151
|
Martin TC, Visconti A, Spector TD, Falchi M. Conducting metagenomic studies in microbiology and clinical research. Appl Microbiol Biotechnol 2018; 102:8629-8646. [PMID: 30078138 PMCID: PMC6153607 DOI: 10.1007/s00253-018-9209-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Abstract
Owing to the increased cost-effectiveness of high-throughput technologies, the number of studies focusing on the human microbiome and its connections to human health and disease has recently surged. However, best practices in microbiology and clinical research have yet to be clearly established. Here, we present an overview of the challenges and opportunities involved in conducting a metagenomic study, with a particular focus on data processing and analytical methods.
Collapse
Affiliation(s)
- Tiphaine C. Martin
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Alessia Visconti
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| |
Collapse
|
152
|
Isolation of Previously Uncultured Slow-Growing Bacteria by Using a Simple Modification in the Preparation of Agar Media. Appl Environ Microbiol 2018; 84:AEM.00807-18. [PMID: 30030229 DOI: 10.1128/aem.00807-18] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/29/2018] [Indexed: 12/26/2022] Open
Abstract
Most microorganisms living in the environment have yet to be cultured, owing at least in part to their slow and poor propagation properties and susceptibility to oxidative stress. Our previous studies demonstrated that a simple modification in the preparation of agar media, i.e., autoclaving the phosphate and agar separately (termed "PS" medium), can greatly improve the culturability of microorganisms by mitigating oxidative stress compared with the use of "PT" medium (autoclaving the phosphate and agar together). Here, we attempted to isolate phylogenetically novel bacteria by combining PS medium with prolonged cultivation. After inoculation with forest soil or pond sediment samples, significantly more colonies appeared on PS medium than on PT medium. A total of 98 and 74 colonies that emerged after more than 7 days of cultivation were isolated as slow growers from PS and PT media, respectively. Sequencing analysis of their 16S rRNA genes revealed that the slow growers recovered from PS medium included more phylogenetically novel bacteria than those from PT medium, including a strain that could be classified into a novel order in the class Alphaproteobacteria Further physiological analysis of representative strains showed that they were actually slow and poor growers and formed small but visible colonies only on PS medium. This study demonstrates that the culturability of previously uncultured bacteria can be improved by using an isolation strategy that combines a simple modification in medium preparation with an extended incubation time.IMPORTANCE Most microbial species inhabiting natural environments have not yet been isolated. One of the serious issues preventing their isolation is intrinsically slow and/or poor growth. Moreover, these slow and/or poor growers are likely to be highly sensitive to environmental stresses, especially oxidative stress. We reported previously that interaction between agar and phosphate during autoclave sterilization generates hydrogen peroxide, which adversely affects the culturability of environmental microorganisms, in particular, slow-growing organisms vulnerable to oxidative stress. In this study, we successfully isolated many slow-growing bacterial strains with phylogenetic novelty by simply modifying their cultivation on agar plates, i.e., autoclaving the phosphate and agar separately. The current limited repertoire of culture techniques still has room for improvement in the isolation of microorganisms previously considered unculturable.
Collapse
|
153
|
Lima MS, Laport MS, Lorosa ES, Jurberg J, Dos Santos KRN, da Silva Neto MAC, Rachid CTCDC, Atella GC. Bacterial community composition in the salivary glands of triatomines (Hemiptera: Reduviidae). PLoS Negl Trop Dis 2018; 12:e0006739. [PMID: 30212460 PMCID: PMC6136693 DOI: 10.1371/journal.pntd.0006739] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 08/07/2018] [Indexed: 12/20/2022] Open
Abstract
Background Chagas disease is caused by the parasite Trypanosoma cruzi and is transmitted through triatomines (Hemiptera: Reduviidae). In the last year, many studies of triatomine gut microbiota have outlined its potential role in modulating vector competence. However, little is known about the microbiota present in the salivary glands of triatomines. Bacterial composition of salivary glands in selected triatomine species was investigated, as well as environmental influences on the acquisition of bacterial communities. Methodology/Principal findings The diversity of the bacterial communities of 30 pairs of salivary glands of triatomines was studied by sequencing of the V1- V3 variable region of the 16S rRNA using the MiSeq platform (Illumina), and bacteria isolated from skin of three vertebrate hosts were identified based on 16S rRNA gene sequence analysis (targeting the V3–V5 region). In a comparative analysis of microbiota in the salivary glands of triatomine species, operational taxonomic units belonging to Arsenophonous appeared as dominant in Triatoma spp (74% of the total 16S coverage), while these units belonging to unclassified Enterobacteriaceae were dominant in the Rhodnius spp (57% of the total 16S coverage). Some intraspecific changes in the composition of the triatomine microbiota were observed, suggesting that some bacteria may have been acquired from the environment. Conclusions and significance Our study revealed the presence of a low-diversity microbiota associated to the salivary glands of the evaluated triatomines. The predominant bacteria genera are associated with triatomine genera and the bacteria can be acquired in the environment in which the insects reside. Further studies are necessary to determine the influence of bacterial communities on vector competence. Chagas disease is caused by the parasite Trypanosoma cruzi and is transmitted through triatomines (Hemiptera: Reduviidae). It is estimated that over 10 000 people die every year from clinical manifestations of Chagas disease, and more than 25 million people risk acquiring the disease per year. Vector control remains the most effective method to prevent infection. In previous studies, the microbiota affected vector competence, thereby highlighting its potential for vector control. In this study, we demonstrate the presence of cultivable and non-cultivable bacteria in the salivary glands of different species of triatomines. The predominant bacterial genera appear to be specific to certain triatomines, e.g., the operational taxonomic units belonging to Arsenophonus bacterial genus is associated with the Triatoma spp, while these units belonging to unclassified Enterobacteriaceae bacterial family are associated with the Rhodnius spp. The operational taxonomic units found in low relative abundance also varied between species of triatomines and their occurrence could be influenced by the environment in which insects reside as well as inter-bacterial modulation by species-specific manner.
Collapse
Affiliation(s)
- Michele Souza Lima
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Marinella Silva Laport
- Instituto de Microbiologia Prof. Rogério Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Elias Seixas Lorosa
- Laboratório de Referência Nacional e Internacional de Triatomíneos, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro-RJ, Brazil
| | - José Jurberg
- Laboratório de Referência Nacional e Internacional de Triatomíneos, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro-RJ, Brazil
| | | | - Mário Alberto Cardoso da Silva Neto
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | | | - Georgia Correa Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| |
Collapse
|
154
|
Bruno G, Rocco G, Zaccari P, Porowska B, Mascellino MT, Severi C. Helicobacter pylori Infection and Gastric Dysbiosis: Can Probiotics Administration Be Useful to Treat This Condition? THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2018; 2018:6237239. [PMID: 30275917 PMCID: PMC6151681 DOI: 10.1155/2018/6237239] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori (Hp) is responsible for one of the most common infections in the world. The prevalence exceeds 50% of the population in developing countries, and approximately one-third of the adults are colonized in North Europe and North America. It is considered a major pathogenic agent of chronic gastritis, peptic ulcer, atrophic gastritis, gastric cancer, and mucosa-associated lymphoid tissue lymphoma (MALT). Hp colonization modifies the composition of gastric microbiota that could drive the development of gastric disorders. Currently, an emerging problem in Hp treatment is represented by the increasing rate of antimicrobial therapy resistance. In this context, the search for adjuvant agents can be very useful to overcome this issue and probiotics administration can represent a valid option. The aim of this review is to describe the gastric microbiota changes during Hp colonization, the mechanisms of action, and a possible role of probiotics in the treatment of this infection.
Collapse
Affiliation(s)
- Giovanni Bruno
- Department of Internal Medicine and Medical Specialties, Gastroenterology Unit, Sapienza University, Rome, Italy
| | - Giulia Rocco
- Department of Internal Medicine and Medical Specialties, Gastroenterology Unit, Sapienza University, Rome, Italy
| | - Piera Zaccari
- Department of Internal Medicine and Medical Specialties, Gastroenterology Unit, Sapienza University, Rome, Italy
| | - Barbara Porowska
- Department of Cardio-Thoracic, Vascular Surgery and Transplants, Sapienza University, Rome, Italy
| | | | - Carola Severi
- Department of Internal Medicine and Medical Specialties, Gastroenterology Unit, Sapienza University, Rome, Italy
| |
Collapse
|
155
|
Palma Esposito F, Ingham CJ, Hurtado-Ortiz R, Bizet C, Tasdemir D, de Pascale D. Isolation by Miniaturized Culture Chip of an Antarctic bacterium Aequorivita sp. with antimicrobial and anthelmintic activity. ACTA ACUST UNITED AC 2018; 20:e00281. [PMID: 30225207 PMCID: PMC6139392 DOI: 10.1016/j.btre.2018.e00281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/28/2023]
Abstract
Novel microbial isolation approach allowed the identification of a Gram-negative Antarctic bacterium belonging to the genus Aequorivita. Aequorivita sp. showed antimicrobial and anthelmintic activity without toxic effect towards eukaryotic cells. The whole genome of Aequorivita sp. was sequenced and compared with other strains to identify biosynthetic gene clusters. This novel approach represents a promising strategy to isolate rare or novel strains useful for biotechnological applications.
Microbes are prolific sources of bioactive molecules; however, the cultivability issue has severely hampered access to microbial diversity. Novel secondary metabolites from as-yet-unknown or atypical microorganisms from extreme environments have realistic potential to lead to new drugs with benefits for human health. Here, we used a novel approach that mimics the natural environment by using a Miniaturized Culture Chip allowing the isolation of several bacterial strains from Antarctic shallow water sediments under near natural conditions. A Gram-negative Antarctic bacterium belonging to the genus Aequorivita was subjected to further analyses. The Aequorivita sp. genome was sequenced and a bioinformatic approach was applied to identify biosynthetic gene clusters. The extract of the Aequorivita sp. showed antimicrobial and anthelmintic activity towards Multidrug resistant bacteria and the nematode Caenorhabditis elegans. This is the first multi-approach study exploring the genomics and biotechnological potential of the genus Aequorivita that is a promising candidate for pharmaceutical applications.
Collapse
Affiliation(s)
- Fortunato Palma Esposito
- Institute of Protein Biochemistry, National Research Council, Naples, 80131, Italy.,Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy
| | | | - Raquel Hurtado-Ortiz
- CIP-Collection of Institut Pasteur, Department of Microbiology, Institut Pasteur, Paris, 75015, France.,CRBIP-Biological Resource Centre, Department of Microbiology, Institut Pasteur, Paris, 75015, France
| | - Chantal Bizet
- CIP-Collection of Institut Pasteur, Department of Microbiology, Institut Pasteur, Paris, 75015, France.,CRBIP-Biological Resource Centre, Department of Microbiology, Institut Pasteur, Paris, 75015, France
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, 24106, Germany
| | - Donatella de Pascale
- Institute of Protein Biochemistry, National Research Council, Naples, 80131, Italy.,Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy
| |
Collapse
|
156
|
Kisková J, Stramová Z, Javorský P, Sedláková-Kaduková J, Pristaš P. Analysis of the bacterial community from high alkaline (pH > 13) drainage water at a brown mud disposal site near Žiar nad Hronom (Banská Bystrica region, Slovakia) using 454 pyrosequencing. Folia Microbiol (Praha) 2018; 64:83-90. [PMID: 30084086 DOI: 10.1007/s12223-018-0634-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
Abstract
Brown mud, as a waste product of the industrial process of aluminum production, represents a great environmental burden due to its toxicity to living organisms. However, some microorganisms are able to survive in this habitat, and they can be used in bioremediation processes. Traditional cultivation methods have a limited capacity to characterize bacterial composition in environmental samples. Recently, next-generation sequencing methods have provided new perspectives on microbial community studies. The aim of this study was to analyze the bacterial community in the drainage water of brown mud disposal site near Žiar nad Hronom (Banská Bystrica region, Slovakia) using 454 pyrosequencing. We obtained 9964 sequences assigned to 163 operational taxonomic units belonging to 10 bacterial phyla. The phylum Proteobacteria showed the highest abundance (80.39%) within the bacterial community, followed by Firmicutes (13.05%) and Bacteroidetes (5.64%). Other bacterial phyla showed an abundance lower than 1%. The classification yielded 85 genera. Sulfurospirillum spp. (45.19%) dominated the bacterial population, followed by Pseudomonas spp. (13.76%) and Exiguobacterium spp. (13.02%). These results indicate that high heavy metals content, high pH, and lack of essential nutrients are the drivers of a dramatic reduction of diversity in the bacterial population in this environment.
Collapse
Affiliation(s)
- Jana Kisková
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Šrobarova 2, 04154, Košice, Slovakia.
| | - Zuzana Stramová
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 04001, Košice, Slovakia
| | - Peter Javorský
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 04001, Košice, Slovakia
| | - Jana Sedláková-Kaduková
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Šrobarova 2, 04154, Košice, Slovakia
| | - Peter Pristaš
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Šrobarova 2, 04154, Košice, Slovakia.,Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 04001, Košice, Slovakia
| |
Collapse
|
157
|
Bacteria Associated with Marine Benthic Invertebrates from Polar Environments: Unexplored Frontiers for Biodiscovery? DIVERSITY-BASEL 2018. [DOI: 10.3390/d10030080] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ecological function of bacteria-invertebrate interactions in Polar areas remains poorly understood, despite increasing evidence that microbial metabolites may play pivotal roles in host-associated chemical defense and in shaping the symbiotic community structure. The metabolic and physiological changes that these organisms undergo in response to adapting to extreme conditions result in the production of structurally and functionally novel biologically active molecules. Deepening our knowledge on the interactions between bacteria and their invertebrate host would be highly helpful in providing the rationale for why (e.g., competition or cooperative purpose) and which (whether secondary metabolites, enzymes, or proteins) bioactive compounds are produced. To date, cold-adapted bacteria associated with marine invertebrates from the Arctic and Antarctica have not been given the attention they deserve and the versatility of their natural products remains virtually unexplored, even if they could represent a new attractive frontier in the search for novel natural compounds. This review is aimed at showcasing the diversity of cold-adapted bacteria associated with benthic invertebrates from Polar marine areas, highlighting the yet unexplored treasure they represent for biodiscovery.
Collapse
|
158
|
Scopel W, Cônsoli FL. Culturable symbionts associated with the reproductive and digestive tissues of the Neotropical brown stinkbug Euschistus heros. Antonie van Leeuwenhoek 2018; 111:2413-2424. [PMID: 30019154 DOI: 10.1007/s10482-018-1130-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/10/2018] [Indexed: 11/26/2022]
Abstract
Symbionts are widely distributed in eukaryotes, and potentially affect the physiology, ecology and evolution of their host. Most insects harbour free-living bacteria in their haemocoel and gut lumen, intracellular-living bacteria in a range of tissues or bacteria in host-derived specialized cells. Stinkbugs, as do many arthropods, harbour extracellular bacteria in the gut that may affect the fitness of their host. This study identified the culturable symbionts associated with the ovaries, spermatheca, seminal vesicle and posterior midgut region (V4) of males and females of Euschistus heros (F.) (Hemiptera: Pentatomidae). Several culture media were used to isolate the bacteria associated with these structures. The selected colonies (morphotypes) were cultured in liquid medium, subjected to genomic DNA extraction, 16S rRNA gene amplification, and restriction fragment length polymorphism (RFLP) analyses. Morphotypes with distinct RFLP patterns were purified and sequenced, and the sequences obtained were used for putative identification and phylogenetic analysis. Comparison of the sequences with those available in the EzTaxon-e database and the use of a matrix of paired distances grouped the isolates in phylotypes belonging to the Phylum Proteobacteria. Proteobacteria was represented by γ-Proteobacteria phylotypes belonging to Enterobacteriaceae, while Firmicutes had Bacilli phylotypes distributed in Enterococcaceae and Staphylococcaceae. Some of the phylotypes identified were associated exclusively with single structures, such as ovaries, spermatheca and the V4 midgut region of males and females. All culturable bacteria associated with the seminal vesicle were also associated with other tissues.
Collapse
Affiliation(s)
- Wanessa Scopel
- Insect Interactions Laboratory, Department of Entomology and Acarology, College of Agriculture Luiz de Queiroz (ESALQ), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba, SP, 13418-900, Brazil
| | - Fernando Luis Cônsoli
- Insect Interactions Laboratory, Department of Entomology and Acarology, College of Agriculture Luiz de Queiroz (ESALQ), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
159
|
Adnan M, Alshammari E, Patel M, Amir Ashraf S, Khan S, Hadi S. Significance and potential of marine microbial natural bioactive compounds against biofilms/biofouling: necessity for green chemistry. PeerJ 2018; 6:e5049. [PMID: 29967730 PMCID: PMC6026461 DOI: 10.7717/peerj.5049] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/01/2018] [Indexed: 12/17/2022] Open
Abstract
Natural products from the unique environments of sea water and oceans represent a largely unfamiliar source for isolation of new microbes, which are potent producers of secondary bioactive metabolites. These unique life-forms from the marine ecosphere have served as an important source of drugs since ancient times and still offer a valuable resource for novel findings by providing remedial treatments. Therefore, it can be expected that many naturally bioactive marine microbial compounds with novel structures and bioactivities against those from terrestrial environments may be found among marine metabolites. Biofilms in aquatic environment possess serious problems to naval forces and oceanic industries around the globe. Current anti-biofilm or anti-biofouling technology is based on the use of toxic substances that can be harmful to their surrounding natural locales. Comprehensive research has been done to examine the bioactive potential of marine microbes. Results are remarkably varied and dynamic, but there is an urgent need for bioactive compounds with environmentally friendly or "green" chemical activities. Marine microbes have the potential as upcoming and promising source of non-toxic compounds with sustainable anti-biofouling/anti-biofilm properties as they can produce substances that can inhibit not only the chemical components required for biofilm production but also the attachment, microorganism growth, and/or cell-cell communication.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Eyad Alshammari
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Mitesh Patel
- Department of Biosciences, Bapalal Vaidhya Botanical Research Centre, Veer Narmad South Gujarat University, Surat, India
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Saif Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Sibte Hadi
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston, UK
| |
Collapse
|
160
|
A Repeating Sulfated Galactan Motif Resuscitates Dormant Micrococcus luteus Bacteria. Appl Environ Microbiol 2018; 84:AEM.00745-18. [PMID: 29678921 DOI: 10.1128/aem.00745-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 04/18/2018] [Indexed: 11/20/2022] Open
Abstract
Only a small fraction of bacteria can autonomously initiate growth on agar plates. Nongrowing bacteria typically enter a metabolically inactive dormant state and require specific chemical trigger factors or signals to exit this state and to resume growth. Micrococcus luteus has become a model organism for this important yet poorly understood phenomenon. Only a few resuscitation signals have been described to date, and all of them are produced endogenously by bacterial species. We report the discovery of a novel type of resuscitation signal that allows M. luteus to grow on agar but not agarose plates. Fractionation of the agar polysaccharide complex and sulfation of agarose allowed us to identify the signal as highly sulfated saccharides found in agar or carrageenans. Purification of hydrolyzed κ-carrageenan ultimately led to the identification of the signal as a small fragment of a large linear polysaccharide, i.e., an oligosaccharide of five or more sugars with a repeating disaccharide motif containing d-galactose-4-sulfate (G4S) 1,4-linked to 3,6-anhydro-α-d-galactose (DA), G4S-(DA-G4S) n≥2IMPORTANCE Most environmental bacteria cannot initiate growth on agar plates, but they can flourish on the same plates once growth is initiated. While there are a number of names for and manifestations of this phenomenon, the underlying cause appears to be the requirement for a molecular signal indicating safe growing conditions. Micrococcus luteus has become a model organism for studying this growth initiation process, often called resuscitation, because of its apparent connection with the persistent or dormant form of Mycobacterium tuberculosis, an important human pathogen. In this report, we identify a highly sulfated saccharide from agar or carrageenans that robustly resuscitates dormant M. luteus on agarose plates. We identified and characterized the signal as a small repeating disaccharide motif. Our results indicate that signals inherent in or absent from the polysaccharide composition of solid growth media can have major effects on bacterial growth.
Collapse
|
161
|
Malla MA, Dubey A, Yadav S, Kumar A, Hashem A, Abd Allah EF. Understanding and Designing the Strategies for the Microbe-Mediated Remediation of Environmental Contaminants Using Omics Approaches. Front Microbiol 2018; 9:1132. [PMID: 29915565 PMCID: PMC5994547 DOI: 10.3389/fmicb.2018.01132] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/14/2018] [Indexed: 12/24/2022] Open
Abstract
Rapid industrialization and population explosion has resulted in the generation and dumping of various contaminants into the environment. These harmful compounds deteriorate the human health as well as the surrounding environments. Current research aims to harness and enhance the natural ability of different microbes to metabolize these toxic compounds. Microbial-mediated bioremediation offers great potential to reinstate the contaminated environments in an ecologically acceptable approach. However, the lack of the knowledge regarding the factors controlling and regulating the growth, metabolism, and dynamics of diverse microbial communities in the contaminated environments often limits its execution. In recent years the importance of advanced tools such as genomics, proteomics, transcriptomics, metabolomics, and fluxomics has increased to design the strategies to treat these contaminants in ecofriendly manner. Previously researchers has largely focused on the environmental remediation using single omics-approach, however the present review specifically addresses the integrative role of the multi-omics approaches in microbial-mediated bioremediation. Additionally, we discussed how the multi-omics approaches help to comprehend and explore the structural and functional aspects of the microbial consortia in response to the different environmental pollutants and presented some success stories by using these approaches.
Collapse
Affiliation(s)
- Muneer A Malla
- Department of Zoology, Dr. Harisingh Gour University, Sagar, India
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University, Sagar, India
| | - Shweta Yadav
- Department of Zoology, Dr. Harisingh Gour University, Sagar, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University, Sagar, India
| | - Abeer Hashem
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
162
|
Hug JJ, Bader CD, Remškar M, Cirnski K, Müller R. Concepts and Methods to Access Novel Antibiotics from Actinomycetes. Antibiotics (Basel) 2018; 7:E44. [PMID: 29789481 PMCID: PMC6022970 DOI: 10.3390/antibiotics7020044] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/25/2022] Open
Abstract
Actinomycetes have been proven to be an excellent source of secondary metabolites for more than half a century. Exhibiting various bioactivities, they provide valuable approved drugs in clinical use. Most microorganisms are still untapped in terms of their capacity to produce secondary metabolites, since only a small fraction can be cultured in the laboratory. Thus, improving cultivation techniques to extend the range of secondary metabolite producers accessible under laboratory conditions is an important first step in prospecting underexplored sources for the isolation of novel antibiotics. Currently uncultured actinobacteria can be made available by bioprospecting extreme or simply habitats other than soil. Furthermore, bioinformatic analysis of genomes reveals most producers to harbour many more biosynthetic gene clusters than compounds identified from any single strain, which translates into a silent biosynthetic potential of the microbial world for the production of yet unknown natural products. This review covers discovery strategies and innovative methods recently employed to access the untapped reservoir of natural products. The focus is the order of actinomycetes although most approaches are similarly applicable to other microbes. Advanced cultivation methods, genomics- and metagenomics-based approaches, as well as modern metabolomics-inspired methods are highlighted to emphasise the interplay of different disciplines to improve access to novel natural products.
Collapse
Affiliation(s)
- Joachim J Hug
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Chantal D Bader
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Maja Remškar
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Katarina Cirnski
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| |
Collapse
|
163
|
Seck EH, Diop A, Armstrong N, Delerce J, Fournier PE, Raoult D, Khelaifia S. Microbial culturomics to isolate halophilic bacteria from table salt: genome sequence and description of the moderately halophilic bacterium Bacillus salis sp. nov. New Microbes New Infect 2018; 23:28-38. [PMID: 29707210 PMCID: PMC5917939 DOI: 10.1016/j.nmni.2017.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 11/15/2022] Open
Abstract
Bacillus salis strain ES3T (= CSUR P1478 = DSM 100598) is the type strain of B. salis sp. nov. It is an aerobic, Gram-positive, moderately halophilic, motile and spore-forming bacterium. It was isolated from commercial table salt as part of a broad culturomics study aiming to maximize the culture conditions for the in-depth exploration of halophilic bacteria in salty food. Here we describe the phenotypic characteristics of this isolate, its complete genome sequence and annotation, together with a comparison with closely related bacteria. Phylogenetic analysis based on 16S rRNA gene sequences indicated 97.5% similarity with Bacillus aquimaris, the closest species. The 8 329 771 bp long genome (one chromosome, no plasmids) exhibits a G+C content of 39.19%. It is composed of 18 scaffolds with 29 contigs. Of the 8303 predicted genes, 8109 were protein-coding genes and 194 were RNAs. A total of 5778 genes (71.25%) were assigned a putative function.
Collapse
Affiliation(s)
- E H Seck
- URMITE, UM 63, CNRS 7278, IRD 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - A Diop
- URMITE, UM 63, CNRS 7278, IRD 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - N Armstrong
- URMITE, UM 63, CNRS 7278, IRD 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - J Delerce
- URMITE, UM 63, CNRS 7278, IRD 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - P-E Fournier
- URMITE, UM 63, CNRS 7278, IRD 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - D Raoult
- URMITE, UM 63, CNRS 7278, IRD 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de Médecine, Aix-Marseille Université, Marseille, France.,Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - S Khelaifia
- URMITE, UM 63, CNRS 7278, IRD 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de Médecine, Aix-Marseille Université, Marseille, France
| |
Collapse
|
164
|
Ghilamicael AM, Boga HI, Anami SE, Mehari T, Budambula NLM. Potential human pathogenic bacteria in five hot springs in Eritrea revealed by next generation sequencing. PLoS One 2018; 13:e0194554. [PMID: 29566040 PMCID: PMC5864021 DOI: 10.1371/journal.pone.0194554] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/06/2018] [Indexed: 01/15/2023] Open
Abstract
Human pathogens can survive and grow in hot springs. For water quality assessment, Escherichia coli or Enterococci are the main thermotolerant enteric bacteria commonly used to estimate the load of pathogenic bacteria in water. However, most of the environmental bacteria are unculturable thus culture methods may cause bias in detection of most pathogens. Illumina sequencing can provide a more comprehensive and accurate insight into environmental bacterial pathogens, which can be used to develop better risk assessment methods and promote public health awareness. In this study, high-throughput Illumina sequencing was used to identify bacterial pathogens from five hot springs; Maiwooi, Akwar, Garbanabra, Elegedi and Gelti, in Eritrea. Water samples were collected from the five hot springs. Total community DNA was extracted from samples using the phenol-chloroform method. The 16S rRNA gene variable region (V4—V7) of the extracted DNA was amplified and library construction done according to Illumina sequencing protocol. The sequence reads (length >200 bp) from Illumina sequencing libraries ranged from 22,091 sequences in the wet sediment sample from Garbanabra to 155,789 sequences in the mat sample from Elegedi. Taxonomy was assigned to each OTU using BLASTn against a curated database derived from GreenGenes, RDPII, SILVA SSU Reference 119 and NCBI. The proportion of potential pathogens from the water samples was highest in Maiwooi (17.8%), followed by Gelti (16.7%), Akwar (13.6%) and Garbanabra (10.9%). Although the numbers of DNA sequence reads from Illumina sequencing were very high for the Elegedi (104,328), corresponding proportion of potential pathogens very low (3.6%). Most of the potential pathogenic bacterial sequences identified were from Proteobacteria and Firmicutes. Legionella and Clostridium were the most common detected genera with different species. Most of the potential pathogens were detected from the water samples. However, sequences belonging to Clostridium were observed more abundantly from the mat samples. This study employed high-throughput sequencing technologies to determine the presence of pathogenic bacteria in the five hot springs in Eritrea.
Collapse
Affiliation(s)
- Amanuel Menghs Ghilamicael
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- * E-mail:
| | | | - Sylvester Elikana Anami
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Tadesse Mehari
- National Commission for Higher Education in Eritrea, Asmara, Eritrea
| | | |
Collapse
|
165
|
Insights into the Evolution of Host Association through the Isolation and Characterization of a Novel Human Periodontal Pathobiont, Desulfobulbus oralis. mBio 2018. [PMID: 29535201 PMCID: PMC5850319 DOI: 10.1128/mbio.02061-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human oral microbiota encompasses representatives of many bacterial lineages that have not yet been cultured. Here we describe the isolation and characterization of previously uncultured Desulfobulbus oralis, the first human-associated representative of its genus. As mammalian-associated microbes rarely have free-living close relatives, D. oralis provides opportunities to study how bacteria adapt and evolve within a host. This sulfate-reducing deltaproteobacterium has adapted to the human oral subgingival niche by curtailing its physiological repertoire, losing some biosynthetic abilities and metabolic independence, and by dramatically reducing environmental sensing and signaling capabilities. The genes that enable free-living Desulfobulbus to synthesize the potent neurotoxin methylmercury were also lost by D. oralis, a notably positive outcome of host association. However, horizontal gene acquisitions from other members of the microbiota provided novel mechanisms of interaction with the human host, including toxins like leukotoxin and hemolysins. Proteomic and transcriptomic analysis revealed that most of those factors are actively expressed, including in the subgingival environment, and some are secreted. Similar to other known oral pathobionts, D. oralis can trigger a proinflammatory response in oral epithelial cells, suggesting a direct role in the development of periodontal disease. Animal-associated microbiota likely assembled as a result of numerous independent colonization events by free-living microbes followed by coevolution with their host and other microbes. Through specific adaptation to various body sites and physiological niches, microbes have a wide range of contributions, from beneficial to disease causing. Desulfobulbus oralis provides insights into genomic and physiological transformations associated with transition from an open environment to a host-dependent lifestyle and the emergence of pathogenicity. Through a multifaceted mechanism triggering a proinflammatory response, D. oralis is a novel periodontal pathobiont. Even though culture-independent approaches can provide insights into the potential role of the human microbiome “dark matter,” cultivation and experimental characterization remain important to studying the roles of individual organisms in health and disease.
Collapse
|
166
|
Abstract
Traditional drug susceptibility methods can take several days or weeks of incubation between drug exposure and confirmation of sensitivity or resistance. In addition, these methods do not capture information about viable organisms that are not immediately culturable after drug exposure. Here, we present a rapid fluorescence detection method for assessing the susceptibility of M. tuberculosis to antibiotics. Fluorescent markers Calcein violet-AM and SYTOX-green are used for measuring cell viability or cell death and to capture information about the susceptibility of the whole population and not just those bacteria that can grow in media postexposure. Postexposure to the antibiotic, the method gives a rapid readout of drug susceptibility, as well as insights into the concentration and time-dependent drug activity following antibiotic exposure.
Collapse
|
167
|
Rippin M, Borchhardt N, Williams L, Colesie C, Jung P, Büdel B, Karsten U, Becker B. Genus richness of microalgae and Cyanobacteria in biological soil crusts from Svalbard and Livingston Island: morphological versus molecular approaches. Polar Biol 2018. [DOI: 10.1007/s00300-018-2252-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
168
|
Quambusch M, Winkelmann T. Bacterial Endophytes in Plant Tissue Culture: Mode of Action, Detection, and Control. Methods Mol Biol 2018; 1815:69-88. [PMID: 29981114 DOI: 10.1007/978-1-4939-8594-4_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Endophytic bacteria have been increasingly in the focus of research projects during the last decade. This has changed the view on bacteria in plant tissue culture and led to the differentiation between artificially introduced contaminations and naturally occurring endophytes with neutral, negative, or positive impact on the plant propagation process. This review chapter gives an overview on recent findings about the impact that bacteria have on the plant physiology in general and during micropropagation. Additionally, methods for the detection and identification of bacteria in plant tissue are described and, finally, suggestions of how to deal with bacterial endophytes in in vitro culture are given.
Collapse
Affiliation(s)
- Mona Quambusch
- Abteilung Waldgenressourcen, Nordwestdeutsche Forstliche Versuchsanstalt, Hann. Münden, Germany.
| | - Traud Winkelmann
- Institut für Gartenbauliche Produktionssysteme, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
169
|
Shankar M, Rampure S, Siddini V, Ballal HS. Outbreak of Ralstonia mannitolilytica in Hemodialysis Unit: A Case Series. Indian J Nephrol 2018; 28:323-326. [PMID: 30158756 PMCID: PMC6094832 DOI: 10.4103/ijn.ijn_77_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ralstonia mannitolilytica is a Gram-negative soil bacteria. It is an emerging opportunistic pathogen in hospital-acquired infections. Maintenance hemodialysis patients at Manipal Hospital Outpatient Haemodialysis unit, Bengaluru, witnessed an outbreak of R. mannitolilytica infection between October 2016 and November 2016. Five patients were infected and one of them presented with infective endocarditis. All patients were successfully treated with antibiotic according to culture and sensitivity pattern. Immediately following the outbreak, environmental sampling was done. The culture from sterile water was positive for R. mannitolilytica growth. The Department of Infection Control ordered for discarding the whole batch of sterile water followed by water treatment with shock chlorination and room disinfection. Following implementation of the same, the outbreak of R. mannitolilytica infection was controlled. R. mannitolilytica infections are hospital acquired, affecting mainly immunocompromised patients. The disease onset and progression is rapid. Early identification of the organism and treatment with appropriate antibiotics is important.
Collapse
Affiliation(s)
- M Shankar
- Department of Nephrology, Manipal Hospital, Bengaluru, Karnataka, India
| | - S Rampure
- Department of Nephrology, Manipal Hospital, Bengaluru, Karnataka, India
| | - V Siddini
- Department of Nephrology, Manipal Hospital, Bengaluru, Karnataka, India
| | | |
Collapse
|
170
|
Rodrigues-Oliveira T, Belmok A, Vasconcellos D, Schuster B, Kyaw CM. Archaeal S-Layers: Overview and Current State of the Art. Front Microbiol 2017; 8:2597. [PMID: 29312266 PMCID: PMC5744192 DOI: 10.3389/fmicb.2017.02597] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/12/2017] [Indexed: 01/01/2023] Open
Abstract
In contrast to bacteria, all archaea possess cell walls lacking peptidoglycan and a number of different cell envelope components have also been described. A paracrystalline protein surface layer, commonly referred to as S-layer, is present in nearly all archaea described to date. S-layers are composed of only one or two proteins and form different lattice structures. In this review, we summarize current understanding of archaeal S-layer proteins, discussing topics such as structure, lattice type distribution among archaeal phyla and glycosylation. The hexagonal lattice type is dominant within the phylum Euryarchaeota, while in the Crenarchaeota this feature is mainly associated with specific orders. S-layers exclusive to the Crenarchaeota have also been described, which are composed of two proteins. Information regarding S-layers in the remaining archaeal phyla is limited, mainly due to organism description through only culture-independent methods. Despite the numerous applied studies using bacterial S-layers, few reports have employed archaea as a study model. As such, archaeal S-layers represent an area for exploration in both basic and applied research.
Collapse
Affiliation(s)
- Thiago Rodrigues-Oliveira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Aline Belmok
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Deborah Vasconcellos
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Bernhard Schuster
- Department of NanoBiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cynthia M. Kyaw
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
171
|
Gehrke SS, Kumar G, Yokubynas NA, Côté JP, Wang W, French S, MacNair CR, Wright GD, Brown ED. Exploiting the Sensitivity of Nutrient Transporter Deletion Strains in Discovery of Natural Product Antimetabolites. ACS Infect Dis 2017; 3:955-965. [PMID: 29069544 DOI: 10.1021/acsinfecdis.7b00149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Actinomycete secondary metabolites are a renowned source of antibacterial chemical scaffolds. Herein, we present a target-specific approach that increases the detection of antimetabolites from natural sources by screening actinomycete-derived extracts against nutrient transporter deletion strains. On the basis of the growth rescue patterns of a collection of 22 Escherichia coli (E. coli) auxotrophic deletion strains representative of the major nutrient biosynthetic pathways, we demonstrate that antimetabolite detection from actinomycete-derived extracts prepared using traditional extraction platforms is masked by nutrient supplementation. In particular, we find poor sensitivity for the detection of antimetabolites targeting vitamin biosynthesis. To circumvent this and as a proof of principle, we exploit the differential activity of actinomycete extracts against E. coli ΔyigM, a biotin transporter deletion strain versus wildtype E. coli. We achieve more than a 100-fold increase in antimetabolite sensitivity using this method and demonstrate a successful bioassay-guided purification of the known biotin antimetabolite, amiclenomycin. Our findings provide a unique solution to uncover the full potential of naturally derived antibiotics.
Collapse
Affiliation(s)
- Sebastian S. Gehrke
- Michael G. DeGroote
Institute of Infectious Disease Research, Department of Biochemistry
and Biomedical Science, McMaster University, 1200 Main Street West, Hamilton Ontario L8N 3ZS, Canada
| | - Garima Kumar
- Michael G. DeGroote
Institute of Infectious Disease Research, Department of Biochemistry
and Biomedical Science, McMaster University, 1200 Main Street West, Hamilton Ontario L8N 3ZS, Canada
| | - Nicole A. Yokubynas
- Michael G. DeGroote
Institute of Infectious Disease Research, Department of Biochemistry
and Biomedical Science, McMaster University, 1200 Main Street West, Hamilton Ontario L8N 3ZS, Canada
| | - Jean-Philippe Côté
- Michael G. DeGroote
Institute of Infectious Disease Research, Department of Biochemistry
and Biomedical Science, McMaster University, 1200 Main Street West, Hamilton Ontario L8N 3ZS, Canada
| | - Wenliang Wang
- Michael G. DeGroote
Institute of Infectious Disease Research, Department of Biochemistry
and Biomedical Science, McMaster University, 1200 Main Street West, Hamilton Ontario L8N 3ZS, Canada
| | - Shawn French
- Michael G. DeGroote
Institute of Infectious Disease Research, Department of Biochemistry
and Biomedical Science, McMaster University, 1200 Main Street West, Hamilton Ontario L8N 3ZS, Canada
| | - Craig R. MacNair
- Michael G. DeGroote
Institute of Infectious Disease Research, Department of Biochemistry
and Biomedical Science, McMaster University, 1200 Main Street West, Hamilton Ontario L8N 3ZS, Canada
| | - Gerard D. Wright
- Michael G. DeGroote
Institute of Infectious Disease Research, Department of Biochemistry
and Biomedical Science, McMaster University, 1200 Main Street West, Hamilton Ontario L8N 3ZS, Canada
| | - Eric D. Brown
- Michael G. DeGroote
Institute of Infectious Disease Research, Department of Biochemistry
and Biomedical Science, McMaster University, 1200 Main Street West, Hamilton Ontario L8N 3ZS, Canada
| |
Collapse
|
172
|
Hachicho N, Birnbaum A, Heipieper HJ. Osmotic stress in colony and planktonic cells of Pseudomonas putida mt-2 revealed significant differences in adaptive response mechanisms. AMB Express 2017; 7:62. [PMID: 28299749 PMCID: PMC5352697 DOI: 10.1186/s13568-017-0371-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/13/2017] [Indexed: 11/10/2022] Open
Abstract
Planktonic cells and those grown on surfaces (or as colony biofilm) are known to show significant differences regarding growth behavior, cell physiology, gene expression and stress tolerance. In order to compare stress behavior of different growth forms, shake cultures for planktonic growth and agar plate cultivation for colony growth, were carried out with the well investigated model organism, Pseudomonas putida mt-2. Cells were exposed to sodium chloride to cause osmotic stress as one main environmental stressor bacteria have to cope with when growing in soil. Planktonic cells were more tolerant with a complete inhibition of growth at 0.7 M NaCl, compared to 0.5 M for agar-grown cells. Cell surface hydrophobicity, measured as water contact angles, was significantly higher for agar-grown cells (92°) than for planktonic cells (40°), and increased in the presence of NaCl. Agar-grown cells also showed a significantly higher degree of saturation of membrane fatty acids that increased in the presence of NaCl. These results demonstrate that planktonic and colony grown bacteria show different responses when confronted with osmotic stress suggesting that the tolerance and adaptive mechanisms are dependent on the environmental conditions as well as the initial physiological state.
Collapse
|
173
|
Seck EH, Beye M, Traore SI, Khelaifia S, Michelle C, Couderc C, Brah S, Fournier PE, Raoult D, Bittar F. Bacillus kwashiorkori sp. nov., a new bacterial species isolated from a malnourished child using culturomics. Microbiologyopen 2017; 7. [PMID: 29076642 PMCID: PMC5822343 DOI: 10.1002/mbo3.535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/15/2017] [Indexed: 12/16/2022] Open
Abstract
Strain SIT6T was isolated from the fecal flora of a severely malnourished child as part of a broad “culturomics” study aiming to maximize the culture conditions for the in‐depth exploration of the human microbiota. An analysis of the 16S rRNA gene sequence showed that strain SIT6T shared 94.1% 16S rRNA gene sequence similarity with Bacillus thermoamylovorans DKPT (NR_029151), the phylogenetically closest type species. Colonies are creamy white, circular, 4–5 mm in diameter after cultivation at 37°C for 24 hr on 5% sheep blood‐enriched Colombia agar. Growth occurs at temperatures in the range of 25–56°C (optimally at 37°C). Strain SIT6T is a gram‐positive, facultative anaerobic rod and motile by means of peritrichous flagella and sporulating; it is catalase and oxidase positive. The 2,784,637‐bp‐long genome, composed of 16 contigs, has a G+C content of 35.19%. Of the 2,646 predicted genes, 2,572 were protein‐coding genes and 74 were RNAs. The major fatty acids are saturated species (15:0 iso, 16:0 and 17:0 anteiso). Of the 14 detected fatty acids, 11 are saturated, either linear or branched (iso and anteiso). Digital DNA–DNA hybridization (dDDH) estimation and average genomic identity of orthologous gene sequences (AGIOS) of the strain SIT6T against genomes of the type strains of related species ranged between 18.6% and 38.3% and between 54.77% and 65.50%, respectively. According to our taxonogenomics results, we propose the creation of Bacillus kwashiorkori sp. nov. that contains the type strain SIT6T (=CSUR P2452T, =DSM 29059T).
Collapse
Affiliation(s)
- El Hadji Seck
- Aix-Marseille Univ, CNRS 7278, AP-HM, IRD 198, INSERM 1095, URMITE, IHU Méditerranée Infection, Marseille, France
| | - Mamadou Beye
- Aix-Marseille Univ, CNRS 7278, AP-HM, IRD 198, INSERM 1095, URMITE, IHU Méditerranée Infection, Marseille, France
| | - Sory Ibrahima Traore
- Aix-Marseille Univ, CNRS 7278, AP-HM, IRD 198, INSERM 1095, URMITE, IHU Méditerranée Infection, Marseille, France
| | - Saber Khelaifia
- Aix-Marseille Univ, CNRS 7278, AP-HM, IRD 198, INSERM 1095, URMITE, IHU Méditerranée Infection, Marseille, France
| | - Caroline Michelle
- Aix-Marseille Univ, CNRS 7278, AP-HM, IRD 198, INSERM 1095, URMITE, IHU Méditerranée Infection, Marseille, France
| | - Carine Couderc
- Aix-Marseille Univ, CNRS 7278, AP-HM, IRD 198, INSERM 1095, URMITE, IHU Méditerranée Infection, Marseille, France
| | | | - Pierre-Edouard Fournier
- Aix-Marseille Univ, CNRS 7278, AP-HM, IRD 198, INSERM 1095, URMITE, IHU Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, CNRS 7278, AP-HM, IRD 198, INSERM 1095, URMITE, IHU Méditerranée Infection, Marseille, France.,King Fahd Medical Research Center, Special Infectious Agents Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fadi Bittar
- Aix-Marseille Univ, CNRS 7278, AP-HM, IRD 198, INSERM 1095, URMITE, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
174
|
Petra CV, Rus A, Dumitraşcu DL. Gastric microbiota: tracing the culprit. ACTA ACUST UNITED AC 2017; 90:369-376. [PMID: 29151783 PMCID: PMC5683824 DOI: 10.15386/cjmed-854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/02/2017] [Indexed: 12/15/2022]
Abstract
The gastric environment has been long time considered bacteria-free, but the discovery of Helicobacter pylori (H. pylori) in 1982 superseded this conception. Over the last decades new diagnostic methods have been developed, starting with culture-dependent and advancing to culture-independent ones. These modern techniques provide new insight into the composition and influence of this ecosystem on the entire gastrointestinal tract. H. pylori is no longer considered the only microorganism in the stomach, other non-H. pylori microbial species may populate the same environment and exercise their role. Current knowledge suggests possible links of these bacteria with gastroduodenal diseases, such as peptic ulcer and gastric cancer but most of them need further scientific evidence. This review summarizes current information on these complex interrelations between gastric microbial communities and host in health and disease.
Collapse
Affiliation(s)
- Cristian Vasile Petra
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Aronel Rus
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan Lucian Dumitraşcu
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
175
|
Phosphate-Catalyzed Hydrogen Peroxide Formation from Agar, Gellan, and κ-Carrageenan and Recovery of Microbial Cultivability via Catalase and Pyruvate. Appl Environ Microbiol 2017; 83:AEM.01366-17. [PMID: 28821549 DOI: 10.1128/aem.01366-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/14/2017] [Indexed: 11/20/2022] Open
Abstract
Previously, we reported that when agar is autoclaved with phosphate buffer, hydrogen peroxide (H2O2) is formed in the resulting medium (PT medium), and the colony count on the medium inoculated with environmental samples becomes much lower than that on a medium in which agar and phosphate are autoclaved separately (PS medium) (T. Tanaka et al., Appl Environ Microbiol 80:7659-7666, 2014, https://doi.org/10.1128/AEM.02741-14). However, the physicochemical mechanisms underlying this observation remain largely unknown. Here, we determined the factors affecting H2O2 formation in agar. The H2O2 formation was pH dependent: H2O2 was formed at high concentrations in an alkaline or neutral phosphate buffer but not in an acidic buffer. Ammonium ions enhanced H2O2 formation, implying the involvement of the Maillard reaction catalyzed by phosphate. We found that other gelling agents (e.g., gellan and κ-carrageenan) also produced H2O2 after being autoclaved with phosphate. We then examined the cultivability of microorganisms from a fresh-water sample to test whether catalase and pyruvate, known as H2O2 scavengers, are effective in yielding high colony counts. The colony count on PT medium was only 5.7% of that on PS medium. Catalase treatment effectively restored the colony count of PT medium (to 106% of that on PS medium). In contrast, pyruvate was not as effective as catalase: the colony count on sodium pyruvate-supplemented PT medium was 58% of that on PS medium. Given that both catalase and pyruvate can remove H2O2 from PT medium, these observations indicate that although H2O2 is the main cause of reduced colony count on PT medium, other unknown growth-inhibiting substances that cannot be removed by pyruvate (but can be by catalase) may also be involved.IMPORTANCE The majority of bacteria in natural environments are recalcitrant to laboratory culture techniques. Previously, we demonstrated that one reason for this is the formation of high H2O2 levels in media prepared by autoclaving agar and phosphate buffer together (PT medium). In this study, we investigated the factors affecting H2O2 formation from agar. H2O2 formation is pH dependent, and ammonium ions promote this phosphate-catalyzed H2O2 formation. Amendment of catalase or pyruvate, a well-known H2O2-scavenging agent, effectively eliminated H2O2 Yet results suggest that growth-inhibiting factor(s) that cannot be eliminated by pyruvate (but can be by catalase) are present in PT medium.
Collapse
|
176
|
Medina D, Walke JB, Gajewski Z, Becker MH, Swartwout MC, Belden LK. Culture Media and Individual Hosts Affect the Recovery of Culturable Bacterial Diversity from Amphibian Skin. Front Microbiol 2017; 8:1574. [PMID: 28883811 PMCID: PMC5573730 DOI: 10.3389/fmicb.2017.01574] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/03/2017] [Indexed: 01/28/2023] Open
Abstract
One current challenge in microbial ecology is elucidating the functional roles of the large diversity of free-living and host-associated bacteria identified by culture-independent molecular methods. Importantly, the characterization of this immense bacterial diversity will likely require merging data from culture-independent approaches with work on bacterial isolates in culture. Amphibian skin bacterial communities have become a recent focus of work in host-associated microbial systems due to the potential role of these skin bacteria in host defense against the pathogenic fungus Batrachochytrium dendrobatidis (Bd), which is associated with global amphibian population declines and extinctions. As there is evidence that some skin bacteria may inhibit growth of Bd and prevent infection in some cases, there is interest in using these bacteria as probiotic therapy for conservation of at-risk amphibians. In this study, we used skin swabs from American toads (Anaxyrus americanus) to: (1) assess the diversity and community structure of culturable amphibian skin bacteria grown on high and low nutrient culture media, (2) determine which culture media recover the highest proportion of the total skin bacterial community of individual toads relative to culture-independent data, and (3) assess whether the plated communities from the distinct media types vary in their ability to inhibit Bd growth in in-vitro assays. Overall, we found that culture media with low nutrient concentrations facilitated the growth of more diverse bacterial taxa and grew distinct communities relative to media with higher nutrient concentrations. Use of low nutrient media also resulted in culturing proportionally more of the bacterial diversity on individual toads relative to the overall community defined using culture-independent methods. However, while there were differences in diversity among media types, the variation among individual hosts was greater than variation among media types, suggesting that swabbing more individuals in a population is the best way to maximize culture collections, regardless of media type. Lastly, the function of the plated communities against Bd did not vary across culture media type or between high and low nutrient media. These results inform current efforts for developing a probiotic-based approach for amphibian conservation and help to ensure that culture collections are capturing the majority of the important diversity in these systems.
Collapse
Affiliation(s)
- Daniel Medina
- Department of Biological Sciences, Virginia TechBlacksburg, VA, United States
| | - Jenifer B Walke
- Department of Biological Sciences, Virginia TechBlacksburg, VA, United States
| | - Zachary Gajewski
- Department of Biological Sciences, Virginia TechBlacksburg, VA, United States
| | - Matthew H Becker
- Department of Biological Sciences, Virginia TechBlacksburg, VA, United States
| | | | - Lisa K Belden
- Department of Biological Sciences, Virginia TechBlacksburg, VA, United States
| |
Collapse
|
177
|
Pulschen AA, Bendia AG, Fricker AD, Pellizari VH, Galante D, Rodrigues F. Isolation of Uncultured Bacteria from Antarctica Using Long Incubation Periods and Low Nutritional Media. Front Microbiol 2017; 8:1346. [PMID: 28769908 PMCID: PMC5509766 DOI: 10.3389/fmicb.2017.01346] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/03/2017] [Indexed: 12/16/2022] Open
Abstract
Uncultured microorganisms comprise most of the microbial diversity existing on our planet. Despite advances in environmental sequencing and single-cell genomics, in-depth studies about bacterial metabolism and screening of novel bioproducts can only be assessed by culturing microbes in the laboratory. Here we report uncultured, or recalcitrant, microorganisms from an Antarctic soil sample, using relatively simple methods: oligotrophic media, extended incubation periods, observation under stereo microscopy, and selection of slow-growing bacteria. We managed to isolate several rare microorganisms belonging to infrequently isolated or recently described genera, for example Lapillicoccus, Flavitalea, Quadrisphaera, Motilibacter, and Polymorphobacter. Additionally, we obtained isolates presenting 16S rRNA sequence similarity ranging from 92.08 to 94.46% with any other known cultured species, including two distinct isolates from the class Thermoleophilia, that although common in Antarctic soils (as identified by metagenomics), was never reported to be isolated from such samples. Our data indicates that simple methods are still useful for cultivating recalcitrant microorganisms, even when dealing with samples from extreme environments.
Collapse
Affiliation(s)
| | - Amanda G Bendia
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São PauloButantã, Brazil
| | | | - Vivian H Pellizari
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São PauloButantã, Brazil
| | - Douglas Galante
- Laboratório Nacional de Luz Síncrotron, Centro Nacional de Pesquisa em Energia e MateriaisCampinas, Brazil
| | - Fabio Rodrigues
- Departamento de Química Fundamental, Instituto de Química, Universidade de São PauloButantã, Brazil
| |
Collapse
|
178
|
Basu S, Paul T, Yadav P, Debnath A, Sarkar K. Molecular Study of Indigenous Bacterial Community Composition on Exposure to Soil Arsenic Concentration Gradient. Pol J Microbiol 2017; 66:209-221. [PMID: 28735305 DOI: 10.5604/01.3001.0010.7838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Community structure of bacteria present in arsenic contaminated agricultural soil was studied with qPCR (quantitative PCR) and DGGE (Denaturing Gradient Gel Electrophoresis) as an indicator of extreme stresses. Copy number of six common bacterial taxa (Acidobacteria, Actinobacteria, α-, β- and γ-Proteobacteria, Firmicutes) was calculated using group specific primers of 16S rDNA. It revealed that soil contaminated with low concentration of arsenic was dominated by both Actinobacteria and Proteobacteria but a shift towards Proteobacteria was observed with increasing arsenic concentration, and number of Actinobacteria eventually decreases. PCA (Principle Component Analysis) plot of bacterial community composition indicated a distinct resemblance among high arsenic content samples, while low arsenic content samples remained separated from others. Cluster analysis of soil parameters identifies three clusters, each of them was related to the arsenic content. Further, cluster analysis of 16S rDNA based DGGE fingerprint markedly distributed the soil bacterial populations into low (< 10 ppm) and high (> 10 ppm) arsenic content subgroups. Following analysis of diversity indices shows significant variation in bacterial community structure. MDS (Multi Dimensional Scaling) plot revealed distinction in the distribution of each sample denoting variation in bacterial diversity. Phylogenetic sequence analysis of fragments excised from DGGE gel revealed the presence of γ-Proteobacteria group across the study sites. Collectively, our experiments indicated that gradient of arsenic contamination affected the shape of the soil bacterial population by significant structural shift.
Collapse
Affiliation(s)
- Semanti Basu
- Department of Microbiology, University of Kalyani, Nadia, West Bengal, India
| | - Tanima Paul
- Department of Microbiology, University of Kalyani, Nadia, West Bengal, India
| | - Priya Yadav
- Department of Microbiology, University of Kalyani, Nadia, West Bengal, India
| | - Abhijit Debnath
- Department of Agricultural Chemistry and Soil Science, BCKV, Mohanpur, Nadia, West Bengal, India
| | - Keka Sarkar
- Department of Microbiology, University of Kalyani, Nadia, West Bengal, India
| |
Collapse
|
179
|
Laczny CC, Kiefer C, Galata V, Fehlmann T, Backes C, Keller A. BusyBee Web: metagenomic data analysis by bootstrapped supervised binning and annotation. Nucleic Acids Res 2017; 45:W171-W179. [PMID: 28472498 PMCID: PMC5570254 DOI: 10.1093/nar/gkx348] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/11/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022] Open
Abstract
Metagenomics-based studies of mixed microbial communities are impacting biotechnology, life sciences and medicine. Computational binning of metagenomic data is a powerful approach for the culture-independent recovery of population-resolved genomic sequences, i.e. from individual or closely related, constituent microorganisms. Existing binning solutions often require a priori characterized reference genomes and/or dedicated compute resources. Extending currently available reference-independent binning tools, we developed the BusyBee Web server for the automated deconvolution of metagenomic data into population-level genomic bins using assembled contigs (Illumina) or long reads (Pacific Biosciences, Oxford Nanopore Technologies). A reversible compression step as well as bootstrapped supervised binning enable quick turnaround times. The binning results are represented in interactive 2D scatterplots. Moreover, bin quality estimates, taxonomic annotations and annotations of antibiotic resistance genes are computed and visualized. Ground truth-based benchmarks of BusyBee Web demonstrate comparably high performance to state-of-the-art binning solutions for assembled contigs and markedly improved performance for long reads (median F1 scores: 70.02-95.21%). Furthermore, the applicability to real-world metagenomic datasets is shown. In conclusion, our reference-independent approach automatically bins assembled contigs or long reads, exhibits high sensitivity and precision, enables intuitive inspection of the results, and only requires FASTA-formatted input. The web-based application is freely accessible at: https://ccb-microbe.cs.uni-saarland.de/busybee.
Collapse
Affiliation(s)
- Cedric C. Laczny
- Chair for Clinical Bioinformatics, Saarland University, Campus Building E2.1, 66123 Saarbrücken, Germany
| | - Christina Kiefer
- Chair for Clinical Bioinformatics, Saarland University, Campus Building E2.1, 66123 Saarbrücken, Germany
| | - Valentina Galata
- Chair for Clinical Bioinformatics, Saarland University, Campus Building E2.1, 66123 Saarbrücken, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, Campus Building E2.1, 66123 Saarbrücken, Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics, Saarland University, Campus Building E2.1, 66123 Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Campus Building E2.1, 66123 Saarbrücken, Germany
| |
Collapse
|
180
|
Dhakal D, Pokhrel AR, Shrestha B, Sohng JK. Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds. Front Microbiol 2017; 8:1106. [PMID: 28663748 PMCID: PMC5471306 DOI: 10.3389/fmicb.2017.01106] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 05/31/2017] [Indexed: 12/28/2022] Open
Abstract
Actinobacteria are prolific producers of thousands of biologically active natural compounds with diverse activities. More than half of these bioactive compounds have been isolated from members belonging to actinobacteria. Recently, rare actinobacteria existing at different environmental settings such as high altitudes, volcanic areas, and marine environment have attracted attention. It has been speculated that physiological or biochemical pressures under such harsh environmental conditions can lead to the production of diversified natural compounds. Hence, marine environment has been focused for the discovery of novel natural products with biological potency. Many novel and promising bioactive compounds with versatile medicinal, industrial, or agricultural uses have been isolated and characterized. The natural compounds cannot be directly used as drug or other purposes, so they are structurally modified and diversified to ameliorate their biological or chemical properties. Versatile synthetic biological tools, metabolic engineering techniques, and chemical synthesis platform can be used to assist such structural modification. This review summarizes the latest studies on marine rare actinobacteria and their natural products with focus on recent approaches for structural and functional diversification of such microbial chemicals for attaining better applications.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Anaya Raj Pokhrel
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Biplav Shrestha
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University Asan-siSouth Korea
| |
Collapse
|
181
|
Alvarenga DO, Fiore MF, Varani AM. A Metagenomic Approach to Cyanobacterial Genomics. Front Microbiol 2017; 8:809. [PMID: 28536564 PMCID: PMC5422444 DOI: 10.3389/fmicb.2017.00809] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023] Open
Abstract
Cyanobacteria, or oxyphotobacteria, are primary producers that establish ecological interactions with a wide variety of organisms. Although their associations with eukaryotes have received most attention, interactions with bacterial and archaeal symbionts have also been occurring for billions of years. Due to these associations, obtaining axenic cultures of cyanobacteria is usually difficult, and most isolation efforts result in unicyanobacterial cultures containing a number of associated microbes, hence composing a microbial consortium. With rising numbers of cyanobacterial blooms due to climate change, demand for genomic evaluations of these microorganisms is increasing. However, standard genomic techniques call for the sequencing of axenic cultures, an approach that not only adds months or even years for culture purification, but also appears to be impossible for some cyanobacteria, which is reflected in the relatively low number of publicly available genomic sequences of this phylum. Under the framework of metagenomics, on the other hand, cumbersome techniques for achieving axenic growth can be circumvented and individual genomes can be successfully obtained from microbial consortia. This review focuses on approaches for the genomic and metagenomic assessment of non-axenic cyanobacterial cultures that bypass requirements for axenity. These methods enable researchers to achieve faster and less costly genomic characterizations of cyanobacterial strains and raise additional information about their associated microorganisms. While non-axenic cultures may have been previously frowned upon in cyanobacteriology, latest advancements in metagenomics have provided new possibilities for in vitro studies of oxyphotobacteria, renewing the value of microbial consortia as a reliable and functional resource for the rapid assessment of bloom-forming cyanobacteria.
Collapse
Affiliation(s)
- Danillo O. Alvarenga
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP)Jaboticabal, Brazil
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP)Piracicaba, Brazil
| | - Marli F. Fiore
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP)Piracicaba, Brazil
| | - Alessandro M. Varani
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP)Jaboticabal, Brazil
| |
Collapse
|
182
|
Cuthbertson L, Amores-Arrocha H, Malard LA, Els N, Sattler B, Pearce DA. Characterisation of Arctic Bacterial Communities in the Air above Svalbard. BIOLOGY 2017; 6:biology6020029. [PMID: 28481257 PMCID: PMC5485476 DOI: 10.3390/biology6020029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 01/09/2023]
Abstract
Atmospheric dispersal of bacteria is increasingly acknowledged as an important factor influencing bacterial community biodiversity, biogeography and bacteria–human interactions, including those linked to human health. However, knowledge about patterns in microbial aerobiology is still relatively scarce, and this can be attributed, in part, to a lack of consensus on appropriate sampling and analytical methodology. In this study, three different methods were used to investigate aerial biodiversity over Svalbard: impaction, membrane filtration and drop plates. Sites around Svalbard were selected due to their relatively remote location, low human population, geographical location with respect to air movement and the tradition and history of scientific investigation on the archipelago, ensuring the presence of existing research infrastructure. The aerial bacterial biodiversity found was similar to that described in other aerobiological studies from both polar and non-polar environments, with Proteobacteria, Actinobacteria, and Firmicutes being the predominant groups. Twelve different phyla were detected in the air collected above Svalbard, although the diversity was considerably lower than in urban environments elsewhere. However, only 58 of 196 bacterial genera detected were consistently present, suggesting potentially higher levels of heterogeneity. Viable bacteria were present at all sampling locations, showing that living bacteria are ubiquitous in the air around Svalbard. Sampling location influenced the results obtained, as did sampling method. Specifically, impaction with a Sartorius MD8 produced a significantly higher number of viable colony forming units (CFUs) than drop plates alone.
Collapse
Affiliation(s)
- Lewis Cuthbertson
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria at Newcastle, Ellison Building, Newcastle-upon-Tyne NE1 8ST, UK.
| | - Herminia Amores-Arrocha
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria at Newcastle, Ellison Building, Newcastle-upon-Tyne NE1 8ST, UK.
| | - Lucie A Malard
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria at Newcastle, Ellison Building, Newcastle-upon-Tyne NE1 8ST, UK.
| | - Nora Els
- Institute of Ecology, Austrian Polar Research Institute, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria.
| | - Birgit Sattler
- Institute of Ecology, Austrian Polar Research Institute, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria.
| | - David A Pearce
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria at Newcastle, Ellison Building, Newcastle-upon-Tyne NE1 8ST, UK.
| |
Collapse
|
183
|
Lemos LN, Pereira RV, Quaggio RB, Martins LF, Moura LMS, da Silva AR, Antunes LP, da Silva AM, Setubal JC. Genome-Centric Analysis of a Thermophilic and Cellulolytic Bacterial Consortium Derived from Composting. Front Microbiol 2017; 8:644. [PMID: 28469608 PMCID: PMC5395642 DOI: 10.3389/fmicb.2017.00644] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/29/2017] [Indexed: 11/22/2022] Open
Abstract
Microbial consortia selected from complex lignocellulolytic microbial communities are promising alternatives to deconstruct plant waste, since synergistic action of different enzymes is required for full degradation of plant biomass in biorefining applications. Culture enrichment also facilitates the study of interactions among consortium members, and can be a good source of novel microbial species. Here, we used a sample from a plant waste composting operation in the São Paulo Zoo (Brazil) as inoculum to obtain a thermophilic aerobic consortium enriched through multiple passages at 60°C in carboxymethylcellulose as sole carbon source. The microbial community composition of this consortium was investigated by shotgun metagenomics and genome-centric analysis. Six near-complete (over 90%) genomes were reconstructed. Similarity and phylogenetic analyses show that four of these six genomes are novel, with the following hypothesized identifications: a new Thermobacillus species; the first Bacillus thermozeamaize genome (for which currently only 16S sequences are available) or else the first representative of a new family in the Bacillales order; the first representative of a new genus in the Paenibacillaceae family; and the first representative of a new deep-branching family in the Clostridia class. The reconstructed genomes from known species were identified as Geobacillus thermoglucosidasius and Caldibacillus debilis. The metabolic potential of these recovered genomes based on COG and CAZy analyses show that these genomes encode several glycoside hydrolases (GHs) as well as other genes related to lignocellulose breakdown. The new Thermobacillus species stands out for being the richest in diversity and abundance of GHs, possessing the greatest potential for biomass degradation among the six recovered genomes. We also investigated the presence and activity of the organisms corresponding to these genomes in the composting operation from which the consortium was built, using compost metagenome and metatranscriptome datasets generated in a previous study. We obtained strong evidence that five of the six recovered genomes are indeed present and active in that composting process. We have thus discovered three (perhaps four) new thermophillic bacterial species that add to the increasing repertoire of known lignocellulose degraders, whose biotechnological potential can now be investigated in further studies.
Collapse
Affiliation(s)
- Leandro N Lemos
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São PauloSão Paulo, Brazil
| | - Roberta V Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil
| | - Ronaldo B Quaggio
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil
| | - Layla F Martins
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil
| | - Livia M S Moura
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São PauloSão Paulo, Brazil
| | - Amanda R da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São PauloSão Paulo, Brazil
| | - Luciana P Antunes
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil
| | - Aline M da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil
| | - João C Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil.,Biocomplexity Institute, Virginia TechBlacksburg, VA, USA
| |
Collapse
|
184
|
Autour A, Ryckelynck M. Ultrahigh-Throughput Improvement and Discovery of Enzymes Using Droplet-Based Microfluidic Screening. MICROMACHINES 2017. [PMCID: PMC6189954 DOI: 10.3390/mi8040128] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Enzymes are extremely valuable tools for industrial, environmental, and biotechnological applications and there is a constant need for improving existing biological catalysts and for discovering new ones. Screening microbe or gene libraries is an efficient way of identifying new enzymes. In this view, droplet-based microfluidics appears to be one of the most powerful approaches as it allows inexpensive screenings in well-controlled conditions and an ultrahigh-throughput regime. This review aims to introduce the main microfluidic devices and concepts to be considered for such screening before presenting and discussing the latest successful applications of the technology for enzyme discovery.
Collapse
|
185
|
Afshinnekoo E, Chou C, Alexander N, Ahsanuddin S, Schuetz AN, Mason CE. Precision Metagenomics: Rapid Metagenomic Analyses for Infectious Disease Diagnostics and Public Health Surveillance. J Biomol Tech 2017; 28:40-45. [PMID: 28337072 DOI: 10.7171/jbt.17-2801-007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Next-generation sequencing (NGS) technologies have ushered in the era of precision medicine, transforming the way we treat cancer patients and diagnose disease. Concomitantly, the advent of these technologies has created a surge of microbiome and metagenomic studies over the last decade, many of which are focused on investigating the host-gene-microbial interactions responsible for the development and spread of infectious diseases, as well as delineating their key role in maintaining health. As we continue to discover more information about the etiology of infectious diseases, the translational potential of metagenomic NGS methods for treatment and rapid diagnosis is becoming abundantly clear. Here, we present a robust protocol for the implementation and application of "precision metagenomics" across various sequencing platforms for clinical samples. Such a pipeline integrates DNA/RNA extraction, library preparation, sequencing, and bioinformatics analyses for taxonomic classification, antimicrobial resistance (AMR) marker screening, and functional analysis (biochemical and metabolic pathway abundance). Moreover, the pipeline has 3 tracks: STAT for results within 24 h; Comprehensive that affords a more in-depth analysis and takes between 5 and 7 d, but offers antimicrobial resistance information; and Targeted, which also requires 5-7 d, but with more sensitive analysis for specific pathogens. Finally, we discuss the challenges that need to be addressed before full integration in the clinical setting.
Collapse
Affiliation(s)
- Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10065, USA;; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, New York 10021, USA;; School of Medicine, New York Medical College, Valhalla, New York 10595, USA
| | - Chou Chou
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10065, USA;; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, New York 10021, USA
| | - Noah Alexander
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10065, USA;; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, New York 10021, USA
| | - Sofia Ahsanuddin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10065, USA;; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, New York 10021, USA
| | - Audrey N Schuetz
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA; and
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10065, USA;; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, New York 10021, USA;; Feil Family Brain & Mind Research Institute, New York, New York 10065, USA
| |
Collapse
|
186
|
Armanhi JSL, de Souza RSC, Damasceno NDB, de Araújo LM, Imperial J, Arruda P. A Community-Based Culture Collection for Targeting Novel Plant Growth-Promoting Bacteria from the Sugarcane Microbiome. FRONTIERS IN PLANT SCIENCE 2017; 8:2191. [PMID: 29354144 PMCID: PMC5759035 DOI: 10.3389/fpls.2017.02191] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/12/2017] [Indexed: 05/08/2023]
Abstract
The soil-plant ecosystem harbors an immense microbial diversity that challenges investigative approaches to study traits underlying plant-microbe association. Studies solely based on culture-dependent techniques have overlooked most microbial diversity. Here we describe the concomitant use of culture-dependent and -independent techniques to target plant-beneficial microbial groups from the sugarcane microbiome. The community-based culture collection (CBC) approach was used to access microbes from roots and stalks. The CBC recovered 399 unique bacteria representing 15.9% of the rhizosphere core microbiome and 61.6-65.3% of the endophytic core microbiomes of stalks. By cross-referencing the CBC (culture-dependent) with the sugarcane microbiome profile (culture-independent), we designed a synthetic community comprised of naturally occurring highly abundant bacterial groups from roots and stalks, most of which has been poorly explored so far. We then used maize as a model to probe the abundance-based synthetic inoculant. We show that when inoculated in maize plants, members of the synthetic community efficiently colonize plant organs, displace the natural microbiota and dominate at 53.9% of the rhizosphere microbial abundance. As a result, inoculated plants increased biomass by 3.4-fold as compared to uninoculated plants. The results demonstrate that abundance-based synthetic inoculants can be successfully applied to recover beneficial plant microbes from plant microbiota.
Collapse
Affiliation(s)
- Jaderson Silveira Leite Armanhi
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Rafael Soares Correa de Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Natália de Brito Damasceno
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Laura M. de Araújo
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Paulo Arruda
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- *Correspondence: Paulo Arruda
| |
Collapse
|
187
|
Lim SW, Lance ST, Stedman KM, Abate AR. PCR-activated cell sorting as a general, cultivation-free method for high-throughput identification and enrichment of virus hosts. J Virol Methods 2016; 242:14-21. [PMID: 28042018 DOI: 10.1016/j.jviromet.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 11/24/2016] [Accepted: 12/05/2016] [Indexed: 01/27/2023]
Abstract
Characterizing virus-host relationships is critical for understanding the impact of a virus on an ecosystem, but is challenging with existing techniques, particularly for uncultivable species. We present a general, cultivation-free approach for identifying phage-associated bacterial cells. Using PCR-activated cell sorting, we interrogate millions of individual bacteria for the presence of specific phage nucleic acids. If the nucleic acids are present, the bacteria are recovered via sorting and their genomes analyzed. This allows targeted recovery of all possible host species in a diverse population associated with a specific phage, and can be easily targeted to identify the hosts of different phages by modifying the PCR primers used for detection. Moreover, this technique allows quantification of free phage particles, as benchmarked against the "gold standard" of virus enumeration, the plaque assay.
Collapse
Affiliation(s)
- Shaun W Lim
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA
| | - Shea T Lance
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA
| | - Kenneth M Stedman
- Biology Department and Center for Life in Extreme Environments, Biology Department, Portland State University, Portland, OR, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|
188
|
Lee SA, Park J, Chu B, Kim JM, Joa JH, Sang MK, Song J, Weon HY. Comparative analysis of bacterial diversity in the rhizosphere of tomato by culture-dependent and -independent approaches. J Microbiol 2016; 54:823-831. [PMID: 27888459 DOI: 10.1007/s12275-016-6410-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022]
Abstract
The microbiome in the rhizosphere-the region surrounding plant roots-plays a key role in plant growth and health, enhancing nutrient availability and protecting plants from biotic and abiotic stresses. To assess bacterial diversity in the tomato rhizosphere, we performed two contrasting approaches: culture-dependent and -independent. In the culture-dependent approach, two culture media (Reasoner's 2A agar and soil extract agar) were supplemented with 12 antibiotics for isolating diverse bacteria from the tomato rhizosphere by inhibiting predominant bacteria. A total of 689 bacterial isolates were clustered into 164 operational taxonomic units (OTUs) at 97% sequence similarity, and these were found to belong to five bacterial phyla (Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria, and Firmicutes). Of these, 122 OTUs were retrieved from the antibiotic-containing media, and 80 OTUs were recovered by one specific antibiotic-containing medium. In the culture-independent approach, we conducted Illumina MiSeq amplicon sequencing of the 16S rRNA gene and obtained 19,215 high-quality sequences, which clustered into 478 OTUs belonging to 16 phyla. Among the total OTUs from the MiSeq dataset, 22% were recovered in the culture collection, whereas 41% of OTUs in the culture collection were not captured by MiSeq sequencing. These results showed that antibiotics were effective in isolating various taxa that were not readily isolated on antibiotic-free media, and that both contrasting approaches provided complementary information to characterize bacterial diversity in the tomato rhizosphere.
Collapse
Affiliation(s)
- Shin Ae Lee
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, Republic of Korea
| | - Jiyoung Park
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, Republic of Korea
| | - Bora Chu
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, Republic of Korea
| | - Jeong Myeong Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, Republic of Korea
| | - Jae-Ho Joa
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural & Herbal Science, RDA, Jeju, 63240, Republic of Korea
| | - Mee Kyung Sang
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, Republic of Korea
| | - Jaekyeong Song
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, Republic of Korea
| | - Hang-Yeon Weon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, Republic of Korea.
| |
Collapse
|
189
|
He Z, Cai C, Wang J, Xu X, Zheng P, Jetten MSM, Hu B. A novel denitrifying methanotroph of the NC10 phylum and its microcolony. Sci Rep 2016; 6:32241. [PMID: 27582299 PMCID: PMC5007514 DOI: 10.1038/srep32241] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/02/2016] [Indexed: 12/03/2022] Open
Abstract
The NC10 phylum is a candidate phylum of prokaryotes and is considered important in biogeochemical cycles and evolutionary history. NC10 members are as-yet-uncultured and are difficult to enrich, and our knowledge regarding this phylum is largely limited to the first species ‘Candidatus Methylomirabilis oxyfera’ (M. oxyfera). Here, we enriched NC10 members from paddy soil and obtained a novel species of the NC10 phylum that mediates the anaerobic oxidation of methane (AOM) coupled to nitrite reduction. By comparing the new 16S rRNA gene sequences with those already in the database, this new species was found to be widely distributed in various habitats in China. Therefore, we tentatively named it ‘Candidatus Methylomirabilis sinica’ (M. sinica). Cells of M. sinica are roughly coccus-shaped (0.7–1.2 μm), distinct from M. oxyfera (rod-shaped; 0.25–0.5 × 0.8–1.1 μm). Notably, microscopic inspections revealed that M. sinica grew in honeycomb-shaped microcolonies, which was the first discovery of microcolony of the NC10 phylum. This finding opens the possibility to isolate NC10 members using microcolony-dependent isolation strategies.
Collapse
Affiliation(s)
- Zhanfei He
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Chaoyang Cai
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
190
|
Rahi P, Prakash O, Shouche YS. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry (MALDI-TOF MS) Based Microbial Identifications: Challenges and Scopes for Microbial Ecologists. Front Microbiol 2016; 7:1359. [PMID: 27625644 PMCID: PMC5003876 DOI: 10.3389/fmicb.2016.01359] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/17/2016] [Indexed: 12/29/2022] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based biotyping is an emerging technique for high-throughput and rapid microbial identification. Due to its relatively higher accuracy, comprehensive database of clinically important microorganisms and low-cost compared to other microbial identification methods, MALDI-TOF MS has started replacing existing practices prevalent in clinical diagnosis. However, applicability of MALDI-TOF MS in the area of microbial ecology research is still limited mainly due to the lack of data on non-clinical microorganisms. Intense research activities on cultivation of microbial diversity by conventional as well as by innovative and high-throughput methods has substantially increased the number of microbial species known today. This important area of research is in urgent need of rapid and reliable method(s) for characterization and de-replication of microorganisms from various ecosystems. MALDI-TOF MS based characterization, in our opinion, appears to be the most suitable technique for such studies. Reliability of MALDI-TOF MS based identification method depends mainly on accuracy and width of reference databases, which need continuous expansion and improvement. In this review, we propose a common strategy to generate MALDI-TOF MS spectral database and advocated its sharing, and also discuss the role of MALDI-TOF MS based high-throughput microbial identification in microbial ecology studies.
Collapse
Affiliation(s)
- Praveen Rahi
- Microbial Culture Collection, National Centre for Cell Science Pune, India
| | - Om Prakash
- Microbial Culture Collection, National Centre for Cell Science Pune, India
| | - Yogesh S Shouche
- Microbial Culture Collection, National Centre for Cell Science Pune, India
| |
Collapse
|
191
|
Innovative Approaches Using Lichen Enriched Media to Improve Isolation and Culturability of Lichen Associated Bacteria. PLoS One 2016; 11:e0160328. [PMID: 27494030 PMCID: PMC4975499 DOI: 10.1371/journal.pone.0160328] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/18/2016] [Indexed: 11/19/2022] Open
Abstract
Lichens, self-supporting mutualistic associations between a fungal partner and one or more photosynthetic partners, also harbor non-photosynthetic bacteria. The diversity and contribution of these bacteria to the functioning of lichen symbiosis have recently begun to be studied, often by culture-independent techniques due to difficulties in their isolation and culture. However, culturing as yet unculturable lichenic bacteria is critical to unravel their potential functional roles in lichen symbiogenesis, to explore and exploit their biotechnological potential and for the description of new taxa. Our objective was to improve the recovery of lichen associated bacteria by developing novel isolation and culture approaches, initially using the lichen Pseudevernia furfuracea. We evaluated the effect of newly developed media enriched with novel lichen extracts, as well as the influence of thalli washing time and different disinfection and processing protocols of thalli. The developed methodology included: i) the use of lichen enriched media to mimic lichen nutrients, supplemented with the fungicide natamycin; ii) an extended washing of thalli to increase the recovery of ectolichenic bacteria, thus allowing the disinfection of thalli to be discarded, hence enhancing endolichenic bacteria recovery; and iii) the use of an antioxidant buffer to prevent or reduce oxidative stress during thalli disruption. The optimized methodology allowed significant increases in the number and diversity of culturable bacteria associated with P. furfuracea, and it was also successfully applied to the lichens Ramalina farinacea and Parmotrema pseudotinctorum. Furthermore, we provide, for the first time, data on the abundance of culturable ecto- and endolichenic bacteria that naturally colonize P. furfuracea, R. farinacea and P. pseudotinctorum, some of which were only able to grow on lichen enriched media. This innovative methodology is also applicable to other microorganisms inhabiting these and other lichen species.
Collapse
|
192
|
Application of biodegradation in mitigating and remediating pesticide contamination of freshwater resources: state of the art and challenges for optimization. Appl Microbiol Biotechnol 2016; 100:7361-76. [DOI: 10.1007/s00253-016-7709-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
|
193
|
Kosina SM, Danielewicz MA, Mohammed M, Ray J, Suh Y, Yilmaz S, Singh AK, Arkin AP, Deutschbauer AM, Northen TR. Exometabolomics Assisted Design and Validation of Synthetic Obligate Mutualism. ACS Synth Biol 2016; 5:569-76. [PMID: 26885935 DOI: 10.1021/acssynbio.5b00236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthetic microbial ecology has the potential to enhance the productivity and resiliency of biotechnology processes compared to approaches using single isolates. Engineering microbial consortia is challenging; however, one approach that has attracted significant attention is the creation of synthetic obligate mutualism using auxotrophic mutants that depend on each other for exchange or cross-feeding of metabolites. Here, we describe the integration of mutant library fitness profiling with mass spectrometry based exometabolomics as a method for constructing synthetic mutualism based on cross-feeding. Two industrially important species lacking known ecological interactions, Zymomonas mobilis and Escherichia coli, were selected as the test species. Amino acid exometabolites identified in the spent medium of Z. mobilis were used to select three corresponding E. coli auxotrophs (proA, pheA and IlvA), as potential E. coli counterparts for the coculture. A pooled mutant fitness assay with a Z. mobilis transposon mutant library was used to identify mutants with improved growth in the presence of E. coli. An auxotroph mutant in a gene (ZMO0748) with sequence similarity to cysteine synthase A (cysK), was selected as the Z. mobilis counterpart for the coculture. Exometabolomic analysis of spent E. coli medium identified glutathione related metabolites as potentially available for rescue of the Z. mobilis cysteine synthase mutant. Three sets of cocultures between the Z. mobilis auxotroph and each of the three E. coli auxotrophs were monitored by optical density for growth and analyzed by flow cytometry to confirm high cell counts for each species. Taken together, our methods provide a technological framework for creating synthetic mutualisms combining existing screening based methods and exometabolomics for both the selection of obligate mutualism partners and elucidation of metabolites involved in auxotroph rescue.
Collapse
Affiliation(s)
- Suzanne M. Kosina
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Megan A. Danielewicz
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mujahid Mohammed
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jayashree Ray
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yumi Suh
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Suzan Yilmaz
- Sandia National Laboratory, Livermore, California 94550, United States
| | - Anup K. Singh
- Sandia National Laboratory, Livermore, California 94550, United States
| | - Adam P. Arkin
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- University of California Berkeley, Berkeley, California 94720, United States
| | - Adam M. Deutschbauer
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Trent R. Northen
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
194
|
A Flow Cytometry Method for Rapidly Assessing Mycobacterium tuberculosis Responses to Antibiotics with Different Modes of Action. Antimicrob Agents Chemother 2016; 60:3869-83. [PMID: 26902767 PMCID: PMC4914659 DOI: 10.1128/aac.02712-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/13/2016] [Indexed: 12/22/2022] Open
Abstract
Current methods for assessing the drug susceptibility of Mycobacterium tuberculosis are lengthy and do not capture information about viable organisms that are not immediately culturable under standard laboratory conditions as a result of antibiotic exposure. We have developed a rapid dual-fluorescence flow cytometry method using markers for cell viability and death. We show that the fluorescent marker calcein violet with an acetoxy-methyl ester group (CV-AM) can differentiate between populations of M. tuberculosis growing at different rates, while Sytox green (SG) can differentiate between live and dead mycobacteria. M. tuberculosis was exposed to isoniazid or rifampin at different concentrations over time and either dual stained with CV-AM and SG and analyzed by flow cytometry or plated to determine the viability of the cells. Although similar trends in the loss of viability were observed when the results of flow cytometry and the plate counting methods were compared, there was a lack of correlation between these two approaches, as the flow cytometry analysis potentially captured information about cell populations that were unable to grow under standard conditions. The flow cytometry approach had an additional advantage in that it could provide insights into the mode of action of the drug: antibiotics targeting the cell wall gave a flow cytometry profile distinct from those inhibiting intracellular processes. This rapid drug susceptibility testing method could identify more effective antimycobacterials, provide information about their potential mode of action, and accelerate their progress to the clinic.
Collapse
|
195
|
Deep sequencing approach for investigating infectious agents causing fever. Eur J Clin Microbiol Infect Dis 2016; 35:1137-49. [PMID: 27180244 PMCID: PMC4902837 DOI: 10.1007/s10096-016-2644-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/01/2016] [Indexed: 11/29/2022]
Abstract
Acute undifferentiated fever (AUF) poses a diagnostic challenge due to the variety of possible aetiologies. While the majority of AUFs resolve spontaneously, some cases become prolonged and cause significant morbidity and mortality, necessitating improved diagnostic methods. This study evaluated the utility of deep sequencing in fever investigation. DNA and RNA were isolated from plasma/sera of AUF cases being investigated at Cairns Hospital in northern Australia, including eight control samples from patients with a confirmed diagnosis. Following isolation, DNA and RNA were bulk amplified and RNA was reverse transcribed to cDNA. The resulting DNA and cDNA amplicons were subjected to deep sequencing on an Illumina HiSeq 2000 platform. Bioinformatics analysis was performed using the program Kraken and the CLC assembly-alignment pipeline. The results were compared with the outcomes of clinical tests. We generated between 4 and 20 million reads per sample. The results of Kraken and CLC analyses concurred with diagnoses obtained by other means in 87.5 % (7/8) and 25 % (2/8) of control samples, respectively. Some plausible causes of fever were identified in ten patients who remained undiagnosed following routine hospital investigations, including Escherichia coli bacteraemia and scrub typhus that eluded conventional tests. Achromobacter xylosoxidans, Alteromonas macleodii and Enterobacteria phage were prevalent in all samples. A deep sequencing approach of patient plasma/serum samples led to the identification of aetiological agents putatively implicated in AUFs and enabled the study of microbial diversity in human blood. The application of this approach in hospital practice is currently limited by sequencing input requirements and complicated data analysis.
Collapse
|
196
|
Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes. Mar Drugs 2016; 14:md14040080. [PMID: 27092515 PMCID: PMC4849084 DOI: 10.3390/md14040080] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/01/2016] [Accepted: 04/08/2016] [Indexed: 11/17/2022] Open
Abstract
Considering that 70% of our planet's surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs) and polyketides (PKs) are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes) and type-I polyketide synthases (PKSes-I), respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS) technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds.
Collapse
|
197
|
Ni X, Meng H, Zhou F, Yu H, Xiang J, Shen S. Effect of hypertension on bacteria composition of prostate biopsy in patients with benign prostatic hyperplasia and prostate cancer in PSA grey-zone. Biomed Rep 2016; 4:765-769. [PMID: 27284421 DOI: 10.3892/br.2016.655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/04/2016] [Indexed: 11/06/2022] Open
Abstract
Diagnostic prostate cancer (PC) is difficult to diagnose by prostate biopsy, even in patients with markedly elevated PSA levels. Therefore, we aimed to identify a new, better technique to detect PC in a more consistent manner. A variety of steps were employed to validate this proposed method, including DNA extraction, polymerase chain reaction (PCR) amplification, denaturing gradient gel electrophoresis (DGGE) and DGGE band sequencing. Four transperineal prostate biopsy specimens were obtained from male patients. The patients were under the age of 65 and PSA levels were 4-10 ng/ml. We also investigated the bacteria composition of transperineal prostate biopsy in patients with benign prostatic hyperplasia (BPH) and PC by PCR-DGGE profiling. Sequences from selected bands 2 and 4 both matched with Sphingomonas, which is present in lower amounts in PC without hypertension as compared to PC with hypertension, while there were no particular differences in the BPH group. Specific bacteria from the prostate biopsy tissues provide further confidence in PC diagnosis based on a PCR approach as a diagnostic tool, while hypertension was found to be a disturbing factor that can affect the diagnosis of BPH and PC in grey-zone.
Collapse
Affiliation(s)
- Xiaofeng Ni
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Hongzhou Meng
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Feng Zhou
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Haining Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Jianjian Xiang
- Department of Ultrasonography, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Shengrong Shen
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
198
|
Tapia JE, González B, Goulitquer S, Potin P, Correa JA. Microbiota Influences Morphology and Reproduction of the Brown Alga Ectocarpus sp. Front Microbiol 2016; 7:197. [PMID: 26941722 PMCID: PMC4765120 DOI: 10.3389/fmicb.2016.00197] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/05/2016] [Indexed: 01/06/2023] Open
Abstract
Associated microbiota play crucial roles in health and disease of higher organisms. For macroalgae, some associated bacteria exert beneficial effects on nutrition, morphogenesis and growth. However, current knowledge on macroalgae–microbiota interactions is mostly based on studies on green and red seaweeds. In this study, we report that when cultured under axenic conditions, the filamentous brown algal model Ectocarpus sp. loses its branched morphology and grows with a small ball-like appearance. Nine strains of periphytic bacteria isolated from Ectocarpus sp. unialgal cultures were identified by 16S rRNA sequencing, and assessed for their effect on morphology, reproduction and the metabolites secreted by axenic Ectocarpus sp. Six of these isolates restored morphology and reproduction features of axenic Ectocarpus sp. Bacteria-algae co-culture supernatants, but not the supernatant of the corresponding bacterium growing alone, also recovered morphology and reproduction of the alga. Furthermore, colonization of axenic Ectocarpus sp. with a single bacterial isolate impacted significantly the metabolites released by the alga. These results show that the branched typical morphology and the individuals produced by Ectocarpus sp. are strongly dependent on the presence of bacteria, while the bacterial effect on the algal exometabolome profile reflects the impact of bacteria on the whole physiology of this alga.
Collapse
Affiliation(s)
- Javier E Tapia
- CNRS, Université Pierre-et-Marie-Curie, UMI 3614, Biology and Ecology of Algae, Station Biologique de RoscoffRoscoff, France; Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Bernardo González
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez - Center of Applied Ecology and Sustainability Santiago, Chile
| | - Sophie Goulitquer
- MetaboMer Mass Spectrometry Core Facility, Université Pierre-et-Marie-Curie, CNRS, FR2424, Station Biologique de Roscoff Roscoff, France
| | - Philippe Potin
- Université Pierre-et-Marie-Curie, CNRS UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff Roscoff, France
| | - Juan A Correa
- CNRS, Université Pierre-et-Marie-Curie, UMI 3614, Biology and Ecology of Algae, Station Biologique de RoscoffRoscoff, France; Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
199
|
Rebollar EA, Antwis RE, Becker MH, Belden LK, Bletz MC, Brucker RM, Harrison XA, Hughey MC, Kueneman JG, Loudon AH, McKenzie V, Medina D, Minbiole KPC, Rollins-Smith LA, Walke JB, Weiss S, Woodhams DC, Harris RN. Using "Omics" and Integrated Multi-Omics Approaches to Guide Probiotic Selection to Mitigate Chytridiomycosis and Other Emerging Infectious Diseases. Front Microbiol 2016; 7:68. [PMID: 26870025 PMCID: PMC4735675 DOI: 10.3389/fmicb.2016.00068] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/14/2016] [Indexed: 12/20/2022] Open
Abstract
Emerging infectious diseases in wildlife are responsible for massive population declines. In amphibians, chytridiomycosis caused by Batrachochytrium dendrobatidis, Bd, has severely affected many amphibian populations and species around the world. One promising management strategy is probiotic bioaugmentation of antifungal bacteria on amphibian skin. In vivo experimental trials using bioaugmentation strategies have had mixed results, and therefore a more informed strategy is needed to select successful probiotic candidates. Metagenomic, transcriptomic, and metabolomic methods, colloquially called "omics," are approaches that can better inform probiotic selection and optimize selection protocols. The integration of multiple omic data using bioinformatic and statistical tools and in silico models that link bacterial community structure with bacterial defensive function can allow the identification of species involved in pathogen inhibition. We recommend using 16S rRNA gene amplicon sequencing and methods such as indicator species analysis, the Kolmogorov-Smirnov Measure, and co-occurrence networks to identify bacteria that are associated with pathogen resistance in field surveys and experimental trials. In addition to 16S amplicon sequencing, we recommend approaches that give insight into symbiont function such as shotgun metagenomics, metatranscriptomics, or metabolomics to maximize the probability of finding effective probiotic candidates, which can then be isolated in culture and tested in persistence and clinical trials. An effective mitigation strategy to ameliorate chytridiomycosis and other emerging infectious diseases is necessary; the advancement of omic methods and the integration of multiple omic data provide a promising avenue toward conservation of imperiled species.
Collapse
Affiliation(s)
- Eria A. Rebollar
- Department of Biology, James Madison UniversityHarrisonburg, VA, USA
| | - Rachael E. Antwis
- Unit for Environmental Sciences and Management, North-West UniversityPotchefstroom, South Africa
- Institute of Zoology, Zoological Society of LondonLondon, UK
- School of Environment and Life Sciences, University of SalfordSalford, UK
| | - Matthew H. Becker
- Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological ParkWashington, DC, USA
| | - Lisa K. Belden
- Department of Biological Sciences, Virginia TechBlacksburg, VA, USA
| | - Molly C. Bletz
- Zoological Institute, Technische Universität BraunschweigBraunschweig, Germany
| | | | | | - Myra C. Hughey
- Department of Biological Sciences, Virginia TechBlacksburg, VA, USA
| | - Jordan G. Kueneman
- Department of Ecology and Evolutionary Biology, University of ColoradoBoulder, CO, USA
| | - Andrew H. Loudon
- Department of Zoology, Biodiversity Research Centre, University of British ColumbiaVancouver, BC, Canada
| | - Valerie McKenzie
- Department of Ecology and Evolutionary Biology, University of ColoradoBoulder, CO, USA
| | - Daniel Medina
- Department of Biological Sciences, Virginia TechBlacksburg, VA, USA
| | | | - Louise A. Rollins-Smith
- Department of Pathology, Microbiology and Immunology and Department of Pediatrics, Vanderbilt University School of Medicine, Department of Biological Sciences, Vanderbilt UniversityNashville, TN, USA
| | - Jenifer B. Walke
- Department of Biological Sciences, Virginia TechBlacksburg, VA, USA
| | - Sophie Weiss
- Department of Chemical and Biological Engineering, University of Colorado at BoulderBoulder, CO, USA
| | | | - Reid N. Harris
- Department of Biology, James Madison UniversityHarrisonburg, VA, USA
| |
Collapse
|
200
|
Vartoukian SR, Adamowska A, Lawlor M, Moazzez R, Dewhirst FE, Wade WG. In Vitro Cultivation of 'Unculturable' Oral Bacteria, Facilitated by Community Culture and Media Supplementation with Siderophores. PLoS One 2016; 11:e0146926. [PMID: 26764907 PMCID: PMC4713201 DOI: 10.1371/journal.pone.0146926] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/23/2015] [Indexed: 11/18/2022] Open
Abstract
Over a third of oral bacteria are as-yet-uncultivated in-vitro. Siderophores have been previously shown to enable in-vitro growth of previously uncultivated bacteria. The objective of this study was to cultivate novel oral bacteria in siderophore-supplemented culture media. Various compounds with siderophore activity, including pyoverdines-Fe-complex, desferricoprogen and salicylic acid, were found to stimulate the growth of difficult-to-culture strains Prevotella sp. HOT-376 and Fretibacterium fastidiosum. Furthermore, pyrosequencing analysis demonstrated increased proportions of the as-yet-uncultivated phylotypes Dialister sp. HOT-119 and Megasphaera sp. HOT-123 on mixed culture plates supplemented with siderophores. Therefore a culture model was developed, which incorporated 15 μg siderophore (pyoverdines-Fe-complex or desferricoprogen) or 150 μl neat subgingival-plaque suspension into a central well on agar plates that were inoculated with heavily-diluted subgingival-plaque samples from subjects with periodontitis. Colonies showing satellitism were passaged onto fresh plates in co-culture with selected helper strains. Five novel strains, representatives of three previously-uncultivated taxa (Anaerolineae bacterium HOT-439, the first oral taxon from the Chloroflexi phylum to have been cultivated; Bacteroidetes bacterium HOT-365; and Peptostreptococcaceae bacterium HOT-091) were successfully isolated. All novel isolates required helper strains for growth, implying dependence on a biofilm lifestyle. Their characterisation will further our understanding of the human oral microbiome.
Collapse
Affiliation(s)
- Sonia R. Vartoukian
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Aleksandra Adamowska
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Megan Lawlor
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Rebecca Moazzez
- King’s College London Dental Institute, London, United Kingdom
| | - Floyd E. Dewhirst
- The Forsyth Institute, Cambridge, United States of America
- Harvard School of Dental Medicine, Boston, United States of America
| | - William G. Wade
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|