151
|
Parmar KM, Larman HB, Dai G, Zhang Y, Wang ET, Moorthy SN, Kratz JR, Lin Z, Jain MK, Gimbrone MA, García-Cardeña G. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest 2005; 116:49-58. [PMID: 16341264 PMCID: PMC1307560 DOI: 10.1172/jci24787] [Citation(s) in RCA: 521] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 10/18/2005] [Indexed: 12/13/2022] Open
Abstract
In the face of systemic risk factors, certain regions of the arterial vasculature remain relatively resistant to the development of atherosclerotic lesions. The biomechanically distinct environments in these arterial geometries exert a protective influence via certain key functions of the endothelial lining; however, the mechanisms underlying the coordinated regulation of specific mechano-activated transcriptional programs leading to distinct endothelial functional phenotypes have remained elusive. Here, we show that the transcription factor Kruppel-like factor 2 (KLF2) is selectively induced in endothelial cells exposed to a biomechanical stimulus characteristic of atheroprotected regions of the human carotid and that this flow-mediated increase in expression occurs via a MEK5/ERK5/MEF2 signaling pathway. Overexpression and silencing of KLF2 in the context of flow, combined with findings from genome-wide analyses of gene expression, demonstrate that the induction of KLF2 results in the orchestrated regulation of endothelial transcriptional programs controlling inflammation, thrombosis/hemostasis, vascular tone, and blood vessel development. Our data also indicate that KLF2 expression globally modulates IL-1beta-mediated endothelial activation. KLF2 therefore serves as a mechano-activated transcription factor important in the integration of multiple endothelial functions associated with regions of the arterial vasculature that are relatively resistant to atherogenesis.
Collapse
Affiliation(s)
- Kush M Parmar
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Bergh N, Ekman M, Ulfhammer E, Andersson M, Karlsson L, Jern S. A New Biomechanical Perfusion System for ex vivo Study of Small Biological Intact Vessels. Ann Biomed Eng 2005; 33:1808-18. [PMID: 16389529 DOI: 10.1007/s10439-005-8478-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 09/13/2005] [Indexed: 10/25/2022]
Abstract
The vascular endothelium transduces physical stimuli within the circulation into physiological responses, which influence vascular remodelling and tissue homeostasis. Therefore, a new computerized biomechanical ex vivo perfusion system was developed, in which small intact vessels can be perfused under well-defined biomechanical forces. The system enables monitoring and regulation of vessel lumen diameter, shear stress, mean pressure, variable pulsatile pressure and flow profile, and diastolic reversal flow. Vessel lumen measuring technique is based on detection of the amount of flourescein over a vessel segment. A combination of flow resistances, on/off switches, and capacitances creates a wide range of pulsatile pressures and flow profiles. Accuracy of the diameter measurement was evaluated. The diameters of umbilical arteries were measured and compared with direct ultrasonographic measurement of the vessel diameter. As part of the validation the pulsatile pressure waveform was altered, e.g., in terms of pulse pressure, frequency, diastolic shape, and diastolic reversal flow. In a series of simulation experiments, the hemodynamic homeostasis functions of the system were successfully challenged by generating a wide range of vascular diameters in artificial and intact human vessels. We conclude that the system presented may serve as a methodological and technical platform when performing advanced hemodynamic stimulation protocols.
Collapse
Affiliation(s)
- Niklas Bergh
- Clinical Experimental Research Laboratory, Heart and Lung Institute, Sahlgrenska University Hospital/Ostra, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
153
|
Ganguli A, Persson L, Palmer IR, Evans I, Yang L, Smallwood R, Black R, Qwarnstrom EE. Distinct NF-κB Regulation by Shear Stress Through Ras-Dependent IκBα Oscillations. Circ Res 2005; 96:626-34. [PMID: 15731464 DOI: 10.1161/01.res.0000160435.83210.95] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
NF-kappaB, a transcription factor central to inflammatory regulation during development of atherosclerosis, is activated by soluble mediators and through biomechanical inputs such as flow-mediated shear- stress. To investigate the molecular mechanisms underlying shear stress mediated signal transduction in vascular cells we have developed a system that applies flow-mediated shear stress in a controlled manner, while inserted in a confocal microscope. In combination with GFP-based methods, this allows continuous monitoring of flow induced signal transduction in live cells and in real time. Flow-mediated shear stress, induced using the system, caused a successive increase in NF-kappaB-regulated gene activation. Experiments assessing the mechanisms underlying the NF-kappaB induced activity showed time and flow rate dependent effects on the inhibitor, IkappaBalpha, involving nuclear translocation characterized by a biphasic or cyclic pattern. The effect was observed in both endothelial- and smooth muscle cells, demonstrated to impact noncomplexed IkappaBalpha, and to involve mechanisms distinct from those mediating cytokine signals. In contrast, effects on the NF-kappaB subunit relA were similar to those observed during cytokine stimulation. Further experiments showed the flow induced inter-compartmental transport of IkappaBalpha to be regulated through the Ras GTP-ase, demonstrating a pronounced reduction in the effects following blocking of Ras activity. These studies show that flow-mediated shear stress, regulated by the Ras GTP-ase, uses distinct mechanisms of NF-kappaB control at the molecular level. The oscillatory pattern, reflecting inter-compartmental translocation of IkappaBetaalpha, is likely to have fundamental impact on pathway regulation and on development of shear stress-induced distinct vascular cell phenotypes.
Collapse
Affiliation(s)
- Arunima Ganguli
- Academic Unit of Cell Biology, School of Medicine and Biomedical Sciences, University of Sheffield, UK
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Abstract
The endothelium at the interface between blood and tissue acts as a primary transducer of local hemodynamic forces into signals that maintain physiological function or initiate pathological processes in vessel walls. Rapid intracellular spatial gradients of structural dynamics and signaling molecule activity suggest that mechanical cues at the molecular level guide cellular mechanotransduction and adaptation to shear stress profiles.
Collapse
Affiliation(s)
- Brian P Helmke
- Department of Biomedical Engineering and Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
155
|
Balcells M, Fernández Suárez M, Vázquez M, Edelman ER. Cells in fluidic environments are sensitive to flow frequency. J Cell Physiol 2005; 204:329-35. [PMID: 15700266 DOI: 10.1002/jcp.20281] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Virtually all cells accommodate to their mechanical environment. In particular, cells subject to flow respond to rapid changes in fluid shear stress (SS), cyclic stretch (CS), and pressure. Recent studies have focused on the effect of pulsatility on cellular behavior. Since cells of many different tissue beds are constantly exposed to fluid flows over a narrow range of frequencies, we hypothesized that an intrinsic flow frequency that is optimal for determining cell phenotype exists. We report here that cells from various tissue beds (bovine aortic endothelial cells (BAEC), rat small intestine epithelial cells (RSIEC), and rat lung epithelial cells (RLEC)) proliferate maximally when cultured in a perfusion bioreactor under pulsatile conditions at a specific frequency, independent of the applied SS. Vascular endothelial and pulmonary epithelial cell proliferation peaked under 1 Hz pulsatile flow. In contrast, proliferation of gastrointestinal cells, which in their physiological context are subject to no flow or higher wavelength signal, was maximum at 0.125 Hz or under no flow. Moreover, exposure of BAEC to pulsatile flow of varying frequency influenced their nitric oxide synthase activity and prostacyclin production, which reached maximum values at 1 Hz. Notably, the "optimal" frequencies for the cell types examined correspond to the physiologic operating range of the organs from where they were initially derived. These findings suggest that frequency, independent of shear, is an essential determinant of cell response in pulsatile environments.
Collapse
Affiliation(s)
- Mercedes Balcells
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA.
| | | | | | | |
Collapse
|
156
|
Abstract
Motivated by biometric applications, we analyze oscillatory flow in a cone-and-plate geometry. The cone is rotated in a simple harmonic way on a stationary plate. Based on assuming that the angle between the cone and plate is small, we describe the flow analytically by a perturbation method in terms of two small parameters, the Womersley number and the Reynolds number, which account for the influences of the local acceleration and centripetal force, respectively. Working equations for the shear stresses induced both by laminar primary and secondary flows on the plate surface are presented.
Collapse
Affiliation(s)
- C A Chung
- Department of Mechanic Engineering, National Central University, Jhongli 320, Taiwan, ROC
| | | | | |
Collapse
|
157
|
Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD, García-Cardeña G, Gimbrone MA. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci U S A 2004; 101:14871-6. [PMID: 15466704 PMCID: PMC522013 DOI: 10.1073/pnas.0406073101] [Citation(s) in RCA: 459] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Atherosclerotic lesion localization to regions of disturbed flow within certain arterial geometries, in humans and experimental animals, suggests an important role for local hemodynamic forces in atherogenesis. To explore how endothelial cells (EC) acquire functional/dysfunctional phenotypes in response to vascular region-specific flow patterns, we have used an in vitro dynamic flow system to accurately reproduce arterial shear stress waveforms on cultured human EC and have examined the effects on EC gene expression by using a high-throughput transcriptional profiling approach. The flow patterns in the carotid artery bifurcations of several normal human subjects were characterized by using 3D flow analysis based on actual vascular geometries and blood flow profiles. Two prototypic arterial waveforms, "athero-prone" and "athero-protective," were defined as representative of the wall shear stresses in two distinct regions of the carotid artery (carotid sinus and distal internal carotid artery) that are typically "susceptible" or "resistant," respectively, to atherosclerotic lesion development. These two waveforms were applied to cultured EC, and cDNA microarrays were used to analyze the differential patterns of EC gene expression. In addition, the differential effects of athero-prone vs. athero-protective waveforms were further characterized on several parameters of EC structure and function, including actin cytoskeletal organization, expression and localization of junctional proteins, activation of the NF-kappaB transcriptional pathway, and expression of proinflammatory cytokines and adhesion molecules. These global gene expression patterns and functional data reveal a distinct phenotypic modulation in response to the wall shear stresses present in atherosclerosis-susceptible vs. atherosclerosis-resistant human arterial geometries.
Collapse
Affiliation(s)
- Guohao Dai
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Vita JA, Mitchell GF. Effects of shear stress and flow pulsatility on endothelial function: insights gleaned from external counterpulsation therapy. J Am Coll Cardiol 2004; 42:2096-8. [PMID: 14680733 DOI: 10.1016/j.jacc.2003.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
159
|
Stone PH, Coskun AU, Yeghiazarians Y, Kinlay S, Popma JJ, Kuntz RE, Feldman CL. Prediction of sites of coronary atherosclerosis progression:In vivo profiling of endothelial shear stress, lumen, and outer vessel wall characteristics to predict vascular behavior. Curr Opin Cardiol 2003; 18:458-70. [PMID: 14597887 DOI: 10.1097/00001573-200311000-00007] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Native atherosclerosis and in-stent restenosis are focal and evolve independently. The endothelium regulates arterial behavior by responding to its local environment of hemodynamic stresses, in particular, shear stress. Identification of endothelial shear stress and arterial wall characteristics may allow for the prediction of the progression of atherosclerosis. Accurate identification of arterial segments at high risk for progression may permit preemptive intervention strategies to avoid adverse coronary events. RECENT FINDINGS In vitro studies indicate that low endothelial shear stress upregulates the genetic and molecular responses leading to the initiation and progression of atherosclerosis, and promotes inflammation and formation of other features characteristic of vulnerable plaque. Physiologic endothelial shear stress is vasculoprotective and fosters quiescence of the endothelium and vascular wall. High endothelial shear stress promotes platelet aggregation. Recent studies have now provided evidence that endothelial shear stress and vascular wall morphology along the course of human coronary arteries can be characterized in vivo, and, in serial studies, may actually predict the focal areas in which atherosclerosis progression occurs. SUMMARY Rapidly evolving methodologies are able to characterize the arterial wall and the local hemodynamic environmental factors likely responsible for progression of coronary disease in humans. These new diagnostic modalities allow for identification of plaque progression. Future studies need to identify the factors responsible for vulnerable plaque formation. The current availability of drug-eluting stents with a low risk of restenosis allows for consideration of preemptive intervention strategies for these high-risk vascular sites such that future adverse coronary events can be averted.
Collapse
Affiliation(s)
- Peter H Stone
- Cardiovascular Division, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|