151
|
Houghton KM, Carere CR, Stott MB, McDonald IR. Thermophilic methanotrophs: in hot pursuit. FEMS Microbiol Ecol 2019; 95:5543213. [DOI: 10.1093/femsec/fiz125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
ABSTRACTMethane is a potent greenhouse gas responsible for 20–30% of global climate change effects. The global methane budget is ∼500–600 Tg y−1, with the majority of methane produced via microbial processes, including anthropogenic-mediated sources such as ruminant animals, rice fields, sewage treatment facilities and landfills. It is estimated that microbially mediated methane oxidation (methanotrophy) consumes >50% of global methane flux each year. Methanotrophy research has primarily focused on mesophilic methanotrophic representatives and cooler environments such as freshwater, wetlands or marine habitats from which they are sourced. Nevertheless, geothermal emissions of geological methane, produced from magma and lithosphere degassing micro-seepages, mud volcanoes and other geological sources, contribute an estimated 33–75 Tg y−1 to the global methane budget. The aim of this review is to summarise current literature pertaining to the activity of thermophilic and thermotolerant methanotrophs, both proteobacterial (Methylocaldum, Methylococcus, Methylothermus) and verrucomicrobial (Methylacidiphilum). We assert, on the basis of recently reported molecular and geochemical data, that geothermal ecosystems host hitherto unidentified species capable of methane oxidation at higher temperatures.
Collapse
Affiliation(s)
- Karen M Houghton
- GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- School of Science, University of Waikato, Knighton Rd, Hamilton 3240, New Zealand
| | - Carlo R Carere
- GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- Department of Chemical and Process Engineering, University of Canterbury, 20 Kirkwood Ave, Upper Riccarton, Christchurch 8041, New Zealand
| | - Matthew B Stott
- GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- School of Biological Sciences, University of Canterbury, 20 Kirkwood Ave, Upper Riccarton, Christchurch 8041, New Zealand
| | - Ian R McDonald
- School of Science, University of Waikato, Knighton Rd, Hamilton 3240, New Zealand
| |
Collapse
|
152
|
Zakharenko AS, Galachyants YP, Morozov IV, Shubenkova OV, Morozov AA, Ivanov VG, Pimenov NV, Krasnopeev AY, Zemskaya TI. Bacterial Communities in Areas of Oil and Methane Seeps in Pelagic of Lake Baikal. MICROBIAL ECOLOGY 2019; 78:269-285. [PMID: 30483839 DOI: 10.1007/s00248-018-1299-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
We have assessed the diversity of bacteria near oil-methane (area I) and methane (area II) seeps in the pelagic zone of Lake Baikal using massive parallel sequencing of 16S rRNA, pmoA, and mxaF gene fragments amplified from total DNA. At depths from the surface to 100 m, sequences belonging to Cyanobacteria dominated. In the communities to a depth of 200 m of the studied areas, Proteobacteria dominated the deeper layers of the water column. Alphaproteobacteria sequences were predominant in the community near the oil-methane seep, while the community near the methane seep was characterized by the prevalence of Alpha- and Gammaproteobacteria. Among representatives of these classes, type I methanotrophs prevailed in the 16S rRNA gene libraries from the near-bottom area, and type II methanotrophs were detected in minor quantities at different depths. In the analysis of the libraries of the pmoA and mxaF functional genes, we observed the different taxonomic composition of methanotrophic bacteria in the surface and deep layers of the water column. All pmoA sequences from area I were type II methanotrophs and were detected at a depth of 300 m, while sequences of type I methanotrophs were the most abundant in deep layers of the water column of area II. All mxaF gene sequences belonged to Methylobacterium representatives. Based on comparative analyses of 16S rRNA, pmoA, and mxaF gene fragment libraries, we suggest that there must be a wider spectrum of functional genes facilitating methane oxidation that were not detected with the primers used.
Collapse
Affiliation(s)
- Aleksandra S Zakharenko
- Siberian Branch of the Russian Academy of Sciences, Limnological Institute, Ulan-Batorskaya Street 3, 664033, Irkutsk, Russia.
| | - Yuriy P Galachyants
- Siberian Branch of the Russian Academy of Sciences, Limnological Institute, Ulan-Batorskaya Street 3, 664033, Irkutsk, Russia
| | - Igor V Morozov
- Siberian Branch of the Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Olga V Shubenkova
- Siberian Branch of the Russian Academy of Sciences, Limnological Institute, Ulan-Batorskaya Street 3, 664033, Irkutsk, Russia
| | - Alexey A Morozov
- Siberian Branch of the Russian Academy of Sciences, Limnological Institute, Ulan-Batorskaya Street 3, 664033, Irkutsk, Russia
| | - Vyacheslav G Ivanov
- Siberian Branch of the Russian Academy of Sciences, Limnological Institute, Ulan-Batorskaya Street 3, 664033, Irkutsk, Russia
| | - Nikolay V Pimenov
- Research Center of Biotechnology, Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Andrey Y Krasnopeev
- Siberian Branch of the Russian Academy of Sciences, Limnological Institute, Ulan-Batorskaya Street 3, 664033, Irkutsk, Russia
| | - Tamara I Zemskaya
- Siberian Branch of the Russian Academy of Sciences, Limnological Institute, Ulan-Batorskaya Street 3, 664033, Irkutsk, Russia
| |
Collapse
|
153
|
Zhao R, Wang H, Cheng X, Yun Y, Qiu X. Upland soil cluster γ dominates the methanotroph communities in the karst Heshang Cave. FEMS Microbiol Ecol 2019; 94:5107866. [PMID: 30265314 DOI: 10.1093/femsec/fiy192] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/26/2018] [Indexed: 11/13/2022] Open
Abstract
Microorganisms are thought to play a critical role in methane (CH4) consumption in karst caves and yet the presence and diversity of methane-oxidizing bacteria (MOB) remain a mystery. In Heshang Cave, CH4 concentration decreases from 1.9 ppm at the entrance to 0.65 ppm inside the cave. To explore the presence and diversity of MOB in this cave, weathered rocks and sediment samples were collected from the cave and subjected to molecular analysis. The abundances of MOB were 107-108 copies g-1 dry sample via quantification of the pmoA gene, which are comparable to or even higher than those reported in other terrestrial environments, and account for up to 20% of the total microbial communities. Phylogenetically, MOB communities were dominated by the 'high-affinity' upland soil cluster γ (USCγ), although the predominance of Type Ia MOB was also detected in the permanently waterlogged stream sediment. The estimated CH4 oxidation potential varied dramatically among samples in the range of 0.6-80 CH4 m-3 d-1. Collectively, this study provides compelling evidence that the high-affinity MOB capable of oxidizing CH4 at the atmospheric level are present in Heshang Cave, which may play an important role in the CH4 consumption, and supports karst caves as important atmospheric CH4 sinks.
Collapse
Affiliation(s)
- Rui Zhao
- State Key Laboratory of Biogeology and Environment Geology, China University of Geosciences, Wuhan 430074, P. R. China.,Now at School of Marine Science and Policy, University of Delaware, Lewes 19958, Delaware, USA
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environment Geology, China University of Geosciences, Wuhan 430074, P. R. China.,Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environment Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Yuan Yun
- State Key Laboratory of Biogeology and Environment Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xuan Qiu
- State Key Laboratory of Biogeology and Environment Geology, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
154
|
Reddy KR, Rai RK, Green SJ, Chetri JK. Effect of temperature on methane oxidation and community composition in landfill cover soil. J Ind Microbiol Biotechnol 2019; 46:1283-1295. [PMID: 31317292 DOI: 10.1007/s10295-019-02217-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/11/2019] [Indexed: 11/30/2022]
Abstract
Municipal solid waste (MSW) landfills are the third largest anthropogenic source of methane (CH4) emissions in the United States. The majority of CH4 generated in landfills is converted to carbon dioxide (CO2) by CH4-oxidizing bacteria (MOB) present in the landfill cover soil, whose activity is controlled by various environmental factors including temperature. As landfill temperature can fluctuate substantially seasonally, rates of CH4 oxidation can also vary, and this could lead to incomplete oxidation. This study aims at analyzing the effect of temperature on CH4 oxidation potential and microbial community structure of methanotrophs in laboratory-based studies of landfill cover soil and cultivated consortia. Soil and enrichment cultures were incubated at temperatures ranging from 6 to 70 °C, and rates of CH4 oxidation were measured, and the microbial community structure was analyzed using 16S rRNA gene amplicon sequencing and shotgun metagenome sequencing. CH4 oxidation occurred at temperatures from 6 to 50 °C in soil microcosm tests, and 6-40 °C in enrichment culture batch tests; maximum rates of oxidation were obtained at 30 °C. A corresponding shift in the soil microbiota was observed, with a transition from putative psychrophilic to thermophilic methanotrophs with increasing incubation temperature. A strong shift in methanotrophic community structure was observed above 30 °C. At temperatures up to 30 °C, methanotrophs from the genus Methylobacter were dominant in soils and enrichment cultures; at a temperature of 40 °C, putative thermophilic methanotrophs from the genus Methylocaldum become dominant. Maximum rate measurements of nearly 195 μg CH4 g-1 day-1 were observed in soil incubations, while observed maximum rates in enrichments were significantly lower, likely as a result of diffusion limitations. This study demonstrates that temperature is a critical factor affecting rates of landfill soil CH4 oxidation in vitro and that changing rates of CH4 oxidation are in part driven by changes in methylotroph community structure.
Collapse
Affiliation(s)
- Krishna R Reddy
- Department of Civil and Materials Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA.
| | - Raksha K Rai
- Department of Civil and Materials Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA
| | - Stefan J Green
- Department of Biological Sciences, Sequencing Core, Resources Center, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL, 60612, USA
| | - Jyoti K Chetri
- Department of Civil and Materials Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA
| |
Collapse
|
155
|
A Mutagenic Screen Identifies a TonB-Dependent Receptor Required for the Lanthanide Metal Switch in the Type I Methanotroph "Methylotuvimicrobium buryatense" 5GB1C. J Bacteriol 2019; 201:JB.00120-19. [PMID: 31085692 DOI: 10.1128/jb.00120-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/07/2019] [Indexed: 12/23/2022] Open
Abstract
Several of the metabolic enzymes in methanotrophic bacteria rely on metals for both their expression and their catalysis. The MxaFI methanol dehydrogenase enzyme complex uses calcium as a cofactor to oxidize methanol, while the alternative methanol dehydrogenase XoxF uses lanthanide metals such as lanthanum and cerium for the same function. Lanthanide metals, abundant in the earth's crust, strongly repress the transcription of mxaF yet activate the transcription of xoxF This regulatory program, called the "lanthanide switch," is central to methylotrophic metabolism, but only some of its components are known. To uncover additional components of the lanthanide switch, we developed a chemical mutagenesis system in the type I gammaproteobacterial methanotroph "Methylotuvimicrobium buryatense" 5GB1C and designed a selection system for mutants unable to repress the mxaF promoter in the presence of lanthanum. Whole-genome resequencing for multiple lanthanide switch mutants identified several unique point mutations in a single gene encoding a TonB-dependent receptor, which we have named LanA. The LanA TonB-dependent receptor is absolutely required for the lanthanide switch and controls the expression of a small set of genes. While mutation of the lanA gene does not affect the amount of cell-associated lanthanum, it is essential for growth in the absence of the MxaF methanol dehydrogenase, suggesting that LanA is involved in lanthanum uptake to supply the XoxF methanol dehydrogenase with its critical metal ion cofactor. The discovery of this novel component of the lanthanide regulatory system highlights the complexity of this circuit and suggests that further components are likely involved.IMPORTANCE Lanthanide metals, or rare earth elements, are abundant in nature and used heavily in technological devices. Biological interactions with lanthanides are just beginning to be unraveled. Until very recently, microbial mechanisms of lanthanide metal interaction and uptake were unknown. The TonB-dependent receptor LanA is the first lanthanum receptor identified in a methanotroph. Sequence homology searches with known metal transporters and regulators could not be used to identify LanA or other lanthanide metal switch components, and this method for mutagenesis and selection was required to identify the receptor. This work advances the knowledge of microbe-metal interactions in environmental niches that impact atmospheric methane levels and are thus relevant to climate change.
Collapse
|
156
|
Deng Y, Che R, Wang F, Conrad R, Dumont M, Yun J, Wu Y, Hu A, Fang J, Xu Z, Cui X, Wang Y. Upland Soil Cluster Gamma dominates methanotrophic communities in upland grassland soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:826-836. [PMID: 30921716 DOI: 10.1016/j.scitotenv.2019.03.299] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 05/25/2023]
Abstract
Aerobic methanotrophs in upland soils consume atmospheric methane, serving as a critical counterbalance to global warming; however, the biogeographic distribution patterns of their abundance and community composition are poorly understood, especial at a large scale. In this study, soils were sampled from 30 grasslands across >2000 km on the Qinghai-Tibetan Plateau to determine the distribution patterns of methanotrophs and their driving factors at a regional scale. Methanotroph abundance and community composition were analyzed using quantitative PCR and Illumina Miseq sequencing of pmoA genes, respectively. The pmoA gene copies ranged from 8.2 × 105 to 1.1 × 108 per gram dry soil. Among the 30 grassland soil samples, Upland Soil Cluster Gamma (USCγ) dominated the methanotroph communities in 26 samples. Jasper Ridge Cluster (JR3) was the most dominant methanotrophic cluster in two samples; while Methylocystis, cluster FWs, and Methylobacter were abundant in other two wet soil samples. Interestingly, reanalyzing the pmoA genes sequencing data from existing publications suggested that USCγ was also the main methanotrophic cluster in grassland soils in other regions, especially when their mean annual precipitation was <500 mm. Canonical Analysis of Principal Coordinates including all soil samples indicated that the methanotrophic community composition was significantly correlated with local environmental factors, among which mean annual precipitation and pH showed the strongest correlations. Variance partitioning analysis showed that environmental factors and spatial distance were significant factors affecting the community structure of methanotrophs, and environmental properties were more important factors. Collectively, these findings indicate that atmospheric methane may be mainly oxidized by USCγ in upland soils. They also highlight the key role of water availability and pH in determining the abundance and community profiles of grassland soil methanotrophs.
Collapse
Affiliation(s)
- Yongcui Deng
- School of Geography, Nanjing Normal University, 210023 Nanjing, China
| | - Rongxiao Che
- Institute of International Rivers and Eco-security, Yunnan University, 650091 Kunming, China; University of the Chinese Academy of Sciences, 100049 Beijing, China; Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane 4111, Australia
| | - Fang Wang
- University of the Chinese Academy of Sciences, 100049 Beijing, China; Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane 4111, Australia
| | - Ralf Conrad
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Marc Dumont
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Juanli Yun
- Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yibo Wu
- Ningbo University, 315211 Ningbo, China
| | - Ang Hu
- Hunan Agricultural University, 410128 Changsha, China
| | - Jie Fang
- School of Geography, Nanjing Normal University, 210023 Nanjing, China
| | - Zhihong Xu
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane 4111, Australia
| | - Xiaoyong Cui
- University of the Chinese Academy of Sciences, 100049 Beijing, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, 100101 Beijing, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China.
| | - Yanfen Wang
- University of the Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
157
|
Ghashghavi M, Belova SE, Bodelier PLE, Dedysh SN, Kox MAR, Speth DR, Frenzel P, Jetten MSM, Lücker S, Lüke C. Methylotetracoccus oryzae Strain C50C1 Is a Novel Type Ib Gammaproteobacterial Methanotroph Adapted to Freshwater Environments. mSphere 2019; 4:e00631-18. [PMID: 31167950 PMCID: PMC6553558 DOI: 10.1128/msphere.00631-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/09/2019] [Indexed: 01/08/2023] Open
Abstract
Methane-oxidizing microorganisms perform an important role in reducing emissions of the greenhouse gas methane to the atmosphere. To date, known bacterial methanotrophs belong to the Proteobacteria, Verrucomicrobia, and NC10 phyla. Within the Proteobacteria phylum, they can be divided into type Ia, type Ib, and type II methanotrophs. Type Ia and type II are well represented by isolates. Contrastingly, the vast majority of type Ib methanotrophs have not been able to be cultivated so far. Here, we compared the distributions of type Ib lineages in different environments. Whereas the cultivated type Ib methanotrophs (Methylococcus and Methylocaldum) are found in landfill and upland soils, lineages that are not represented by isolates are mostly dominant in freshwater environments, such as paddy fields and lake sediments. Thus, we observed a clear niche differentiation within type Ib methanotrophs. Our subsequent isolation attempts resulted in obtaining a pure culture of a novel type Ib methanotroph, tentatively named "Methylotetracoccus oryzae" C50C1. Strain C50C1 was further characterized to be an obligate methanotroph, containing C16:1ω9c as the major membrane phospholipid fatty acid, which has not been found in other methanotrophs. Genome analysis of strain C50C1 showed the presence of two pmoCAB operon copies and XoxF5-type methanol dehydrogenase in addition to MxaFI. The genome also contained genes involved in nitrogen and sulfur cycling, but it remains to be demonstrated if and how these help this type Ib methanotroph to adapt to fluctuating environmental conditions in freshwater ecosystems.IMPORTANCE Most of the methane produced on our planet gets naturally oxidized by a group of methanotrophic microorganisms before it reaches the atmosphere. These microorganisms are able to oxidize methane, both aerobically and anaerobically, and use it as their sole energy source. Although methanotrophs have been studied for more than a century, there are still many unknown and uncultivated groups prevalent in various ecosystems. This study focused on the diversity and adaptation of aerobic methane-oxidizing bacteria in different environments by comparing their phenotypic and genotypic properties. We used lab-scale microcosms to create a countergradient of oxygen and methane for preenrichment, followed by classical isolation techniques to obtain methane-oxidizing bacteria from a freshwater environment. This resulted in the discovery and isolation of a novel methanotroph with interesting physiological and genomic properties that could possibly make this bacterium able to cope with fluctuating environmental conditions.
Collapse
Affiliation(s)
- Mohammad Ghashghavi
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Svetlana E Belova
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradski Institute of Microbiology, Moscow, Russia
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Svetlana N Dedysh
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradski Institute of Microbiology, Moscow, Russia
| | - Martine A R Kox
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Daan R Speth
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Peter Frenzel
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Mike S M Jetten
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Nijmegen, the Netherlands
| | - Sebastian Lücker
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Claudia Lüke
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
158
|
Versantvoort W, Pol A, Daumann LJ, Larrabee JA, Strayer AH, Jetten MS, van Niftrik L, Reimann J, Op den Camp HJ. Characterization of a novel cytochrome c as the electron acceptor of XoxF-MDH in the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:595-603. [DOI: 10.1016/j.bbapap.2019.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 11/29/2022]
|
159
|
Biological conversion of propane to 2-propanol using group I and II methanotrophs as biocatalysts. ACTA ACUST UNITED AC 2019; 46:675-685. [DOI: 10.1007/s10295-019-02141-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
Abstract
Abstract
Propane is the main component of liquefied petroleum gas and is derived from crude oil processing. Methanotrophic bacteria can convert various alkanes using methane monooxygenase enzyme to primary alcohols. These are further oxidized to various aldehydes by alcohol dehydrogenases or methanol dehydrogenases. In this study, 2-propanol was produced from propane using the whole cells of Methylosinus trichosporium OB3b, Methylomicrobium alcaliphilum 20Z, and Methylomonas sp. DH-1 as the biocatalysts. The biocatalytic process of converting propane to 2-propanol was optimized by the use of several inhibitors and additives, such as EDTA, sodium phosphate, and sodium formate to prevent oxidation of 2-propanol to acetone and to enhance conversion of propane to propanol. The maximum titer of 2-propanol was 0.424 g/L, 0.311 g/L, and 0.610 g/L for Methylomonas sp. DH-1, M. alcaliphilum 20Z, and M. trichosporium OB3b whole cells, respectively. These results showed that type I and type II methanotrophs could be used as the potent biocatalyst for conversion of propane to propanol.
Collapse
|
160
|
AlSayed A, Fergala A, Eldyasti A. Enhancement of the cultivation process conditions of mixed culture methanotrophic Proteobacteria phylum enriched from waste activated sludge as the first step for value added recovery process. J Biosci Bioeng 2019; 127:602-608. [DOI: 10.1016/j.jbiosc.2018.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/08/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022]
|
161
|
Shao Y, Hatzinger PB, Streger SH, Rezes RT, Chu KH. Evaluation of methanotrophic bacterial communities capable of biodegrading trichloroethene (TCE) in acidic aquifers. Biodegradation 2019; 30:173-190. [DOI: 10.1007/s10532-019-09875-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/04/2019] [Indexed: 10/27/2022]
|
162
|
Szafranek-Nakonieczna A, Wolińska A, Zielenkiewicz U, Kowalczyk A, Stępniewska Z, Błaszczyk M. Activity and Identification of Methanotrophic Bacteria in Arable and No-Tillage Soils from Lublin Region (Poland). MICROBIAL ECOLOGY 2019; 77:701-712. [PMID: 30171270 PMCID: PMC6469817 DOI: 10.1007/s00248-018-1248-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Methanotrophic bacteria are able to use methane (CH4) as a sole carbon and energy source. Photochemical oxidation of methane takes place in the stratosphere, whereas in the troposphere, this process is carried out by methanotrophic bacteria. On the one hand, it is known that the efficiency of biological CH4 oxidation is dependent on the mode of land use but, on the other hand, the knowledge of this impact on methanotrophic activity (MTA) is still limited. Thus, the aim of the study was to determine the CH4 oxidation ability of methanotrophic bacteria inhabiting selected arable and no-tillage soils from the Lublin region (Albic Luvisol, Brunic Arenosol, Haplic Chernozem, Calcaric Cambisol) and to identify bacteria involved in this process. MTA was determined based on incubation of soils in air with addition of methane at the concentrations of 0.002, 0.5, 1, 5, and 10%. The experiment was conducted in a temperature range of 10-30 °C. Methanotrophs in soils were identified by next-generation sequencing (NGS). MTA was confirmed in all investigated soils (in the entire range of the tested methane concentrations and temperatures, except for the arable Albic Luvisol). Importantly, the MTA values in the no-tillage soil were nearly two-fold higher than in the cultivated soils. Statistical analysis indicated a significant influence of land use, type of soil, temperature, and especially methane concentration (p < 0.05) on MTA. Metagenomic analysis confirmed the presence of methanotrophs from the genus Methylocystis (Alphaproteobacteria) in the studied soils (except for the arable Albic Luvisol). Our results also proved the ability of methanotrophic bacteria to oxidize methane although they constituted only up to 0.1% of the total bacterial community.
Collapse
Affiliation(s)
- Anna Szafranek-Nakonieczna
- Department of Biochemistry and Environmental Chemistry, Institute of Biotechnology, The John Paul II Catholic University of Lublin, 1 I Konstantynów Str, 20-708, Lublin, Poland.
| | - Agnieszka Wolińska
- Department of Biochemistry and Environmental Chemistry, Institute of Biotechnology, The John Paul II Catholic University of Lublin, 1 I Konstantynów Str, 20-708, Lublin, Poland
| | - Urszula Zielenkiewicz
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics PAS, 5a Pawińskiego Str, 02-106, Warsaw, Poland
| | - Agnieszka Kowalczyk
- Department of Biochemistry and Environmental Chemistry, Institute of Biotechnology, The John Paul II Catholic University of Lublin, 1 I Konstantynów Str, 20-708, Lublin, Poland
| | - Zofia Stępniewska
- Department of Biochemistry and Environmental Chemistry, Institute of Biotechnology, The John Paul II Catholic University of Lublin, 1 I Konstantynów Str, 20-708, Lublin, Poland
| | - Mieczysław Błaszczyk
- Department of Microbial Biology, Warsaw University of Life Sciences, Nowoursynowska 159 Str, 02-776, Warsaw, Poland
| |
Collapse
|
163
|
Lee S, Roh Y, Koh DC. Oxidation and reduction of redox-sensitive elements in the presence of humic substances in subsurface environments: A review. CHEMOSPHERE 2019; 220:86-97. [PMID: 30579952 DOI: 10.1016/j.chemosphere.2018.11.143] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
The oxidation and reduction (redox) processes of redox-sensitive elements (RSE) in the presence of humic substances (HS) have become a significantly important issue in the terms of biogeochemical cycles. Redox processes are crucial for determining the speciation, mobility, toxicity, and bioavailability of RSE in natural environments. It is known that HS act as an effective redox mediator for accepting and donating electrons, and thereby transfers them to RSE. We review the recent progress in the field of the redox processes of RSE including As, Cr, Cu, Fe, Hg, and Se in the presence of HS. The extent and rate of the redox processes of these RSE are significantly affected by the concentration of functional groups and the chemical composition of HS. In subsurface environments, pH, ionic strength, and the presence of competitive components, microorganisms, and oxygen need to be considered to elucidate the redox processes of RSE in the presence of HS. In addition, improved analytical techniques for the characterization of HS has the potential to advance the study on the redox processes of RSE in the presence of HS. It may contribute to understanding the mechanism for the redox processes between RSE and HS in the biogeochemical cycles.
Collapse
Affiliation(s)
- Seyong Lee
- Groundwater Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM), Gwahak-ro, Yuseoung-gu, Daejeon 34132, Republic of Korea; Planning & Management Division, National Institute of Chemical Safety (NICS), 90 Gajeongbuk-ro, Yuseoung-gu, Daejeon 34111, Republic of Korea.
| | - Younghee Roh
- Institute for Korean Regional Studies, Seoul National University (SNU), 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea
| | - Dong-Chan Koh
- Groundwater Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM), Gwahak-ro, Yuseoung-gu, Daejeon 34132, Republic of Korea
| |
Collapse
|
164
|
Aerobic methane oxidation under copper scarcity in a stratified lake. Sci Rep 2019; 9:4817. [PMID: 30886176 PMCID: PMC6423226 DOI: 10.1038/s41598-019-40642-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/19/2019] [Indexed: 12/18/2022] Open
Abstract
Aerobic methane-oxidizing bacteria (MOB) substantially reduce methane fluxes from freshwater sediments to the atmosphere. Their metalloenzyme methane monooxygenase (MMO) catalyses the first oxidation step converting methane to methanol. Its most prevalent form is the copper-dependent particulate pMMO, however, some MOB are also able to express the iron-containing, soluble sMMO under conditions of copper scarcity. So far, the link between copper availability in different forms and biological methane consumption in freshwater systems is poorly understood. Here, we present high-resolution profiles of MOB abundance and pMMO and sMMO functional genes in relation to copper, methane and oxygen profiles across the oxic-anoxic boundary of a stratified lake. We show that even at low nanomolar copper concentrations, MOB species containing the gene for pMMO expression are present at high abundance. The findings highlight the importance of copper as a micronutrient for MOB species and the potential usage of copper acquisition strategies, even under conditions of abundant iron, and shed light on the spatial distribution of these microorganisms.
Collapse
|
165
|
La H, Hettiaratchi JPA, Achari G. The influence of biochar and compost mixtures, water content, and gas flow rate, on the continuous adsorption of methane in a fixed bed column. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:175-183. [PMID: 30579005 DOI: 10.1016/j.jenvman.2018.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/19/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Biofiltration is an excellent alternative for the treatment of diffuse emissions of methane (CH4) that cannot be treated by physical/chemical means or recovered for energy. Despite the advances on CH4 biological treatment technologies, they are limited by the low aqueous solubility of CH4 into the biofilm where CH4 mineralization occurs. In this study, the CH4 adsorption kinetics, adsorption capacity and transport behavior of CH4 was studied in batch experiments and in a fixed-bed column by varying the biochar and compost mixtures under 5-levels, 3 different water contents (dry, 15% and 30% water holding capacity), and 2 inlet flow rates. Experimental results were formally tested using analysis of variance (ANOVA) in order to draw objective conclusions based on statistical inference. As CH4 biofiltration requires water addition to maintain microbial activity, these results indicate adsorption capacity is not lost with water addition if biochar content is the dominant packing material. The Langmuir isotherm described the data best (R2 = 0.99). Maximum adsorption capacity by monolayer adsorption, or qmax, is relatively similar with or without the addition of water as long as the biochar component is the dominant material at 3.5 mg CH4/g medium for a 7:1 biochar: compost, v/v mixture. Empirical regression models for qo, kTh, (Thomas model) and τ and KYN (Yoon-Nelson model) were developed for the break through curves of CH4. The current work demonstrates the applicability of utilizing biochar, a relatively inexpensive adsorbent, can compensate for the low solubility of CH4 and overcome the rate-limiting step of mass transfer from the gas phase and into the methanotrophic biofilm. Further, biochar may be a reliable back-up system for CH4 storage especially for fluctuating inlet loads that may be encountered in industrial applications adsorbing up to 13 mg CH4/g biochar under dry conditions.
Collapse
Affiliation(s)
- Helen La
- Department of Civil Engineering, Center for Environmental Engineering Research and Education (CEERE), University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - J Patrick A Hettiaratchi
- Department of Civil Engineering, Center for Environmental Engineering Research and Education (CEERE), University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Gopal Achari
- Department of Civil Engineering, Center for Environmental Engineering Research and Education (CEERE), University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
166
|
Regnell O, Watras CJ. Microbial Mercury Methylation in Aquatic Environments: A Critical Review of Published Field and Laboratory Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4-19. [PMID: 30525497 DOI: 10.1021/acs.est.8b02709] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Methylmercury (MeHg) is an environmental contaminant of concern because it biomagnifies in aquatic food webs and poses a health hazard to aquatic biota, piscivorous wildlife and humans. The dominant source of MeHg to freshwater systems is the methylation of inorganic Hg (IHg) by anaerobic microorganisms; and it is widely agreed that in situ rates of Hg methylation depend on two general factors: the activity of Hg methylators and their uptake of IHg. A large body of research has focused on the biogeochemical processes that regulate these two factors in nature; and studies conducted within the past ten years have made substantial progress in identifying the genetic basis for intracellular methylation and defining the processes that govern the cellular uptake of IHg. Current evidence indicates that all Hg methylating anaerobes possess the gene pair hgcAB that encodes proteins essential for Hg methylation. These genes are found in a large variety of anaerobes, including iron reducers and methanogens; but sulfate reduction is the metabolic process most often reported to show strong links to MeHg production. The uptake of Hg substrate prior to methylation may occur by passive or active transport, or by a combination of both. Competitive inhibition of Hg uptake by Zn speaks in favor of active transport and suggests that essential metal transporters are involved. Shortly after its formation, MeHg is typically released from cells, but the efflux mechanisms are unknown. Although methylation facilitates Hg depuration from the cell, evidence suggests that the hgcAB genes are not induced or favored by Hg contamination. Instead, high MeHg production can be linked to high Hg bioavailability as a result of the formation of Hg(SH)2, HgS nanoparticles, and Hg-thiol complexes. It is also possible that sulfidic conditions require strong essential metal uptake systems that inadvertently bring Hg into the cytoplasm of Hg methylating microbes. In comparison with freshwaters, Hg methylation in open ocean waters appears less restricted to anoxic environments. It does seem to occur mainly in oxygen deficient zones (ODZs), and possibly within anaerobic microzones of settling organic matter, but MeHg (CH3Hg+) and Me2Hg ((CH3)2Hg) have been shown to form also in surface water samples from the euphotic zone. Future studies may disclose whether several different pathways lead to Hg methylation in marine waters and explain why Me2Hg is a significant Hg species in oceans but seemingly not in most freshwaters.
Collapse
Affiliation(s)
- Olof Regnell
- Department of Biology/Aquatic Ecology , Lund University , SE-223 62 Lund , Sweden
| | - Carl J Watras
- Bureau of Water Quality , Wisconsin Department of Natural Resources , Madison , Wisconsin 53703 , United States
- Center for Limnology , University of Wisconsin-Madison , 3110 Trout Lake Station Drive , Boulder Junction , Wisconsin 54512 , United States
| |
Collapse
|
167
|
|
168
|
Bodelier PLE, Pérez G, Veraart AJ, Krause SMB. Methanotroph Ecology, Environmental Distribution and Functioning. METHANOTROPHS 2019. [DOI: 10.1007/978-3-030-23261-0_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
169
|
Lew S, Glińska-Lewczuk K. Environmental controls on the abundance of methanotrophs and methanogens in peat bog lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1201-1211. [PMID: 30248845 DOI: 10.1016/j.scitotenv.2018.07.141] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present study was to identify the factors that influence the composition of methanogens and methanotrophs in the background prokaryotic community in peat bog lakes. We hypothesized that the microbial composition is a function of the physicochemical conditions of the water and a function of depth-dependent oxygen (DO) concentrations. To address this aim, we collected water samples from subsurface and near-bottom layers, representing oxic and anoxic conditions in 4 peat bog lakes in NE Poland. The structure of methanogenic Archaea and methane-oxidizing bacteria (MOB) was determined with double labeled-fluorescence in situ hybridization (DOPE-FISH). The results showed significant differences in Procaryota communities between the oxic (subsurface) and suboxic/anoxic (near-bottom) layers in peat bog lakes (t-test, p < 0.05). The methanogens from the Archaea domain were observed in anoxic periods, while methanotrophs were present regardless of water depth and season. The abundance of methanogens was inversely correlated with DO and CO2. Methanotrophs adapted better to the changing habitat conditions. The nonmetrical multidimensional scaling (NMS) and partial least square regression (PLS-R) models showed that the methanotrophs in subsurface layers are positively associated with temperature, DOC, and TON while negatively associated with pH. The DO availability is not a prerequisite condition for the presence of methanothrophs. The most important factors for MOB at the bottom were CO2 and TON. Due to a significant role of methanotrophs in the control of the methane emission flux rates, there is a need for further research on factors responsible for methanotroph development in peat bog lakes.
Collapse
Affiliation(s)
- Sylwia Lew
- University of Warmia and Mazury in Olsztyn, Department of Microbiology and Mycology, Oczapowskiego str. 1a, 10-719 Olsztyn, Poland.
| | - Katarzyna Glińska-Lewczuk
- University of Warmia and Mazury in Olsztyn, Department of Water Resources, Climatology and Environmental Management, Plac Łódzki 2, 10-719 Olsztyn, Poland.
| |
Collapse
|
170
|
Methanotrophic contribution to biodegradation of phenoxy acids in cultures enriched from a groundwater-fed rapid sand filter. Appl Microbiol Biotechnol 2018; 103:1007-1019. [PMID: 30474728 DOI: 10.1007/s00253-018-9501-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/16/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
Abstract
Drinking water supply is in many parts of the world based on groundwater. Groundwater often contains methane, which can be oxidized by methanotrophs upon aeration. Sand from rapid sand filters fed with methane-rich groundwater can remove some pesticides (Hedegaard and Albrechtsen in Water Res 48:71-81, 2014). We enriched methanotrophs from filter sand and investigated whether they could drive the degradation of various pesticides. To enrich for methanotrophs, we designed and operated four laboratory-scale, continuously methane-fed column reactors, inoculated with filter sand and one control column fed with tap water. When enrichments were obtained, methane was continuously supplied to three reactors, while the fourth was starved for methane for 1 week, and the reactors were spiked with ten pesticides at groundwater-relevant concentrations (2.1-6.6 μg/L). Removal for most pesticides was not detected at the investigated contact time (1.37 min). However, the degradation of phenoxy acids was observed in the methanotrophic column reactor starved for methane, while it was not detected in the control column indicating the importance of methanotrophs. Phenoxy acid removal, using dichlorprop as a model compound, was further investigated in batch experiments with methanotrophic biomass collected from the enrichment reactors. Phenoxy acid removal (expressed per gram of matrix sand) was substantially improved in the methanotrophic enrichment compared to parent filter sand. The presence of methane did not clearly impact dichlorprop removal but did impact mineralization. We suggest that other heterotrophs are responsible for the first step in dichlorprop degradation, while the subsequent steps including ring-hydroxylation are driven by methanotrophs.
Collapse
|
171
|
Biocatalytic Oxidations of Substrates through Soluble Methane Monooxygenase from Methylosinus sporium 5. Catalysts 2018. [DOI: 10.3390/catal8120582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Methane, an important greenhouse gas, has a 20-fold higher heat capacity than carbon dioxide. Earlier, through advanced spectroscopy and structural studies, the mechanisms underlying the extremely stable C–H activation of soluble methane monooxygenase (sMMO) have been elucidated in Methylosinus trichosporium OB3b and Methylococcus capsulatus Bath. Here, sMMO components—including hydroxylase (MMOH), regulatory (MMOB), and reductase (MMOR)—were expressed and purified from a type II methanotroph, Methylosinus sporium strain 5 (M. sporium 5), to characterize its hydroxylation mechanism. Two molar equivalents of MMOB are necessary to achieve catalytic activities and oxidized a broad range of substrates including alkanes, alkenes, halogens, and aromatics. Optimal activities were observed at pH 7.5 for most substrates possibly because of the electron transfer environment in MMOR. Substitution of MMOB or MMOR from another type II methanotroph, Methylocystis species M, retained specific enzyme activities, demonstrating the successful cross-reactivity of M. sporium 5. These results will provide fundamental information for further enzymatic studies to elucidate sMMO mechanisms.
Collapse
|
172
|
Fernández-Baca CP, Truhlar AM, Omar AEH, Rahm BG, Walter MT, Richardson RE. Methane and nitrous oxide cycling microbial communities in soils above septic leach fields: Abundances with depth and correlations with net surface emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:429-441. [PMID: 29860012 DOI: 10.1016/j.scitotenv.2018.05.303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Onsite septic systems use soil microbial communities to treat wastewater, in the process creating potent greenhouse gases (GHGs): methane (CH4) and nitrous oxide (N2O). Subsurface soil dispersal systems of septic tank overflow, known as leach fields, are an important part of wastewater treatment and have the potential to contribute significantly to GHG cycling. This study aimed to characterize soil microbial communities associated with leach field systems and quantify the abundance and distribution of microbial populations involved in CH4 and N2O cycling. Functional genes were used to target populations producing and consuming GHGs, specifically methyl coenzyme M reductase (mcrA) and particulate methane monooxygenase (pmoA) for CH4 and nitric oxide reductase (cnorB) and nitrous oxide reductase (nosZ) for N2O. All biomarker genes were found in all soil samples regardless of treatment (leach field, sand filter, or control) or depth (surface or subsurface). In general, biomarker genes were more abundant in surface soils than subsurface soils suggesting the majority of GHG cycling is occurring in near-surface soils. Ratios of production to consumption gene abundances showed a positive relationship with CH4 emissions (mcrA:pmoA, p < 0.001) but not with N2O emission (cnorB:nosZ, p > 0.05). Of the three measured soil parameters (volumetric water content (VWC), temperature, and conductivity), only VWC was significantly correlated to a biomarker gene, mcrA (p = 0.0398) but not pmoA or either of the N2O cycling genes (p > 0.05 for cnorB and nosZ). 16S rRNA amplicon library sequencing results revealed soil VWC, CH4 flux and N2O flux together explained 64% of the microbial community diversity between samples. Sequencing of mcrA and pmoA amplicon libraries revealed treatment had little effect on diversity of CH4 cycling organisms. Overall, these results suggest GHG cycling occurs in all soils regardless of whether or not they are associated with a leach field system.
Collapse
Affiliation(s)
- Cristina P Fernández-Baca
- Department of Civil and Environmental Engineering, 220 Hollister Hall, Cornell University, Ithaca, NY, United States.
| | - Allison M Truhlar
- New York State Water Resources Institute, 230 Riley-Robb Hall, Cornell University, Ithaca, NY, United States
| | - Amir-Eldin H Omar
- Department of Molecular Biology and Genetics, 107 Biotechnology Building, Cornell University, Ithaca, NY, United States
| | - Brian G Rahm
- New York State Water Resources Institute, 230 Riley-Robb Hall, Cornell University, Ithaca, NY, United States
| | - M Todd Walter
- Department of Biological and Environmental Engineering, 232 Riley-Robb Hall, Cornell University, Ithaca, NY, United States
| | - Ruth E Richardson
- Department of Civil and Environmental Engineering, 220 Hollister Hall, Cornell University, Ithaca, NY, United States
| |
Collapse
|
173
|
La H, Hettiaratchi JPA, Achari G, Dunfield PF. Biofiltration of methane. BIORESOURCE TECHNOLOGY 2018; 268:759-772. [PMID: 30064899 DOI: 10.1016/j.biortech.2018.07.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 06/08/2023]
Abstract
The on-going annual increase in global methane (CH4) emissions can be largely attributed to anthropogenic activities. However, as more than half of these emissions are diffuse and possess a concentration less than 3% (v/v), physical-chemical treatments are inefficient as an abatement technology. In this regard, biotechnologies, such as biofiltration using methane-oxidizing bacteria, or methanotrophs, are a cost-effective and efficient means of combating diffuse CH4 emissions. In this review, a number of abiotic factors including temperature, pH, water content, packing material, empty-bed residence time, inlet gas flow rate, CH4 concentration, as well biotic factors, such as biomass development, are reviewed based on empirical findings on CH4 biofiltration studies that have been performed in the last decades.
Collapse
Affiliation(s)
- Helen La
- Department of Civil Engineering, Center for Environmental Engineering Research and Education (CEERE), University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4 Canada
| | - J Patrick A Hettiaratchi
- Department of Civil Engineering, Center for Environmental Engineering Research and Education (CEERE), University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4 Canada
| | - Gopal Achari
- Department of Civil Engineering, Center for Environmental Engineering Research and Education (CEERE), University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4 Canada.
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4 Canada
| |
Collapse
|
174
|
Shen LD, Ouyang L, Zhu Y, Trimmer M. Active pathways of anaerobic methane oxidation across contrasting riverbeds. ISME JOURNAL 2018; 13:752-766. [PMID: 30375505 PMCID: PMC6461903 DOI: 10.1038/s41396-018-0302-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/19/2018] [Accepted: 09/30/2018] [Indexed: 12/26/2022]
Abstract
Anaerobic oxidation of methane (AOM) reduces methane emissions from marine ecosystems but we know little about AOM in rivers, whose role in the global carbon cycle is increasingly recognized. We measured AOM potentials driven by different electron acceptors, including nitrite, nitrate, sulfate, and ferric iron, and identified microorganisms involved across contrasting riverbeds. AOM activity was confined to the more reduced, sandy riverbeds, whereas no activity was measured in the less reduced, gravel riverbeds where there were few anaerobic methanotrophs. Nitrite-dependent and nitrate-dependent AOM occurred in all sandy riverbeds, with the maximum rates of 61.0 and 20.0 nmol CO2 g−1 (dry sediment) d−1, respectively, while sulfate-dependent and ferric iron-dependent AOM occurred only where methane concentration was highest and the diversity of AOM pathways greatest. Diverse Candidatus Methylomirabilis oxyfera (M. oxyfera)-like bacteria and Candidatus Methanoperedens nitroreducens (M. nitroreducens)-like archaea were detected in the sandy riverbeds (16S rRNA gene abundance of 9.3 × 105 to 1.5 × 107 and 2.1 × 104 to 2.5 × 105 copies g−1 dry sediment, respectively) but no other known anaerobic methanotrophs. Further, we found M. oxyfera-like bacteria and M. nitroreducens-like archaea to be actively involved in nitrite- and nitrate/ferric iron-dependent AOM, respectively. Hence, we demonstrate multiple pathways of AOM in relation to methane, though the activities of M. oxyfera-like bacteria and M. nitroreducens-like archaea are dominant.
Collapse
Affiliation(s)
- Li-Dong Shen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.,School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Liao Ouyang
- School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Yizhu Zhu
- School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Mark Trimmer
- School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
175
|
Khadka R, Clothier L, Wang L, Lim CK, Klotz MG, Dunfield PF. Evolutionary History of Copper Membrane Monooxygenases. Front Microbiol 2018; 9:2493. [PMID: 30420840 PMCID: PMC6215863 DOI: 10.3389/fmicb.2018.02493] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/28/2018] [Indexed: 11/30/2022] Open
Abstract
Copper membrane monooxygenases (CuMMOs) oxidize ammonia, methane and some short-chain alkanes and alkenes. They are encoded by three genes, usually in an operon of xmoCAB. We aligned xmo operons from 66 microbial genomes, including members of the Alpha-, Beta-, and Gamma-proteobacteria, Verrucomicrobia, Actinobacteria, Thaumarchaeota and the candidate phylum NC10. Phylogenetic and compositional analyses were used to reconstruct the evolutionary history of the enzyme and detect potential lateral gene transfer (LGT) events. The phylogenetic analyses showed at least 10 clusters corresponding to a combination of substrate specificity and bacterial taxonomy, but with no overriding structure based on either function or taxonomy alone. Adaptation of the enzyme to preferentially oxidize either ammonia or methane has occurred more than once. Individual phylogenies of all three genes, xmoA, xmoB and xmoC, closely matched, indicating that this operon evolved or was consistently transferred as a unit, with the possible exception of the methane monooxygenase operons in Verrucomicrobia, where the pmoB gene has a distinct phylogeny from pmoA and pmoC. Compositional analyses indicated that some clusters of xmoCAB operons (for example, the pmoCAB in gammaproteobacterial methanotrophs and the amoCAB in betaproteobacterial nitrifiers) were compositionally very different from their genomes, possibly indicating recent lateral transfer of these operons. The combined phylogenetic and compositional analyses support the hypothesis that an ancestor of the nitrifying bacterium Nitrosococcus was the donor of methane monooxygenase (pMMO) to both the alphaproteobacterial and gammaproteobacterial methanotrophs, but that before this event the gammaproteobacterial methanotrophs originally possessed another CuMMO (Pxm), which has since been lost in many species.
Collapse
Affiliation(s)
- Roshan Khadka
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Lindsay Clothier
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Lin Wang
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Chee Kent Lim
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Martin G Klotz
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Richland, WA, United States.,State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
176
|
Jeong SY, Kim TG. Development of a novel methanotrophic process with the helper micro-organism Hyphomicrobium sp. NM3. J Appl Microbiol 2018; 126:534-544. [PMID: 30365214 DOI: 10.1111/jam.14140] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/09/2018] [Accepted: 10/19/2018] [Indexed: 01/29/2023]
Abstract
AIMS Microbial consortia can be more efficient at biological processes than single isolates. The purposes of this study were to design and evaluate a synthetic microbial consortium containing the methanotroph Methylocystis sp. M6 and the helper Hyphomicrobium sp. NM3, and develop a novel methanotrophic process for this consortium utilizing a dialysis membrane. METHODS AND RESULTS Hyphomicrobium increased the methane-oxidation rate (MOR), biomass and stability at a dilution rate of 0·067 day-1 in fed-batch co-culture. qRT-PCR showed that Methylocystis population increased gradually with time, whereas Hyphomicrobium population remained stable despite cell washing, confirming synergistic population interaction. At 0·1 day-1 , spiking of Hyphomicrobium effectively increased the methanotrophic activity, after which Hyphomicrobium population decreased with time, indicating that the consortium is optimal at <0·1 day-1 . When Hyphomicrobium was grown in dialysis membrane within the bioreactor, MOR increased linearly up to 155·1 ± 1·0 mmol l-1 day-1 at 0·067, 0·1, 0·2 and 0·4 day-1 , which is the highest observed value for a methanotrophic reactor. CONCLUSIONS Hyphomicrobium sp. NM3 is a promising helper micro-organism for methanotrophs. Hyphomicrobium-methanotroph consortia used concurrently with existing methods can produce an efficient and stable methane oxidation system. SIGNIFICANCE AND IMPACT OF THE STUDY This novel methanotrophic process is superior to those previously reported in the literature, and can provide efficient and stable methane oxidation.
Collapse
Affiliation(s)
- S-Y Jeong
- Department of Microbiology, Pusan National University, Pusan, Korea
| | - T G Kim
- Department of Microbiology, Pusan National University, Pusan, Korea
| |
Collapse
|
177
|
Kwon M, Ho A, Yoon S. Novel approaches and reasons to isolate methanotrophic bacteria with biotechnological potentials: recent achievements and perspectives. Appl Microbiol Biotechnol 2018; 103:1-8. [PMID: 30315351 DOI: 10.1007/s00253-018-9435-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
Abstract
The recent drop in the price of natural gas has rekindled the interests in methanotrophs, the organisms capable of utilizing methane as the sole electron donor and carbon source, as biocatalysts for various industrial applications. As heterologous expression of the methane monooxygenases in more amenable hosts has been proven to be nearly impossible, future success in methanotroph biotechnology largely depends on securing phylogenetically and phenotypically diverse methanotrophs with relatively high growth rates. For long, isolation of methanotrophs have relied on repeated single colony picking after initial batch enrichment with methane, which is a very rigorous and time-consuming process. In this review, three unconventional isolation methods devised for facilitation of the isolation process, diversification of targeted methanotrophs, and/or screening of rapid growers are summarized. The soil substrate membrane method allowed for isolation of previously elusive methanotrophs and application of high-throughput extinction plating technique facilitated the isolation procedure. Use of a chemostat with gradually increased dilution rates proved effective in screening for the fastest-growing methanotrophs from environmental samples. Development of new isolation technologies incorporating microfluidics and single-cell techniques may lead to discovery of previously unculturable methanotrophs with unexpected metabolic potentials and thus, certainly warrant future investigation.
Collapse
Affiliation(s)
- Miye Kwon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Adrian Ho
- Institute for Microbiology, Leibniz Universität Hannover, 30419, Hannover, Germany
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|
178
|
Bio-Methanol Production Using Treated Domestic Wastewater with Mixed Methanotroph Species and Anaerobic Digester Biogas. WATER 2018. [DOI: 10.3390/w10101414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of cost-effective methods, which generate minimal chemical wastewater, for methanol production is an important research goal. In this study, treated wastewater (TWW) was utilized as a culture solution for methanol production by mixed methanotroph species as an alternative to media prepared from commercial or chemical agents, e.g., nitrate mineral salts medium. Furthermore, a realistic alternative for producing methanol in wastewater treatment plants using biogas from anaerobic digestion was proposed. By culturing mixed methanotroph species with nitrate and phosphate-supplemented TWW in municipal wastewater treatment plants, this study demonstrates, for the first time, the application of biogas generated from the sludge digester of municipal wastewater treatment plants. NaCl alone inhibited methanol dehydrogenase and the addition of 40 mM formate as an electron donor increased methanol production to 6.35 mM. These results confirmed that this practical energy production method could enable cost-effective methanol production. As such, methanol produced in wastewater treatment plants can be used as an eco-friendly energy and carbon source for biological denitrification, which can be an alternative to reducing the expenses required for the waste water treatment process.
Collapse
|
179
|
Tays C, Guarnieri MT, Sauvageau D, Stein LY. Combined Effects of Carbon and Nitrogen Source to Optimize Growth of Proteobacterial Methanotrophs. Front Microbiol 2018; 9:2239. [PMID: 30319568 PMCID: PMC6167414 DOI: 10.3389/fmicb.2018.02239] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/03/2018] [Indexed: 11/13/2022] Open
Abstract
Methane, a potent greenhouse gas, and methanol, commonly called wood alcohol, are common by-products of modern industrial processes. They can, however, be consumed as a feedstock by bacteria known as methanotrophs, which can serve as useful vectors for biotransformation and bioproduction. Successful implementation in industrial settings relies upon efficient growth and bioconversion, and the optimization of culturing conditions for these bacteria remains an ongoing effort, complicated by the wide variety of characteristics present in the methanotroph culture collection. Here, we demonstrate the variable growth outcomes of five diverse methanotrophic strains – Methylocystis sp. Rockwell, Methylocystis sp. WRRC1, Methylosinus trichosporium OB3b, Methylomicrobium album BG8, and Methylomonas denitrificans FJG1 – grown on either methane or methanol, at three different concentrations, with either ammonium or nitrate provided as nitrogen source. Maximum optical density (OD), growth rate, and biomass yield were assessed for each condition. Further metabolite and fatty acid methyl ester (FAME) analyses were completed for Methylocystis sp. Rockwell and M. album BG8. The results indicate differential response to these growth conditions, with a general preference for ammonium-based growth over nitrate, except for M. denitrificans FJG1. Methane is also preferred by most strains, with methanol resulting in unreliable or inhibited growth in all but M. album BG8. Metabolite analysis points to monitoring of excreted formic acid as a potential indicator of adverse growth conditions, while the magnitude of FAME variation between conditions may point to strains with broader substrate tolerance. These findings suggest that methanotroph strains must be carefully evaluated before use in industry, both to identify optimal conditions and to ensure the strain selected is appropriate for the process of interest. Much work remains in addressing the optimization of growth strategies for these promising microorganisms since disregarding these important steps in process development could ultimately lead to inefficient or failed bioprocesses.
Collapse
Affiliation(s)
- Catherine Tays
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | | | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
180
|
Sepulveda-Jauregui A, Hoyos-Santillan J, Martinez-Cruz K, Walter Anthony KM, Casper P, Belmonte-Izquierdo Y, Thalasso F. Eutrophication exacerbates the impact of climate warming on lake methane emission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:411-419. [PMID: 29709858 DOI: 10.1016/j.scitotenv.2018.04.283] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Net methane (CH4) emission from lakes depends on two antagonistic processes: CH4 production (methanogenesis) and CH4 oxidation (methanotrophy). It is unclear how climate warming will affect the balance between these processes, particularly among lakes of different trophic status. Here we show that methanogenesis is more sensitive to temperature than methanotrophy, and that eutrophication magnifies this temperature sensitivity. Using laboratory incubations of water and sediment from ten tropical, temperate and subarctic lakes with contrasting trophic states, ranging from oligotrophic to hypereutrophic, we explored the temperature sensitivity of methanogenesis and methanotrophy. We found that both processes presented a higher temperature sensitivity in tropical lakes, followed by temperate, and subarctic lakes; but more importantly, we found that eutrophication triggered a higher temperature sensitivity. A model fed by our empirical data revealed that increasing lake water temperature by 2 °C leads to a net increase in CH4 emissions by 101-183% in hypereutrophic lakes and 47-56% in oligotrophic lakes. We conclude that climate warming will tilt the CH4 balance towards higher lake emission and that this impact will be exacerbated by the eutrophication of the lakes.
Collapse
Affiliation(s)
- Armando Sepulveda-Jauregui
- Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, United States; Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany.
| | - Jorge Hoyos-Santillan
- Division of Agricultural and Environmental Sciences, University of Nottingham, Nottingham, East Midlands LE12 5RD, United Kingdom.
| | - Karla Martinez-Cruz
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany; Biotechnology and Bioengineering Department, Cinvestav, Mexico City 07360, Mexico.
| | - Katey M Walter Anthony
- Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, United States.
| | - Peter Casper
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany.
| | | | - Frédéric Thalasso
- Biotechnology and Bioengineering Department, Cinvestav, Mexico City 07360, Mexico.
| |
Collapse
|
181
|
de Jong AEE, In 't Zandt MH, Meisel OH, Jetten MSM, Dean JF, Rasigraf O, Welte CU. Increases in temperature and nutrient availability positively affect methane-cycling microorganisms in Arctic thermokarst lake sediments. Environ Microbiol 2018; 20:4314-4327. [PMID: 29968310 PMCID: PMC6334529 DOI: 10.1111/1462-2920.14345] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 11/30/2022]
Abstract
Arctic permafrost soils store large amounts of organic matter that is sensitive to temperature increases and subsequent microbial degradation to methane (CH4) and carbon dioxide (CO2). Here, we studied methanogenic and methanotrophic activity and community composition in thermokarst lake sediments from Utqiag˙vik (formerly Barrow), Alaska. This experiment was carried out under in situ temperature conditions (4°C) and the IPCC 2013 Arctic climate change scenario (10°C) after addition of methanogenic and methanotrophic substrates for nearly a year. Trimethylamine (TMA) amendment with warming showed highest maximum CH4production rates, being 30% higher at 10°C than at 4°C. Maximum methanotrophic rates increased by up to 57% at 10°C compared to 4°C. 16S rRNA gene sequencing indicated high relative abundance of Methanosarcinaceae in TMA amended incubations, and for methanotrophic incubations Methylococcaeae were highly enriched. Anaerobic methanotrophic activity with nitrite or nitrate as electron acceptor was not detected. This study indicates that the methane cycling microbial community can adapt to temperature increases and that their activity is highly dependent on substrate availability.
Collapse
Affiliation(s)
- Anniek E E de Jong
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Michiel H In 't Zandt
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Ove H Meisel
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands.,Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Joshua F Dean
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands.,Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Olivia Rasigraf
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
182
|
Osborne CD, Haritos VS. Horizontal gene transfer of three co-inherited methane monooxygenase systems gave rise to methanotrophy in the Proteobacteria. Mol Phylogenet Evol 2018; 129:171-181. [PMID: 30149053 DOI: 10.1016/j.ympev.2018.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/01/2018] [Accepted: 08/19/2018] [Indexed: 12/22/2022]
Abstract
The critical role that bacterial methanotrophs have in regulating the environmental concentrations of the potent greenhouse gas, methane, under aerobic conditions is dependent on monooxygenase enzymes which oxidise the substrate as both a carbon and energy source. Despite the importance of these organisms, the evolutionary origins of aerobic methane oxidation capability and its relationship to proteobacterial evolution is not well understood. Here we investigated the phylogenetic relationship of proteobacterial methanotrophs with related, non-methanotrophic bacteria using 16S rRNA and the evolution of two forms of methane monooxygenase: membrane bound (pMMO and pXMO) and cytoplasmic (sMMO). Through analysis we have concluded that extant proteobacterial methanotrophs evolved from up to five ancestral species, and that all three methane monooxygenase systems, pMMO, pXMO and sMMO, were likely present in the ancestral species (although pXMO and sMMO are not present in most of the present day methanotrophs). Here we propose that the three monooxygenase systems entered the ancestral species by horizontal gene transfer, with these likely to have pre-existing physiological and metabolic attributes that supported conversion to methanotrophy. Further, we suggest that prior to these enzyme systems developing methane oxidation capabilities, the membrane-bound and cytoplasmic monooxygenases were already both functionally and phylogenetically associated. These results not only suggest that sMMO and pXMO have a far greater role in methanotrophic evolution than previously understood but also implies that the co-inheritance of membrane bound and cytoplasmic monooxygenases have roles additional to that of supporting methanotrophy.
Collapse
Affiliation(s)
- Craig D Osborne
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton 3800, Australia
| | - Victoria S Haritos
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton 3800, Australia.
| |
Collapse
|
183
|
AlSayed A, Fergala A, Eldyasti A. Influence of biomass density and food to microorganisms ratio on the mixed culture type I methanotrophs enriched from activated sludge. J Environ Sci (China) 2018; 70:87-96. [PMID: 30037414 DOI: 10.1016/j.jes.2017.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 06/08/2023]
Abstract
Methanotrophic based process can be the remedy to offset the wastewater treatment facilities increasing energy requirements due to methanotroph's unique ability to integrate methane assimilation with multiple biotechnological applications like biological nitrogen removal and methanol production. Regardless of the methanotrophic process end product, the challenge to maintain stable microbial growth in the methanotrophs cultivation bioreactor at higher cell densities is one of the major obstacles facing the process upscaling. Therefore, a series of consecutive batch tests were performed to attentively investigate the biomass density influence on type I methanotrophs bacterial growth. In addition, food to microorganisms (F/M), carbon to nitrogen (C/N) and nitrogen to microorganisms (N/M) ratio effect on the microbial activity was studied for the first time. It was clarified that the F/M ratio is the most influencing factor on the microbial growth at higher biomass densities rather than the biomass density increase, whereas C/N and N/M ratio change, while using nitrate as the nitrogen source, does not influence methanotrophs microbial growth. These study results would facilitate the scaling up of methanotrophic based biotechnology by identifying that F/M ratio as the key parameter that influences methanotrophs cultivation at high biomass densities.
Collapse
Affiliation(s)
- Ahmed AlSayed
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario M3J 1P3, Canada
| | - Ahmed Fergala
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario M3J 1P3, Canada
| | - Ahmed Eldyasti
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
184
|
Hakobyan A, Liesack W, Glatter T. Crude-MS Strategy for in-Depth Proteome Analysis of the Methane-Oxidizing Methylocystis sp. strain SC2. J Proteome Res 2018; 17:3086-3103. [DOI: 10.1021/acs.jproteome.8b00216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Werner Liesack
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Karl-von-Frisch-Str. 16, D-35043 Marburg, Germany
| | | |
Collapse
|
185
|
Muñoz R, Soto C, Zuñiga C, Revah S. A systematic comparison of two empirical gas-liquid mass transfer determination methodologies to characterize methane biodegradation in stirred tank bioreactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:247-252. [PMID: 29605779 DOI: 10.1016/j.jenvman.2018.03.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/18/2018] [Accepted: 03/22/2018] [Indexed: 05/12/2023]
Abstract
This study aimed at systematically comparing the potential of two empirical methods for the estimation of the volumetric CH4 mass transfer coefficient (klaCH4), namely gassing-out and oxygen transfer rate (OTR), to describe CH4 biodegradation in a fermenter operated with a methanotrophic consortium at 400, 600 and 800 rpm. The klaCH4 estimated from the OTR methodology accurately predicted the CH4 elimination capacity (EC) under CH4 mass transfer limiting conditions regardless of the stirring rate (∼9% of average error between empirical and estimated ECs). Thus, empirical CH4-ECs of 37.8 ± 5.8, 42.5 ± 5.4 and 62.3 ± 5.2 g CH4 m-3 h-1vs predicted CH4-ECs of 35.6 ± 2.2, 50.1 ± 2.3 and 59.6 ± 3.4 g CH4 m-3 h-1 were recorded at 400, 600 and 800 rpm, respectively. The rapid Co2+-catalyzed reaction of O2 with SO3-2 in the vicinity of the gas-liquid interphase during OTR determinations, mimicking microbial CH4 uptake in the biotic experiments, was central to accurately describe the klaCH4.
Collapse
Affiliation(s)
- Raul Muñoz
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Unidad Cuajimalpa, Avenida Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa. Delegación Cuajimalpa de Morelos, Ciudad de México, Mexico; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - Cenit Soto
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Unidad Cuajimalpa, Avenida Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa. Delegación Cuajimalpa de Morelos, Ciudad de México, Mexico
| | - Cristal Zuñiga
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Unidad Cuajimalpa, Avenida Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa. Delegación Cuajimalpa de Morelos, Ciudad de México, Mexico
| | - Sergio Revah
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Unidad Cuajimalpa, Avenida Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa. Delegación Cuajimalpa de Morelos, Ciudad de México, Mexico.
| |
Collapse
|
186
|
Abstract
Copper-binding metallophores, or chalkophores, play a role in microbial copper homeostasis that is analogous to that of siderophores in iron homeostasis. The best-studied chalkophores are members of the methanobactin (Mbn) family-ribosomally produced, posttranslationally modified natural products first identified as copper chelators responsible for copper uptake in methane-oxidizing bacteria. To date, Mbns have been characterized exclusively in those species, but there is genomic evidence for their production in a much wider range of bacteria. This review addresses the current state of knowledge regarding the function, biosynthesis, transport, and regulation of Mbns. While the roles of several proteins in these processes are supported by substantial genetic and biochemical evidence, key aspects of Mbn manufacture, handling, and regulation remain unclear. In addition, other natural products that have been proposed to mediate copper uptake as well as metallophores that have biologically relevant roles involving copper binding, but not copper uptake, are discussed.
Collapse
Affiliation(s)
- Grace E Kenney
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA; ,
| | - Amy C Rosenzweig
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA; ,
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
187
|
Rasouli Z, Valverde-Pérez B, D’Este M, De Francisci D, Angelidaki I. Nutrient recovery from industrial wastewater as single cell protein by a co-culture of green microalgae and methanotrophs. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.03.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
188
|
in ‘t Zandt MH, de Jong AEE, Slomp CP, Jetten MSM. The hunt for the most-wanted chemolithoautotrophic spookmicrobes. FEMS Microbiol Ecol 2018; 94:4966976. [PMID: 29873717 PMCID: PMC5989612 DOI: 10.1093/femsec/fiy064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 11/16/2022] Open
Abstract
Microorganisms are the drivers of biogeochemical methane and nitrogen cycles. Essential roles of chemolithoautotrophic microorganisms in these cycles were predicted long before their identification. Dedicated enrichment procedures, metagenomics surveys and single-cell technologies have enabled the identification of several new groups of most-wanted spookmicrobes, including novel methoxydotrophic methanogens that produce methane from methylated coal compounds and acetoclastic 'Candidatus Methanothrix paradoxum', which is active in oxic soils. The resultant energy-rich methane can be oxidized via a suite of electron acceptors. Recently, 'Candidatus Methanoperedens nitroreducens' ANME-2d archaea and 'Candidatus Methylomirabilis oxyfera' bacteria were enriched on nitrate and nitrite under anoxic conditions with methane as an electron donor. Although 'Candidatus Methanoperedens nitroreducens' and other ANME archaea can use iron citrate as an electron acceptor in batch experiments, the quest for anaerobic methane oxidizers that grow via iron reduction continues. In recent years, the nitrogen cycle has been expanded by the discovery of various ammonium-oxidizing prokaryotes, including ammonium-oxidizing archaea, versatile anaerobic ammonium-oxidizing (anammox) bacteria and complete ammonium-oxidizing (comammox) Nitrospira bacteria. Several biogeochemical studies have indicated that ammonium conversion occurs under iron-reducing conditions, but thus far no microorganism has been identified. Ultimately, iron-reducing and sulfate-dependent ammonium-oxidizing microorganisms await discovery.
Collapse
Affiliation(s)
- Michiel H in ‘t Zandt
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Anniek EE de Jong
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Caroline P Slomp
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
- Department of Earth Sciences, Geochemistry, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| | - Mike SM Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
189
|
He R, Su Y, Ma RC, Zhuang S. Characterization of toluene metabolism by methanotroph and its effect on methane oxidation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16816-16824. [PMID: 29616477 DOI: 10.1007/s11356-018-1863-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Methanotrophs not only oxidize CH4, but also can oxidize a relatively broad range of other substrates, including trichloroethylene, alkanes, alkenes, and aromatic compounds. In this study, Methylosinus sporium was used as a model organism to characterize toluene metabolism by methanotrophs. Reverse transcription quantitative PCR analysis showed that toluene enhanced the mmoX expression of M. sporium. When the toluene concentration was below 2000 mg m-3, the kinetics of toluene metabolism by M. sporium conformed to the Michaelis-Menten equation (Vmax = 0.238 g gdry weight-1 h-1, K m = 545.2 mg m-3). The use of a solid-phase extraction technique followed by a gas chromatography-mass spectrometry analysis and molecular docking calculation showed that toluene was likely to primarily bind the di-iron center structural region of soluble methane monooxygenase (sMMO) hydroxylase and then be oxidized to o-cresol. Although M. sporium oxidized toluene, it did not incorporate toluene into its biomass. The coexistence of toluene and CH4 could influence CH4 oxidation, the growth of methanotrophs, and the distribution of CH4-derived carbon, which were related to the ratio of the toluene concentration to biomass. These results would be helpful to understand the metabolism of CH4 and non-methane volatile organic compounds in the environment.
Collapse
Affiliation(s)
- Ruo He
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Yao Su
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ruo-Chan Ma
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Shulin Zhuang
- Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
190
|
Rahalkar MC, Bahulikar RA. Hemerythrins are widespread and conserved for methanotrophic guilds. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
191
|
Rapid isolation of fast-growing methanotrophs from environmental samples using continuous cultivation with gradually increased dilution rates. Appl Microbiol Biotechnol 2018; 102:5707-5715. [PMID: 29736819 DOI: 10.1007/s00253-018-8978-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/22/2018] [Accepted: 03/30/2018] [Indexed: 12/29/2022]
Abstract
Methanotrophs have recently gained interest as biocatalysts for mitigation of greenhouse gas emission and conversion of methane to value-added products; however, their slow growth has, at least partially, hindered their industrial application. A rapid isolation technique that specifically screens for the fastest-growing methanotrophs was developed using continuous cultivation with gradually increased dilution rates. Environmental samples collected from methane-rich environments were enriched in continuously stirred tank reactors with unrestricted supply of methane and air. The reactor was started at the dilution rate of 0.1 h-1, and the dilution rates were increased with an increment of 0.05 h-1 until the reactor was completely washed out. The shifts in the overall microbial population and methanotrophic community at each step of the isolation procedure were monitored with 16S rRNA amplicon sequencing. The predominant methanotrophic groups recovered after reactor operations were affiliated to the gammaproteobacterial genera Methylomonas and Methylosarcina. The methanotrophic strains isolated from the reactor samples collected at their respective highest dilution rates exhibited specific growth rates up to 0.40 h-1; the highest value reported for methanotrophs. The novel isolation method developed in this study significantly shortened the time and efforts needed for isolation of methanotrophs from environmental samples and was capable of screening for the methanotrophs with the fastest growth rates.
Collapse
|
192
|
Li Y, Wang Y, Lin Z, Wang J, He Q, Zhou J. A novel methanotrophic co-metabolic system with high soluble methane monooxygenase activity to biodegrade refractory organics in pulping wastewater. BIORESOURCE TECHNOLOGY 2018; 256:358-365. [PMID: 29471231 DOI: 10.1016/j.biortech.2018.02.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
Pulping wastewater still contains massive refractory organics after biotreatment, with high colority, low biodegradability, and lasting biotoxicity. To eliminate refractory organics in pulping wastewater, a methanotrophic co-metabolic system in a gas cycle Sequencing Batch Biofilm Reactor (gcSBBR) seeded by soil at a ventilation opening of coal mine was quickly built on the 92nd day. The removal rate of COD, colority and TOC was 53.28%, 50.59% and 51.60%, respectively. Analysis of 3D-EEM indicated that glycolated protein-like, melanoidin-like or lignocellulose-like, and humic acid-like decreased by 7.85%, 5.02% and 1.74%, respectively. Moreover, this system exhibited high activity of soluble methane monooxygenase (sMMO) and mmoX encoding sMMO reached up to 7.89 × 105 copies/μL. Methanotrophs, namely, Methylocaldum (8.28%), Methylococcus (6.06%) and Methylomonas (0.07%), were detected by 16S rRNA sequencing. And other bacteria were dominated by Denitratisoma, Anaerolineaceae_uncultured and Methylophilaceae_uncultured. Refractory organics was biodegraded through the synergy among microorganisms, and a postulated synergy pathway was put forward.
Collapse
Affiliation(s)
- Yancheng Li
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Chongqing University, Chongqing 400045, PR China
| | - Yingmu Wang
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Chongqing University, Chongqing 400045, PR China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Chongqing University, Chongqing 400045, PR China
| | - Jiale Wang
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Chongqing University, Chongqing 400045, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
193
|
Ro SY, Rosenzweig AC. Recent Advances in the Genetic Manipulation of Methylosinus trichosporium OB3b. Methods Enzymol 2018; 605:335-349. [PMID: 29909832 DOI: 10.1016/bs.mie.2018.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methanotrophic bacteria utilize methane as their sole carbon and energy source. Studies of the model Type II methanotroph Methylosinus trichosporium OB3b have provided insight into multiple aspects of methanotrophy, including methane assimilation, copper accumulation, and metal-dependent gene expression. Development of genetic tools for chromosomal editing was crucial for advancing these studies. Recent interest in methanotroph metabolic engineering has led to new protocols for genetic manipulation of methanotrophs that are effective and simple to use. We have incorporated these newer molecular tools into existing protocols for Ms. trichosporium OB3b. The modifications include additional shuttle and replicative plasmids as well as improved gene delivery and genotyping. The methods described here render gene editing in Ms. trichosporium OB3b efficient and accessible.
Collapse
Affiliation(s)
- Soo Y Ro
- Northwestern University, Evanston, IL, United States
| | | |
Collapse
|
194
|
AlSayed A, Fergala A, Khattab S, Eldyasti A. Kinetics of type I methanotrophs mixed culture enriched from waste activated sludge. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
195
|
Kenney GE, Rosenzweig AC. Methanobactins: Maintaining copper homeostasis in methanotrophs and beyond. J Biol Chem 2018; 293:4606-4615. [PMID: 29348173 PMCID: PMC5880147 DOI: 10.1074/jbc.tm117.000185] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Methanobactins (Mbns) are ribosomally produced, post-translationally modified natural products that bind copper with high affinity and specificity. Originally identified in methanotrophic bacteria, which have a high need for copper, operons encoding these compounds have also been found in many non-methanotrophic bacteria. The proteins responsible for Mbn biosynthesis include several novel enzymes. Mbn transport involves export through a multidrug efflux pump and re-internalization via a TonB-dependent transporter. Release of copper from Mbn and the molecular basis for copper regulation of Mbn production remain to be elucidated. Future work is likely to result in the identification of new enzymatic chemistry, opportunities for bioengineering and drug targeting of copper metabolism, and an expanded understanding of microbial metal homeostasis.
Collapse
Affiliation(s)
- Grace E Kenney
- Departments of Molecular Biosciences, Evanston, Illinois 60208
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences, Evanston, Illinois 60208; Chemistry, Northwestern University, Evanston, Illinois 60208.
| |
Collapse
|
196
|
Pratscher J, Vollmers J, Wiegand S, Dumont MG, Kaster A. Unravelling the Identity, Metabolic Potential and Global Biogeography of the Atmospheric Methane-Oxidizing Upland Soil Cluster α. Environ Microbiol 2018; 20:1016-1029. [PMID: 29314604 PMCID: PMC6849597 DOI: 10.1111/1462-2920.14036] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023]
Abstract
Understanding of global methane sources and sinks is a prerequisite for the design of strategies to counteract global warming. Microbial methane oxidation in soils represents the largest biological sink for atmospheric methane. However, still very little is known about the identity, metabolic properties and distribution of the microbial group proposed to be responsible for most of this uptake, the uncultivated upland soil cluster α (USCα). Here, we reconstructed a draft genome of USCα from a combination of targeted cell sorting and metagenomes from forest soil, providing the first insights into its metabolic potential and environmental adaptation strategies. The 16S rRNA gene sequence recovered was distinctive and suggests this crucial group as a new genus within the Beijerinckiaceae, close to Methylocapsa. Application of a fluorescently labelled suicide substrate for the particulate methane monooxygenase enzyme (pMMO) coupled to 16S rRNA fluorescence in situ hybridisation (FISH) allowed for the first time a direct link of the high-affinity activity of methane oxidation to USCα cells in situ. Analysis of the global biogeography of this group further revealed its presence in previously unrecognized habitats, such as subterranean and volcanic biofilm environments, indicating a potential role of these environments in the biological sink for atmospheric methane.
Collapse
Affiliation(s)
| | - John Vollmers
- Institute for Biological Interfaces (IBG5), Karlsruhe Institute of TechnologyKarlsruheGermany
| | - Sandra Wiegand
- Department of MicrobiologyInstitute for Water and Wetland Research, Faculty of Science, Radboud UniversityNijmegenThe Netherlands
| | - Marc G. Dumont
- Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Anne‐Kristin Kaster
- Institute for Biological Interfaces (IBG5), Karlsruhe Institute of TechnologyKarlsruheGermany
| |
Collapse
|
197
|
May T, Polag D, Keppler F, Greule M, Müller L, König H. Methane oxidation in industrial biogas plants—Insights in a novel methanotrophic environment evidenced by pmoA gene analyses and stable isotope labelling studies. J Biotechnol 2018; 270:77-84. [DOI: 10.1016/j.jbiotec.2018.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 01/24/2018] [Accepted: 01/31/2018] [Indexed: 02/05/2023]
|
198
|
Zhang T, Wang X, Zhou J, Zhang Y. Enrichments of methanotrophic-heterotrophic cultures with high poly-β-hydroxybutyrate (PHB) accumulation capacities. J Environ Sci (China) 2018; 65:133-143. [PMID: 29548384 DOI: 10.1016/j.jes.2017.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 06/08/2023]
Abstract
Methanotrophic-heterotrophic communities were selectively enriched from sewage sludge to obtain a mixed culture with high levels of poly-β-hydroxybutyrate (PHB) accumulation capacity from methane. Methane was used as the carbon source, N2 as sole nitrogen source, and oxygen and Cu content were varied. Copper proved essential for PHB synthesis. All cultures enriched with Cu could accumulate high content of PHB (43.2%-45.9%), while only small amounts of PHB were accumulated by cultures enriched without Cu (11.9%-17.5%). Batch assays revealed that communities grown with Cu and a higher O2 content synthesized more PHB, which had a wider optimal CH4:O2 range and produced a high PHB content (48.7%) even though in the presence of N2. In all methanotrophic-heterotrophic communities, both methanotrophic and heterotrophic populations showed the ability to accumulate PHB. Although methane was added as the sole carbon source, heterotrophs dominated with abundances between 77.2% and 85.6%. All methanotrophs detected belonged to type II genera, which formed stable communities with heterotrophs of different PHB production capacities.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xiaowei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yu Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
199
|
Zainun MY, Simarani K. Metagenomics profiling for assessing microbial diversity in both active and closed landfills. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:269-278. [PMID: 29117585 DOI: 10.1016/j.scitotenv.2017.10.266] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
The municipal landfill is an example of human-made environment that harbours some complex diversity of microorganism communities. To evaluate this complexity, the structures of bacterial communities in active (operational) and closed (non-operational) landfills in Malaysia were analysed with culture independent metagenomics approaches. Several points of soil samples were collected from 0 to 20cm depth and were subjected to physicochemical test, such as temperature, pH, and moisture content. In addition, the heavy metal contamination was determined by using ICPMS. The bacterial enumeration was examined on nutrient agar (NA) plates aerobically at 30°C. The soil DNA was extracted, purified and amplified prior to sequence the 16S rRNA gene for statistical and bioinformatics analyses. As a result, the average of bacteria for the closed landfill was higher compared to that for the active landfill at 9.16×107 and 1.50×107, respectively. The higher bacterial OTUs sequenced was also recorded in closed landfills compared to active landfill i.e. 6625 and 4552 OTUs respectively. The data from both landfills showed that the predominant phyla belonged to Proteobacteria (55.7%). On average, Bacteroidetes was the second highest phylum followed by Firmicutes for the active landfill. While the phyla for communities in closed landfill were dominated by phyla from Acidobacteria and Actinobacteria. There was also Euryarchaeota (Archaea) which became a minor phylum that was detected in active landfill, but almost completely absent in closed landfill. As such, the composition of bacterial communities suggests some variances between the bacterial communities found in active and closed landfills. Thus, this study offers new clues pertaining to bacterial diversity pattern between the varied types of landfills studied.
Collapse
Affiliation(s)
- Mohamad Yusof Zainun
- Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Khanom Simarani
- Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre of Research in Waste Management, Institute of Research Management & Monitoring, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
200
|
Abstract
Aerobic methanotrophs have long been known to play a critical role in the global carbon cycle, being capable of converting methane to biomass and carbon dioxide. Interestingly, these microbes exhibit great sensitivity to copper and rare-earth elements, with the expression of key genes involved in the central pathway of methane oxidation controlled by the availability of these metals. That is, these microbes have a "copper switch" that controls the expression of alternative methane monooxygenases and a "rare-earth element switch" that controls the expression of alternative methanol dehydrogenases. Further, it has been recently shown that some methanotrophs can detoxify inorganic mercury and demethylate methylmercury; this finding is remarkable, as the canonical organomercurial lyase does not exist in these methanotrophs, indicating that a novel mechanism is involved in methylmercury demethylation. Here, we review recent findings on methanotrophic interactions with metals, with a particular focus on these metal switches and the mechanisms used by methanotrophs to bind and sequester metals.
Collapse
|