151
|
Grenz A, Osswald H, Eckle T, Yang D, Zhang H, Tran ZV, Klingel K, Ravid K, Eltzschig HK. The reno-vascular A2B adenosine receptor protects the kidney from ischemia. PLoS Med 2008; 5:e137. [PMID: 18578565 PMCID: PMC2504049 DOI: 10.1371/journal.pmed.0050137] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 05/09/2008] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Acute renal failure from ischemia significantly contributes to morbidity and mortality in clinical settings, and strategies to improve renal resistance to ischemia are urgently needed. Here, we identified a novel pathway of renal protection from ischemia using ischemic preconditioning (IP). METHODS AND FINDINGS For this purpose, we utilized a recently developed model of renal ischemia and IP via a hanging weight system that allows repeated and atraumatic occlusion of the renal artery in mice, followed by measurements of specific parameters or renal functions. Studies in gene-targeted mice for each individual adenosine receptor (AR) confirmed renal protection by IP in A1(-/-), A2A(-/-), or A3AR(-/-) mice. In contrast, protection from ischemia was abolished in A2BAR(-/-) mice. This protection was associated with corresponding changes in tissue inflammation and nitric oxide production. In accordance, the A2BAR-antagonist PSB1115 blocked renal protection by IP, while treatment with the selective A2BAR-agonist BAY 60-6583 dramatically improved renal function and histology following ischemia alone. Using an A2BAR-reporter model, we found exclusive expression of A2BARs within the reno-vasculature. Studies using A2BAR bone-marrow chimera conferred kidney protection selectively to renal A2BARs. CONCLUSIONS These results identify the A2BAR as a novel therapeutic target for providing potent protection from renal ischemia.
Collapse
Affiliation(s)
- Almut Grenz
- Department of Pharmacology and Toxicology, Tübingen University Hospital, Tübingen, Germany
- Mucosal Inflammation Program, Department of Anesthesiology and Perioperative Medicine, University of Colorado Health Sciences Center, Denver, Colorado, United States of America
| | - Hartmut Osswald
- Department of Pharmacology and Toxicology, Tübingen University Hospital, Tübingen, Germany
| | - Tobias Eckle
- Mucosal Inflammation Program, Department of Anesthesiology and Perioperative Medicine, University of Colorado Health Sciences Center, Denver, Colorado, United States of America
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Tübingen, Germany
| | - Dan Yang
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Hua Zhang
- Department of Pharmacology and Toxicology, Tübingen University Hospital, Tübingen, Germany
| | - Zung Vu Tran
- Department of Biostatistics, University of Colorado, Denver, Colorado, United States of America
| | - Karin Klingel
- Department of Molecular Pathology, Tübingen University Hospital, Tübingen, Germany
| | - Katya Ravid
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Holger K Eltzschig
- Mucosal Inflammation Program, Department of Anesthesiology and Perioperative Medicine, University of Colorado Health Sciences Center, Denver, Colorado, United States of America
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Tübingen, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
152
|
Tacchini L, Gammella E, De Ponti C, Recalcati S, Cairo G. Role of HIF-1 and NF-kappaB transcription factors in the modulation of transferrin receptor by inflammatory and anti-inflammatory signals. J Biol Chem 2008; 283:20674-86. [PMID: 18519569 DOI: 10.1074/jbc.m800365200] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inflammation generates various changes in body iron homeostasis, including iron sequestration in the reticuloendothelial system with ensuing hypoferremia and anemia of chronic disease. Increased iron accumulation is caused by hepcidin-mediated down-regulation of the iron export protein ferroportin and higher iron uptake. However, enhanced iron acquisition by macrophages cannot be accounted for by the previously reported transferrin receptor (TfR1) down-regulation in macrophages exposed to lipopolysaccharide (LPS)/interferon gamma (IFNgamma) because it impairs a major iron uptake mechanism. Because TfR1 is up-regulated by the hypoxia-inducible factor (HIF-1), we investigated the effect of inflammatory and anti-inflammatory signals on HIF-1-mediated TfR1 gene expression. Exposure of mouse macrophages (RAW 264.7 and J774A.1 cells or peritoneal macrophages) to LPS/IFNgamma up-regulated NF-kappaB, which in turn rapidly and transiently activated HIF-1-dependent TfR1 expression and iron uptake. Activation of an anti-inflammatory pathway by pre-exposure to the adenosine A(2A) receptor agonist CGS21680 prevented the inducing effect of LPS/IFNgamma on HIF-1 and TfR1 expression by inhibiting NF-kappaB activity, whereas treatment with CGS21680 alone increased HIF-1-mediated TfR1 expression by means of an NF-kappaB-independent signaling pathway. In conclusion, an interplay of the HIF-1 and NF-kappaB pathways controls TfR1 transcription in inflammation. The consequent changes in TfR1 expression may be involved in modulating iron retention in inflammatory macrophages, thus possibly contributing to the development of hypoferremia in the early phases preceding the down-regulation of macrophage ferroportin by hepcidin.
Collapse
Affiliation(s)
- Lorenza Tacchini
- Institute of General Pathology, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy
| | | | | | | | | |
Collapse
|
153
|
Choukèr A, Thiel M, Lukashev D, Ward JM, Kaufmann I, Apasov S, Sitkovsky MV, Ohta A. Critical role of hypoxia and A2A adenosine receptors in liver tissue-protecting physiological anti-inflammatory pathway. Mol Med 2008; 14:116-23. [PMID: 18163162 DOI: 10.2119/2007-00075.chouker] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 12/12/2007] [Indexed: 01/14/2023] Open
Abstract
Whole body exposure of wild type control littermates and A2A adenosine receptor (A2AR) gene deleted mice to low oxygen containing inspired gas mixture allowed the investigation of the mechanism that controls inflammatory liver damage and protects the liver using a mouse model of T cell-mediated viral and autoimmune hepatitis. We tested the hypothesis that the inflammatory tissue damage-associated hypoxia and extracellular adenosine --> A2AR signaling plays an important role in the physiological anti-inflammatory mechanism that limits liver damage during fulminant hepatitis. After induction of T cell-mediated hepatitis, mice were kept in modular chambers either under normoxic (21% oxygen) or hypoxic (10% oxygen) conditions for 8 h. It was shown that the whole body exposure to hypoxic atmosphere caused tissue hypoxia in healthy animals as evidenced by a decrease in the arterial blood oxygen tension and increase of the plasma adenosine concentration (P < 0.05). This "hypoxic" treatment resulted in significantly reduced hepatocellular damage and attenuated levels of serum cytokines in mice with acute liver inflammation. The anti-inflammatory effects of hypoxia were not observed in the absence of A2AR in studies of A2AR gene-deficient mice or when A2AR have been pharmacologically antagonized with synthetic antagonist. The presented data demonstrate that total body hypoxia-triggered pathway provides protection in acute hepatitis and that hypoxia (upstream) and A2AR (downstream) function in the same immunosuppressive and liver tissue-protecting pathway.
Collapse
Affiliation(s)
- Alexander Choukèr
- Department of Anesthesiology Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Human in vivo research on the vascular effects of adenosine. Eur J Pharmacol 2008; 585:220-7. [DOI: 10.1016/j.ejphar.2008.01.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 12/21/2007] [Accepted: 01/22/2008] [Indexed: 11/19/2022]
|
155
|
Melman A, Gao ZG, Kumar D, Wan TC, Gizewski E, Auchampach JA, Jacobson KA. Design of (N)-methanocarba adenosine 5'-uronamides as species-independent A3 receptor-selective agonists. Bioorg Med Chem Lett 2008; 18:2813-9. [PMID: 18424135 PMCID: PMC2430186 DOI: 10.1016/j.bmcl.2008.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 03/31/2008] [Accepted: 04/01/2008] [Indexed: 11/16/2022]
Abstract
2-Chloro-5'-N-methylcarboxamidoadenosine analogues containing the (N)-methanocarba (bicyclo[3.1.0]hexane) ring system as a ribose substitute display increased selectivity as agonists of the human A(3) adenosine receptor (AR). However, the selectivity in mouse was greatly reduced due to an increased tolerance of this ring system at the mouse A(1)AR. Therefore, we varied substituents at the N(6) and C2 positions in search of compounds that have improved A(3)AR selectivity and are species independent. An N(6)-methyl analogue was balanced in affinity at mouse A(1)/A(3)ARs, with high selectivity in comparison to the A(2A)AR. Substitution of the 2-chloro atom with larger and more hydrophobic substituents, such as iodo and alkynyl groups, tended to increase the A(3)AR selectivity (up to 430-fold) in mouse and preserve it in human. Extended and chemically functionalized alkynyl chains attached at the C2 position of the purine moiety preserved A(3)AR selectivity more effectively than similar chains attached at the 3-position of the N(6)-benzyl group.
Collapse
Affiliation(s)
- Artem Melman
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Deepmala Kumar
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Tina C. Wan
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Elizabeth Gizewski
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - John A. Auchampach
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
156
|
Hart ML, Henn M, Köhler D, Kloor D, Mittelbronn M, Gorzolla IC, Stahl GL, Eltzschig HK. Role of extracellular nucleotide phosphohydrolysis in intestinal ischemia-reperfusion injury. FASEB J 2008; 22:2784-97. [PMID: 18353866 DOI: 10.1096/fj.07-103911] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Extracellular adenosine has been implicated as an innate antiinflammatory metabolite, particularly during conditions of limited oxygen availability such as ischemia. Because extracellular adenosine generation is primarily produced via phosphohydrolysis from its precursor molecule adenosine-monophosphate (AMP) through the enzyme ecto-5'-nucleotidase (CD73), we examined the contribution of CD73-dependent adenosine production in modulation of intestinal ischemia-reperfusion (IR) injury. Following transcriptional and translational profiling of intestinal tissue that revealed a prominent induction of murine CD73, we next determined the role of CD73 in protection against intestinal IR injury. Interestingly, pharmacological inhibition or targeted gene deletion of CD73 significantly enhanced not only local intestinal injury, but also secondary organ injury, following IR as measured by intestinal and lung myeloperoxidase, aspartate and alanine aminotransferase, interleukin (IL) -1, IL-6, and histological injury. To confirm the role of CD73 in intestinal adenosine production, we measured adenosine tissue levels and found that they were increased with IR injury. In contrast, CD73-deficient (cd73(-/-)) mice had lower adenosine levels at baseline and no increase with IR injury. Finally, reconstitution of cd73(-/-) mice or treatment of wild-type mice with soluble 5'-nucleotidase was associated with significantly lower levels of injury. These data reveal a previously unrecognized role of CD73 in attenuating intestinal IR-mediated injury.
Collapse
Affiliation(s)
- Melanie L Hart
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | |
Collapse
|
157
|
HIF-1-dependent repression of adenosine kinase attenuates hypoxia-induced vascular leak. Blood 2008; 111:5571-80. [PMID: 18309031 DOI: 10.1182/blood-2007-11-126763] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extracellular adenosine has been implicated in vascular adaptation to hypoxia. Based on the observation that increases in intracellular adenosine can effectively elevate extracellular adenosine, we studied the contribution of adenosine kinase (AK, intracellular conversion of adenosine to adenosine monophosphate [AMP]) to vascular adenosine responses. Initial in vitro studies of ambient hypoxia revealed prominent repression of endothelial AK transcript (85% +/- 2% reduction), protein, and function. Transcription factor binding assays and hypoxia inducible factor 1-alpha (HIF-1alpha) loss- and gain-of-function studies suggested a role for HIF-1alpha in transcriptional repression of AK. Moreover, repression of AK by ambient hypoxia was abolished in conditional HIF-1alpha mutant mice in vivo. Studies of endothelial barrier function revealed that inhibition or siRNA repression of AK is associated with enhanced adenosine-dependent barrier responses in vitro. Moreover, in vivo studies of vascular barrier function demonstrated that AK inhibition with 5'-iodotubericidin (1 mg/kg prior to hypoxia) significantly attenuated hypoxia-induced vascular leakage in multiple organs and reduced hypoxia-associated increases in lung water. Taken together, our data reveal a critical role of AK in modulating vascular adenosine responses and suggest pharmacologic inhibitors of AK in the treatment of conditions associated with hypoxia-induced vascular leakage (eg, sepsis or acute lung injury).
Collapse
|
158
|
Peng Z, Fernandez P, Wilder T, Yee H, Chiriboga L, Chan ESL, Cronstein BN. Ecto-5'-nucleotidase (CD73) -mediated extracellular adenosine production plays a critical role in hepatic fibrosis. FASEB J 2008; 22:2263-72. [PMID: 18263696 DOI: 10.1096/fj.07-100685] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adenosine is a potent endogenous regulator of tissue repair that is released from injured cells and tissues. Hepatic fibrosis results from chronic hepatic injury, and we have previously reported that endogenously generated adenosine, acting at A(2A) receptors, plays a role in toxin-induced hepatic fibrosis. Adenosine may form intracellularly and then be transported to the extracellular space or it may form extracellularly from adenine nucleotides released from injured cells. Because ecto-5'-nucleotidase (CD73) catalyzes the terminal step in extracellular adenosine formation from AMP, we determined whether CD73 plays a role in the development of hepatic fibrosis. Mice were treated overnight with PBS, CCl(4), ethanol, or thioacetamide (TAA); their livers were harvested, and slices were incubated in medium for 20 h before adenosine concentration in the supernatant was measured by HPLC. Hepatic fibrosis was induced by CCl(4) or TAA treatment in CD73 knockout (CD73KO and C57BL/6 background) and C57BL/6 control mice [wild-type (WT)] mice and quantified by digital analysis of picrosirius red stained slides and hydroxyproline content. mRNA expression was quantified by real-time polymerase chain reaction, and protein was quantified by Western blot or enzyme-linked immunosorbent assay. Livers from WT mice treated with CCl(4), ethanol, and TAA released 2- to 3-fold higher levels of adenosine than livers from comparably treated CD73KO mice. CD73KO mice were protected from fibrosis with significantly less collagen content in the livers of CD73KO than WT mice after treatment with either CCl(4) or TAA. There were far fewer alpha-smooth muscle actin positive hepatic stellate cells in CCl(4)-treated KO mice than that in WT mice. After CCl(4) treatment, the mRNA level of A(1), A(2A), A(2B), and A(3) adenosine receptors, tumor necrosis factor-alpha, interleukin (IL) -1beta, IL-13r alpha1, matrix metalloproteinase (MMP)-2, MMP-14, tissue inhibitor of metalloproteinase (TIMP) -1, and TIMP-2, and IL-13 level increased markedly in both CD73KO and WT mice, but Col1 alpha1, Col3 alpha1, and transforming growth factor-beta1 mRNA increased much more in WT mice than that in KO mice. Moreover, IL-13r alpha2, MMP-13 mRNA, and MMP-13 protein were higher in KO mice than that in WT mice. These results indicate that adenosine, formed extracellularly from adenine nucleotides, plays a major role in the pathogenesis of hepatic fibrosis and that inhibition of adenosine production or blockade of adenosine receptors may help prevent hepatic fibrosis.
Collapse
Affiliation(s)
- Zhongsheng Peng
- Department of Medicine, Division of Clinical Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
159
|
Zezula J, Freissmuth M. The A(2A)-adenosine receptor: a GPCR with unique features? Br J Pharmacol 2008; 153 Suppl 1:S184-90. [PMID: 18246094 DOI: 10.1038/sj.bjp.0707674] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The A(2A)-adenosine receptor is a prototypical G(s)-coupled receptor. However, the A(2A)-receptor has several structural and functional characteristics that make it unique. In contrast to the classical model of collision coupling described for the beta-adrenergic receptors, the A(2A)-receptor couples to adenylyl cyclase by restricted collision coupling and forms a tight complex with G(s). The mechanistic basis for this is not clear; restricted collision coupling may arise from the interaction of the receptor with additional proteins or due to the fact that G protein-coupling is confined to specialized membrane microdomains. The A(2A)-receptor has a long C-terminus (of >120 residues), which is for the most part dispensable for coupling to G(s). It was originally viewed as the docking site for kinases and the beta-arrestin family to initiate receptor desensitization and endocytosis. The A(2A)-receptor is, however, fairly resistant to agonist-induced internalization. Recently, the C-terminus has also been appreciated as a binding site for several additional 'accessory' proteins. Established interaction partners include alpha-actinin, ARNO, USP4 and translin-associated protein-X. In addition, the A(2A)-receptor has also been reported to form a heteromeric complex with the D(2)-dopamine receptor and the metabotropic glutamate receptor-5. It is clear that (i) this list cannot be exhaustive and (ii) that all these proteins cannot bind simultaneously to the receptor. There must be rules of engagement, which allow the receptor to elicit different biological responses, which depend on the cellular context and the nature of the concomitant signal(s). Thus, the receptor may function as a coincidence detector and a signal integrator.
Collapse
Affiliation(s)
- J Zezula
- Center of Biomolecular Medicine and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Austria
| | | |
Collapse
|
160
|
Fuxe K, Marcellino D, Genedani S, Agnati L. Adenosine A(2A) receptors, dopamine D(2) receptors and their interactions in Parkinson's disease. Mov Disord 2008; 22:1990-2017. [PMID: 17618524 DOI: 10.1002/mds.21440] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Future therapies in Parkinson's disease may substantially build on the existence of intra-membrane receptor-receptor interactions in DA receptor containing heteromeric receptor complexes. The A(2A)/D(2) heteromer is of substantial interest in view of its specific location in cortico-striatal glutamate terminals and in striato-pallidal GABA neurons. Antagonistic A(2A)/D(2) receptor interactions in this heteromer demonstrated at the cellular level, and at the level of the striato-pallidal GABA neuron and at the network level made it possible to suggest A(2A) antagonists as anti-parkinsonian drugs. The major mechanism is an enhancement of D(2) signaling leading to attenuation of hypokinesia, tremor, and rigidity in models of Parkinson's disease with inspiring results in two clinical trials. Other interactions are antagonism at the level of the adenylyl cyclase; heterologous sensitization at the A(2A) activated adenylyl cyclase by persistent D(2) activation and a compensatory up-regulation of A(2A) receptors in response to intermittent Levodopa treatment. An increased dominance of A(2A) homomers over D(2) homomers and A(2A)/D(2) heteromers after intermittent Levodopa treatment may therefore contribute to development of Levodopa induced dyskinesias and to the wearing off of the therapeutic actions of Levodopa giving additional therapeutic roles of A(2A) antagonists. Their neuroprotective actions may involve an increase in the retrograde trophic signaling in the nigro-striatal DA system.
Collapse
Affiliation(s)
- Kjell Fuxe
- Division of Cellular and Molecular Neurochemistry, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
| | | | | | | |
Collapse
|
161
|
Abstract
Extracellular adenosine has been implicated in adaptation to hypoxia and previous studies demonstrated a central role in vascular responses. Here, we examined the contribution of individual adenosine receptors (ARs: A1AR/A2AAR/A2BAR/A3AR) to vascular leak induced by hypoxia. Initial profiling studies revealed that siRNA-mediated repression of the A2BAR selectively increased endothelial leak in response to hypoxia in vitro. In parallel, vascular permeability was significantly increased in vascular organs of A2BAR(-/-)-mice subjected to ambient hypoxia (8% oxygen, 4 hours; eg, lung: 2.1 +/- 0.12-fold increase). By contrast, hypoxia-induced vascular leak was not accentuated in A1AR(-/-)-, A2AAR(-/-)-, or A3AR(-/-)-deficient mice, suggesting a degree of specificity for the A2BAR. Further studies in wild type mice revealed that the selective A2BAR antagonist PSB1115 resulted in profound increases in hypoxia-associated vascular leakage while A2BAR agonist (BAY60-6583 [2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)-. phenyl]pyridin-2-ylsulfanyl]acetamide]) treatment was associated with almost complete reversal of hypoxia-induced vascular leakage (eg, lung: 2.0 +/- 0.21-fold reduction). Studies in bone marrow chimeric A2BAR mice suggested a predominant role of vascular A2BARs in this response, while hypoxia-associated increases in tissue neutrophils were, at least in part, mediated by A2BAR expressing hematopoietic cells. Taken together, these studies provide pharmacologic and genetic evidence for vascular A2BAR signaling as central control point of hypoxia-associated vascular leak.
Collapse
|
162
|
Chen JF, Sonsalla PK, Pedata F, Melani A, Domenici MR, Popoli P, Geiger J, Lopes LV, de Mendonça A. Adenosine A2A receptors and brain injury: Broad spectrum of neuroprotection, multifaceted actions and “fine tuning” modulation. Prog Neurobiol 2007; 83:310-31. [DOI: 10.1016/j.pneurobio.2007.09.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 08/10/2007] [Accepted: 09/21/2007] [Indexed: 10/22/2022]
|
163
|
Russell JM, Stephenson GS, Yellowley CE, Benton HP. Adenosine inhibition of lipopolysaccharide-induced interleukin-6 secretion by the osteoblastic cell line MG-63. Calcif Tissue Int 2007; 81:316-26. [PMID: 17705048 DOI: 10.1007/s00223-007-9060-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 07/06/2007] [Indexed: 12/21/2022]
Abstract
Adenosine is known to inhibit inflammatory responses in many cell systems via a family of purine receptors termed "P1." The P1 family consists of the adenosine receptors (ADORA) of subtypes A(1), A(2a), A(2b), and A(3). In order to assess whether adenosine has anti-inflammatory actions in osteoblastic cells, we investigated its effects on lipopolysaccharide (LPS)-induced interleukin 6 (IL-6) release in an in vitro inflammatory functional response model. We showed that the osteoblastic cell line MG-63 expresses ADORA(1), A(2a), and A(2b) but not A(3). Treatment of MG-63 cells with adenosine and pharmacological ADORA agonist 5'-N-ethylcarboxamidoadenosine or 2-[4-(2-p-carboxyethyl)phenylamino]-5'-N-ethylcarboxamidoadenosine (CGS21680) inhibits LPS-induced IL-6 release. This inhibition was protein kinase A (PKA)-dependent and mimicked by treatment with the adenylate cyclase activator forskolin. Treatment of MG-63 with the ADORA(2a)-specific antagonist ZM241385 partially reversed the inhibitory effects of ADORA stimulation on LPS-induced IL-6 release. Overall, these data suggest that ADORA(2a) is involved in the regulation of LPS-induced IL-6 release, thus illustrating a regulatory role for adenosine receptors in the control of inflammation and potentially osteoclastogenesis and bone resorption.
Collapse
Affiliation(s)
- Joseph M Russell
- Department of Veterinary Medicine, Anatomy, Physiology, and Cell Biology, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
164
|
Sun WC, Moore JN, Hurley DJ, Vandenplas ML, Murray TF. Effects of stimulation of adenosine A2A receptors on lipopolysaccharide-induced production of reactive oxygen species by equine neutrophils. Am J Vet Res 2007; 68:649-56. [PMID: 17542699 DOI: 10.2460/ajvr.68.6.649] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To assess the anti-inflammatory effects of an adenosine analogue on lipopolysaccharide (LPS)-stimulated equine neutrophils. SAMPLE POPULATION Neutrophils obtained from 10 healthy horses. PROCEDURES An adenosine analogue (5'-N-ethylcarboxamidoadenosine [NECA]) was tested for its ability to inhibit production of reactive oxygen species (ROS) in LPS-stimulated equine neutrophils. Selective adenosine receptor antagonists were used to identify the receptor subtype responsible for effects. To assess the mechanism of action of NECA, cAMP concentrations were measured, and effects of dibutyryl cAMP (a stable analogue of cAMP) and rolipram (a type 4 phosphodiesterase inhibitor) were investigated. RESULTS NECA elicited concentration-dependent inhibition of ROS production that was inhibited by ZM241385, a selective adenosine A(2A) receptor antagonist; this effect of NECA was not affected by the adenosine A(2B) receptor antagonist MRS1706. Also, ZM241385 blocked NECA-induced increases in cAMP concentrations, whereas MRS1706 did not alter this effect of NECA. Rolipram potentiated NECA-induced inhibition of ROS production, and dibutyryl cAMP also inhibited ROS production. CONCLUSIONS AND CLINICAL RELEVANCE Activation of adenosine A(2A) receptors inhibited ROS production by LPS-stimulated equine neutrophils in a cAMP-dependent manner. These results suggest that stable adenosine A(2A) receptor agonists may be developed as suitable anti-inflammatory drugs in horses.
Collapse
Affiliation(s)
- Wan-chun Sun
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
165
|
Milano PM, Douillet CD, Riesenman PJ, Robinson WP, Beidler SK, Zarzaur BL, Rich PB. Intestinal ischemia-reperfusion injury alters purinergic receptor expression in clinically relevant extraintestinal organs. J Surg Res 2007; 145:272-8. [PMID: 17688885 PMCID: PMC2323452 DOI: 10.1016/j.jss.2007.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 03/01/2007] [Accepted: 03/13/2007] [Indexed: 01/21/2023]
Abstract
BACKGROUND Intestinal ischemia-reperfusion (IIR) injury is known to initiate the systemic inflammatory response syndrome, which often progresses to multiple organ failure. We investigated changes in purinoceptor expression in clinically relevant extra-intestinal organs following IIR injury. MATERIALS AND METHODS Anesthetized adult male BalbC mice were randomized to sham laparotomy (control, n = 5), or 15 min of superior mesenteric artery occlusion. Experimental ischemia was followed by a period of reperfusion [1 min (n = 6) or 1 h (n = 6)]. Mice were then sacrificed and lung, kidney, and intestinal tissues were harvested. Following RNA extraction, purinoceptor mRNA expression for P2Y2, A3, P2X7, A2b, P2Y4, and P2Y6 was analyzed using real-time RT-PCR. RESULTS Significant differences in purinoceptor expression were observed in the lungs and kidneys of mice exposed to IIR injury when compared to controls. Pulmonary P2Y2 receptor expression was increased in the 1 h IIR group when compared to control, while pulmonary A3 receptor expression was incrementally elevated following IIR injury. In the kidney, P2Y2 receptor expression was increased in the 1 h IIR group compared to both 1 min IIR and control, and A3 receptor expression was decreased in the 1 h IIR group compared to the 1 min IIR group. No significant changes were observed in the intestinal purinoceptor profiles. CONCLUSION Purinoceptor expression is altered in the murine lung and kidney, but not intestine following experimental IIR injury. These findings may implicate extracellular nucleotides and purinoceptors as possible mediators of the extra-intestinal organ dysfunction associated with IIR injury.
Collapse
Affiliation(s)
- Peter M. Milano
- Department of Surgery, Division of Trauma and Critical Care. The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christelle D. Douillet
- Department of Surgery, Division of Trauma and Critical Care. The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Paul J. Riesenman
- Department of Surgery, Division of Trauma and Critical Care. The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William P. Robinson
- Department of Surgery, Division of Trauma and Critical Care. The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephanie K. Beidler
- Department of Surgery, Division of Trauma and Critical Care. The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ben L. Zarzaur
- Department of Surgery, Division of Trauma and Critical Care. The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Preston B. Rich
- Department of Surgery, Division of Trauma and Critical Care. The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
166
|
Rivo J, Zeira E, Galun E, Einav S, Linden J, Matot I. Attenuation of reperfusion lung injury and apoptosis by A2A adenosine receptor activation is associated with modulation of Bcl-2 and Bax expression and activation of extracellular signal-regulated kinases. Shock 2007; 27:266-73. [PMID: 17304107 DOI: 10.1097/01.shk.0000235137.13152.44] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adenosine receptors (AR) and extracellular signal-regulated kinases (ERK) have been implicated in tissue protection and apoptosis regulation during ischemia/reperfusion (I/R) injury. This study tests the hypothesis that reduction of reperfusion lung injury after A2A AR activation is associated with attenuation of apoptosis, modulation of ERK activation, and alterations in antiapoptotic and proapoptotic protein expression (Bcl-2 and Bax, respectively). Experiments were performed in intact-chest, spontaneously breathing cats in which the arterial branch of the left lower lung lobe was occluded for 2 h and reperfused for 3 h (I/R group). Animals were treated with the selective A2A AR agonist ATL313 given 5 min before reperfusion alone or in combination with the selective A2A AR antagonist ZM241385. Western blot analysis showed significant reduction in expression of Bcl-2 and increase in expression of Bax after reperfusion, compared with control lungs. Phosphorylated ERK1/2 levels were also increased after reperfusion. Compared with the I/R group, ATL313 markedly (P < 0.01) attenuated indices of injury and apoptosis including the percentage of injured alveoli, wet-dry weight ratio, myeloperoxidase activity, in situ terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling-positive cells, and caspase 3 activity and expression. Furthermore, compared with reperfused lungs, in ATL313-pretreated lungs, Western blot analysis demonstrated substantial ERK1/2 activation, increased expression of Bcl-2, and attenuated expression of Bax. The protective effects of ATL313 were blocked by pretreatment with ZM241385. In summary, the present study shows that in vivo activation of A2A AR confers protection against reperfusion lung injury. This protection is associated with decreased apoptosis and involves ERK1/2 activation and alterations in antiapoptotic Bcl-2 and proapoptotic Bax proteins.
Collapse
Affiliation(s)
- Julia Rivo
- Department of Anesthesiology and Critical Care Medicine, Hadassah University Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
167
|
Chang CZ, Dumont AS, Simsek S, Titus BJ, Kwan AL, Kassell NF, Solenski NJ. THE ADENOSINE 2A RECEPTOR AGONIST ATL-146E ATTENUATES EXPERIMENTAL POSTHEMORRHAGIC VASOSPASM. Neurosurgery 2007; 60:1110-7; discussion 1117-8. [PMID: 17538386 DOI: 10.1227/01.neu.0000255467.22387.5c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Selective adenosine 2A receptor agonists, such as ATL-146e, are known to be potent anti-inflammatory agents devoid of systemic side effects and have been used clinically in a number of disease states. However, adenosine 2A receptor agonists have not been studied in the treatment of cerebral vasospasm after subarachnoid hemorrhage. The present study investigated the efficacy of ATL-146e in the prevention of leukocyte infiltration and attenuation of posthemorrhagic vasospasm. METHODS The rodent femoral artery model of vasospasm was used. Forty male Sprague-Dawley rats were randomly assigned to four different groups (vehicle, 1 ng/kg/min, 10 ng/kg/min, or 100 ng/kg/min ATL-146e administered via subcutaneous osmotic minipump). Vasospasm was evaluated at posthemorrhage Day 8 (period of peak constriction) by calculating the lumen cross-sectional area (expressed as percent change in luminal area: ratio of blood-exposed vessel to normal saline-exposed vessel) and radial wall thickness. Immunostaining with anti-CD45 monoclonal antibody to detect leukocytes was used to evaluate localized inflammation. RESULTS Significant vasospasm was noted in the vehicle-treated (blood-exposed) control group (78.5%, P < 0.001; expressed as a ratio of luminal area of the saline [no blood] control), but not in the ATL-146e-treated groups (lumen ratio to control: 105.0, 83.4, and 91.3% for the 1, 10, and 100 ng/kg/min groups, respectively). Additionally, infiltration of inflammatory cells was reduced significantly and radial wall thickness was decreased in the ATL-146e-treated groups compared with the vehicle-treated control group. CONCLUSION Selective activation of the adenosine 2A receptor with ATL-146e prevented posthemorrhagic vasospasm and reduced leukocyte infiltration in this experimental model. This agent is worthy of further investigation and lends credence to the hypothesis supporting a role for inflammation in the pathogenesis of cerebral vasospasm after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Chih-Zen Chang
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
168
|
De Ponti C, Carini R, Alchera E, Nitti MP, Locati M, Albano E, Cairo G, Tacchini L. Adenosine A2areceptor-mediated, normoxic induction of HIF-1 through PKC and PI-3K-dependent pathways in macrophages. J Leukoc Biol 2007; 82:392-402. [PMID: 17505024 DOI: 10.1189/jlb.0107060] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Adenosine released by cells in injurious or hypoxic environments has tissue-protecting and anti-inflammatory effects, which are also a result of modulation of macrophage functions, such as vascular endothelial growth factor (VEGF) production. As VEGF is a well-known target of hypoxia-inducible factor 1 (HIF-1), we hypothesized that adenosine may activate HIF-1 directly. Our studies using subtype-specific adenosine receptor agonists and antagonists showed that by activating the A(2A) receptor, adenosine treatment induced HIF-1 DNA-binding activity, nuclear accumulation, and transactivation capacity in J774A.1 mouse macrophages. Increased HIF-1 levels were also found in adenosine-treated mouse peritoneal macrophages. The HIF-1 activation induced by the A(2A) receptor-specific agonist CGS21680 required the PI-3K and protein kinase C pathways but was not mediated by changes in iron levels. Investigation of the molecular basis of HIF-1 activation revealed the involvement of transcriptional and to a larger extent, translational mechanisms. HIF-1 induction triggered the expression of HIF-1 target genes involved in cell survival (aldolase, phosphoglycerate kinase) and VEGF but did not induce inflammation-related genes regulated by HIF-1, such as TNF-alpha or CXCR4. Our results show that the formation of adenosine and induction of HIF-1, two events which occur in response to hypoxia, are linked directly and suggest that HIF-1 activation through A(2A) receptors may contribute to the anti-inflammatory and tissue-protecting activity of adenosine.
Collapse
|
169
|
Vidal B, Nueda A, Esteve C, Domenech T, Benito S, Reinoso RF, Pont M, Calbet M, López R, Cadavid MI, Loza MI, Cárdenas A, Godessart N, Beleta J, Warrellow G, Ryder H. Discovery and characterization of 4'-(2-furyl)-N-pyridin-3-yl-4,5'-bipyrimidin-2'-amine (LAS38096), a potent, selective, and efficacious A2B adenosine receptor antagonist. J Med Chem 2007; 50:2732-6. [PMID: 17469811 DOI: 10.1021/jm061333v] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel series of N-heteroaryl 4'-(2-furyl)-4,5'-bipyrimidin-2'-amines has been identified as potent and selective A(2B) adenosine receptor antagonists. In particular, compound 5 showed high affinity for the A(2B) receptor (Ki = 17 nM), good selectivity (IC(50): A(1) > 1000 nM, A(2A) > 2500 nM, A3 > 1000 nM), displayed a favorable pharmacokinetic profile in preclinical species, and showed efficacy in functional in vitro models.
Collapse
Affiliation(s)
- Bernat Vidal
- Almirall Research Center, Almirall, Ctra. Laureà Miró 408, E-08980 St. Feliu de Llobregat, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Shaked G, Gurfinkel R, Czeiger D, Douvdevani A, Sufaro Y. Adenosine in burn blister fluid. Burns 2007; 33:352-4. [PMID: 17234350 DOI: 10.1016/j.burns.2006.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 07/28/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND Burn wound blister fluid is known to sustain suppressive effects on various components of the immune system. Damaged tissues cause an increase of adenosine concentrations. Since adenosine is a potent anti-inflammatory agent we hypothesized that burn blister fluid contains high concentrations of this nucleoside. METHODS Burn blister fluid was drawn from eleven patients who suffered a second degree burn injury. Adenosine concentrations were determined using high performance liquid chromatography (HPLC). RESULTS Elevated adenosine levels were detected in 6 of the 11 patients (54.5%), with an overall mean of 1.13+/-0.52 mM. CONCLUSIONS This is the first documented data showing increased concentrations of adenosine in burn blister fluid.
Collapse
Affiliation(s)
- G Shaked
- Department of General Surgery and Trauma Unit, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | |
Collapse
|
171
|
Fredholm BB. Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 2007; 14:1315-23. [PMID: 17396131 DOI: 10.1038/sj.cdd.4402132] [Citation(s) in RCA: 518] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adenosine is formed inside cells or on their surface, mostly by breakdown of adenine nucleotides. The formation of adenosine increases in different conditions of stress and distress. Adenosine acts on four G-protein coupled receptors: two of them, A(1) and A(3), are primarily coupled to G(i) family G proteins; and two of them, A(2A) and A(2B), are mostly coupled to G(s) like G proteins. These receptors are antagonized by xanthines including caffeine. Via these receptors it affects many cells and organs, usually having a cytoprotective function. Joel Linden recently grouped these protective effects into four general modes of action: increased oxygen supply/demand ratio, preconditioning, anti-inflammatory effects and stimulation of angiogenesis. This review will briefly summarize what is known and what is not in this regard. It is argued that drugs targeting adenosine receptors might be useful adjuncts in many therapeutic approaches.
Collapse
Affiliation(s)
- B B Fredholm
- Department of Physiology and Pharmacology, Karolinska Insitutet, Stockholm, Sweden.
| |
Collapse
|
172
|
Eckle T, Krahn T, Grenz A, Köhler D, Mittelbronn M, Ledent C, Jacobson MA, Osswald H, Thompson LF, Unertl K, Eltzschig HK. Cardioprotection by ecto-5'-nucleotidase (CD73) and A2B adenosine receptors. Circulation 2007; 115:1581-90. [PMID: 17353435 DOI: 10.1161/circulationaha.106.669697] [Citation(s) in RCA: 364] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ecto-5'-nucleotidase (CD73)-dependent adenosine generation has been implicated in tissue protection during acute injury. Once generated, adenosine can activate cell-surface adenosine receptors (A1 AR, A2A AR, A2B AR, A3 AR). In the present study, we define the contribution of adenosine to cardioprotection by ischemic preconditioning. METHODS AND RESULTS On the basis of observations of CD73 induction by ischemic preconditioning, we found that inhibition or targeted gene deletion of cd73 abolished infarct size-limiting effects. Moreover, 5'-nucleotidase treatment reconstituted cd73-/- mice and attenuated infarct sizes in wild-type mice. Transcriptional profiling of adenosine receptors suggested a contribution of A2B AR because it was selectively induced by ischemic preconditioning. Specifically, in situ ischemic preconditioning conferred cardioprotection in A1 AR-/-, A2A AR-/-, or A3 AR-/- mice but not in A2B AR-/- mice or in wild-type mice after inhibition of the A2B AR. Moreover, A2B AR agonist treatment significantly reduced infarct sizes after ischemia. CONCLUSIONS Taken together, pharmacological and genetic evidence demonstrate the importance of CD73-dependent adenosine generation and signaling through A2B AR for cardioprotection by ischemic preconditioning and suggests 5'-nucleotidase or A2B AR agonists as therapy for myocardial ischemia.
Collapse
Affiliation(s)
- Tobias Eckle
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Hoppe-Seyler-Str 3, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Khoury J, Ibla JC, Neish AS, Colgan SP. Antiinflammatory adaptation to hypoxia through adenosine-mediated cullin-1 deneddylation. J Clin Invest 2007; 117:703-11. [PMID: 17318263 PMCID: PMC1797604 DOI: 10.1172/jci30049] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2006] [Accepted: 01/02/2007] [Indexed: 01/03/2023] Open
Abstract
A major adaptive pathway for hypoxia is hypoxic preconditioning (HPC), a form of endogenous protection that renders cells tolerant to severe challenges of hypoxia. We sought to define the antiinflammatory properties of HPC. cDNA microarray analysis of lung tissue from mice subjected to hypoxia or HPC identified a cluster of NF-kappaB-regulated genes whose expression is attenuated by HPC. Studies using an NF-kappaB luciferase reporter assay confirmed a significant suppression of NF-kappaB activation during HPC. HPC-elicited activity was conferrable, as a soluble supernatant from HPC-treated cells, and the active fraction was purified and identified as adenosine (Ado). Guided by recent studies demonstrating bacterial inhibition of NF-kappaB through cullin-1 (Cul-1) deneddylation, we found a dose-dependent deneddylation of Cul-1 by Ado receptor stimulation predominantly mediated by the Ado A2B receptor subtype. Further, siRNA-mediated repression of CSN5, a subunit of the COP9 signalosome responsible for deneddylation of Cul-1, partially reversed HPC-mediated inhibition of NF-kappaB. Cul-1 deneddylation was evident in a murine model of HPC and lost in animals lacking extracellular Ado (Cd73-/- mice). Taken together, these results demonstrate that HPC induces extracellular accumulation of Ado and suppresses NF-kappaB activity through deneddylation of Cul-1. These results define a molecular regulatory pathway by which Ado provides potent antiinflammatory properties.
Collapse
Affiliation(s)
- Joseph Khoury
- Department of Anesthesiology, Perioperative and Pain Medicine, Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA.
Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | - Juan C. Ibla
- Department of Anesthesiology, Perioperative and Pain Medicine, Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA.
Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | - Andrew S. Neish
- Department of Anesthesiology, Perioperative and Pain Medicine, Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA.
Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | - Sean P. Colgan
- Department of Anesthesiology, Perioperative and Pain Medicine, Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA.
Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA.
Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado Health Sciences Center, Denver, Colorado, USA
| |
Collapse
|
174
|
Jacobson KA, Gao ZG, Liang BT. Neoceptors: reengineering GPCRs to recognize tailored ligands. Trends Pharmacol Sci 2007; 28:111-6. [PMID: 17280720 PMCID: PMC2495023 DOI: 10.1016/j.tips.2007.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 12/08/2006] [Accepted: 01/24/2007] [Indexed: 01/15/2023]
Abstract
Efforts to model and reengineer the putative binding sites of G-protein-coupled receptors (GPCRs) have led to an approach that combines small-molecule 'classical' medicinal chemistry and gene therapy. In this approach, complementary structural changes (e.g. based on novel ionic or H-bonds) are made in the receptor and ligand for the selective enhancement of affinity. Thus, a modified receptor (neoceptor) is designed for activation by tailor-made agonists that do not interact with the native receptor. The neoceptor is no longer activated by the native agonist, but rather functions as a scaffold for the docking of novel small molecules (neoligands). In theory, the approach could verify the accuracy of GPCR molecular modeling, the investigation of signaling, the design of small molecules to rescue disease-related mutations, and small-molecule-directed gene therapy. The neoceptor-neoligand pairing could offer spatial specificity by delivering the neoceptor to a target site, and temporal specificity by administering neoligand when needed.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
175
|
Abstract
Evidence has accumulated in the last three decades to suggest tissue protection and regeneration by adenosine in multiple different cell types. Adenosine produced in hypoxic or inflamed environments reduces tissue injury and promotes repair by receptor-mediated mechanisms. Among other actions, regulation of cytokine production and secretion by immune cells, astrocytes and microglia (the brain immunocytes) has emerged as a main mechanism at the basis of adenosine effects in diseases characterized by a marked inflammatory component. Many recent studies have highlighted that signalling through A1 and A2A adenosine receptors can powerfully prevent the release of pro-inflammatory cytokines, thus inhibiting inflammation and reperfusion injury. However, the activation of adenosine receptors is not invariably protective of tissues, as signalling through the A2B adenosine receptor has been linked to pro-inflammatory actions which are, at least in part, mediated by increased release of pro-inflammatory cytokines from epithelial cells, astrocytes and fibroblasts. Here, we discuss the multiple actions of P1 receptors on cytokine secretion, by analyzing, in particular, the role of the various adenosine receptor subtypes, the complex reciprocal interplay between the adenosine and the cytokine systems, their pathophysiological significance and the potential of adenosine receptor ligands as new anti-inflammatory agents.
Collapse
|
176
|
Ashton KJ, Peart JN, Morrison RR, Matherne GP, Blackburn MR, Headrick JP. Genetic modulation of adenosine receptor function and adenosine handling in murine hearts: insights and issues. J Mol Cell Cardiol 2006; 42:693-705. [PMID: 17258765 DOI: 10.1016/j.yjmcc.2006.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 12/20/2006] [Accepted: 12/21/2006] [Indexed: 11/28/2022]
Abstract
The adenosine receptor system has been attributed with a broad range of both physiological and so-called 'retaliatory' functions in the heart and vessels. Despite many years of research, the precise roles of adenosine within the cardiovascular system continue to be debated, and new functions are continually emerging. Adenosine acts via 4 known G-protein-coupled receptor (GPCR) sub-types: A(1), A(2A), A(2B), and A(3) adenosine receptors (ARs). In addition to roles in cardiovascular control, these receptors may represent therapeutic targets, having been attributed with roles in modifying cell death and injury, inflammatory processes, and cardiac and vascular remodeling during/after ischemic or hypoxic insult. A number of models have been developed in which AR sub-types and adenosine handling enzymes have been genetically deleted or transgenically overexpressed in an attempt to more equivocally identify the regulatory functions of these proteins, to identify their potential value as therapeutic targets, and to uncover new regulatory functions of this receptor family. Findings generally support current dogma regarding cardioprotection via A(1) and A(3)ARs, and coronary vasoregulation via A(2)AR sub-types. However, some outcomes are both novel and controversial. This review outlines AR-modified murine models currently under study from the perspective of cardiovascular phenotype.
Collapse
Affiliation(s)
- Kevin J Ashton
- Heart Foundation Research Centre, Griffith University Southport, QLD 4217, Australia
| | | | | | | | | | | |
Collapse
|
177
|
Lappas CM, Day YJ, Marshall MA, Engelhard VH, Linden J. Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. ACTA ACUST UNITED AC 2006; 203:2639-48. [PMID: 17088433 PMCID: PMC2118143 DOI: 10.1084/jem.20061097] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ischemia reperfusion injury results from tissue damage during ischemia and ongoing inflammation and injury during reperfusion. Liver reperfusion injury is reduced by lymphocyte depletion or activation of adenosine A2A receptors (A2ARs) with the selective agonist 4- {3-[6-amino-9-(5-ethylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]- prop-2-ynyl}-cyclohexanecarboxylic acid methyl ester (ATL146e). We show that NKT cells are stimulated to produce interferon (IFN)-γ by 2 h after the initiation of reperfusion, and the use of antibodies to deplete NK1.1-positive cells (NK and NKT) or to block CD1d-mediated glycolipid presentation to NKT cells replicates, but is not additive to, the protection afforded by ATL146e, as assessed by serum alanine aminotransferase elevation, histological necrosis, neutrophil accumulation, and serum IFN-γ elevation. Reduced reperfusion injury observed in RAG-1 knockout (KO) mice is restored to the wild-type (WT) level by adoptive transfer of NKT cells purified from WT or A2AR KO mice but not IFN-γ KO mice. Additionally, animals with transferred A2AR−/− NKT cells are not protected from hepatic reperfusion injury by ATL146e. In vitro, ATL146e potently inhibits both anti-CD3 and α-galactosylceramide–triggered production of IFN-γ by NKT cells. These findings suggest that hepatic reperfusion injury is initiated by the CD1d-dependent activation of NKT cells, and the activation of these cells is inhibited by A2AR activation.
Collapse
MESH Headings
- Animals
- Antigens, CD1/physiology
- Antigens, CD1d
- Immunosuppression Therapy
- Ischemic Preconditioning
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Liver/blood supply
- Liver/immunology
- Liver/pathology
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, Adenosine A2A/deficiency
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Receptor, Adenosine A2A/physiology
- Reperfusion Injury/immunology
- Reperfusion Injury/pathology
- Reperfusion Injury/prevention & control
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Courtney M Lappas
- Department of Pharmacology, University of Virginia, Charlottesville, VA 2290, USA
| | | | | | | | | |
Collapse
|
178
|
Yang Z, Day YJ, Toufektsian MC, Xu Y, Ramos SI, Marshall MA, French BA, Linden J. Myocardial infarct-sparing effect of adenosine A2A receptor activation is due to its action on CD4+ T lymphocytes. Circulation 2006; 114:2056-64. [PMID: 17060376 DOI: 10.1161/circulationaha.106.649244] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We previously used adenosine A2A receptor (A2AR) knockout (KO) mice and bone marrow transplantation to show that the infarct-sparing effect of A2AR activation at reperfusion is primarily due to effects on bone marrow-derived cells. In this study we show that CD4+ but not CD8+ T lymphocytes contribute to myocardial ischemia/reperfusion injury. METHOD AND RESULTS After a 45-minute occlusion of the left anterior descending coronary artery and reperfusion, T cells accumulate in the infarct zone within 2 minutes. Addition of 10 microg/kg of the A2AR agonist ATL146e 5 minutes before reperfusion produces a significant reduction in T-cell accumulation and a significant reduction in infarct size (percentage of risk area) measured at 24 hours. In Rag1 KO mice lacking mature lymphocytes, infarct size is significantly smaller than in C57BL/6 mice. Infarct size in Rag1 KO mice is increased to the level of B6 mice by adoptive transfer of 50 million CD4+ T lymphocytes derived from C57BL/6 or A2AR KO but not interferon-gamma KO mice. ATL146e completely blocked the increase in infarct size in Rag1 KO mice reconstituted with B6 but not A2AR KO CD4+ T cells. The number of neutrophils in the reperfused heart at 24 hours after infarction correlated well with the number of lymphocytes and infarct size. CONCLUSIONS These results strongly suggest that the infarct-sparing effect of A2AR activation is primarily due to inhibition of CD4+ T-cell accumulation and activation in the reperfused heart.
Collapse
Affiliation(s)
- Zequan Yang
- Department of Biomedical Engineering, University of Virginia Health System, Box 800759, Charlottesville, VA 22903, USA.
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Yang D, Zhang Y, Nguyen HG, Koupenova M, Chauhan AK, Makitalo M, Jones MR, Hilaire CS, Seldin DC, Toselli P, Lamperti E, Schreiber BM, Gavras H, Wagner DD, Ravid K. The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. J Clin Invest 2006; 116:1913-23. [PMID: 16823489 PMCID: PMC1483170 DOI: 10.1172/jci27933] [Citation(s) in RCA: 282] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 04/25/2006] [Indexed: 01/22/2023] Open
Abstract
Adenosine has been described as playing a role in the control of inflammation, but it has not been certain which of its receptors mediate this effect. Here, we generated an A2B adenosine receptor-knockout/reporter gene-knock-in (A2BAR-knockout/reporter gene-knock-in) mouse model and showed receptor gene expression in the vasculature and macrophages, the ablation of which causes low-grade inflammation compared with age-, sex-, and strain-matched control mice. Augmentation of proinflammatory cytokines, such as TNF-alpha, and a consequent downregulation of IkappaB-alpha are the underlying mechanisms for an observed upregulation of adhesion molecules in the vasculature of these A2BAR-null mice. Intriguingly, leukocyte adhesion to the vasculature is significantly increased in the A2BAR-knockout mice. Exposure to an endotoxin results in augmented proinflammatory cytokine levels in A2BAR-null mice compared with control mice. Bone marrow transplantations indicated that bone marrow (and to a lesser extent vascular) A2BARs regulate these processes. Hence, we identify the A2BAR as a new critical regulator of inflammation and vascular adhesion primarily via signals from hematopoietic cells to the vasculature, focusing attention on the receptor as a therapeutic target.
Collapse
Affiliation(s)
- Dan Yang
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA.
CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ying Zhang
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA.
CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Hao G. Nguyen
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA.
CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Milka Koupenova
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA.
CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Anil K. Chauhan
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA.
CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Maria Makitalo
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA.
CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Matthew R. Jones
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA.
CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Cynthia St. Hilaire
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA.
CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - David C. Seldin
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA.
CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Paul Toselli
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA.
CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Edward Lamperti
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA.
CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Barbara M. Schreiber
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA.
CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Haralambos Gavras
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA.
CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Denisa D. Wagner
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA.
CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Katya Ravid
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA.
CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
180
|
Levy O, Coughlin M, Cronstein BN, Roy RM, Desai A, Wessels MR. The adenosine system selectively inhibits TLR-mediated TNF-alpha production in the human newborn. THE JOURNAL OF IMMUNOLOGY 2006; 177:1956-66. [PMID: 16849509 PMCID: PMC2881468 DOI: 10.4049/jimmunol.177.3.1956] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Human newborns are susceptible to microbial infection and mount poor vaccine responses, yet the mechanisms underlying their susceptibility are incompletely defined. We have previously reported that despite normal basal expression of TLRs and associated signaling intermediates, human neonatal cord blood monocytes demonstrate severe impairment in TNF-alpha production in response to triacylated (TLR 2/1) and diacylated (TLR 2/6) bacterial lipopeptides (BLPs). We now demonstrate that in marked contrast, BLP-induced synthesis of IL-6, a cytokine with anti-inflammatory and Th2-polarizing properties, is actually greater in neonates than adults. Remarkably, newborn blood plasma confers substantially reduced BLP-induced monocyte synthesis of TNF-alpha, while preserving IL-6 synthesis, reflecting the presence in neonatal blood plasma of a soluble, low molecular mass inhibitory factor (<10 kDa) that we identify as adenosine, an endogenous purine metabolite with immunomodulatory properties. The neonatal adenosine system also inhibits TNF-alpha production in response to whole microbial particles known to express TLR2 agonist activity, including Listeria monocytogenes, Escherichia coli (that express BLPs), and zymosan particles. Selective inhibition of neonatal TNF-alpha production is due to the distinct neonatal adenosine system, including relatively high adenosine concentrations in neonatal blood plasma and heightened sensitivity of neonatal mononuclear cells to adenosine A3 receptor-mediated accumulation of cAMP, a second messenger that inhibits TLR-mediated TNF-alpha synthesis but preserves IL-6 production. We conclude that the distinct adenosine system of newborns polarizes TLR-mediated cytokine production during the perinatal period and may thereby modulate their innate and adaptive immune responses.
Collapse
Affiliation(s)
- Ofer Levy
- Infectious Diseases, Children's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
181
|
Ohta A, Sitkovsky M. Caveats and cautions for the therapeutic targeting of the anti-inflammatory A2 adenosine receptors. Nat Rev Drug Discov 2006. [DOI: 10.1038/nrd1983-c1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
182
|
Li Y, Oskouian RJ, Day YJ, Rieger JM, Liu L, Kern JA, Linden J. Mouse spinal cord compression injury is reduced by either activation of the adenosine A2A receptor on bone marrow-derived cells or deletion of the A2A receptor on non-bone marrow-derived cells. Neuroscience 2006; 141:2029-39. [PMID: 16777350 DOI: 10.1016/j.neuroscience.2006.05.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 04/21/2006] [Accepted: 05/04/2006] [Indexed: 01/07/2023]
Abstract
Activation of the adenosine A(2A) receptor (A(2A)R) at the time of reperfusion has been shown to reduce ischemia-reperfusion injury in peripheral tissues and spinal cord. In this study we show that treating mice with the A(2A)R agonist, 4-{3-[6-amino-9-(5-cyclopropylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-piperidine-1-carboxylic acid methyl ester for four days beginning before or just after the onset of reperfusion after compression-induced spinal cord injury rapidly (within 1 day) and persistently (>42 days) reduces locomotor dysfunction and spinal cord demyelination. Protection is abolished in knockout/wild type bone marrow chimera mice selectively lacking the A(2A)R only on bone marrow-derived cells but retaining receptors on other tissues including blood vessels. Paradoxically, reduced spinal cord injury is also noted in A(2A)R -/- mice, and in wild type/knockout bone marrow chimera mice selectively lacking the A(2A)R on non-bone marrow-derived cells, or in mice treated with the A(2A) antagonist, 4-(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl-amino]ethyl)phenol. The greatest protection is seen in knockout/wild type bone marrow chimera mice treated with 4-{3-[6-amino-9-(5-cyclopropylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-piperidine-1-carboxylic acid methyl ester, i.e. by activating the A(2A)R in mice expressing the receptor only in bone marrow-derived cells. The data suggest that inflammatory bone marrow-derived cells are the primary targets of A(2A) agonist-mediated protection. We conclude that A(2A) agonists or other interventions that inhibit inflammation during and after spinal cord ischemia may be effective in reducing spinal cord injury in patients, but excessive or prolonged stimulation of the A(2A)R may be counterproductive. It may be possible to devise strategies to produce optimal spinal cord protection by exploiting temporal differences in A(2A)R-mediated responses.
Collapse
Affiliation(s)
- Y Li
- Department of Medicine, University of Virginia Health System, MR5 Box 801394, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
183
|
Gsandtner I, Freissmuth M. A tail of two signals: the C terminus of the A(2A)-adenosine receptor recruits alternative signaling pathways. Mol Pharmacol 2006; 70:447-9. [PMID: 16707626 DOI: 10.1124/mol.106.026757] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptors are endowed with carboxyl termini that vary greatly in length and sequence. In most instances, the distal portion of the C terminus is dispensable for G protein coupling. This is also true for the A(2A)-adenosine receptor, where the last 100 amino acids are of very modest relevance to G(s) coupling. The C terminus was originally viewed mainly as the docking site for regulatory proteins of the beta-arrestin family. These beta-arrestins bind to residues that have been phosphorylated by specialized kinases (G protein-coupled receptor kinases) and thereby initiate receptor desensitization and endocytosis. More recently, it has become clear that many additional "accessory" proteins bind to C termini of G protein-coupled receptors. The article by Sun et al. in the current issue of Molecular Pharmacology identifies translin-associated protein-X as yet another interaction partner of the A(2A) receptor; translin-associated protein allows the A(2A) receptor to impinge on the signaling mechanisms by which p53 regulates neuronal differentiation, but the underlying signaling pathways are uncharted territory. With a list of five known interaction partners, the C terminus of the A(2A) receptor becomes a crowded place. Hence, there must be rules that regulate the interaction. This allows the C terminus to act as coincidence detector and as signal integrator. Despite our ignorance about the precise mechanisms, the article has exciting implications: the gene encoding for translin-associated protein-X maps to a locus implicated in some forms of schizophrenia; A(2A) receptor agonists are candidate drugs for the treatment of schizophrenic symptoms. It is of obvious interest to explore a possible link.
Collapse
Affiliation(s)
- Ingrid Gsandtner
- Institute of Pharmacology, Medical University of Vienna, Währinger Str. 13a, A-1090 Vienna, Austria
| | | |
Collapse
|
184
|
Invited Lectures : Overviews Purinergic signalling: past, present and future. Purinergic Signal 2006; 2:1-324. [PMID: 18404494 PMCID: PMC2096525 DOI: 10.1007/s11302-006-9006-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2006] [Indexed: 12/11/2022] Open
|
185
|
Abstract
Adenosine receptors are major targets of caffeine, the most commonly consumed drug in the world. There is growing evidence that they could also be promising therapeutic targets in a wide range of conditions, including cerebral and cardiac ischaemic diseases, sleep disorders, immune and inflammatory disorders and cancer. After more than three decades of medicinal chemistry research, a considerable number of selective agonists and antagonists of adenosine receptors have been discovered, and some have been clinically evaluated, although none has yet received regulatory approval. However, recent advances in the understanding of the roles of the various adenosine receptor subtypes, and in the development of selective and potent ligands, as discussed in this review, have brought the goal of therapeutic application of adenosine receptor modulators considerably closer.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, USA.
| | | |
Collapse
|
186
|
DeNinno MP, Masamune H, Chenard LK, DiRico KJ, Eller C, Etienne JB, Tickner JE, Kennedy SP, Knight DR, Kong J, Oleynek JJ, Tracey WR, Hill RJ. The synthesis of highly potent, selective, and water-soluble agonists at the human adenosine A3 receptor. Bioorg Med Chem Lett 2006; 16:2525-7. [PMID: 16464581 DOI: 10.1016/j.bmcl.2006.01.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 01/19/2006] [Accepted: 01/19/2006] [Indexed: 11/27/2022]
Abstract
Using a combination of parallel and directed synthesis, the discovery of a highly potent and selective series of adenosine A3 agonists was achieved. High aqueous solubility, required for the intended parenteral route of administration, was achieved by the presence of one or two basic amine functional groups.
Collapse
Affiliation(s)
- Michael P DeNinno
- Pfizer Global Research and Development, Groton/NewLondon Laboratories, Groton, CT 06340, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Lavie L, Lavie P. Ischemic preconditioning as a possible explanation for the age decline relative mortality in sleep apnea. Med Hypotheses 2006; 66:1069-73. [PMID: 16513285 DOI: 10.1016/j.mehy.2005.10.033] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 10/13/2005] [Indexed: 11/21/2022]
Abstract
Breathing disorders in sleep are prevalent phenomena profoundly affecting the cardiovascular system. Mortality studies of sleep apnea patients revealed maximum risk of dying in younger patients and a pronounced age-decline in relative mortality reaching non significant levels in patients older than 50 years. We hypothesize that the age decline mortality risk in sleep apnea can be explained by cardiovascular and cerebrovascular protection conferred by ischemic preconditioning resulting from the nocturnal cycles of hypoxia-reoxygenation. The association of ischemic preconditioning with increase levels of vascular endothelial growth factor, increased production of oxygen reactive species, heat shock proteins, adenosine, and TNF-alpha, all demonstrated in sleep apnea, provide preliminary support to our hypothesis.
Collapse
Affiliation(s)
- Lena Lavie
- Lloyd Rigler Sleep Apnea Research Laboratory, Ruth and Bruce Rappaport Faculty of Medicine, Rappaport Building, Technion - Israel Institute of Technology, Bat Galim, Haifa.
| | | |
Collapse
|