151
|
Meyer EA, Illig KR, Brunjes PC. Differences in chemo- and cytoarchitectural features within pars principalis of the rat anterior olfactory nucleus suggest functional specialization. J Comp Neurol 2006; 498:786-95. [PMID: 16927267 PMCID: PMC1592518 DOI: 10.1002/cne.21077] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The anterior olfactory nucleus (AON) lies between the olfactory bulb and piriform cortex and is the first bilaterally innervated structure in the olfactory system. It is typically divided into two subregions: pars externa and pars principalis. We examined the cytoarchitecture of pars principalis, the largest cellular area of the region, to determine whether it is homogeneously organized. Quantitative Nissl studies indicated that large cells (cell body area >2 standard deviations (SD) larger than the mean cell size) are densest in lateral and dorsolateral regions, while small cells (>1 SD smaller than the mean) are more numerous in medial and ventral areas. Further evidence for regional differences in the organization of the AON were obtained with immunohistochemistry for calbindin (CALB), parvalbumin (PARV), glutamic acid decarboxylase (GAD), and choline transporter (CHT). Cells immunopositive for CALB (CALB+) were denser in the deep portion of Layer II, although homogeneously dispersed throughout the circumference of the AON. PARV+ cells were located in the superficial half of Layer II and were sparse in ventral and medial regions. CHT+ and GAD+ fibers were denser in lateral versus medial regions. No regional differences were found in GAD+ somata, or in norepinephrine transporter or serotonin transporter immunoreactivity. The observed regional differences in cyto- and chemoarchitectural features may reflect functional heterogeneity within the AON.
Collapse
|
152
|
Schoffnegger D, Heinke B, Sommer C, Sandkühler J. Physiological properties of spinal lamina II GABAergic neurons in mice following peripheral nerve injury. J Physiol 2006; 577:869-78. [PMID: 17053034 PMCID: PMC1890379 DOI: 10.1113/jphysiol.2006.118034] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aberrant GABAergic inhibition in spinal dorsal horn may underlie some forms of neuropathic pain. Potential, but yet unexplored, mechanisms include reduced excitability, abnormal discharge patterns or altered synaptic input of spinal GABAergic neurons. To test these hypotheses, we quantitatively compared active and passive membrane properties, firing patterns in response to depolarizing current steps and synaptic input of GABAergic neurons in spinal dorsal horn lamina II of neuropathic and of control animals. Transgenic mice were used which expressed enhanced green fluorescent protein (EGFP) controlled by the GAD67 promoter, thereby labelling one-third of all spinal GABAergic neurons. In all neuropathic mice included in this study, chronic constriction injury of one sciatic nerve led to tactile allodynia and thermal hyperalgesia. Control mice were sham-operated. Membrane excitability of GABAergic neurons from neuropathic or sham-treated animals was indistinguishable. The most frequent firing patterns observed in neuropathic and sham-operated animals were the initial burst (neuropathic: 46%, sham-treated: 42%), the gap (neuropathic: 31%, sham-treated: 29%) and the tonic firing pattern (neuropathic: 16%, sham-treated: 24%). The synaptic input from dorsal root afferents was similar in neuropathic and in control animals. Thus, a reduced membrane excitability, altered firing patterns or changes in synaptic input of this group of GABAergic neurons in lamina II of the spinal cord dorsal horn are unlikely causes for neuropathic pain.
Collapse
Affiliation(s)
- Doris Schoffnegger
- Center for Brain Research, Department of Neurophysiology, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | | | | | | |
Collapse
|
153
|
King AE. The spinal cord in vitro: What can it tell us about nociception? NEUROPHYSIOLOGY+ 2006. [DOI: 10.1007/s11062-006-0079-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
154
|
Xu H, Wu LJ, Zhao MG, Toyoda H, Vadakkan KI, Jia Y, Pinaud R, Zhuo M. Presynaptic regulation of the inhibitory transmission by GluR5-containing kainate receptors in spinal substantia gelatinosa. Mol Pain 2006; 2:29. [PMID: 16948848 PMCID: PMC1570342 DOI: 10.1186/1744-8069-2-29] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 09/01/2006] [Indexed: 11/29/2022] Open
Abstract
GluR5-containing kainate receptors (KARs) are known to be involved in nociceptive transmission. Our previous work has shown that the activation of presynaptic KARs regulates GABAergic and glycinergic synaptic transmission in cultured dorsal horn neurons. However, the role of GluR5-containing KARs in the modulation of inhibitory transmission in the spinal substantia gelatinosa (SG) in slices remains unknown. In the present study, pharmacological, electrophysiological and genetic methods were used to show that presynaptic GluR5 KARs are involved in the modulation of inhibitory transmission in the SG of spinal slices in vitro. The GluR5 selective agonist, ATPA, facilitated the frequency but not amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) in SG neurons. ATPA increased sIPSC frequency in all neurons with different firing patterns as delayed, tonic, initial and single spike patterns. The frequency of either GABAergic or glycinergic sIPSCs was significantly increased by ATPA. ATPA could also induce inward currents in all SG neurons recorded. The frequency, but not amplitude, of action potential-independent miniature IPSCs (mIPSCs) was also facilitated by ATPA in a concentration-dependent manner. However, the effect of ATPA on the frequency of either sIPSCs or mIPSCs was abolished in GluR5-/- mice. Deletion of the GluR5 subunit gene had no effect on the frequency or amplitude of mIPSCs in SG neurons. However, GluR5 antagonist LY293558 reversibly inhibited sIPSC and mIPSC frequencies in spinal SG neurons. Taken together, these results suggest that GluR5 KARs, which may be located at presynaptic terminals, contribute to the modulation of inhibitory transmission in the SG. GluR5-containing KARs are thus important for spinal sensory transmission/modulation in the spinal cord.
Collapse
Affiliation(s)
- Hui Xu
- Department of Physiology, Faculty of Medicine, University of Toronto, University of Toronto Centre for the Study of Pain, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Long-Jun Wu
- Department of Physiology, Faculty of Medicine, University of Toronto, University of Toronto Centre for the Study of Pain, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Ming-Gao Zhao
- Department of Physiology, Faculty of Medicine, University of Toronto, University of Toronto Centre for the Study of Pain, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Hiroki Toyoda
- Department of Physiology, Faculty of Medicine, University of Toronto, University of Toronto Centre for the Study of Pain, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Kunjumon I Vadakkan
- Department of Physiology, Faculty of Medicine, University of Toronto, University of Toronto Centre for the Study of Pain, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Yongheng Jia
- Department of Physiology, Faculty of Medicine, University of Toronto, University of Toronto Centre for the Study of Pain, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Raphael Pinaud
- Department of Physiology, Faculty of Medicine, University of Toronto, University of Toronto Centre for the Study of Pain, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, University of Toronto Centre for the Study of Pain, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
155
|
Torsney C, Anderson RL, Ryce-Paul KAG, MacDermott AB. Characterization of sensory neuron subpopulations selectively expressing green fluorescent protein in phosphodiesterase 1C BAC transgenic mice. Mol Pain 2006; 2:17. [PMID: 16681857 PMCID: PMC1479315 DOI: 10.1186/1744-8069-2-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 05/08/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The complex neuronal circuitry of the dorsal horn of the spinal cord is as yet poorly understood. However, defining the circuits underlying the transmission of information from primary afferents to higher levels is critical to our understanding of sensory processing. In this study, we have examined phosphodiesterase 1C (Pde1c) BAC transgenic mice in which a green fluorescent protein (GFP) reporter gene reflects Pde1c expression in sensory neuron subpopulations in the dorsal root ganglia and spinal cord. RESULTS Using double labeling immunofluorescence, we demonstrate GFP expression in specific subpopulations of primary sensory neurons and a distinct neuronal expression pattern within the spinal cord dorsal horn. In the dorsal root ganglia, their distribution is restricted to those subpopulations of primary sensory neurons that give rise to unmyelinated C fibers (neurofilament 200 negative). A small proportion of both non-peptidergic (IB4-binding) and peptidergic (CGRP immunoreactive) subclasses expressed GFP. However, GFP expression was more common in the non-peptidergic than the peptidergic subclass. GFP was also expressed in a subpopulation of the primary sensory neurons immunoreactive for the vanilloid receptor TRPV1 and the ATP-gated ion channel P2X3. In the spinal cord dorsal horn, GFP positive neurons were largely restricted to lamina I and to a lesser extent lamina II, but surprisingly did not coexpress markers for key neuronal populations present in the superficial dorsal horn. CONCLUSION The expression of GFP in subclasses of nociceptors and also in dorsal horn regions densely innervated by nociceptors suggests that Pde1c marks a unique subpopulation of nociceptive sensory neurons.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- Calcitonin Gene-Related Peptide/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 1
- Fluorescent Antibody Technique
- Ganglia, Spinal/cytology
- Ganglia, Spinal/enzymology
- Genes, Reporter/genetics
- Green Fluorescent Proteins/genetics
- Mice
- Mice, Transgenic
- Nerve Fibers, Unmyelinated/enzymology
- Nerve Fibers, Unmyelinated/ultrastructure
- Neurons, Afferent/cytology
- Neurons, Afferent/enzymology
- Nociceptors/cytology
- Nociceptors/enzymology
- Pain/enzymology
- Pain/genetics
- Pain/physiopathology
- Phosphoric Diester Hydrolases/genetics
- Posterior Horn Cells/cytology
- Posterior Horn Cells/enzymology
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2X3
- TRPV Cation Channels/genetics
Collapse
Affiliation(s)
- Carole Torsney
- Department of Physiology and Cellular Biophysics, Columbia University, NY, USA
- CT is currently in the Centre for Neuroscience Research, Division of Veterinary Biomedical Sciences, University of Edinburgh, UK
| | - Rebecca L Anderson
- Department of Physiology and Cellular Biophysics, Columbia University, NY, USA
- RLA is currently in the Department of Anatomy & Histology and Centre for Neuroscience at Flinders University, Adelaide, Australia
| | | | - Amy B MacDermott
- Department of Physiology and Cellular Biophysics, Columbia University, NY, USA
- Center for Neurobiology and Behavior, Columbia University, NY, USA
| |
Collapse
|
156
|
Balasubramanyan S, Stemkowski PL, Stebbing MJ, Smith PA. Sciatic chronic constriction injury produces cell-type-specific changes in the electrophysiological properties of rat substantia gelatinosa neurons. J Neurophysiol 2006; 96:579-90. [PMID: 16611846 DOI: 10.1152/jn.00087.2006] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peripheral nerve injury increases spontaneous action potential discharge in spinal dorsal horn neurons and augments their response to peripheral stimulation. This "central hypersensitivity, " which relates to the onset and persistence of neuropathic pain, reflects spontaneous activity in primary afferent fibers as well as long-term changes in the intrinsic properties of the dorsal horn (centralization). To isolate and investigate cellular mechanisms underlying "centralization," sciatic nerves of 20-day-old rats were subjected to 13-25 days of chronic constriction injury (CCI; Mosconi-Kruger polyethylene cuff model). Spinal cord slices were then acutely prepared from sham-operated or CCI animals, and whole cell recording was used to compare the properties of five types of substantia gelatinosa neuron. These were defined as tonic, irregular, phasic, transient, or delay according to their discharge pattern in response to depolarizing current. CCI did not affect resting membrane potential, rheobase, or input resistance in any neuron type but increased the amplitude and frequency of spontaneous and miniature excitatory postsynaptic currents (EPSCs) in delay, transient, and irregular cells. These changes involved alterations in the action potential-independent neurotransmitter release machinery and possible increases in the postsynaptic effectiveness of glutamate. By contrast, in tonic cells, CCI reduced the amplitude and frequency of spontaneous and miniature EPSCs. Such changes may relate to the putative role of tonic cells as inhibitory GABAergic interneurons, whereas increased synaptic drive to delay cells may relate to their putative role as the excitatory output neurons of the substantia gelatinosa. Complementary changes in synaptic excitation of inhibitory and excitatory neurons may thus contribute to pain centralization.
Collapse
Affiliation(s)
- Sridhar Balasubramanyan
- Department of Pharmacology and Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
157
|
Lu VB, Moran TD, Balasubramanyan S, Alier KA, Dryden WF, Colmers WF, Smith PA. Substantia Gelatinosa neurons in defined-medium organotypic slice culture are similar to those in acute slices from young adult rats. Pain 2006; 121:261-275. [PMID: 16516387 DOI: 10.1016/j.pain.2006.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 12/12/2005] [Accepted: 01/03/2006] [Indexed: 01/12/2023]
Abstract
Peripheral nerve injury promotes an enduring increase in the excitability of the spinal dorsal horn. This change, that likely underlies the development of chronic pain, may be a consequence of prolonged exposure of dorsal horn neurons to mediators such as neurotrophins, cytokines, and neurotransmitters. The long-term effects of such mediators can be analyzed by applying them to spinal neurons in organotypic slice culture. To assess the validity of this approach, we established serum-free, defined-medium organotypic cultures (DMOTC) from E13-14 prenatal rats. Whole-cell recordings were made from neurons maintained in DMOTC for up to 42 days. These were compared with recordings from neurons of similar age in acute spinal cord slices from 15- to 45-day-old rats. Five cell types were defined in acute slices as 'Tonic', 'Irregular', 'Delay', 'Transient' or 'Phasic' according to their discharge patterns in response to depolarizing current. Although fewer 'Phasic' cells were found in cultures, the proportions of 'Tonic', 'Irregular', 'Delay', and 'Transient' were similar to those found in acute slices. GABAergic, glycinergic, and 'mixed' inhibition were observed in neurons in acute slices and DMOTC. Pure glycinergic inhibition was absent in 7d cultures but became more pronounced as cultures aged. This parallels the development of glycinergic inhibition in vivo. These and other findings suggest that fundamental developmental processes related to neurotransmitter phenotype and neuronal firing properties are preserved in DMOTC. This validates their use in evaluating the cellular mechanisms that may contribute to the development of chronic pain.
Collapse
Affiliation(s)
- Van B Lu
- Centre for Neuroscience and Department of Pharmacology, University of Alberta, Edmonton, Alta., Canada
| | | | | | | | | | | | | |
Collapse
|
158
|
John A, Wildner H, Britsch S. The homeodomain transcription factor Gbx1 identifies a subpopulation of late-born GABAergic interneurons in the developing dorsal spinal cord. Dev Dyn 2006; 234:767-71. [PMID: 16193514 DOI: 10.1002/dvdy.20568] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The dorsal spinal cord processes somatosensory information and relays it to higher brain centers and to motoneurons in the ventral spinal horn. These functions reside in a large number of distinct sensory interneurons that are organized in specific laminae within the dorsal spinal horn. Homeodomain and bHLH transcription factors can control the development of neuronal cell types in the dorsal horn. Here, we demonstrate that the murine homeodomain transcription factor Gbx1 is expressed specifically in a subset of Lbx1(+) (class B) neurons in the dorsal horn. Expression of Gbx1 in the dorsal spinal cord depends on Lbx1 function. Immunohistological analyses revealed that Gbx1 identifies a distinct population of late-born, Lhx1/5(+), Pax2(+) neurons. In the perinatal period as well as in the adult spinal cord, Gbx1 marks a subpopulation of GABAergic neurons. The expression of Gbx1 suggests that it controls development of a specific subset of GABAergic neurons in the dorsal horn of the spinal cord.
Collapse
Affiliation(s)
- Anita John
- Max Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Germany
| | | | | |
Collapse
|
159
|
Dougherty KJ, Sawchuk MA, Hochman S. Properties of mouse spinal lamina I GABAergic interneurons. J Neurophysiol 2005; 94:3221-7. [PMID: 16014799 PMCID: PMC2679181 DOI: 10.1152/jn.00184.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lamina I is a sensory relay region containing projection cells and local interneurons involved in thermal and nociceptive signaling. These neurons differ in morphology, sensory response modality, and firing characteristics. We examined intrinsic properties of mouse lamina I GABAergic neurons expressing enhanced green fluorescent protein (EGFP). GABAergic neuron identity was confirmed by a high correspondence between GABA immunolabeling and EGFP fluorescence. Morphologies of these EGFP+/GABA+ cells were multipolar (65%), fusiform (31%), and pyramidal (4%). In whole cell recordings, cells fired a single spike (44%), tonically (35%), or an initial burst (21%) in response to current steps, representing a subset of reported lamina I firing properties. Membrane properties of tonic and initial burst cells were indistinguishable and these neurons may represent one functional population because, in individual neurons, their firing patterns could interconvert. Single spike cells were less excitable with lower membrane resistivity and higher rheobase. Most fusiform cells (64%) fired tonically while most multipolar cells (56%) fired single spikes. In summary, lamina I inhibitory interneurons are functionally divisible into at least two major groups both of which presumably function to limit excitatory transmission.
Collapse
Affiliation(s)
- Kimberly J Dougherty
- Department of Physiology, Whitehead Biomedical Research Bldg., Rm. 644, Emory University School of Medicine, 615 Michael St., Atlanta GA 30322, USA
| | | | | |
Collapse
|
160
|
Nakatsuka T, Chen M, Takeda D, King C, Ling J, Xing H, Ataka T, Vierck C, Yezierski R, Gu JG. Substance P-driven feed-forward inhibitory activity in the mammalian spinal cord. Mol Pain 2005; 1:20. [PMID: 15987503 PMCID: PMC1185563 DOI: 10.1186/1744-8069-1-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 06/29/2005] [Indexed: 11/10/2022] Open
Abstract
In mammals, somatosensory input activates feedback and feed-forward inhibitory circuits within the spinal cord dorsal horn to modulate sensory processing and thereby affecting sensory perception by the brain. Conventionally, feedback and feed-forward inhibitory activity evoked by somatosensory input to the dorsal horn is believed to be driven by glutamate, the principle excitatory neurotransmitter in primary afferent fibers. Substance P (SP), the prototypic neuropeptide released from primary afferent fibers to the dorsal horn, is regarded as a pain substance in the mammalian somatosensory system due to its action on nociceptive projection neurons. Here we report that endogenous SP drives a novel form of feed-forward inhibitory activity in the dorsal horn. The SP-driven feed-forward inhibitory activity is long-lasting and has a temporal phase distinct from glutamate-driven feed-forward inhibitory activity. Compromising SP-driven feed-forward inhibitory activity results in behavioral sensitization. Our findings reveal a fundamental role of SP in recruiting inhibitory activity for sensory processing, which may have important therapeutic implications in treating pathological pain conditions using SP receptors as targets.
Collapse
Affiliation(s)
- Terumasa Nakatsuka
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, Florida 32610, USA
| | - Meng Chen
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, Florida 32610, USA
| | - Daisuke Takeda
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, Florida 32610, USA
| | - Christopher King
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, Florida 32610, USA
| | - Jennifer Ling
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, Florida 32610, USA
| | - Hong Xing
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, Florida 32610, USA
| | - Toyofumi Ataka
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, Florida 32610, USA
| | - Charles Vierck
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
- Comprehensive Center for Pain Research, University of Florida, Gainesville, Florida 32610, USA
| | - Robert Yezierski
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, Florida 32610, USA
- Comprehensive Center for Pain Research, University of Florida, Gainesville, Florida 32610, USA
| | - Jianguo G Gu
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, Florida 32610, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
- Comprehensive Center for Pain Research, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
161
|
Cao JL, Ding HL, He JH, Zhang LC, Duan SM, Zeng YM. The spinal nitric oxide involved in the inhibitory effect of midazolam on morphine-induced analgesia tolerance. Pharmacol Biochem Behav 2005; 80:493-503. [PMID: 15740792 DOI: 10.1016/j.pbb.2005.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 01/10/2005] [Accepted: 01/11/2005] [Indexed: 10/25/2022]
Abstract
Previous studies had shown that pretreatment with midazolam inhibited morphine-induced tolerance and dependence. The present study was to investigate the role of spinal nitric oxide (NO) in the inhibitory effect of midazolam on the development of morphine-induced analgesia tolerance. Subcutaneous injection of 100 mg/kg morphine to mice caused an acute morphine-induced analgesia tolerance model. To develop chronic morphine tolerance in mice, morphine was injected for three consecutive days (10, 20, 50 mg/kg sc on Day 1, 2, 3, respectively). In order to develop chronic tolerance model in rats, 10 mg/kg of morphine was given twice daily at 12 h intervals for 10 days. Midazolam was intraperitoneally injected 30 min prior to administration of morphine. Tail-flick test, hot-plate and formalin test were conducted to assess the nociceptive response. Immunocytochemistry, histochemistry and western blot were performed to determine the effect of midazolam on formalin-induced expression of Fos protein, nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) and nitric oxide synthase (NOS) in chronic morphine-tolerant rats, respectively. The results showed that pretreatment with midazolam significantly inhibited the development of acute and chronic morphine tolerance in mice, which could be partially reversed by intrathecal injection of NO precursor L-arginine (L-Arg). In chronic morphine-tolerant rats, pretreatment with midazolam significantly decreased the formalin-induced expression of Fos and Fos/NADPH-d double-labeled neurons in the contralateral spinal cord and NADPH-d positive neurons in the bilateral spinal cord. Both inducible NOS (iNOS) and neuronal NOS (nNOS) protein levels in the spinal cord were significantly increased after injection of formalin, which could be inhibited by pretreatment with midazolam. The above results suggested that the decrease of the activity and expression of NOS contributed to the inhibitory effect of midazolam on the development of morphine tolerance.
Collapse
Affiliation(s)
- Jun-Li Cao
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical College, 99 Huaihai West Road, Xuzhou 221002, PR China;
| | | | | | | | | | | |
Collapse
|