151
|
Chauhan J, Cardinale S, Fang L, Huang J, Kwasny SM, Pennington MR, Basi K, diTargiani R, Capacio BR, MacKerell AD, Opperman TJ, Fletcher S, de Leeuw EPH. Towards Development of Small Molecule Lipid II Inhibitors as Novel Antibiotics. PLoS One 2016; 11:e0164515. [PMID: 27776124 PMCID: PMC5077133 DOI: 10.1371/journal.pone.0164515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/25/2016] [Indexed: 12/28/2022] Open
Abstract
Recently we described a novel di-benzene-pyrylium-indolene (BAS00127538) inhibitor of Lipid II. BAS00127538 (1-Methyl-2,4-diphenyl-6-((1E,3E)-3-(1,3,3-trimethylindolin-2-ylidene)prop-1-en-1-yl)pyryl-1-ium) tetrafluoroborate is the first small molecule Lipid II inhibitor and is structurally distinct from natural agents that bind Lipid II, such as vancomycin. Here, we describe the synthesis and biological evaluation of 50 new analogs of BAS00127538 designed to explore the structure-activity relationships of the scaffold. The results of this study indicate an activity map of the scaffold, identifying regions that are critical to cytotoxicity, Lipid II binding and range of anti-bacterial action. One compound, 6jc48-1, showed significantly enhanced drug-like properties compared to BAS00127538. 6jc48-1 has reduced cytotoxicity, while retaining specific Lipid II binding and activity against Enterococcus spp. in vitro and in vivo. Further, this compound showed a markedly improved pharmacokinetic profile with a half-life of over 13 hours upon intravenous and oral administration and was stable in plasma. These results suggest that scaffolds like that of 6jc48-1 can be developed into small molecule antibiotic drugs that target Lipid II.
Collapse
Affiliation(s)
- Jamal Chauhan
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Steven Cardinale
- Microbiotix, Inc., One Innovation Drive, Worcester, Massachusetts, United States of America
| | - Lei Fang
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
- Computer-Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jing Huang
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
- Computer-Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
| | - Steven M. Kwasny
- Microbiotix, Inc., One Innovation Drive, Worcester, Massachusetts, United States of America
| | - M. Ross Pennington
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America
| | - Kelly Basi
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America
| | - Robert diTargiani
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America
| | - Benedict R. Capacio
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
- Computer-Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
| | - Timothy J. Opperman
- Microbiotix, Inc., One Innovation Drive, Worcester, Massachusetts, United States of America
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
| | - Erik P. H. de Leeuw
- Institute of Human Virology & Department of Biochemistry and Molecular Biology of the University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
152
|
Sinel C, Jaussaud C, Auzou M, Giard JC, Cattoir V. Mutant prevention concentrations of daptomycin for Enterococcus faecium clinical isolates. Int J Antimicrob Agents 2016; 48:449-52. [DOI: 10.1016/j.ijantimicag.2016.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/29/2016] [Accepted: 07/02/2016] [Indexed: 11/15/2022]
|
153
|
An Adaptive Mutation in Enterococcus faecium LiaR Associated with Antimicrobial Peptide Resistance Mimics Phosphorylation and Stabilizes LiaR in an Activated State. J Mol Biol 2016; 428:4503-4519. [PMID: 27670715 DOI: 10.1016/j.jmb.2016.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/15/2016] [Accepted: 09/20/2016] [Indexed: 11/23/2022]
Abstract
The cyclic antimicrobial lipopeptide daptomycin (DAP) triggers the LiaFSR membrane stress response pathway in enterococci and many other Gram-positive organisms. LiaR is the response regulator that, upon phosphorylation, binds in a sequence-specific manner to DNA to regulate transcription in response to membrane stress. In clinical settings, non-susceptibility to DAP by Enterococcus faecium is correlated frequently with a mutation in LiaR of Trp73 to Cys (LiaRW73C). We have determined the structure of the activated E. faecium LiaR protein at 3.2Å resolution and, in combination with solution studies, show that the activation of LiaR induces the formation of a LiaR dimer that increases LiaR affinity at least 40-fold for the extended regulatory regions upstream of the liaFSR and liaXYZ operons. In vitro, LiaRW73C induces phosphorylation-independent dimerization of LiaR and provides a biochemical basis for non-susceptibility to DAP by the upregulation of the LiaFSR regulon. A comparison of the E. faecalis LiaR, E. faecium LiaR, and the LiaR homolog from Staphylococcus aureus (VraR) and the mutations associated with DAP resistance suggests that physicochemical properties such as oligomerization state and DNA specificity, although tuned to the biology of each organism, share some features that could be targeted for new antimicrobials.
Collapse
|
154
|
Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016; 69:51-155. [PMID: 27720012 DOI: 10.1016/bs.ampbs.2016.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora.
Collapse
Affiliation(s)
- E M Fozo
- University of Tennessee, Knoxville, TN, United States.
| | - E A Rucks
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
155
|
Harp JR, Saito HE, Bourdon AK, Reyes J, Arias CA, Campagna SR, Fozo EM. Exogenous Fatty Acids Protect Enterococcus faecalis from Daptomycin-Induced Membrane Stress Independently of the Response Regulator LiaR. Appl Environ Microbiol 2016; 82:4410-4420. [PMID: 27208105 PMCID: PMC4959211 DOI: 10.1128/aem.00933-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Enterococcus faecalis is a commensal bacterium of the gastrointestinal tract that can cause nosocomial infections in immunocompromised humans. The hallmarks of this organism are its ability to survive in a variety of stressful habitats and, in particular, its ability to withstand membrane damage. One strategy used by E. faecalis to protect itself from membrane-damaging agents, including the antibiotic daptomycin, involves incorporation of exogenous fatty acids from bile or serum into the cell membrane. Additionally, the response regulator LiaR (a member of the LiaFSR [lipid II-interacting antibiotic response regulator and sensor] system associated with cell envelope stress responses) is required for the basal level of resistance E. faecalis has to daptomycin-induced membrane damage. This study aimed to determine if membrane fatty acid changes could provide protection against membrane stressors in a LiaR-deficient strain of E. faecalis We noted that despite the loss of LiaR, the organism readily incorporated exogenous fatty acids into its membrane, and indeed growth in the presence of exogenous fatty acids increased the survival of LiaR-deficient cells when challenged with a variety of membrane stressors, including daptomycin. Combined, our results suggest that E. faecalis can utilize both LiaR-dependent and -independent mechanisms to protect itself from membrane damage. IMPORTANCE Enterococcus faecalis is responsible for a significant number of nosocomial infections. Worse, many of the antibiotics used to treat E. faecalis infection are no longer effective, as this organism has developed resistance to them. The drug daptomycin has been successfully used to treat some of these resistant strains; however, daptomycin-resistant isolates have been identified in hospitals. Many daptomycin-resistant isolates are found to harbor mutations in the genetic locus liaFSR, which is involved in membrane stress responses. Another mechanism shown to increase tolerance to daptomycin involves the incorporation of exogenous fatty acids from host fluids like serum or bile. This improved tolerance was found to be independent of liaFSR and suggests that there are additional ways to impact sensitivity to daptomycin. Thus, further studies are needed to understand how host fatty acid sources can influence antibiotic susceptibility.
Collapse
Affiliation(s)
- John R Harp
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Holly E Saito
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Allen K Bourdon
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | - Jinnethe Reyes
- Department of Internal Medicine, Division of Infectious Diseases and Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Texas, USA
| | - Cesar A Arias
- Department of Internal Medicine, Division of Infectious Diseases and Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Texas, USA
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | - Elizabeth M Fozo
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
156
|
Sinel C, Cosquer T, Auzou M, Goux D, Giard JC, Cattoir V. Sequential steps of daptomycin resistance in Enterococcus faecium and reversion to hypersusceptibility through IS-mediated inactivation of the liaFSR operon. J Antimicrob Chemother 2016; 71:2793-7. [PMID: 27353469 DOI: 10.1093/jac/dkw229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/13/2016] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To improve understanding of mechanisms of daptomycin resistance and to dissect the genetic basis of reversion to daptomycin hypersusceptibility in Enterococcus faecium. METHODS Daptomycin-resistant mutants (Mut4, Mut8, Mut16, Mut32, Mut64 and Mut128 with MICs from 4 to 128 mg/L) were obtained in vitro from E. faecium strain Aus0004 (MIC at 2 mg/L). The entire genome sequences of Mut64 and Mut128 were determined as well as those of liaFSR and cls genes for other mutants and corresponding revertants (named Rev4 to Rev128). The study of daptomycin resistance stability was performed without any selective pressure. The expression of liaF, liaS and liaR genes was quantified by quantitative RT-PCR. RESULTS By comparative genomic analysis, substitutions Asn13Ser in cls and Gly92Asp in liaS were identified in Mut64 and Mut128. Only the liaS mutation was found in Mut16 and Mut32 while Mut4 and Mut8 were devoid of any mutation. After 15 days, all mutants except Mut4 reverted to daptomycin hypersusceptibility (MICs from 0.12 to 0.25 mg/L). In all revertants (except Rev4 and Rev8), an IS was found in the liaFSR operon with a dramatic decrease of its expression: IS66 in the promoter region of liaF (Rev16 and Rev64), IS30 in liaR (Rev32) and IS982 in liaF (Rev128). CONCLUSIONS We demonstrated the stepwise and sequential acquisition of mutations in liaS and in cls leading to daptomycin resistance in E. faecium, and the instability of daptomycin resistance as well as the role of liaFSR inactivation in reversion to daptomycin hypersusceptibility.
Collapse
Affiliation(s)
- Clara Sinel
- Université de Caen Normandie, EA4655 (équipe "Antibio-résistance"), F-14032 Caen, France
| | - Thibaud Cosquer
- Université de Caen Normandie, EA4655 (équipe "Antibio-résistance"), F-14032 Caen, France
| | - Michel Auzou
- CHU de Caen, Service de Microbiologie, F-14033 Caen, France Centre National de Référence sur la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), F-14033 Caen, France
| | - Didier Goux
- Université de Caen Basse-Normandie, CMAbio, F-14032 Caen, France
| | - Jean-Christophe Giard
- Université de Caen Normandie, EA4655 (équipe "Antibio-résistance"), F-14032 Caen, France
| | - Vincent Cattoir
- Université de Caen Normandie, EA4655 (équipe "Antibio-résistance"), F-14032 Caen, France CHU de Caen, Service de Microbiologie, F-14033 Caen, France Centre National de Référence sur la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), F-14033 Caen, France
| |
Collapse
|
157
|
Complete Genome Sequence of Enterococcus hirae R17, a Daptomycin-Resistant Bacterium Isolated from Retail Pork in China. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00605-16. [PMID: 27340071 PMCID: PMC4919410 DOI: 10.1128/genomea.00605-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Daptomycin-resistant Enterococcus hirae R17 was isolated from retail pork sold at a free-trade market in Beijing, China. The complete genome sequence of R17 contains a circular 2,886,481-bp chromosome and a circular 73,574-bp plasmid. Genes involved in cell envelope homeostasis of this bacterium were identified by whole-genome analysis.
Collapse
|
158
|
Gonzalez-Ruiz A, Seaton RA, Hamed K. Daptomycin: an evidence-based review of its role in the treatment of Gram-positive infections. Infect Drug Resist 2016; 9:47-58. [PMID: 27143941 PMCID: PMC4846043 DOI: 10.2147/idr.s99046] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Infections caused by Gram-positive pathogens remain a major public health burden and are associated with high morbidity and mortality. Increasing rates of infection with Gram-positive bacteria and the emergence of resistance to commonly used antibiotics have led to the need for novel antibiotics. Daptomycin, a cyclic lipopeptide with rapid bactericidal activity against a wide range of Gram-positive bacteria including methicillin-resistant Staphylococcus aureus, has been shown to be effective and has a good safety profile for the approved indications of complicated skin and soft tissue infections (4 mg/kg/day), right-sided infective endocarditis caused by S. aureus, and bacteremia associated with complicated skin and soft tissue infections or right-sided infective endocarditis (6 mg/kg/day). Based on its pharmacokinetic profile and concentration-dependent bactericidal activity, high-dose (>6 mg/kg/day) daptomycin is considered an important treatment option in the management of various difficult-to-treat Gram-positive infections. Although daptomycin resistance has been documented, it remains uncommon despite the increasing use of daptomycin. To enhance activity and to minimize resistance, daptomycin in combination with other antibiotics has also been explored and found to be beneficial in certain severe infections. The availability of daptomycin via a 2-minute intravenous bolus facilitates its outpatient administration, providing an opportunity to reduce risk of health care-associated infections, improve patient satisfaction, and minimize health care costs. Daptomycin, not currently approved for use in the pediatric population, has been shown to be widely used for treating Gram-positive infections in children.
Collapse
Affiliation(s)
| | | | - Kamal Hamed
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| |
Collapse
|
159
|
Role of the Gram-Negative Envelope Stress Response in the Presence of Antimicrobial Agents. Trends Microbiol 2016; 24:377-390. [PMID: 27068053 DOI: 10.1016/j.tim.2016.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 01/10/2023]
Abstract
Bacterial survival necessitates endurance of many types of antimicrobial compound. Many Gram-negative envelope stress responses, which must contend with an outer membrane and a dense periplasm containing the cell wall, have been associated with the status of protein folding, membrane homeostasis, and physiological functions such as efflux and the proton motive force (PMF). In this review, we discuss evidence that indicates an emerging role for Gram-negative envelope stress responses in enduring exposure to diverse antimicrobial substances, focusing on recent studies of the γ-proteobacterial Cpx envelope stress response.
Collapse
|
160
|
Ganesan A, Christena LR, Venkata Subbarao HM, Venkatasubramanian U, Thiagarajan R, Sivaramakrishnan V, Kasilingam K, Saisubramanian N, Selva Ganesan S. Identification of benzochromene derivatives as a highly specific NorA efflux pump inhibitor to mitigate the drug resistant strains of S. aureus. RSC Adv 2016. [DOI: 10.1039/c6ra01981a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Benzochromene (BC) derivatives identified as potent EPI against NorA efflux pump. BC displays 32-fold ciprofloxacin MIC reversal against NorA overexpressing mutant. BC as an adjuvant with antibiotic can curtail MDRS. aureus.
Collapse
Affiliation(s)
| | | | | | | | - Raman Thiagarajan
- Center for Research on Infectious Diseases (CRID)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur
- India
| | | | | | - Nagarajan Saisubramanian
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur
- India
- Center for Research on Infectious Diseases (CRID)
| | | |
Collapse
|