151
|
Lee CC, Peng SH, Shen L, Lee CF, Du TH, Kang ML, Xu GL, Upadhyay AK, Cheng X, Yan YT, Zhang Y, Juan LJ. The Role of N-α-acetyltransferase 10 Protein in DNA Methylation and Genomic Imprinting. Mol Cell 2017; 68:89-103.e7. [PMID: 28943313 DOI: 10.1016/j.molcel.2017.08.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/13/2017] [Accepted: 08/24/2017] [Indexed: 01/21/2023]
Abstract
Genomic imprinting is an allelic gene expression phenomenon primarily controlled by allele-specific DNA methylation at the imprinting control region (ICR), but the underlying mechanism remains largely unclear. N-α-acetyltransferase 10 protein (Naa10p) catalyzes N-α-acetylation of nascent proteins, and mutation of human Naa10p is linked to severe developmental delays. Here we report that Naa10-null mice display partial embryonic lethality, growth retardation, brain disorders, and maternal effect lethality, phenotypes commonly observed in defective genomic imprinting. Genome-wide analyses further revealed global DNA hypomethylation and enriched dysregulation of imprinted genes in Naa10p-knockout embryos and embryonic stem cells. Mechanistically, Naa10p facilitates binding of DNA methyltransferase 1 (Dnmt1) to DNA substrates, including the ICRs of the imprinted allele during S phase. Moreover, the lethal Ogden syndrome-associated mutation of human Naa10p disrupts its binding to the ICR of H19 and Dnmt1 recruitment. Our study thus links Naa10p mutation-associated Ogden syndrome to defective DNA methylation and genomic imprinting.
Collapse
Affiliation(s)
- Chen-Cheng Lee
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Shih-Huan Peng
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC; Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan, ROC
| | - Li Shen
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Chung-Fan Lee
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Ting-Huei Du
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Ming-Lun Kang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Guo-Liang Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Anup K Upadhyay
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu-Ting Yan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Yi Zhang
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Li-Jung Juan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC.
| |
Collapse
|
152
|
Wu F, Tao L, Gao S, Ren L, Wang Z, Wang S, Tian J, An L. miR-6539 is a novel mediator of somatic cell reprogramming that represses the translation of Dnmt3b. J Reprod Dev 2017; 63:415-423. [PMID: 28603220 PMCID: PMC5593093 DOI: 10.1262/jrd.2016-170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/12/2017] [Indexed: 12/14/2022] Open
Abstract
Global DNA hypomethylation has been shown to be involved in the pluripotency of induced pluripotent stem (iPS) cells. Relatedly, DNA methyltransferases (DNMTs) are believed to be a substantial barrier to genome-wide demethylation. There are two distinct stages of DNMT expression during iPS cell generation. In the earlier stage of reprogramming, the expression of DNMTs is repressed to overcome epigenetic barriers. During the late stage, the expression of DNMTs is upregulated to ensure iPS cells obtain the full pluripotency required for further development. This fact is strongly reminiscent of microRNAs (miRNAs), critical regulators of precise gene expression, may be central to coordinate the expression of DNMTs during reprogramming. Using a secondary inducible system, we found that miR-6539 had a unique expression dynamic during iPS cell generation that inversely correlated with DNMT3B protein levels. Enforced upregulation of miR-6539 during the early stage of reprogramming increased the efficiency of iPS cell generation, while enforced downregulation impaired efficiency. Further analysis showed that Dnmt3b mRNA is the likely target of miR-6539. Notably, miR-6539 repressed Dnmt3b translation via a target site located in the coding sequence. Our study has therefore identified miR-6539 as a novel mediator of somatic cell reprogramming and, to the best of our knowledge, is the first to demonstrate miRNA-mediated translation inhibition in somatic cell reprogramming via targeting the coding sequence. Our study contributes to understand the mechanisms that underlie the miRNA-mediated epigenetic remodeling that occurs during somatic cell reprogramming.
Collapse
Affiliation(s)
- Fujia Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Li Tao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Shuai Gao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Likun Ren
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Zhuqing Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Shumin Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Jianhui Tian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Lei An
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
153
|
Saito Y, Kunitomi A, Seki T, Tohyama S, Kusumoto D, Takei M, Kashimura S, Hashimoto H, Yozu G, Motoda C, Shimojima M, Egashira T, Oda M, Fukuda K, Yuasa S. Epigenetic barrier against the propagation of fluctuating gene expression in embryonic stem cells. FEBS Lett 2017; 591:2879-2889. [PMID: 28805244 DOI: 10.1002/1873-3468.12791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/03/2017] [Accepted: 08/09/2017] [Indexed: 11/09/2022]
Abstract
The expression of pluripotency genes fluctuates in a population of embryonic stem (ES) cells and the fluctuations in the expression of some pluripotency genes correlate. However, no correlation in the fluctuation of Pou5f1, Zfp42, and Nanog expression was observed in ES cells. Correlation between Pou5f1 and Zfp42 fluctuations was demonstrated in ES cells containing a knockout in the NuRD component Mbd3. ES cells containing a triple knockout in the DNA methyltransferases Dnmt1, Dnmt3a, and Dnmt3b showed correlation between the fluctuation of Pou5f1, Zfp42, and Nanog gene expression. We suggest that an epigenetic barrier is key to preventing the propagation of fluctuating pluripotency gene expression in ES cells.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Akira Kunitomi
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomohisa Seki
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Dai Kusumoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Takei
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shin Kashimura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hisayuki Hashimoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Gakuto Yozu
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Chikaaki Motoda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Shimojima
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Toru Egashira
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Mayumi Oda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shinsuke Yuasa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
154
|
Atlasi Y, Stunnenberg HG. The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet 2017; 18:643-658. [PMID: 28804139 DOI: 10.1038/nrg.2017.57] [Citation(s) in RCA: 336] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chromatin, the template for epigenetic regulation, is a highly dynamic entity that is constantly reshaped during early development and differentiation. Epigenetic modification of chromatin provides the necessary plasticity for cells to respond to environmental and positional cues, and enables the maintenance of acquired information without changing the DNA sequence. The mechanisms involve, among others, chemical modifications of chromatin, changes in chromatin constituents and reconfiguration of chromatin interactions and 3D structure. New advances in genome-wide technologies have paved the way towards an integrative view of epigenome dynamics during cell state transitions, and recent findings in embryonic stem cells highlight how the interplay between different epigenetic layers reshapes the transcriptional landscape.
Collapse
Affiliation(s)
- Yaser Atlasi
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
155
|
Switching of dominant retrotransposon silencing strategies from posttranscriptional to transcriptional mechanisms during male germ-cell development in mice. PLoS Genet 2017; 13:e1006926. [PMID: 28749988 PMCID: PMC5549759 DOI: 10.1371/journal.pgen.1006926] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 08/08/2017] [Accepted: 07/15/2017] [Indexed: 12/13/2022] Open
Abstract
Mammalian genomes harbor millions of retrotransposon copies, some of which are transpositionally active. In mouse prospermatogonia, PIWI-interacting small RNAs (piRNAs) combat retrotransposon activity to maintain the genomic integrity. The piRNA system destroys retrotransposon-derived RNAs and guides de novo DNA methylation at some retrotransposon promoters. However, it remains unclear whether DNA methylation contributes to retrotransposon silencing in prospermatogonia. We have performed comprehensive studies of DNA methylation and polyA(+) RNAs (transcriptome) in developing male germ cells from Pld6/Mitopld and Dnmt3l knockout mice, which are defective in piRNA biogenesis and de novo DNA methylation, respectively. The Dnmt3l mutation greatly reduced DNA methylation levels at most retrotransposons, but its impact on their RNA abundance was limited in prospermatogonia. In Pld6 mutant germ cells, although only a few retrotransposons exhibited reduced DNA methylation, many showed increased expression at the RNA level. More detailed analysis of RNA sequencing, nascent RNA quantification, profiling of cleaved RNA ends, and the results obtained from double knockout mice suggest that PLD6 works mainly at the posttranscriptional level. The increase in retrotransposon expression was larger in Pld6 mutants than it was in Dnmt3l mutants, suggesting that RNA degradation by the piRNA system plays a more important role than does DNA methylation in prospermatogonia. However, DNA methylation had a long-term effect: hypomethylation caused by the Pld6 or Dnmt3l mutation resulted in increased retrotransposon expression in meiotic spermatocytes. Thus, posttranscriptional silencing plays an important role in the early stage of germ cell development, then transcriptional silencing becomes important in later stages. In addition, intergenic and intronic retrotransposon sequences, in particular those containing the antisense L1 promoters, drove ectopic expression of nearby genes in both mutant spermatocytes, suggesting that retrotransposon silencing is important for the maintenance of not only genomic integrity but also transcriptomic integrity. Retrotransposons are a class of transposable elements, of which mobility has mutagenic potential. Therefore, it is important to regulate the expression of retrotransposons for maintaining the genomic integrity. In male germ cells, DNA methylation and the piRNA system are thought to play roles in retrotransposon silencing. However, genome-wide DNA methylation is once erased (in primordial germ cells) and reestablished (in prospermatogonia) during development. In prospermatogonia, piRNAs guide de novo DNA methylation at some retrotransposons. To clarify the contribution of DNA methylation and the piRNA system to retrotransposon silencing in the course of male germ cell development, we analyzed DNA methylation and RNA expression in Dnmt3l and Pld6 knockout mice, which are defective in de novo DNA methylation and piRNA biogenesis, respectively. Our results reveal that, in prospermatogonia, the piRNA system works mainly at the posttranscriptional level, and plays a more important role than does DNA methylation in retrotransposon silencing. However, DNA methylation becomes much more important in later stages when germ cells enter meiosis (in spermatocytes). We also found that hypomethylated retrotransposons can drive ectopic expression of nearby genes; therefore, their transcriptional silencing by DNA methylation is important for maintaining the transcriptomic integrity as well.
Collapse
|
156
|
Derivation of ground-state female ES cells maintaining gamete-derived DNA methylation. Nature 2017; 548:224-227. [PMID: 28746308 DOI: 10.1038/nature23286] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/19/2017] [Indexed: 12/12/2022]
Abstract
Inhibitors of Mek1/2 and Gsk3β, known as 2i, enhance the derivation of embryonic stem (ES) cells and promote ground-state pluripotency in rodents. Here we show that the derivation of female mouse ES cells in the presence of 2i and leukaemia inhibitory factor (2i/L ES cells) results in a widespread loss of DNA methylation, including a massive erasure of genomic imprints. Despite this global loss of DNA methylation, early-passage 2i/L ES cells efficiently differentiate into somatic cells, and this process requires genome-wide de novo DNA methylation. However, the majority of imprinting control regions (ICRs) remain unmethylated in 2i/L-ES-cell-derived differentiated cells. Consistently, 2i/L ES cells exhibit impaired autonomous embryonic and placental development by tetraploid embryo complementation or nuclear transplantation. We identified the derivation conditions of female ES cells that display 2i/L-ES-cell-like transcriptional signatures while preserving gamete-derived DNA methylation and autonomous developmental potential. Upon prolonged culture, however, female ES cells exhibited ICR demethylation regardless of culture conditions. Our results provide insights into the derivation of female ES cells reminiscent of the inner cell mass of preimplantation embryos.
Collapse
|
157
|
Shen N, Yan F, Pang J, Zhao N, Gangat N, Wu L, Bode AM, Al-Kali A, Litzow MR, Liu S. Inactivation of Receptor Tyrosine Kinases Reverts Aberrant DNA Methylation in Acute Myeloid Leukemia. Clin Cancer Res 2017; 23:6254-6266. [PMID: 28720666 DOI: 10.1158/1078-0432.ccr-17-0235] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/18/2017] [Accepted: 07/12/2017] [Indexed: 01/05/2023]
Abstract
Purpose: Receptor tyrosine kinases (RTKs) are frequently deregulated in leukemia, yet the biological consequences of this deregulation remain elusive. The mechanisms underlying aberrant methylation, a hallmark of leukemia, are not fully understood. Here we investigated the role of RTKs in methylation abnormalities and characterized the hypomethylating activities of RTK inhibitors.Experimental Design: Whether and how RTKs regulate expression of DNA methyltransferases (DNMTs), tumor suppressor genes (TSGs) as well as global and gene-specific DNA methylation were examined. The pharmacologic activities and mechanisms of actions of RTK inhibitors in vitro, ex vivo, in mice, and in nilotinib-treated leukemia patients were determined.Results: Upregulation of RTKs paralleled DNMT overexpression in leukemia cell lines and patient blasts. Knockdown of RTKs disrupted, whereas enforced expression increased DNMT expression and DNA methylation. Treatment with the RTK inhibitor, nilotinib, resulted in a reduction of Sp1-dependent DNMT1 expression, the diminution of global DNA methylation, and the upregulation of the p15INK4B gene through promoter hypomethylation in AML cell lines and patient blasts. This led to disruption of AML cell clonogenicity and promotion of cellular apoptosis without obvious changes in cell cycle. Importantly, nilotinib administration in mice and human patients with AML impaired expression of DNMTs followed by DNA hypomethylation, TSG re-expression, and leukemia regression.Conclusions: Our findings demonstrate RTKs as novel regulators of DNMT-dependent DNA methylation and define DNA methylation status in AML cells as a pharmacodynamic marker for their response to RTK-based therapy, providing new therapeutic avenues for RTK inhibitors in overcoming epigenetic abnormalities in leukemia. Clin Cancer Res; 23(20); 6254-66. ©2017 AACR.
Collapse
Affiliation(s)
- Na Shen
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Fei Yan
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Jiuxia Pang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Na Zhao
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Naseema Gangat
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Laichu Wu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Mark R Litzow
- Division of Hematology, Mayo Clinic, Rochester, Minnesota.
| | - Shujun Liu
- The Hormel Institute, University of Minnesota, Austin, Minnesota.
| |
Collapse
|
158
|
Abstract
More and more studies show that chronic inflammation can lead to tumor formation. The complex interactions of inflammatory cells, stroma and tumor parenchymal cell are closely related to tumor formation. Under the state of chronic inflammatory microenvironment, long-term interaction of inflammatory cells and stromal cells as well as the parenchymal cells makes signaling pathway in parenchyma cells disordered. A series of gene level editor modification, epigenetic changes, and the regulation of transcription and translation changes will happen based on signaling pathway disorder. The changes ultimately lead to cell mutations and phenotypic transformation occurred. Recent findings provide an objective basis for cancer treatment and prevention. However, further discusses at the core of the possible molecular in tumor formation provide a theoretical foundation for future study of the pathogenesis and molecular targeted therapy of cancer. This review summarizes the research in the field of chronic inflammation and cancer in recent years, and analyze the molecules network in the process of the carcinogenic inflammation comprehensively. Beyond that, this review intends to describe possible carcinogenic inflammation core molecular and provides a theoretical basis for future study of the pathogenesis, chemoprevention and molecular targeted therapy of cancer.
Collapse
Affiliation(s)
- Hui Zhang
- 1 Department of Gastroenterology, The Shidong Hospital of Shanghai, Shanghai, China
- 2 Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, China
| | - Xuanfu Xu
- 1 Department of Gastroenterology, The Shidong Hospital of Shanghai, Shanghai, China
| |
Collapse
|
159
|
DNA N 6-methyladenine in metazoans: functional epigenetic mark or bystander? Nat Struct Mol Biol 2017; 24:503-506. [PMID: 28586322 DOI: 10.1038/nsmb.3412] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
The DNA-adenine modification N6-methyladenine (6mA), initially thought to be mainly restricted to prokaryotes and certain unicellular eukaryotes, has recently been found in metazoans. Proposed functions vary from gene activation to transposon suppression. However, since most metazoan genomes possess 5-methylcytosine (5mC) as a dominant epigenetic mark, it raises the question of why 6mA is required. This Perspective summarizes the latest discoveries and suggests potential functional roles for 6mA in metazoan genomes.
Collapse
|
160
|
Graf U, Casanova EA, Wyck S, Dalcher D, Gatti M, Vollenweider E, Okoniewski M, Weber FA, Patel SS, Schmid MW, Li J, Sharif J, Wanner G, Koseki H, Wong J, Pelczar P, Penengo L, Santoro R, Cinelli P. Pramel7 mediates ground-state pluripotency through proteasomal–epigenetic combined pathways. Nat Cell Biol 2017; 19:763-773. [DOI: 10.1038/ncb3554] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/11/2017] [Indexed: 12/16/2022]
|
161
|
Yamazaki T, Hatano Y, Handa T, Kato S, Hoida K, Yamamura R, Fukuyama T, Uematsu T, Kobayashi N, Kimura H, Yamagata K. Targeted DNA methylation in pericentromeres with genome editing-based artificial DNA methyltransferase. PLoS One 2017; 12:e0177764. [PMID: 28542388 PMCID: PMC5436701 DOI: 10.1371/journal.pone.0177764] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/03/2017] [Indexed: 01/10/2023] Open
Abstract
To study the impact of epigenetic changes on biological functions, the ability to manipulate the epigenetic status of certain genomic regions artificially could be an indispensable technology. “Epigenome editing” techniques have gradually emerged that apply TALE or CRISPR/Cas9 technologies with various effector domains isolated from epigenetic code writers or erasers such as DNA methyltransferase, 5-methylcytosine oxidase, and histone modification enzymes. Here we demonstrate that a TALE recognizing a major satellite, consisting of a repeated sequence in pericentromeres, could be fused with the bacterial CpG methyltransferase, SssI. ChIP-qPCR assays demonstrated that the fusion protein TALMaj-SssI preferentially bound to major chromosomal satellites in cultured cell lines. Then, TALMaj-SssI was expressed in fertilized mouse oocytes with hypomethylated major satellites (10–20% CpG islands). Bisulfite sequencing revealed that the DNA methylation status was increased specifically in major satellites (50–60%), but not in minor satellites or other repeat elements, such as Intracisternal A-particle (IAP) or long interspersed nuclear elements-1 (Line1) when the expression level of TALMaj-SssI is optimized in the cell. At a microscopic level, distal ends of chromosomes at the first mitotic stage were dramatically highlighted by the mCherry-tagged methyl CpG binding domain of human MBD1 (mCherry-MBD-NLS). Moreover, targeted DNA methylation to major satellites did not interfere with kinetochore function during early embryonic cleavages. Co-injection of dCas9 fused with SssI and guide RNA (gRNA) recognizing major satellite sequences enabled increment of the DNA methylation in the satellites, but a few off-target effects were also observed in minor satellites and retrotransposons. Although CRISPR can be applied instead of the TALE system, technical improvements to reduce off-target effects are required. We have demonstrated a new method of introducing DNA methylation without the need of other binding partners using the CpG methyltransferase, SssI.
Collapse
Affiliation(s)
- Taiga Yamazaki
- Division of Biomedical Research, Kitasato University Medical Center, Kitasato University, Kitamoto, Saitama, Japan
- * E-mail: (TY); (KY)
| | - Yu Hatano
- Faculty of Biology-Oriented Science and Technology, KINDAI University, Kinokawa, Wakayama, Japan
| | - Tetsuya Handa
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Sakiko Kato
- Faculty of Biology-Oriented Science and Technology, KINDAI University, Kinokawa, Wakayama, Japan
| | - Kensuke Hoida
- Faculty of Biology-Oriented Science and Technology, KINDAI University, Kinokawa, Wakayama, Japan
| | - Rui Yamamura
- Division of Biomedical Research, Kitasato University Medical Center, Kitasato University, Kitamoto, Saitama, Japan
| | - Takashi Fukuyama
- Division of Biomedical Research, Kitasato University Medical Center, Kitasato University, Kitamoto, Saitama, Japan
| | - Takayuki Uematsu
- Division of Biomedical Research, Kitasato University Medical Center, Kitasato University, Kitamoto, Saitama, Japan
| | - Noritada Kobayashi
- Division of Biomedical Research, Kitasato University Medical Center, Kitasato University, Kitamoto, Saitama, Japan
| | - Hiroshi Kimura
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Kazuo Yamagata
- Faculty of Biology-Oriented Science and Technology, KINDAI University, Kinokawa, Wakayama, Japan
- * E-mail: (TY); (KY)
| |
Collapse
|
162
|
Chen CY, Cheng YY, Yen CYT, Hsieh PCH. Mechanisms of pluripotency maintenance in mouse embryonic stem cells. Cell Mol Life Sci 2017; 74:1805-1817. [PMID: 27999898 PMCID: PMC11107721 DOI: 10.1007/s00018-016-2438-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 02/02/2023]
Abstract
Mouse embryonic stem cells (mESCs), characterized by their pluripotency and capacity for self-renewal, are driven by a complex gene expression program composed of several regulatory mechanisms. These mechanisms collaborate to maintain the delicate balance of pluripotency gene expression and their disruption leads to loss of pluripotency. In this review, we provide an extensive overview of the key pillars of mESC pluripotency by elaborating on the various essential transcription factor networks and signaling pathways that directly or indirectly support this state. Furthermore, we consider the latest developments in the role of epigenetic regulation, such as noncoding RNA signaling or histone modifications.
Collapse
Affiliation(s)
- Chen-Yun Chen
- Institute of Biomedical Sciences, Academia Sinica, IBMS Rm.417, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Yuan-Yuan Cheng
- Institute of Biomedical Sciences, Academia Sinica, IBMS Rm.417, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
- Institute of Life Sciences, National Defense Medical Center, Taipei, 114, Taiwan
| | - Christopher Y T Yen
- Institute of Biomedical Sciences, Academia Sinica, IBMS Rm.417, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, IBMS Rm.417, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan.
- Institute of Life Sciences, National Defense Medical Center, Taipei, 114, Taiwan.
- Institute of Medical Genomics and Proteomics, Institute of Clinical Medicine and Department of Surgery, National Taiwan University and Hospital, Taipei, 100, Taiwan.
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
163
|
Kim M, Costello J. DNA methylation: an epigenetic mark of cellular memory. Exp Mol Med 2017; 49:e322. [PMID: 28450738 PMCID: PMC6130213 DOI: 10.1038/emm.2017.10] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023] Open
Abstract
DNA methylation is a stable epigenetic mark that can be inherited through multiple cell divisions. During development and cell differentiation, DNA methylation is dynamic, but some DNA methylation patterns may be retained as a form of epigenetic memory. DNA methylation profiles can be useful for the lineage classification and quality control of stem cells such as embryonic stem cells, induced pluripotent cells and mesenchymal stem cells. During cancer initiation and progression, genome-wide and gene-specific DNA methylation changes occur as a consequence of mutated or deregulated chromatin regulators. Early aberrant DNA methylation states occurring during transformation appear to be retained during tumor evolution. Similarly, DNA methylation differences among different regions of a tumor reflect the history of cancer cells and their response to the tumor microenvironment. Therefore, DNA methylation can be a useful molecular marker for cancer diagnosis and drug treatment.
Collapse
Affiliation(s)
- Mirang Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - Joseph Costello
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
164
|
2i Maintains a Naive Ground State in ESCs through Two Distinct Epigenetic Mechanisms. Stem Cell Reports 2017; 8:1312-1328. [PMID: 28457889 PMCID: PMC5425728 DOI: 10.1016/j.stemcr.2017.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 01/08/2023] Open
Abstract
Mouse embryonic stem cells (ESCs) are maintained in serum with leukemia inhibitory factor (LIF) to maintain self-renewal and pluripotency. Recently, a 2i culture method was reported using a combination of MEK inhibition (MEKi) and GSK3 inhibition (GSK3i) with LIF to maintain ESCs in a naive ground state. How 2i maintains a ground state of ESCs remains elusive. Here we show that MEKi and GSK3i maintain the ESC ground state by downregulating global DNA methylation through two distinct mechanisms. MEK1 phosphorylates JMJD2C for ubiquitin-mediated protein degradation. Therefore, MEKi increased JMJD2C protein levels but decreased DNMT3 expression. JMJD2C promotes TET1 activity to increase 5-hydroxymethylcytosine (5hmC) levels. GSK3i suppressed DNMT3 expression, thereby decreasing DNA methylation without affecting 5hmC levels. Furthermore, 2i increased PRDM14 expression to inhibit DNMT3A/B protein expression by promoting G9a-mediated DNMT3A/B protein degradation. Collectively, 2i allows ESCs to maintain a naive ground state through JMJD2C-dependent TET1 activation and PRDM14/G9a-mediated DNMT3A/B protein degradation. MEKi increases JMJD2C protein levels and decreases DNMT3 expression in ESCs JMJD2C promotes TET1 hydroxylase activity to increase global 5hmC levels GSK3i decreases global DNA methylation without affecting 5hmC levels 2i-induced PRDM14 expression promotes G9a-mediated DNMT3A/B protein degradation
Collapse
|
165
|
Postlmayr A, Wutz A. Insights into the Establishment of Chromatin States in Pluripotent Cells from Studies of X Inactivation. J Mol Biol 2017; 429:1521-1531. [PMID: 28315662 DOI: 10.1016/j.jmb.2017.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 11/20/2022]
Abstract
Animal development entails the sequential and coordinated specialization of cells. During cell differentiation, transcription factors, cell signaling pathways, and chromatin-associated protein complexes cooperate in regulating the expression of a large number of genes. Here, we review the present understanding of the establishment of chromatin states by focusing on X chromosome inactivation (XCI) as a model for facultative heterochromatin formation in female embryonic cells. The inactive X chromosome is large enough to be investigated by biochemical and microscopy techniques. In addition, the ability to compare the inactivated chromatin to the active X in male cells enables us to differentiate events specific to gene silencing during XCI from gene regulatory effects from changing pathways in the same cell. Findings in XCI are useful as blueprints for investigation of the action of epigenetic pathways in differentiation and lineage commitment. We summarize recent studies that have identified factors that are critical for chromosome-wide gene repression in XCI, and we discuss their implications for epigenetic regulation in pluripotent cells of the early embryo.
Collapse
Affiliation(s)
- Andreas Postlmayr
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland; Life Science Zurich Graduate School, Molecular Life Sciences Program, University of Zurich, 8049 Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|
166
|
Abstract
Dissecting the complex network of epigenetic modifications requires tools that combine precise recognition of DNA sequences with the capability to modify epigenetic marks. The CRISPR/Cas system has been proven to be a valuable addition to existing methodologies that fulfill these tasks. So far, sequence-specific editing of epigenetic modifications such as DNA methylation and histone posttranslational modifications relied on direct fusions of enzymatically inactivated Cas9 (dCas9) with epigenetic effectors. Here, we report a novel, modular system that facilitates the recruitment of any GFP-tagged protein to desired genomic loci. By fusing dCas9 to a GFP-binding nanobody (GBP) we demonstrate that prevalent epigenetic modifications at mouse major satellite repeats can be erased or set de novo by recruiting GFP-coupled catalytic domains of TET1 and DNMT3A, respectively. Furthermore, we construct an inducible expression system that enables a temporally controlled expression of both GBP-dCas9 and the effector protein. Thus, our approach further expands the CRISPR/Cas toolbox for site-specific manipulation of epigenetic modifications with a modular and easy-to-use system.
Collapse
Affiliation(s)
- Tobias Anton
- a Department of Biology II and Center for Integrated Protein Science Munich (CIPSM) , LMU Munich , Martinsried , Germany
| | - Sebastian Bultmann
- a Department of Biology II and Center for Integrated Protein Science Munich (CIPSM) , LMU Munich , Martinsried , Germany
| |
Collapse
|
167
|
Ambrosi C, Manzo M, Baubec T. Dynamics and Context-Dependent Roles of DNA Methylation. J Mol Biol 2017; 429:1459-1475. [PMID: 28214512 DOI: 10.1016/j.jmb.2017.02.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/26/2017] [Accepted: 02/09/2017] [Indexed: 12/22/2022]
Abstract
DNA methylation is one of the most extensively studied epigenetic marks. It is involved in transcriptional gene silencing and plays important roles during mammalian development. Its perturbation is often associated with human diseases. In mammalian genomes, DNA methylation is a prevalent modification that decorates the majority of cytosines. It is found at the promoters and enhancers of inactive genes, at repetitive elements, and within transcribed gene bodies. Its presence at promoters is dynamically linked to gene activity, suggesting that it could directly influence gene expression patterns and cellular identity. The genome-wide distribution and dynamic behaviour of this mark have been studied in great detail in a variety of tissues and cell lines, including early embryonic development and in embryonic stem cells. In combination with functional studies, these genome-wide maps of DNA methylation revealed interesting features of this mark and provided important insights into its dynamic nature and potential functional role in genome regulation. In this review, we discuss how these recent observations, in combination with insights obtained from biochemical and functional genetics studies, have expanded our current knowledge about the regulation and context-dependent roles of DNA methylation in mammalian genomes.
Collapse
Affiliation(s)
- Christina Ambrosi
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Molecular Life Sciences PhD Program of the Life Sciences Zurich Graduate School, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Massimiliano Manzo
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Molecular Life Sciences PhD Program of the Life Sciences Zurich Graduate School, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Tuncay Baubec
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
168
|
DNA methylation is dispensable for changes in global chromatin architecture but required for chromocentre formation in early stem cell differentiation. Chromosoma 2017; 126:605-614. [PMID: 28084535 DOI: 10.1007/s00412-017-0625-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/21/2016] [Accepted: 01/02/2017] [Indexed: 01/05/2023]
Abstract
Epiblast stem cells (EpiSCs), which are pluripotent cells isolated from early post-implantation mouse embryos (E5.5), show both similarities and differences compared to mouse embryonic stem cells (mESCs), isolated earlier from the inner cell mass (ICM) of the E3.5 embryo. Previously, we have observed that while chromatin is very dispersed in E3.5 ICM, compact chromatin domains and chromocentres appear in E5.5 epiblasts after embryo implantation. Given that the observed chromatin re-organization in E5.5 epiblasts coincides with an increase in DNA methylation, in this study, we aimed to examine the role of DNA methylation in chromatin re-organization during the in vitro conversion of ESCs to EpiSCs. The requirement for DNA methylation was determined by converting both wild-type and DNA methylation-deficient ESCs to EpiSCs, followed by structural analysis with electron spectroscopic imaging (ESI). We show that the chromatin re-organization which occurs in vivo can be re-capitulated in vitro during the ESC to EpiSC conversion. Indeed, after 7 days in EpiSC media, compact chromatin domains begin to appear throughout the nuclear volume, creating a chromatin organization similar to E5 epiblasts and embryo-derived EpiSCs. Our data demonstrate that DNA methylation is dispensable for this global chromatin re-organization but required for the compaction of pericentromeric chromatin into chromocentres.
Collapse
|
169
|
Nishibuchi G, Déjardin J. The molecular basis of the organization of repetitive DNA-containing constitutive heterochromatin in mammals. Chromosome Res 2017; 25:77-87. [PMID: 28078514 DOI: 10.1007/s10577-016-9547-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/05/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022]
Abstract
Constitutive heterochromatin is composed mainly of repetitive elements and represents the typical inert chromatin structure in eukaryotic cells. Approximately half of the mammalian genome is made of repeat sequences, such as satellite DNA, telomeric DNA, and transposable elements. As essential genes are not present in these regions, most of these repeat sequences were considered as junk DNA in the past. However, it is now clear that these regions are essential for chromosome stability and the silencing of neighboring genes. Genetic and biochemical studies have revealed that histone methylation at H3K9 and its recognition by heterochromatin protein 1 represent the fundamental mechanism by which heterochromatin forms. Although this molecular mechanism is highly conserved from yeast to human cells, its detailed epigenetic regulation is more complex and dynamic for each distinct constitutive heterochromatin structure in higher eukaryotes. It can also vary according to the developmental stage. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) analysis is a powerful tool to investigate the epigenetic regulation of eukaryote genomes, but non-unique reads are usually discarded during standard ChIP-seq data alignment to reference genome databases. Therefore, specific methods to obtain global epigenetic information concerning repetitive elements are needed. In this review, we focus on such approaches and we summarize the latest molecular models for distinct constitutive heterochromatin types in mammals.
Collapse
Affiliation(s)
- Gohei Nishibuchi
- Biology of Repetitive Sequences, CNRS UPR1142, 141 rue de la Cardonille, 34000, Montpellier, France
| | - Jérôme Déjardin
- Biology of Repetitive Sequences, CNRS UPR1142, 141 rue de la Cardonille, 34000, Montpellier, France.
| |
Collapse
|
170
|
Abstract
The limited regenerative capacity of neuronal cells requires tight orchestration of cell death and survival regulation in the context of longevity, age-associated diseases as well as during the development of the nervous system. Subordinate to genetic networks epigenetic mechanisms like DNA methylation and histone modifications are involved in the regulation of neuronal development, function and aging. DNA methylation by DNA methyltransferases (DNMTs), mostly correlated with gene silencing, is a dynamic and reversible process. In addition to their canonical actions performing cytosine methylation, DNMTs influence gene expression by interactions with histone modifying enzymes or complexes increasing the complexity of epigenetic transcriptional networks. DNMTs are expressed in neuronal progenitors, post-mitotic as well as adult neurons. In this review, we discuss the role and mode of actions of DNMTs including downstream networks in the regulation of neuronal survival in the developing and aging nervous system and its relevance for associated disorders.
Collapse
Affiliation(s)
- Judit Symmank
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Geraldine Zimmer
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| |
Collapse
|
171
|
Betschinger J. Charting Developmental Dissolution of Pluripotency. J Mol Biol 2016; 429:1441-1458. [PMID: 28013029 DOI: 10.1016/j.jmb.2016.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/14/2016] [Indexed: 02/06/2023]
Abstract
The formation of tissues and organs during metazoan development begs fundamental questions of cellular plasticity: How can the very same genome program have diverse cell types? How do cell identity programs unfold during development in space and time? How can defects in these mechanisms cause disease and also provide opportunities for therapeutic intervention? And ultimately, can developmental programs be exploited for bioengineering tissues and organs? Understanding principle designs of cellular identity and developmental progression is crucial for providing answers. Here, I will discuss how the capture of embryonic pluripotency in murine embryonic stem cells (ESCs) in vitro has allowed fundamental insights into the molecular underpinnings of a developmental cell state and how its ordered disassembly during differentiation prepares for lineage specification.
Collapse
Affiliation(s)
- Joerg Betschinger
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| |
Collapse
|
172
|
Festuccia N, Gonzalez I, Navarro P. The Epigenetic Paradox of Pluripotent ES Cells. J Mol Biol 2016; 429:1476-1503. [PMID: 27988225 DOI: 10.1016/j.jmb.2016.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022]
Abstract
The propagation and maintenance of gene expression programs are at the foundation of the preservation of cell identity. A large and complex set of epigenetic mechanisms enables the long-term stability and inheritance of transcription states. A key property of authentic epigenetic regulation is being independent from the instructive signals used for its establishment. This makes epigenetic regulation, particularly epigenetic silencing, extremely robust and powerful to lock regulatory states and stabilise cell identity. In line with this, the establishment of epigenetic silencing during development restricts cell potency and maintains the cell fate choices made by transcription factors (TFs). However, how more immature cells that have not yet established their definitive fate maintain their transitory identity without compromising their responsiveness to signalling cues remains unclear. A paradigmatic example is provided by pluripotent embryonic stem (ES) cells derived from a transient population of cells of the blastocyst. Here, we argue that ES cells represent an interesting "epigenetic paradox": even though they are captured in a self-renewing state characterised by extremely efficient maintenance of their identity, which is a typical manifestation of robust epigenetic regulation, they seem not to heavily rely on classical epigenetic mechanisms. Indeed, self-renewal strictly depends on the TFs that previously instructed their undifferentiated identity and relies on a particular signalling-dependent chromatin state where repressive chromatin marks play minor roles. Although this "epigenetic paradox" may underlie their exquisite responsiveness to developmental cues, it suggests that alternative mechanisms to faithfully propagate gene regulatory states might be prevalent in ES cells.
Collapse
Affiliation(s)
- Nicola Festuccia
- Epigenetics of Stem Cells, Department of Stem Cell and Developmental Biology, Institut Pasteur, CNRS UMR3738, 25 rue du Docteur Roux, 75015 Paris, France
| | - Inma Gonzalez
- Epigenetics of Stem Cells, Department of Stem Cell and Developmental Biology, Institut Pasteur, CNRS UMR3738, 25 rue du Docteur Roux, 75015 Paris, France
| | - Pablo Navarro
- Epigenetics of Stem Cells, Department of Stem Cell and Developmental Biology, Institut Pasteur, CNRS UMR3738, 25 rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
173
|
Wang KY, Chen CC, Tsai SF, Shen CKJ. Epigenetic Enhancement of the Post-replicative DNA Mismatch Repair of Mammalian Genomes by a Hemi- mCpG-Np95-Dnmt1 Axis. Sci Rep 2016; 6:37490. [PMID: 27886214 PMCID: PMC5122852 DOI: 10.1038/srep37490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/26/2016] [Indexed: 01/02/2023] Open
Abstract
DNA methylation at C of CpG dyads (mCpG) in vertebrate genomes is essential for gene regulation, genome stability and development. We show in this study that proper functioning of post-replicative DNA mismatch repair (MMR) in mammalian cells relies on the presence of genomic mCpG, as well as on the maintenance DNA methyltransferase Dnmt1 independently of its catalytic activity. More importantly, high efficiency of mammalian MMR surveillance is achieved through a hemi-mCpG-Np95(Uhrf1)-Dnmt1 axis, in which the MMR surveillance complex(es) is recruited to post-replicative DNA by Dnmt1, requiring its interactions with MutSα, as well as with Np95 bound at the hemi-methylated CpG sites. Thus, efficiency of MMR surveillance over the mammalian genome in vivo is enhanced at the epigenetic level. This synergy endows vertebrate CpG methylation with a new biological significance and, consequently, an additional mechanism for the maintenance of vertebrate genome stability.
Collapse
Affiliation(s)
- Keh-Yang Wang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Chun-Chang Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Shih-Feng Tsai
- Genome Research Center, National Yang-Ming University, Taipei 11221, Taiwan.,Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 11221, Taiwan.,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Che-Kun James Shen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
174
|
Singh VK, Saini A, Kalsan M, Kumar N, Chandra R. Describing the Stem Cell Potency: The Various Methods of Functional Assessment and In silico Diagnostics. Front Cell Dev Biol 2016; 4:134. [PMID: 27921030 PMCID: PMC5118841 DOI: 10.3389/fcell.2016.00134] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022] Open
Abstract
Stem cells are defined by their capabilities to self-renew and give rise to various types of differentiated cells depending on their potency. They are classified as pluripotent, multipotent, and unipotent as demonstrated through their potential to generate the variety of cell lineages. While pluripotent stem cells may give rise to all types of cells in an organism, Multipotent and Unipotent stem cells remain restricted to the particular tissue or lineages. The potency of these stem cells can be defined by using a number of functional assays along with the evaluation of various molecular markers. These molecular markers include diagnosis of transcriptional, epigenetic, and metabolic states of stem cells. Many reports are defining the particular set of different functional assays, and molecular marker used to demonstrate the developmental states and functional capacities of stem cells. The careful evaluation of all these methods could help in generating standard identifying procedures/markers for them.
Collapse
Affiliation(s)
- Vimal K Singh
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Abhishek Saini
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Manisha Kalsan
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Neeraj Kumar
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi Delhi, India
| |
Collapse
|
175
|
Thakur A, Mackin SJ, Irwin RE, O’Neill KM, Pollin G, Walsh C. Widespread recovery of methylation at gametic imprints in hypomethylated mouse stem cells following rescue with DNMT3A2. Epigenetics Chromatin 2016; 9:53. [PMID: 27895716 PMCID: PMC5118886 DOI: 10.1186/s13072-016-0104-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/08/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Imprinted loci are paradigms of epigenetic regulation and are associated with a number of genetic disorders in human. A key characteristic of imprints is the presence of a gametic differentially methylated region (gDMR). Previous studies have indicated that DNA methylation lost from gDMRs could not be restored by DNMT1, or the de novo enzymes DNMT3A or 3B in stem cells, indicating that imprinted regions must instead undergo passage through the germline for reprogramming. However, previous studies were non-quantitative, were unclear on the requirement for DNMT3A/B and showed some inconsistencies. In addition, new putative gDMR has recently been described, along with an improved delineation of the existing gDMR locations. We therefore aimed to re-examine the dependence of methylation at gDMRs on the activities of the methyltransferases in mouse embryonic stem cells (ESCs). RESULTS We examined the most complete current set of imprinted gDMRs that could be assessed using quantitative pyrosequencing assays in two types of ESCs: those lacking DNMT1 (1KO) and cells lacking a combination of DNMT3A and DNMT3B (3abKO). We further verified results using clonal analysis and combined bisulfite and restriction analysis. Our results showed that loss of methylation was approximately equivalent in both cell types. 1KO cells rescued with a cDNA-expressing DNMT1 could not restore methylation at the imprinted gDMRs, confirming some previous observations. However, nearly all gDMRs were remethylated in 3abKO cells rescued with a DNMT3A2 expression construct (3abKO + 3a2). Transcriptional activity at the H19/Igf2 locus also tracked with the methylation pattern, confirming functional reprogramming in the latter. CONCLUSIONS These results suggested (1) a vital role for DNMT3A/B in methylation maintenance at imprints, (2) that loss of DNMT1 and DNMT3A/B had equivalent effects, (3) that rescue with DNMT3A2 can restore imprints in these cells. This may provide a useful system in which to explore factors influencing imprint reprogramming.
Collapse
Affiliation(s)
- Avinash Thakur
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
- Terry Fox Laboratory, BC Cancer Agency, 675 W 10th Ave, Vancouver, BC V5Z 1G1 Canada
| | - Sarah-Jayne Mackin
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
| | - Rachelle E. Irwin
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
| | - Karla M. O’Neill
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
- Centre for Experimental Medicine, The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE UK
| | - Gareth Pollin
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
| | - Colum Walsh
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
| |
Collapse
|
176
|
de la Rica L, Deniz Ö, Cheng KCL, Todd CD, Cruz C, Houseley J, Branco MR. TET-dependent regulation of retrotransposable elements in mouse embryonic stem cells. Genome Biol 2016; 17:234. [PMID: 27863519 PMCID: PMC5116139 DOI: 10.1186/s13059-016-1096-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022] Open
Abstract
Background Ten-eleven translocation (TET) enzymes oxidise DNA methylation as part of an active demethylation pathway. Despite extensive research into the role of TETs in genome regulation, little is known about their effect on transposable elements (TEs), which make up nearly half of the mouse and human genomes. Epigenetic mechanisms controlling TEs have the potential to affect their mobility and to drive the co-adoption of TEs for the benefit of the host. Results We performed a detailed investigation of the role of TET enzymes in the regulation of TEs in mouse embryonic stem cells (ESCs). We find that TET1 and TET2 bind multiple TE classes that harbour a variety of epigenetic signatures indicative of different functional roles. TETs co-bind with pluripotency factors to enhancer-like TEs that interact with highly expressed genes in ESCs whose expression is partly maintained by TET2-mediated DNA demethylation. TETs and 5-hydroxymethylcytosine (5hmC) are also strongly enriched at the 5′ UTR of full-length, evolutionarily young LINE-1 elements, a pattern that is conserved in human ESCs. TETs drive LINE-1 demethylation, but surprisingly, LINE-1s are kept repressed through additional TET-dependent activities. We find that the SIN3A co-repressive complex binds to LINE-1s, ensuring their repression in a TET1-dependent manner. Conclusions Our data implicate TET enzymes in the evolutionary dynamics of TEs, both in the context of exaptation processes and of retrotransposition control. The dual role of TET action on LINE-1s may reflect the evolutionary battle between TEs and the host. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1096-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lorenzo de la Rica
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, E1 2AT, UK
| | - Özgen Deniz
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, E1 2AT, UK
| | - Kevin C L Cheng
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, E1 2AT, UK
| | - Christopher D Todd
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, E1 2AT, UK
| | - Cristina Cruz
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - Miguel R Branco
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, E1 2AT, UK.
| |
Collapse
|
177
|
Barau J, Teissandier A, Zamudio N, Roy S, Nalesso V, Hérault Y, Guillou F, Bourc’his D. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science 2016; 354:909-912. [DOI: 10.1126/science.aah5143] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/19/2016] [Indexed: 12/23/2022]
|
178
|
Greenberg MVC, Glaser J, Borsos M, Marjou FE, Walter M, Teissandier A, Bourc'his D. Transient transcription in the early embryo sets an epigenetic state that programs postnatal growth. Nat Genet 2016; 49:110-118. [PMID: 27841881 DOI: 10.1038/ng.3718] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
The potential for early embryonic events to program epigenetic states that influence adult physiology remains an important question in health and development. Using the imprinted Zdbf2 locus as a paradigm for the early programming of phenotypes, we demonstrate here that chromatin changes that occur in the pluripotent embryo can be dispensable for embryogenesis but instead signal essential regulatory information in the adult. The Liz (long isoform of Zdbf2) transcript is transiently expressed in early embryos and embryonic stem cells (ESCs). This transcription locally promotes de novo DNA methylation upstream of the Zdbf2 promoter, which antagonizes Polycomb-mediated repression of Zdbf2. Strikingly, mouse embryos deficient for Liz develop normally but fail to activate Zdbf2 in the postnatal brain and show indelible growth reduction, implying a crucial role for a Liz-dependent epigenetic switch. This work provides evidence that transcription during an early embryonic timeframe can program a stable epigenetic state with later physiological consequences.
Collapse
Affiliation(s)
| | - Juliane Glaser
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France
| | - Máté Borsos
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France
| | | | - Marius Walter
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France
| | - Aurélie Teissandier
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France.,École des Mines, Paris, France
| | - Déborah Bourc'his
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France
| |
Collapse
|
179
|
Dnmt1 regulates the myogenic lineage specification of muscle stem cells. Sci Rep 2016; 6:35355. [PMID: 27752090 PMCID: PMC5082760 DOI: 10.1038/srep35355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/28/2016] [Indexed: 12/25/2022] Open
Abstract
DNA methylation is an important epigenetic mark that regulates gene expression. Dnmt1 plays an important role in maintaining DNA methylation patterns on daughter DNA strands. Studies have shed light into the functional role of Dnmt1 regulation in the hematopoietic and epidermal systems. Here we show that Dnmt1 is required for myogenesis. Loss of Dnmt1 results in reduced expression of myogenic genes and defects in myogenic differentiation. We have utilized a conditional knockout mouse approach to examine the functional consequences of Dnmt1 depletion specifically in the developing muscle. These mice were born runted, with smaller body weights, and reduced ability to form myotubes in vitro. We show that expression of Id-1, a negative regulator of myogenesis, is enhanced in Dnmt1-deficient cultures, leading to enhanced transdifferentiation of myoblasts toward the osteogenic lineage. Thus, these studies demonstrate that Dnmt1 influences cellular identity and determines lineage fidelity.
Collapse
|
180
|
Epigenetic Remodeling in Male Germline Development. Stem Cells Int 2016; 2016:3152173. [PMID: 27818689 PMCID: PMC5081465 DOI: 10.1155/2016/3152173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/26/2016] [Indexed: 12/31/2022] Open
Abstract
In mammals, germ cells guarantee the inheritance of genetic and epigenetic information across generations and are the origin of a new organism. During embryo development, the blastocyst is formed in the early stage, is comprised of an inner cell mass which is pluripotent, and could give rise to the embryonic stem cells (ESCs). The inner cell mass undergoes demethylation processes and will reestablish a methylated state that is similar to that of somatic cells later in epiblast stage. Primordial germ cells (PGCs) will be formed very soon and accompanied by the process of genome-wide demethylation. With the input of male sex determination genes, spermatogonial stem cells (SSCs) are generated and undergo the process of spermatogenesis. Spermatogenesis is a delicately regulated process in which various regulations are launched to guarantee normal mitosis and meiosis in SSCs. During all these processes, especially during spermatid development, DNA methylation profile and histone modifications are of crucial importance. In this review, we will discuss the epigenetic modifications from zygote formation to mature sperm generation and their significance to these development processes.
Collapse
|
181
|
Festuccia N, Dubois A, Vandormael-Pournin S, Gallego Tejeda E, Mouren A, Bessonnard S, Mueller F, Proux C, Cohen-Tannoudji M, Navarro P. Mitotic binding of Esrrb marks key regulatory regions of the pluripotency network. Nat Cell Biol 2016; 18:1139-1148. [PMID: 27723719 DOI: 10.1038/ncb3418] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 09/07/2016] [Indexed: 12/14/2022]
Abstract
Pluripotent mouse embryonic stem cells maintain their identity throughout virtually infinite cell divisions. This phenomenon, referred to as self-renewal, depends on a network of sequence-specific transcription factors (TFs) and requires daughter cells to accurately reproduce the gene expression pattern of the mother. However, dramatic chromosomal changes take place in mitosis, generally leading to the eviction of TFs from chromatin. Here, we report that Esrrb, a major pluripotency TF, remains bound to key regulatory regions during mitosis. We show that mitotic Esrrb binding is highly dynamic, driven by specific recognition of its DNA-binding motif and is associated with early transcriptional activation of target genes after completion of mitosis. These results indicate that Esrrb may act as a mitotic bookmarking factor, opening another perspective to molecularly understand the role of sequence-specific TFs in the epigenetic control of self-renewal, pluripotency and genome reprogramming.
Collapse
Affiliation(s)
- Nicola Festuccia
- Epigenetics of Stem Cells, Department of Developmental &Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 25 rue du docteur Roux, 75015 Paris, France
| | - Agnès Dubois
- Epigenetics of Stem Cells, Department of Developmental &Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 25 rue du docteur Roux, 75015 Paris, France
| | - Sandrine Vandormael-Pournin
- Mouse Functional Genetics, Department of Developmental &Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 25 rue du docteur Roux, 75015 Paris, France
| | - Elena Gallego Tejeda
- Epigenetics of Stem Cells, Department of Developmental &Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 25 rue du docteur Roux, 75015 Paris, France
| | - Adrien Mouren
- Epigenetics of Stem Cells, Department of Developmental &Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 25 rue du docteur Roux, 75015 Paris, France
| | - Sylvain Bessonnard
- Mouse Functional Genetics, Department of Developmental &Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 25 rue du docteur Roux, 75015 Paris, France
| | - Florian Mueller
- Imaging and Modelling, Department of Cell Biology &Infections, Institut Pasteur, CNRS UMR 3691, 25 rue du docteur Roux, Paris 75015, France
| | - Caroline Proux
- Transcriptome and EpiGenome, BioMics, Center for Innovation and Technological Research, Institut Pasteur, 28 rue du docteur Roux, 75015 Paris, France
| | - Michel Cohen-Tannoudji
- Mouse Functional Genetics, Department of Developmental &Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 25 rue du docteur Roux, 75015 Paris, France
| | - Pablo Navarro
- Epigenetics of Stem Cells, Department of Developmental &Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 25 rue du docteur Roux, 75015 Paris, France
| |
Collapse
|
182
|
Papageorgiou DN, Karkoulia E, Amaral-Psarris A, Burda P, Kolodziej K, Demmers J, Bungert J, Stopka T, Strouboulis J. Distinct and overlapping DNMT1 interactions with multiple transcription factors in erythroid cells: Evidence for co-repressor functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1515-1526. [PMID: 27693117 DOI: 10.1016/j.bbagrm.2016.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/14/2016] [Accepted: 09/26/2016] [Indexed: 01/14/2023]
Abstract
DNMT1 is the maintenance DNA methyltransferase shown to be essential for embryonic development and cellular growth and differentiation in many somatic tissues in mammals. Increasing evidence has also suggested a role for DNMT1 in repressing gene expression through interactions with specific transcription factors. Previously, we identified DNMT1 as an interacting partner of the TR2/TR4 nuclear receptor heterodimer in erythroid cells, implicated in the developmental silencing of fetal β-type globin genes in the adult stage of human erythropoiesis. Here, we extended this work by using a biotinylation tagging approach to characterize DNMT1 protein complexes in mouse erythroleukemic cells. We identified novel DNMT1 interactions with several hematopoietic transcription factors with essential roles in erythroid differentiation, including GATA1, GFI-1b and FOG-1. We provide evidence for DNMT1 forming distinct protein subcomplexes with specific transcription factors and propose the existence of a "core" DNMT1 complex with the transcription factors ZBP-89 and ZNF143, which is also present in non-hematopoietic cells. Furthermore, we identified the short (17a.a.) PCNA Binding Domain (PBD) located near the N-terminus of DNMT1 as being necessary for mediating interactions with the transcription factors described herein. Lastly, we provide evidence for DNMT1 serving as a co-repressor of ZBP-89 and GATA1 acting through upstream regulatory elements of the PU.1 and GATA1 gene loci.
Collapse
Affiliation(s)
- Dimitris N Papageorgiou
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Elena Karkoulia
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Alexandra Amaral-Psarris
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Pavel Burda
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Katarzyna Kolodziej
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jeroen Demmers
- Proteomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Tomas Stopka
- Biocev, 1st Medical Faculty, Charles University, Prague, Czech Republic
| | - John Strouboulis
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.
| |
Collapse
|
183
|
Abstract
Epigenetic modifications established during gametogenesis regulate transcription and other nuclear processes in gametes, but also have influences in the zygote, embryo and postnatal life. This is best understood for DNA methylation which, established at discrete regions of the oocyte and sperm genomes, governs genomic imprinting. In this review, we describe how imprinting has informed our understanding of de novo DNA methylation mechanisms, highlight how recent genome-wide profiling studies have provided unprecedented insights into establishment of the sperm and oocyte methylomes and consider the fate and function of gametic methylation and other epigenetic modifications after fertilization.
Collapse
Affiliation(s)
- Kathleen R Stewart
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Lenka Veselovska
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.,Laboratory of Developmental Biology & Genetics, Department of Molecular Biology, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| |
Collapse
|
184
|
Roden C, Lu J. MicroRNAs in Control of Stem Cells in Normal and Malignant Hematopoiesis. CURRENT STEM CELL REPORTS 2016; 2:183-196. [PMID: 27547713 PMCID: PMC4988405 DOI: 10.1007/s40778-016-0057-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Studies on hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs) have helped to establish the paradigms of normal and cancer stem cell concepts. For both HSCs and LSCs, specific gene expression programs endowed by their epigenome functionally distinguish them from their differentiated progenies. MicroRNAs (miRNAs), as a class of small non-coding RNAs, act to control post-transcriptional gene expression. Research in the past decade has yielded exciting findings elucidating the roles of miRNAs in control of multiple facets of HSC and LSC biology. Here we review recent progresses on the functions of miRNAs in HSC emergence during development, HSC switch from a fetal/neonatal program to an adult program, HSC self-renewal and quiescence, HSC aging, HSC niche, and malignant stem cells. While multiple different miRNAs regulate a diverse array of targets, two common themes emerge in HSC and LSC biology: miRNA mediated regulation of epigenetic machinery and cell signaling pathways. In addition, we propose that miRNAs themselves behave like epigenetic regulators, as they possess key biochemical and biological properties that can provide both stability and alterability to the epigenetic program. Overall, the studies of miRNAs in stem cells in the hematologic contexts not only provide key understandings to post-transcriptional gene regulation mechanisms in HSCs and LSCs, but also will lend key insights for other stem cell fields.
Collapse
Affiliation(s)
- Christine Roden
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Yale Stem Cell Center, Yale Cancer Center, New Haven, Connecticut, 06520, USA
- Graduate Program in Biological and Biomedical Sciences, Yale University, New Haven, Connecticut 06510, USA
| | - Jun Lu
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Yale Stem Cell Center, Yale Cancer Center, New Haven, Connecticut, 06520, USA
- Yale Center for RNA Science and Medicine, New Haven, Connecticut, 06520, USA
| |
Collapse
|
185
|
Tang WWC, Kobayashi T, Irie N, Dietmann S, Surani MA. Specification and epigenetic programming of the human germ line. Nat Rev Genet 2016; 17:585-600. [DOI: 10.1038/nrg.2016.88] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
186
|
Locus- and cell type-specific epigenetic switching during cellular differentiation in mammals. FRONTIERS IN BIOLOGY 2016; 11:311-322. [PMID: 28261266 PMCID: PMC5336297 DOI: 10.1007/s11515-016-1411-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Epigenomic reconfiguration, including changes in DNA methylation and histone modifications, is crucial for the differentiation of embryonic stem cells (ESCs) into somatic cells. However, the extent to which the epigenome is reconfigured and the interplay between components of the epigenome during cellular differentiation remain poorly defined. METHODS We systematically analyzed and compared DNA methylation, various histone modification, and transcriptome profiles in ESCs with those of two distinct types of somatic cells from human and mouse. RESULTS We found that global DNA methylation levels are lower in somatic cells compared to ESCs in both species. We also found that 80% of regions with histone modification occupancy differ between human ESCs and the two human somatic cell types. Approximately 70% of the reconfigurations in DNA methylation and histone modifications are locus- and cell type-specific. Intriguingly, the loss of DNA methylation is accompanied by the gain of different histone modifications in a locus- and cell type-specific manner. Further examination of transcriptional changes associated with epigenetic reconfiguration at promoter regions revealed an epigenetic switching for gene regulation-a transition from stable gene silencing mediated by DNA methylation in ESCs to flexible gene repression facilitated by repressive histone modifications in somatic cells. CONCLUSIONS Our findings demonstrate that the epigenome is reconfigured in a locus- and cell type-specific manner and epigenetic switching is common during cellular differentiation in both human and mouse.
Collapse
|
187
|
van den Hurk M, Kenis G, Bardy C, van den Hove DL, Gage FH, Steinbusch HW, Rutten BP. Transcriptional and epigenetic mechanisms of cellular reprogramming to induced pluripotency. Epigenomics 2016; 8:1131-49. [PMID: 27419933 DOI: 10.2217/epi-2016-0032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Enforced ectopic expression of a cocktail of pluripotency-associated genes such as Oct4, Sox2, Klf4 and c-Myc can reprogram somatic cells into induced pluripotent stem cells (iPSCs). The remarkable proliferation ability of iPSCs and their aptitude to redifferentiate into any cell lineage makes these cells a promising tool for generating a variety of human tissue in vitro. Yet, pluripotency induction is an inefficient process, as cells undergoing reprogramming need to overcome developmentally imposed epigenetic barriers. Recent work has shed new light on the molecular mechanisms that drive the reprogramming of somatic cells to iPSCs. Here, we present current knowledge on the transcriptional and epigenetic regulation of pluripotency induction and discuss how variability in epigenetic states impacts iPSCs' inherent biological properties.
Collapse
Affiliation(s)
- Mark van den Hurk
- Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.,European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, 6200 MD, The Netherlands.,Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Gunter Kenis
- Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.,European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Cedric Bardy
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Daniel L van den Hove
- Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.,European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, 6200 MD, The Netherlands.,Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics & Psychotherapy, University of Wuerzburg, 97080 Wuerzburg, Germany
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Harry W Steinbusch
- Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.,European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Bart P Rutten
- Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.,European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
188
|
Zhao Y, Sun H, Wang H. Long noncoding RNAs in DNA methylation: new players stepping into the old game. Cell Biosci 2016; 6:45. [PMID: 27408682 PMCID: PMC4940868 DOI: 10.1186/s13578-016-0109-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/02/2016] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are being discovered as a novel family of regulators of gene expression at the epigenetic level. Emerging lines of evidence demonstrate that interplays between lncRNAs and DNA methylation machinery are an important layer of epigenetic regulation. Here in this mini-review we summarize the current findings in the field and focus particularly on the interactions mediated through direct physical association between lncRNAs and DNA methyltransferases (DNMTs).
Collapse
Affiliation(s)
- Yu Zhao
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Sun
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China ; Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China ; Department of Orthopedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
189
|
Rebuzzini P, Zuccotti M, Redi CA, Garagna S. Achilles' heel of pluripotent stem cells: genetic, genomic and epigenetic variations during prolonged culture. Cell Mol Life Sci 2016; 73:2453-66. [PMID: 26961132 PMCID: PMC11108315 DOI: 10.1007/s00018-016-2171-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/28/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022]
Abstract
Pluripotent stem cells differentiate into almost any specialized adult cell type of an organism. PSCs can be derived either from the inner cell mass of a blastocyst-giving rise to embryonic stem cells-or after reprogramming of somatic terminally differentiated cells to obtain ES-like cells, named induced pluripotent stem cells. The potential use of these cells in the clinic, for investigating in vitro early embryonic development or for screening the effects of new drugs or xenobiotics, depends on capability to maintain their genome integrity during prolonged culture and differentiation. Both human and mouse PSCs are prone to genomic and (epi)genetic instability during in vitro culture, a feature that seriously limits their real potential use. Culture-induced variations of specific chromosomes or genes, are almost all unpredictable and, as a whole, differ among independent cell lines. They may arise at different culture passages, suggesting the absence of a safe passage number maintaining genome integrity and rendering the control of genomic stability mandatory since the very early culture passages. The present review highlights the urgency for further studies on the mechanisms involved in determining (epi)genetic and chromosome instability, exploiting the knowledge acquired earlier on other cell types.
Collapse
Affiliation(s)
- Paola Rebuzzini
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', Università degli Studi di Pavia, Via Ferrata 9, 27100, Pavia, Italy.
- Center for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, Pavia, Italy.
| | - Maurizio Zuccotti
- Unita' di Anatomia, Istologia ed Embriologia, Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali (S.BI.BI.T.), Università degli Studi di Parma, Via Volturno 39, 43100, Parma, Italy.
| | - Carlo Alberto Redi
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', Università degli Studi di Pavia, Via Ferrata 9, 27100, Pavia, Italy
- Center for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, Pavia, Italy
- Fondazione I.R.C.C.S. Policlinico San Matteo, Piazzale Golgi, 19, 27100, Pavia, Italy
| | - Silvia Garagna
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', Università degli Studi di Pavia, Via Ferrata 9, 27100, Pavia, Italy.
- Center for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, Pavia, Italy.
| |
Collapse
|
190
|
Wu Y, Zhang S, Yuan Q. N(6)-Methyladenosine Methyltransferases and Demethylases: New Regulators of Stem Cell Pluripotency and Differentiation. Stem Cells Dev 2016; 25:1050-9. [PMID: 27216987 DOI: 10.1089/scd.2016.0062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The discovery of mammalian N(6)-methyladenosine (m(6)A) methyltransferases and demethylases has enriched our knowledge of the dynamic regulation of the most prevalent posttranscriptional RNA modification, m(6)A methylation. This reversible methylation process of adding and removing m(6)A marks on RNA has been shown to have broad biological functions in fine tuning cellular processes and gene expression. Recent studies have revealed a critical role for the currently known m(6)A methyltransferases and demethylases in regulating the pluripotency and differentiation of stem cells. These data establish a novel dimension in epigenetic regulation at the RNA level to affect mammalian cell fate.
Collapse
Affiliation(s)
- Yunshu Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| |
Collapse
|
191
|
Schwämmle V, Sidoli S, Ruminowicz C, Wu X, Lee CF, Helin K, Jensen ON. Systems Level Analysis of Histone H3 Post-translational Modifications (PTMs) Reveals Features of PTM Crosstalk in Chromatin Regulation. Mol Cell Proteomics 2016; 15:2715-29. [PMID: 27302890 DOI: 10.1074/mcp.m115.054460] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Indexed: 12/21/2022] Open
Abstract
Histones are abundant chromatin constituents carrying numerous post-translational modifications (PTMs). Such PTMs mediate a variety of biological functions, including recruitment of enzymatic readers, writers and erasers that modulate DNA replication, transcription and repair. Individual histone molecules contain multiple coexisting PTMs, some of which exhibit crosstalk, i.e. coordinated or mutually exclusive activities. Here, we present an integrated experimental and computational systems level molecular characterization of histone PTMs and PTM crosstalk. Using wild type and engineered mouse embryonic stem cells (mESCs) knocked out in components of the Polycomb Repressive Complex 2 (PRC2, Suz12(-/-)), PRC1 (Ring1A/B(-/-)) and (Dnmt1/3a/3b(-/-)) we performed comprehensive PTM analysis of histone H3 tails (50 aa) by utilizing quantitative middle-down proteome analysis by tandem mass spectrometry. We characterized combinatorial PTM features across the four mESC lines and then applied statistical data analysis to predict crosstalk between histone H3 PTMs. We detected an overrepresentation of positive crosstalk (codependent marks) between adjacent mono-methylated and acetylated marks, and negative crosstalk (mutually exclusive marks) among most of the seven characterized di- and tri-methylated lysine residues in the H3 tails. We report novel features of PTM interplay involving hitherto poorly characterized arginine methylation and lysine methylation sites, including H3R2me, H3R8me and H3K37me. Integration of the H3 data with RNAseq data by coabundance clustering analysis of histone PTMs and histone modifying enzymes revealed correlations between PTM and enzyme levels. We conclude that middle-down proteomics is a powerful tool to determine conserved or dynamic interdependencies between histone marks, which paves the way for detailed investigations of the histone code. Histone H3 PTM data is publicly available in the CrossTalkDB repository at http://crosstalkdb.bmb.sdu.dk.
Collapse
Affiliation(s)
- Veit Schwämmle
- From the ‡Centre for Epigenetics and VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark;
| | - Simone Sidoli
- From the ‡Centre for Epigenetics and VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Chrystian Ruminowicz
- From the ‡Centre for Epigenetics and VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Xudong Wu
- §Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Chung-Fan Lee
- §Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Kristian Helin
- §Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, DK-2200, Copenhagen, Denmark; ¶The Danish Stem Cell Centre (Danstem), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Ole N Jensen
- From the ‡Centre for Epigenetics and VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
192
|
Suelves M, Carrió E, Núñez-Álvarez Y, Peinado MA. DNA methylation dynamics in cellular commitment and differentiation. Brief Funct Genomics 2016; 15:443-453. [PMID: 27416614 DOI: 10.1093/bfgp/elw017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts, revealing a more dynamic regulation than originally thought, as active DNA methylation and demethylation occur during cell fate commitment and terminal differentiation. Recent data provide insights into the contribution of different epigenetic factors, and DNA methylation in particular, to the establishment of cellular memory during embryonic development and the modulation of cell type-specific gene regulation programs to ensure proper differentiation. This review summarizes published data regarding DNA methylation changes along lineage specification and differentiation programs. We also discuss the current knowledge about DNA methylation alterations occurring in physiological and pathological conditions such as aging and cancer.
Collapse
|
193
|
He Q, Kim H, Huang R, Lu W, Tang M, Shi F, Yang D, Zhang X, Huang J, Liu D, Songyang Z. The Daxx/Atrx Complex Protects Tandem Repetitive Elements during DNA Hypomethylation by Promoting H3K9 Trimethylation. Cell Stem Cell 2016; 17:273-86. [PMID: 26340527 DOI: 10.1016/j.stem.2015.07.022] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 06/14/2015] [Accepted: 07/28/2015] [Indexed: 01/02/2023]
Abstract
In mammals, DNA methylation is essential for protecting repetitive sequences from aberrant transcription and recombination. In some developmental contexts (e.g., preimplantation embryos) DNA is hypomethylated but repetitive elements are not dysregulated, suggesting that alternative protection mechanisms exist. Here we explore the processes involved by investigating the role of the chromatin factors Daxx and Atrx. Using genome-wide binding and transcriptome analysis, we found that Daxx and Atrx have distinct chromatin-binding profiles and are co-enriched at tandem repetitive elements in wild-type mouse ESCs. Global DNA hypomethylation further promoted recruitment of the Daxx/Atrx complex to tandem repeat sequences, including retrotransposons and telomeres. Knockdown of Daxx/Atrx in cells with hypomethylated genomes exacerbated aberrant transcriptional de-repression of repeat elements and telomere dysfunction. Mechanistically, Daxx/Atrx-mediated repression seems to involve Suv39h recruitment and H3K9 trimethylation. Our data therefore suggest that Daxx and Atrx safeguard the genome by silencing repetitive elements when DNA methylation levels are low.
Collapse
Affiliation(s)
- Quanyuan He
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hyeung Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Rui Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weisi Lu
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Mengfan Tang
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fengtao Shi
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Dong Yang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiya Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dan Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
194
|
Riso V, Cammisa M, Kukreja H, Anvar Z, Verde G, Sparago A, Acurzio B, Lad S, Lonardo E, Sankar A, Helin K, Feil R, Fico A, Angelini C, Grimaldi G, Riccio A. ZFP57 maintains the parent-of-origin-specific expression of the imprinted genes and differentially affects non-imprinted targets in mouse embryonic stem cells. Nucleic Acids Res 2016; 44:8165-78. [PMID: 27257070 PMCID: PMC5041456 DOI: 10.1093/nar/gkw505] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/26/2016] [Indexed: 01/14/2023] Open
Abstract
ZFP57 is necessary for maintaining repressive epigenetic modifications at Imprinting control regions (ICRs). In mouse embryonic stem cells (ESCs), ZFP57 binds ICRs (ICRBS) and many other loci (non-ICRBS). To address the role of ZFP57 on all its target sites, we performed high-throughput and multi-locus analyses of inbred and hybrid mouse ESC lines carrying different gene knockouts. By using an allele-specific RNA-seq approach, we demonstrate that ZFP57 loss results in derepression of the imprinted allele of multiple genes in the imprinted clusters. We also find marked epigenetic differences between ICRBS and non-ICRBS suggesting that different cis-acting regulatory functions are repressed by ZFP57 at these two classes of target loci. Overall, these data demonstrate that ZFP57 is pivotal to maintain the allele-specific epigenetic modifications of ICRs that in turn are necessary for maintaining the imprinted expression over long distances. At non-ICRBS, ZFP57 inactivation results in acquisition of epigenetic features that are characteristic of poised enhancers, suggesting that another function of ZFP57 in early embryogenesis is to repress cis-acting regulatory elements whose activity is not yet required.
Collapse
Affiliation(s)
- Vincenzo Riso
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Marco Cammisa
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Harpreet Kukreja
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Zahra Anvar
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Gaetano Verde
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| | - Angela Sparago
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Basilia Acurzio
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Shraddha Lad
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| | - Enza Lonardo
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| | - Aditya Sankar
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark Center for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark The Danish Stem Cell Center (Danstem), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), CNRS, 34293 Montpellier, France University of Montpellier, 34090 Montpellier, France
| | - Annalisa Fico
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo 'Mauro Picone' (IAC), CNR, 80131 Naples, Italy
| | - Giovanna Grimaldi
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Ceinge Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Andrea Riccio
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| |
Collapse
|
195
|
Abstract
A complete understanding of the function of the ten-eleven translocation (TET) family of dioxygenase-mediated DNA demethylation requires new methods to quantitatively map oxidized 5-methylcytosine (5mC) bases at high resolution. We have recently developed a methylase-assisted bisulfite sequencing (MAB-seq) method that allows base-resolution mapping of 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), two oxidized 5mC bases indicative of active DNA demethylation events. In standard bisulfite sequencing (BS-seq), unmodified C, 5fC and 5caC are read as thymine; thus 5fC and 5caC cannot be distinguished from C. In MAB-seq, unmodified C is enzymatically converted to 5mC, allowing direct mapping of rare modifications such as 5fC and 5caC. By combining MAB-seq with chemical reduction of 5fC to 5hmC, we also developed caMAB-seq, a method for direct 5caC mapping. Compared with subtraction-based mapping methods, MAB-seq and caMAB-seq require less sequencing effort and enable robust statistical calling of 5fC and/or 5caC. MAB-seq and caMAB-seq can be adapted to map 5fC/5caC at the whole-genome scale (WG-MAB-seq), within specific genomic regions enriched for enhancer-marking histone modifications (chromatin immunoprecipitation (ChIP)-MAB-seq), or at CpG-rich sequences (reduced-representation (RR)-MAB-seq) such as gene promoters. The full protocol, including DNA preparation, enzymatic treatment, library preparation and sequencing, can be completed within 6-8 d.
Collapse
|
196
|
Luo Z, Lin C, Woodfin AR, Bartom ET, Gao X, Smith ER, Shilatifard A. Regulation of the imprinted Dlk1-Dio3 locus by allele-specific enhancer activity. Genes Dev 2016; 30:92-101. [PMID: 26728555 PMCID: PMC4701981 DOI: 10.1101/gad.270413.115] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study, Luo et al. find that the AFF family protein AFF3 can specifically bind both gametic differentially DNA-methylated regions (gDMRs) and enhancers within imprinted loci in an allele-specific manner. These results provide the mechanistic details of the control of dosage-critical imprinted gene expression through the regulated binding of the transcription elongation factor AFF3 between a DMR and an enhancer. Genomic imprinting is a critical developmental process characteristic of parent of origin-specific gene expression. It is well accepted that differentially DNA-methylated regions (DMRs) and enhancers are two major classes of cis-elements determining parent of origin-specific gene expression, with each recruiting different sets of transcription factors. Previously, we identified the AF4/FMR2 (AFF) family protein AFF3 within the transcription elongation complex SEC-L3. Here, we report that AFF3 can specifically bind both gametic DMRs (gDMRs) and enhancers within imprinted loci in an allele-specific manner. We identify the molecular regulators involved in the recruitment of AFF3 to gDMRs and provide mechanistic insight into the requirement of AFF3 at an enhancer for the expression of an ∼200-kb polycistronic transcript within the imprinted Dlk1-Dio3 locus. Our data suggest that the heterochromatic environment at the gDMR reinforces silencing of its related enhancer by controlling the binding and activity of AFF3 in an allele-specific manner. In summary, this study provides molecular details about the regulation of dosage-critical imprinted gene expression through the regulated binding of the transcription elongation factor AFF3 between a DMR and an enhancer.
Collapse
Affiliation(s)
- Zhuojuan Luo
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA; Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Chengqi Lin
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Ashley R Woodfin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Xin Gao
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Edwin R Smith
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA; Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Robert H. Lurie National Cancer Institute Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
197
|
Abstract
Vertebrate genomes are highly methylated at cytosine residues in CpG sequences. CpG
methylation plays an important role in epigenetic gene silencing and genome stability.
Compared with other epigenetic modifications, CpG methylation is thought to be relatively
stable; however, it is sometimes affected by environmental changes, leading to epigenetic
instability and disease. CpG methylation is reversible and regulated by DNA
methyltransferases and demethylases including ten-eleven translocation. Here, we discuss
CpG methylation instability and the regulation of CpG methylation by DNA
methyltransferases and ten-eleven translocation in pluripotent stem cells.
Collapse
Affiliation(s)
- Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | | |
Collapse
|
198
|
Guillevic O, Ferratge S, Pascaud J, Driancourt C, Boyer-Di-Ponio J, Uzan G. A Novel Molecular and Functional Stemness Signature Assessing Human Cord Blood-Derived Endothelial Progenitor Cell Immaturity. PLoS One 2016; 11:e0152993. [PMID: 27043207 PMCID: PMC4820260 DOI: 10.1371/journal.pone.0152993] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/22/2016] [Indexed: 01/20/2023] Open
Abstract
Endothelial Colony Forming Cells (ECFCs), a distinct population of Endothelial Progenitor Cells (EPCs) progeny, display phenotypic and functional characteristics of endothelial cells while retaining features of stem/progenitor cells. Cord blood-derived ECFCs (CB-ECFCs) have a high clonogenic and proliferative potentials and they can acquire different endothelial phenotypes, this requiring some plasticity. These properties provide angiogenic and vascular repair capabilities to CB-ECFCs for ischemic cell therapies. However, the degree of immaturity retained by EPCs is still confused and poorly defined. Consequently, to better characterize CB-ECFC stemness, we quantified their clonogenic potential and demonstrated that they were reprogrammed into induced pluripotent stem cells (iPSCs) more efficiently and rapidly than adult endothelial cells. Moreover, we analyzed the transcriptional profile of a broad gene panel known to be related to stem cells. We showed that, unlike mature endothelial cells, CB-ECFCs expressed genes involved in the maintenance of embryonic stem cell properties such as DNMT3B, GDF3 or SOX2. Thus, these results provide further evidence and tools to appreciate EPC-derived cell stemness. Moreover this novel stem cell transcriptional signature of ECFCs could help better characterizing and ranging EPCs according to their immaturity profile.
Collapse
Affiliation(s)
| | | | | | | | | | - Georges Uzan
- INSERM U972, hôpital Paul Brousse, Villejuif, France
- * E-mail:
| |
Collapse
|
199
|
Abstract
Differentiating somatic cells are progressively restricted to specialized functions during ontogeny, but they can be experimentally directed to form other cell types, including those with complete embryonic potential. Early nuclear reprogramming methods, such as somatic cell nuclear transfer (SCNT) and cell fusion, posed significant technical hurdles to precise dissection of the regulatory programmes governing cell identity. However, the discovery of reprogramming by ectopic expression of a defined set of transcription factors, known as direct reprogramming, provided a tractable platform to uncover molecular characteristics of cellular specification and differentiation, cell type stability and pluripotency. We discuss the control and maintenance of cellular identity during developmental transitions as they have been studied using direct reprogramming, with an emphasis on transcriptional and epigenetic regulation.
Collapse
|
200
|
Karemaker ID, Vermeulen M. In need of good neighbours: transcription factors require local DNA hypomethylation for target binding. EMBO J 2016; 35:374-5. [PMID: 26758545 DOI: 10.15252/embj.201593750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ino D Karemaker
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences Radboud University, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences Radboud University, Nijmegen, The Netherlands
| |
Collapse
|