine, London, United Kingdom
| | - Gašper Markelj
- Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Center, Ljubljana, Slovenia
| | - Mario Abinun
- Department of Paediatric Immunology, Newcastle upon Tyne hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| | - Frédéric Rieux-Laucat
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France
| | - Sylvain Latour
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France
| | - Isabelle Pellier
- Unité d'Onco-hémato-immunologie Pédiatrique, CHU Angers, Angers, France; Centre de Référence Déficits Immunitaires Héréditaires, AP-HP, Paris, France; Inserm UMR 892, Angers, France; CNRS UMR 6299, Angers, France
| | - Alain Fischer
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France; Department of Pediatric Immunology, Hematology and Rheumatology, AP-HP, Necker Children's Hospital, Paris, France; Collège de France, Paris, France
| | - Fabien Touzot
- Départment de Biothérapie, Centre d'Investigation Clinique intégré en Biothérapies, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France
| | - Jean-Laurent Casanova
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Department of Pediatric Immunology, Hematology and Rheumatology, AP-HP, Necker Children's Hospital, Paris, France; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Children's Hospital, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Howard Hughes Medical Institute, Chevy Chase, Md
| | - Anne Durandy
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France
| | - Siobhan O Burns
- University College London Institute of Immunity and Transplantation, London, United Kingdom
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, United Kingdom
| | - D S Kumararatne
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Despina Moshous
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Department of Pediatric Immunology, Hematology and Rheumatology, AP-HP, Necker Children's Hospital, Paris, France
| | - Sven Kracker
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France
| | | | - Klaus Okkenhaug
- Lymphocyte Signalling & Development, Babraham Institute, Cambridge, United Kingdom
| | - Capucine Picard
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France; Department of Pediatric Immunology, Hematology and Rheumatology, AP-HP, Necker Children's Hospital, Paris, France; Centre de Référence Déficits Immunitaires Héréditaires, AP-HP, Paris, France; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Children's Hospital, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Sergey Nejentsev
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alison M Condliffe
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| | - Andrew James Cant
- Department of Paediatric Immunology, Newcastle upon Tyne hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
187
|
Viisanen T, Ihantola EL, Näntö-Salonen K, Hyöty H, Nurminen N, Selvenius J, Juutilainen A, Moilanen L, Pihlajamäki J, Veijola R, Toppari J, Knip M, Ilonen J, Kinnunen T. Circulating CXCR5+PD-1+ICOS+ Follicular T Helper Cells Are Increased Close to the Diagnosis of Type 1 Diabetes in Children With Multiple Autoantibodies. Diabetes 2017; 66:437-447. [PMID: 28108610 DOI: 10.2337/db16-0714] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/01/2016] [Indexed: 01/02/2023]
Abstract
Although type 1 diabetes (T1D) is primarily perceived as a T cell-driven autoimmune disease, islet autoantibodies are the best currently available biomarker for autoimmunity and disease risk. These antibodies are produced by autoreactive B cells, the activation of which is largely dependent on the function of CD4+CXCR5+ follicular T helper cells (Tfh). In this study, we have comprehensively characterized the Tfh- as well as B-cell compartments in a large cohort of children with newly diagnosed T1D or at different stages of preclinical T1D. We demonstrate that the frequency of CXCR5+PD-1+ICOS+-activated circulating Tfh cells is increased both in children with newly diagnosed T1D and in autoantibody-positive at-risk children with impaired glucose tolerance. Interestingly, this increase was only evident in children positive for two or more biochemical autoantibodies. No alterations in the circulating B-cell compartment were observed in children with either prediabetes or diabetes. Our results demonstrate that Tfh activation is detectable in the peripheral blood close to the presentation of clinical T1D but only in a subgroup of children identifiable by positivity for multiple autoantibodies. These findings suggest a role for Tfh cells in the pathogenesis of human T1D and carry important implications for targeting Tfh cells and/or B cells therapeutically.
Collapse
Affiliation(s)
- Tyyne Viisanen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Emmi-Leena Ihantola
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kirsti Näntö-Salonen
- Department of Pediatrics, Turku University Hospital and University of Turku, Turku, Finland
| | - Heikki Hyöty
- School of Medicine, University of Tampere and Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Noora Nurminen
- School of Medicine, University of Tampere and Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Jenni Selvenius
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Auni Juutilainen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Leena Moilanen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland and Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| | - Riitta Veijola
- Department of Pediatrics, Medical Research Center, PEDEGO Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jorma Toppari
- Department of Physiology, Institute of Biomedicine, University of Turku, and Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Mikael Knip
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Diabetes and Obesity Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Centre, Helsinki, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, University of Turku, Turku, Finland
| | - Tuure Kinnunen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
188
|
Bahrami E, Witzel M, Racek T, Puchałka J, Hollizeck S, Greif-Kohistani N, Kotlarz D, Horny HP, Feederle R, Schmidt H, Sherkat R, Steinemann D, Göhring G, Schlegelbeger B, Albert MH, Al-Herz W, Klein C. Myb-like, SWIRM, and MPN domains 1 (MYSM1) deficiency: Genotoxic stress-associated bone marrow failure and developmental aberrations. J Allergy Clin Immunol 2017; 140:1112-1119. [PMID: 28115216 DOI: 10.1016/j.jaci.2016.10.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/22/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Myb-like, SWIRM, and MPN domains 1 (MYSM1) is a transcriptional regulator mediating histone deubiquitination. Its role in human immunity and hematopoiesis is poorly understood. OBJECTIVES We sought to investigate the clinical, cellular, and molecular features in 2 siblings presenting with progressive bone marrow failure (BMF), immunodeficiency, and developmental aberrations. METHODS We performed genome-wide homozygosity mapping, whole-exome and Sanger sequencing, immunophenotyping studies, and analysis of genotoxic stress responses. p38 activation, reactive oxygen species levels, rate of apoptosis and clonogenic survival, and growth in immune and nonimmune cells were assessed. The outcome of allogeneic hematopoietic stem cell transplantation (HSCT) was monitored. RESULTS We report 2 patients with progressive BMF associated with myelodysplastic features, immunodeficiency affecting B cells and neutrophil granulocytes, and complex developmental aberrations, including mild skeletal anomalies, neurocognitive developmental delay, and cataracts. Whole-exome sequencing revealed a homozygous premature stop codon mutation in the gene encoding MYSM1. MYSM1-deficient cells are characterized by increased sensitivity to genotoxic stress associated with sustained induction of phosphorylated p38 protein, increased reactive oxygen species production, and decreased survival following UV light-induced DNA damage. Both patients were successfully treated with allogeneic HSCT with sustained reconstitution of hematopoietic defects. CONCLUSIONS Here we show that MYSM1 deficiency is associated with developmental aberrations, progressive BMF with myelodysplastic features, and increased susceptibility to genotoxic stress. HSCT represents a curative therapy for patients with MYSM1 deficiency.
Collapse
Affiliation(s)
- Ehsan Bahrami
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Maximilian Witzel
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Tomas Racek
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jacek Puchałka
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sebastian Hollizeck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Naschla Greif-Kohistani
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Hans-Peter Horny
- Institute for Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Regina Feederle
- Helmholtz Zentrum München, German Research Center for Environmental Health, Core Facility Monoclonal Antibody Development, Munich, Germany
| | - Heinrich Schmidt
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Doris Steinemann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Gudrun Göhring
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Michael H Albert
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, and Department of Pediatrics, Al-Sabah Hospital, Kuwait City, Kuwait
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
189
|
Lugaajju A, Reddy SB, Wahlgren M, Kironde F, Persson KEM. Development of Plasmodium falciparum specific naïve, atypical, memory and plasma B cells during infancy and in adults in an endemic area. Malar J 2017; 16:37. [PMID: 28109284 PMCID: PMC5251336 DOI: 10.1186/s12936-017-1697-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/13/2017] [Indexed: 11/12/2022] Open
Abstract
Background B-cells are essential in immunity against malaria, but which sub-sets of B-cells specifically recognize Plasmodium falciparum and when they appear is still largely unknown. Results Using the flow cytometry technique for detection of P. falciparum specific (Pf+) B-cells, this study for the first time measured the development of Pf+ B cell (CD19+) phenotypes in Ugandan babies from birth up to nine months, and in their mothers. The babies showed increases in Pf+ IgG memory B-cells (MBCs), atypical MBCs, and plasma cells/blasts over time, but the proportion of these cells were still lower than in the mothers who displayed stable levels (5, 18, and 3%, respectively). Pf+ non-IgG+ MBCs and naïve B-cells binding to P. falciparum antigens were higher in the babies compared to the mothers (12 and 50%). In ELISA there was an increase in IgG and IgM antibodies over time in babies, and stable levels in mothers. At baby delivery, multigravidae mothers had a higher proportion of Pf+ IgG MBCs and less Pf+ naïve B-cells than primigravidae mothers. Conclusions In newborns, naïve B-cells are a major player in recognizing P. falciparum. In adults, the high proportion of Pf+ atypical MBCs suggests a major role for these cells. Both in infants and adults, non-IgG+ MBCs were higher than IgG MBCs, indicating that these cells deserve more focus in future. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1697-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Allan Lugaajju
- School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda.,Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sreenivasulu B Reddy
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fred Kironde
- School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda.,Habib Medical School, Islamic University in Uganda (IUIU), Kampala, Uganda
| | - Kristina E M Persson
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden. .,Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
190
|
Chang WLW, Gonzalez DF, Kieu HT, Castillo LD, Messaoudi I, Shen X, Tomaras GD, Shacklett BL, Barry PA, Sparger EE. Changes in Circulating B Cell Subsets Associated with Aging and Acute SIV Infection in Rhesus Macaques. PLoS One 2017; 12:e0170154. [PMID: 28095513 PMCID: PMC5240950 DOI: 10.1371/journal.pone.0170154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/29/2016] [Indexed: 12/21/2022] Open
Abstract
Aging and certain viral infections can negatively impact humoral responses in humans. To further develop the nonhuman primate (NHP) model for investigating B cell dynamics in human aging and infectious disease, a flow cytometric panel was developed to characterize circulating rhesus B cell subsets. Significant differences between human and macaque B cells included the proportions of cells within IgD+ and switched memory populations and a prominent CD21-CD27+ unswitched memory population detected only in macaques. We then utilized the expanded panel to analyze B cell alterations associated with aging and acute simian immunodeficiency virus (SIV) infection in the NHP model. In the aging study, distinct patterns of B cell subset frequencies were observed for macaques aged one to five years compared to those between ages 5 and 30 years. In the SIV infection study, B cell frequencies and absolute number were dramatically reduced following acute infection, but recovered within four weeks of infection. Thereafter, the frequencies of activated memory B cells progressively increased; these were significantly correlated with the magnitude of SIV-specific IgG responses, and coincided with impaired maturation of anti-SIV antibody avidity, as previously reported for HIV-1 infection. These observations further validate the NHP model for investigation of mechanisms responsible for B cells alterations associated with immunosenescence and infectious disease.
Collapse
Affiliation(s)
- W. L. William Chang
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| | - Denise F. Gonzalez
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Hung T. Kieu
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Luis D. Castillo
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Ilhem Messaoudi
- Department of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Peter A. Barry
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Davis, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Ellen E. Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
191
|
Kalampokis I, Venturi GM, Poe JC, Dvergsten JA, Sleasman JW, Tedder TF. The Regulatory B Cell Compartment Expands Transiently During Childhood and Is Contracted in Children With Autoimmunity. Arthritis Rheumatol 2017; 69:225-238. [PMID: 27429419 PMCID: PMC5195882 DOI: 10.1002/art.39820] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/14/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Regulatory B cells that inhibit immune responses through interleukin-10 (IL-10) secretion (B10 cells) have been characterized in adult subjects with autoimmune disease. The aim of this study was to characterize B10 cells in individuals across the entire age range of normal human development and changes in their frequency and numbers in children with autoimmunity. METHODS The phenotype and numbers of B10 cells in blood were examined in healthy individuals and children with autoimmunity, using flow cytometry. B10 cell function was assessed by measuring the effect of B cell-derived IL-10 on interferon-γ (IFNγ) expression by CD4+ T cells. Serum cytokine levels were measured by enzyme-linked immunosorbent assay. RESULTS The frequency of B10 cells transiently increased during childhood, when up to 30% of B cells were competent to produce IL-10, compared with the low frequencies in healthy newborns (3-4%) and adults (7-9%). The surface phenotype of B10 cells in children revealed age-dependent variability. B10 cells from children were distinct from proinflammatory cytokine-producing B cells and down-regulated IFNγ production by CD4+ T cells in vitro. Compared with age-matched healthy controls, children with autoimmunity had lower numbers and frequencies of B10 cells (decreased by 39% and 48%, respectively), higher IFNγ levels, and lower IL-21 levels in serum. IFNγ inhibited, whereas IL-21 promoted, B cell IL-10 competence in vitro. CONCLUSION B10 cells, a functionally defined cell subset with a variable surface phenotype reflective of overall B cell development, transiently expand during childhood. B10 cell frequencies and numbers were decreased in children with autoimmunity, which may be explained in part by alterations in serum IFNγ and IL-21 that differentially regulate B10 cell development.
Collapse
Affiliation(s)
- Ioannis Kalampokis
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | | | - Jonathan C. Poe
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | | | - John W. Sleasman
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Thomas F. Tedder
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
192
|
Marin AV, Jiménez-Reinoso A, Briones AC, Muñoz-Ruiz M, Aydogmus C, Pasick LJ, Couso J, Mazariegos MS, Alvarez-Prado AF, Blázquez-Moreno A, Cipe FE, Haskologlu S, Dogu F, Morín M, Moreno-Pelayo MA, García-Sánchez F, Gil-Herrera J, Fernández-Malavé E, Reyburn HT, Ramiro AR, Ikinciogullari A, Recio MJ, Regueiro JR, Garcillán B. Primary T-cell immunodeficiency with functional revertant somatic mosaicism in CD247. J Allergy Clin Immunol 2017; 139:347-349.e8. [DOI: 10.1016/j.jaci.2016.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/03/2016] [Accepted: 06/02/2016] [Indexed: 01/25/2023]
|
193
|
Nuñez S, Moore C, Gao B, Rogers K, Hidalgo Y, Del Nido PJ, Restaino S, Naka Y, Bhagat G, Madsen JC, Bono MR, Zorn E. The human thymus perivascular space is a functional niche for viral-specific plasma cells. Sci Immunol 2016; 1. [PMID: 28459117 DOI: 10.1126/sciimmunol.aah4447] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The human thymus is susceptible to viral infections that can severely alter thymopoiesis and compromise the mechanisms of acquired tolerance to self-antigens. In humans, plasma cells residing primarily in the bone marrow confer long-lasting protection to common viruses by secreting antigen-specific antibodies. Since the thymus also houses B cells, we examined the phenotypic complexity of these thymic resident cells and their possible protective role against viral infections. Using tissue specimens collected from subjects ranging in age from 5 days to 71 years, we found that starting during the first year of life, CD138+ plasma cells (PC) begin accumulating in the thymic perivascular space (PVS) where they constitutively produce IgG without the need for additional stimulation. These, thymic PC secrete almost exclusively IgG1 and IgG3, the two main complement-fixing effector IgG subclasses. Moreover, using antigen-specific ELISpot assays, we demonstrated that thymic PC include a high frequency of cells reactive to common viral proteins. Our study reveals an unrecognized role of the PVS as a functional niche for viral-specific PCs. The PVS is located between the thymic epithelial areas and the circulation. PCs located in this compartment may therefore provide internal protection against pathogen infections and preserve the integrity and function of the organ.
Collapse
Affiliation(s)
- Sarah Nuñez
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA.,Department of Biology, University of Chile, Santiago, Chile
| | - Carolina Moore
- MGH Transplant Center and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Baoshan Gao
- MGH Transplant Center and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kortney Rogers
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Yessia Hidalgo
- Department of Biology, University of Chile, Santiago, Chile
| | - Pedro J Del Nido
- Department of Surgery, Boston Children Hospital, Boston, MA, USA
| | - Susan Restaino
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Yoshifumi Naka
- Department of Surgery, Columbia University Medical Center, New York, NY, USA
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Joren C Madsen
- MGH Transplant Center and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Emmanuel Zorn
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
194
|
Tzeng SJ. The Isolation, Differentiation, and Quantification of Human Antibody-secreting B Cells from Blood: ELISpot as a Functional Readout of Humoral Immunity. J Vis Exp 2016. [PMID: 28060295 DOI: 10.3791/54582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The hallmark of humoral immunity is to generate functional ASCs, which synthesize and secrete Abs specific to an antigen (Ag), such as a pathogen, and are used for host defense. For the quantitative determination of the functional status of the humoral immune response of an individual, both serum Abs and circulating ASCs are commonly measured as functional readouts. In humans, peripheral blood is the most convenient and readily accessible sample that can be used for the determination of the humoral immune response elicited by host B cells. Distinct B-cell subsets, including ASCs, can be isolated directly from peripheral blood via selection with lineage-specific Ab-conjugated microbeads or via cell sorting with flow cytometry. Moreover, purified naïve and memory B cells can be activated and differentiated into ASCs in culture. The functional activities of ASCs to contribute to Ab secretion can be quantified by ELISpot, which is an assay that converges enzyme-linked immunoabsorbance assay (ELISA) and western blotting technologies to enable the enumeration of individual ASCs at the single-cell level. In practice, the ELISpot assay has been increasingly used to evaluate vaccine efficacy because of the ease of handling of a large number of blood samples. The methods of isolating human B cells from peripheral blood, the differentiation of B cells into ASCs in vitro, and the employment of ELISpot for the quantification of total IgM- and IgG-ASCs will be described here.
Collapse
Affiliation(s)
- Shiang-Jong Tzeng
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University;
| |
Collapse
|
195
|
van den Heuvel D, Jansen MAE, Nasserinejad K, Dik WA, van Lochem EG, Bakker-Jonges LE, Bouallouch-Charif H, Jaddoe VWV, Hooijkaas H, van Dongen JJM, Moll HA, van Zelm MC. Effects of nongenetic factors on immune cell dynamics in early childhood: The Generation R Study. J Allergy Clin Immunol 2016; 139:1923-1934.e17. [PMID: 27913304 DOI: 10.1016/j.jaci.2016.10.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/29/2016] [Accepted: 10/05/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Numbers of blood leukocyte subsets are highly dynamic in childhood and differ greatly between subjects. Interindividual variation is only partly accounted for by genetic factors. OBJECTIVE We sought to determine which nongenetic factors affect the dynamics of innate leukocytes and naive and memory lymphocyte subsets. METHODS We performed 6-color flow cytometry and linear mixed-effects modeling to define the dynamics of 62 leukocyte subsets from birth to 6 years of age in 1182 children, with 1 to 5 measurements per subject. Subsequently, we defined the effect of prenatal maternal lifestyle-related or immune-mediated determinants, birth characteristics, and bacterial/viral exposure-related determinants on leukocyte subset dynamics. RESULTS Functionally similar leukocyte populations were grouped by using unbiased hierarchical clustering of patterns of age-related leukocyte dynamics. Innate leukocyte numbers were high at birth and predominantly affected by maternal low education level. Naive lymphocyte counts peaked around 1 year, whereas most memory lymphocyte subsets more gradually increased during the first 4 years of life. Dynamics of CD4+ T cells were predominantly associated with sex, birth characteristics, and persistent infections with cytomegalovirus (CMV) or EBV. CD8+ T cells were predominantly associated with CMV and EBV infections, and T-cell receptor γδ+ T cells were predominantly associated with premature rupture of membranes and CMV infection. B-cell subsets were predominantly associated with sex, breast-feeding, and Helicobacter pylori carriership. CONCLUSIONS Our study identifies specific dynamic patterns of leukocyte subset numbers, as well as nongenetic determinants that affect these patterns, thereby providing new insights into the shaping of the childhood immune system.
Collapse
Affiliation(s)
- Diana van den Heuvel
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Michelle A E Jansen
- Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Kazem Nasserinejad
- Department of Biostatistics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Willem A Dik
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ellen G van Lochem
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | - Vincent W V Jaddoe
- Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Herbert Hooijkaas
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Henriëtte A Moll
- Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Menno C van Zelm
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.
| |
Collapse
|
196
|
Marasco E, Farroni C, Cascioli S, Marcellini V, Scarsella M, Giorda E, Piano Mortari E, Leonardi L, Scarselli A, Valentini D, Cancrini C, Duse M, Grimsholm O, Carsetti R. B-cell activation with CD40L or CpG measures the function of B-cell subsets and identifies specific defects in immunodeficient patients. Eur J Immunol 2016; 47:131-143. [PMID: 27800605 DOI: 10.1002/eji.201646574] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/10/2016] [Accepted: 10/28/2016] [Indexed: 01/19/2023]
Abstract
Around 65% of primary immunodeficiencies are antibody deficiencies. Functional tests are useful tools to study B-cell functions in vitro. However, no accepted guidelines for performing and evaluating functional tests have been issued yet. Here, we report our experience on the study of B-cell functions in infancy and throughout childhood. We show that T-independent stimulation with CpG measures proliferation and differentiation potential of memory B cells. Switched memory B cells respond better than IgM memory B cells. On the other hand, CD40L, a T-dependent stimulus, does not induce plasma cell differentiation, but causes proliferation of naïve and memory B cells. During childhood, the production of plasmablasts in response to CpG increases with age mirroring the development of memory B cells. The response to CD40L does not change with age. In patients with selective IgA deficiency (SIgAD), we observed that switched memory B cells are reduced due to the absence of IgA memory B cells. In agreement, IgA plasma cells are not generated in response to CpG. Unexpectedly, B cells from SIgAD patients show a reduced proliferative response to CD40L. Our results demonstrate that functional tests are an important tool to assess the functions of the humoral immune system.
Collapse
Affiliation(s)
- Emiliano Marasco
- Division of Rheumatology, Ospedale Pediatrico Bambino Gesù IRCCS, Roma, Italy
| | - Chiara Farroni
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino Gesù IRCSS, Roma, Italy
| | - Simona Cascioli
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino Gesù IRCSS, Roma, Italy
| | - Valentina Marcellini
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino Gesù IRCSS, Roma, Italy
| | - Marco Scarsella
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino Gesù IRCSS, Roma, Italy
| | - Ezio Giorda
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino Gesù IRCSS, Roma, Italy
| | - Eva Piano Mortari
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino Gesù IRCSS, Roma, Italy
| | - Lucia Leonardi
- Department of Pediatrics, La Sapienza University of Rome, Rome, Italy
| | - Alessia Scarselli
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Bambino Gesù Children's Hospital, University of Rome "Tor Vergata", Rome, Italy
| | - Diletta Valentini
- Pediatric and Infectious Disease Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Caterina Cancrini
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Bambino Gesù Children's Hospital, University of Rome "Tor Vergata", Rome, Italy
| | - Marzia Duse
- Department of Pediatrics, La Sapienza University of Rome, Rome, Italy
| | - Ola Grimsholm
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino Gesù IRCSS, Roma, Italy.,Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Rita Carsetti
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino Gesù IRCSS, Roma, Italy
| |
Collapse
|
197
|
Sung N, Byeon H, Garcia MS, Skariah A, Wu L, Dambaeva S, Beaman K, Gilman-Sachs A, Kwak-Kim J. Deficiency in memory B cell compartment in a patient with infertility and recurrent pregnancy losses. J Reprod Immunol 2016; 118:70-75. [DOI: 10.1016/j.jri.2016.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 01/08/2023]
|
198
|
Berrón-Ruíz L, López-Herrera G, Ávalos-Martínez CE, Valenzuela-Ponce C, Ramírez-SanJuan E, Santoyo-Sánchez G, Mújica Guzmán F, Espinosa-Rosales FJ, Santos-Argumedo L. Variations of B cell subpopulations in peripheral blood of healthy Mexican population according to age: Relevance for diagnosis of primary immunodeficiencies. Allergol Immunopathol (Madr) 2016; 44:571-579. [PMID: 27780620 DOI: 10.1016/j.aller.2016.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Peripheral blood B cells include lymphocytes at various stages of differentiation, each with a specific function in the immune response. All these stages show variations in percentage and absolute number throughout human life. The numbers and proportions of B subpopulation are influenced by factors such as gender, age, ethnicity, and lifestyle. This study establishes reference values according to age of peripheral blood B cell subtypes in healthy Mexican population. METHODS Peripheral blood from healthy new-borns and adults were analysed for total B cell subpopulations, using surface markers such as CD19, IgM, IgD, CD21, CD24, CD27, and CD38, to identify naïve, memory with and without isotype switch, double-negative, transitional, and plasmablast cells. RESULTS We observed a significant variation in terms of frequency and absolute counts between all groups analysed. Values from each B cell subpopulation show variations according to age. CONCLUSIONS In order to attempt to elucidate reference values for B cell subpopulation, the present study evaluated a population sample of healthy blood donors from this region. Values reported here can also be used as a tool for diagnosis of diseases in which B cell maturation is affected.
Collapse
Affiliation(s)
- L Berrón-Ruíz
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados-IPN, México, D.F., Mexico; Unidad de Investigación en Inmunodeficiencias, Instituto Nacional de Pediatría-SSa, México, D.F., Mexico
| | - G López-Herrera
- Unidad de Investigación en Inmunodeficiencias, Instituto Nacional de Pediatría-SSa, México, D.F., Mexico
| | - C E Ávalos-Martínez
- Laboratorio de Inmunoquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, D.F., Mexico
| | - C Valenzuela-Ponce
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados-IPN, México, D.F., Mexico
| | - E Ramírez-SanJuan
- Laboratorio de Farmacología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, D.F., Mexico
| | - G Santoyo-Sánchez
- Programa de Posgrado en Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México, México, D.F., Mexico
| | - F Mújica Guzmán
- Laboratorio de Hematología, Instituto Nacional de Pediatría-SSa, México, D.F., Mexico
| | - F J Espinosa-Rosales
- Unidad de Investigación en Inmunodeficiencias, Instituto Nacional de Pediatría-SSa, México, D.F., Mexico
| | - L Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados-IPN, México, D.F., Mexico.
| |
Collapse
|
199
|
Massaad MJ, Zhou J, Tsuchimoto D, Chou J, Jabara H, Janssen E, Glauzy S, Olson BG, Morbach H, Ohsumi TK, Schmitz K, Kyriacos M, Kane J, Torisu K, Nakabeppu Y, Notarangelo LD, Chouery E, Megarbane A, Kang PB, Al-Idrissi E, Aldhekri H, Meffre E, Mizui M, Tsokos GC, Manis JP, Al-Herz W, Wallace SS, Geha RS. Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity. J Clin Invest 2016; 126:4219-4236. [PMID: 27760045 DOI: 10.1172/jci85647] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 09/06/2016] [Indexed: 12/17/2022] Open
Abstract
Alterations in the apoptosis of immune cells have been associated with autoimmunity. Here, we have identified a homozygous missense mutation in the gene encoding the base excision repair enzyme Nei endonuclease VIII-like 3 (NEIL3) that abolished enzymatic activity in 3 siblings from a consanguineous family. The NEIL3 mutation was associated with fatal recurrent infections, severe autoimmunity, hypogammaglobulinemia, and impaired B cell function in these individuals. The same homozygous NEIL3 mutation was also identified in an asymptomatic individual who exhibited elevated levels of serum autoantibodies and defective peripheral B cell tolerance, but normal B cell function. Further analysis of the patients revealed an absence of LPS-responsive beige-like anchor (LRBA) protein expression, a known cause of immunodeficiency. We next examined the contribution of NEIL3 to the maintenance of self-tolerance in Neil3-/- mice. Although Neil3-/- mice displayed normal B cell function, they exhibited elevated serum levels of autoantibodies and developed nephritis following treatment with poly(I:C) to mimic microbial stimulation. In Neil3-/- mice, splenic T and B cells as well as germinal center B cells from Peyer's patches showed marked increases in apoptosis and cell death, indicating the potential release of self-antigens that favor autoimmunity. These findings demonstrate that deficiency in NEIL3 is associated with increased lymphocyte apoptosis, autoantibodies, and predisposition to autoimmunity.
Collapse
|
200
|
Prabhu SB, Rathore DK, Nair D, Chaudhary A, Raza S, Kanodia P, Sopory S, George A, Rath S, Bal V, Tripathi R, Ramji S, Batra A, Aggarwal KC, Chellani HK, Arya S, Agarwal N, Mehta U, Natchu UCM, Wadhwa N, Bhatnagar S. Comparison of Human Neonatal and Adult Blood Leukocyte Subset Composition Phenotypes. PLoS One 2016; 11:e0162242. [PMID: 27610624 PMCID: PMC5017693 DOI: 10.1371/journal.pone.0162242] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/21/2016] [Indexed: 12/26/2022] Open
Abstract
The human peripheral leukocyte subset composition depends on genotype variation and pre-natal and post-natal environmental influence diversity. We quantified this composition in adults and neonates, and compared the median values and dispersal ranges of various subsets in them. We confirmed higher frequencies of monocytes and regulatory T cells (Tregs), similar frequencies of neutrophils, and lower frequencies of CD8 T cells, NKT cells, B1 B cells and gamma-delta T cells in neonatal umbilical cord blood. Unlike previous reports, we found higher frequencies of eosinophils and B cells, higher CD4:CD8 ratios, lower frequencies of T cells and iNKT cells, and similar frequencies of CD4 T cells and NK cells in neonates. We characterized monocyte subsets and dendritic cell (DC) subsets in far greater detail than previously reported, using recently described surface markers and gating strategies and observed that neonates had lower frequencies of patrolling monocytes and lower myeloid dendritic cell (mDC):plasmacytoid DC (pDC) ratios. Our data contribute to South Asian reference values for these parameters. We found that dispersal ranges differ between different leukocyte subsets, suggesting differential determination of variation. Further, some subsets were more dispersed in adults than in neonates suggesting influences of postnatal sources of variation, while some show the opposite pattern suggesting influences of developmental process variation. Together, these data and analyses provide interesting biological possibilities for future exploration.
Collapse
Affiliation(s)
- Savit B. Prabhu
- Pediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- National Institute of Immunology, New Delhi, India
- * E-mail:
| | - Deepak K. Rathore
- Pediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Deepa Nair
- Pediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Anita Chaudhary
- Pediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Saimah Raza
- Pediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | | | - Shailaja Sopory
- Pediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Anna George
- National Institute of Immunology, New Delhi, India
| | - Satyajit Rath
- Pediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- National Institute of Immunology, New Delhi, India
| | - Vineeta Bal
- Pediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- National Institute of Immunology, New Delhi, India
| | - Reva Tripathi
- Department of Obstetrics & Gynecology, Maulana Azad Medical College, New Delhi, India
| | - Siddharth Ramji
- Department of Neonatology, Maulana Azad Medical College, New Delhi, India
| | - Aruna Batra
- Department of Obstetrics & Gynecology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Kailash C. Aggarwal
- Department of Pediatrics, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Harish K. Chellani
- Department of Pediatrics, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sugandha Arya
- Department of Pediatrics, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Nidhi Agarwal
- Department of Obstetrics and Gynecology, Gurgaon Civil Hospital, Gurgaon, India
| | - Umesh Mehta
- Department of Pediatrics, Gurgaon Civil Hospital, Gurgaon, India
| | - Uma Chandra Mouli Natchu
- Pediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Nitya Wadhwa
- Pediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Shinjini Bhatnagar
- Pediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|