151
|
Moore AJ, Bacigalupe LD, Snook RR. Integrated and independent evolution of heteromorphic sperm types. Proc Biol Sci 2013; 280:20131647. [PMID: 24004938 PMCID: PMC3768311 DOI: 10.1098/rspb.2013.1647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sperm are a simple cell type with few components, yet they exhibit tremendous between-species morphological variation in those components thought to reflect selection in different fertilization environments. However, within a species, sperm components are expected to be selected to be functionally integrated for optimal fertilization of eggs. Here, we take advantage of within-species variation in sperm form and function to test whether sperm components are functionally and genetically integrated both within and between sperm morphologies using a quantitative genetics approach. Drosophila pseudoobscura males produce two sperm types with different functions but which positively interact together in the same fertilization environment; the long eusperm fertilizes eggs and the short parasperm appear to protect eusperm from a hostile female reproductive tract. Our analysis found that all sperm traits were heritable, but short sperm components exhibited evolvabilities 10 times that of long sperm components. Genetic correlations indicated functional integration within, but not between, sperm morphs. These results suggest that sperm, despite sharing a common developmental process, can become developmentally and functionally non-integrated, evolving into separate modules with the potential for rapid and independent responses to selection.
Collapse
Affiliation(s)
- Allen J Moore
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
152
|
Soper DM, Neiman M, Savytskyy OP, Zolan ME, Lively CM. Spermatozoa Production by Triploid Males in the New Zealand Freshwater Snail Potamopyrgus antipodarum.. Biol J Linn Soc Lond 2013; 110:227-234. [PMID: 24307744 PMCID: PMC3844136 DOI: 10.1111/bij.12085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/03/2013] [Accepted: 03/05/2013] [Indexed: 11/28/2022]
Abstract
Asexual lineages derived from dioecious taxa are typically assumed to be all female. Even so, asexual females from a variety of animal taxa occasionally produce males. The existence of these males sets the stage for potential gene flow across asexual lineages as well as between sexual and asexual lineages. A recent study showed that asexual triploid female Potamopyrgus antipodarum, a New Zealand freshwater snail often used as a model to study sexual reproduction, occasionally produce triploid male offspring. Here, we show that these triploid male P. antipodarum 1) have testes that produce morphologically normal sperm, 2) make larger sperm cells that contain more nuclear DNA than the sperm produced by diploid sexual males, and 3) produce sperm that range in DNA content from haploid to diploid, and are often aneuploid. Analysis of meiotic chromosomes of triploid males showed that aberrant pairing during prophase I likely accounts for the high variation in DNA content among sperm. These results indicate that triploid male P. antipodarum produce sperm, but the extent to which these sperm are able to fertilize female ova remains unclear. Our results also suggest that the general assumption of sterility in triploid males should be more closely examined in other species in which such males are occasionally produced.
Collapse
Affiliation(s)
- Deanna M. Soper
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | | | - Miriam E. Zolan
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Curt M. Lively
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
153
|
Yeh SD, Chan C, Ranz JM. Assessing differences in sperm competitive ability in Drosophila. J Vis Exp 2013:e50547. [PMID: 23995693 DOI: 10.3791/50547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Competition among conspecific males for fertilizing the ova is one of the mechanisms of sexual selection, i.e. selection that operates on maximizing the number of successful mating events rather than on maximizing survival and viability. Sperm competition represents the competition between males after copulating with the same female, in which their sperm are coincidental in time and space. This phenomenon has been reported in multiple species of plants and animals. For example, wild-caught D. melanogaster females usually contain sperm from 2-3 males. The sperm are stored in specialized organs with limited storage capacity, which might lead to the direct competition of the sperm from different males. Comparing sperm competitive ability of different males of interest (experimental male types) has been performed through controlled double-mating experiments in the laboratory. Briefly, a single female is exposed to two different males consecutively, one experimental male and one cross-mating reference male. The same mating scheme is then followed using other experimental male types thus facilitating the indirect comparison of the competitive ability of their sperm through a common reference. The fraction of individuals fathered by the experimental and reference males is identified using markers, which allows one to estimate sperm competitive ability using simple mathematical expressions. In addition, sperm competitive ability can be estimated in two different scenarios depending on whether the experimental male is second or first to mate (offense and defense assay, respectively), which is assumed to be reflective of different competence attributes. Here, we describe an approach that helps to interrogate the role of different genetic factors that putatively underlie the phenomenon of sperm competitive ability in D. melanogaster.
Collapse
Affiliation(s)
- Shu-Dan Yeh
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | | | | |
Collapse
|
154
|
Manier MK, Lüpold S, Pitnick S, Starmer WT. An analytical framework for estimating fertilization bias and the fertilization set from multiple sperm-storage organs. Am Nat 2013; 182:552-61. [PMID: 24021407 DOI: 10.1086/671782] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
How sperm from competing males are used to fertilize eggs is poorly understood yet has important implications for postcopulatory sexual selection. Sperm may be used in direct proportion to their numerical representation within the fertilization set or with a bias toward one male over another. Previous theoretical treatments have assumed a single sperm-storage organ, but many taxa possess multiple organs or store sperm within multiple regions of the reproductive tract. In Drosophila, females store sperm in two distinct storage organ types: the seminal receptacle (SR) and the paired spermathecae. Here, we expand previous "raffle" models to describe "fertilization bias" independently for sperm within the SR and the spermathecae and estimate the fertilization set based on the relative contribution of sperm from the different sperm-storage organ types. We apply this model to three closely related species to reveal rapid divergence in the fertilization set and the potential for female sperm choice.
Collapse
Affiliation(s)
- Mollie K Manier
- Department of Biology, Syracuse University, Syracuse, New York 13244
| | | | | | | |
Collapse
|
155
|
Schäfer MA, Berger D, Jochmann R, Blanckenhorn WU, Bussière LF. The developmental plasticity and functional significance of an additional sperm storage compartment in female yellow dung flies. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Martin A. Schäfer
- Institute of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
| | - David Berger
- Institute of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
- Animal Ecology at Department of Ecology and Genetics; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18d SE-75236 Uppsala Sweden
| | - Ralf Jochmann
- Institute of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
| | - Wolf U. Blanckenhorn
- Institute of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
| | - Luc F. Bussière
- Biological and Environmental Sciences; University of Stirling; Stirling FK6 4LA UK
| |
Collapse
|
156
|
Female mediation of competitive fertilization success in Drosophila melanogaster. Proc Natl Acad Sci U S A 2013; 110:10693-8. [PMID: 23757499 DOI: 10.1073/pnas.1300954110] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
How females store and use sperm after remating can generate postcopulatory sexual selection on male ejaculate traits. Variation in ejaculate performance traits generally is thought to be intrinsic to males but is likely to interact with the environment in which sperm compete (e.g., the female reproductive tract). Our understanding of female contributions to competitive fertilization success is limited, however, in part because of the challenges involved in observing events within the reproductive tract of internally fertilizing species while discriminating among sperm from competing males. Here, we used females from crosses among isogenic lines of Drosophila melanogaster, each mated to two genetically standardized males (the first with green- and the second with red-tagged sperm heads) to demonstrate heritable variation in female remating interval, progeny production rate, sperm-storage organ morphology, and a number of sperm performance, storage, and handling traits. We then used multivariate analyses to examine relationships between this female-mediated variation and competitive paternity. In particular, the timing of female ejection of excess second-male and displaced first-male sperm was genetically variable and, by terminating the process of sperm displacement, significantly influenced the relative numbers of sperm from each male competing for fertilization, and consequently biased paternity. Our results demonstrate that females do not simply provide a static arena for sperm competition but rather play an active and pivotal role in postcopulatory processes. Resolving the adaptive significance of genetic variation in female-mediated mechanisms of sperm handling is critical for understanding sexual selection, sexual conflict, and the coevolution of male and female reproductive traits.
Collapse
|
157
|
Ala-Honkola O, Hosken DJ, Manier MK, Lüpold S, Droge-Young EM, Berben KS, Collins WF, Belote JM, Pitnick S. Inbreeding reveals mode of past selection on male reproductive characters in Drosophila melanogaster. Ecol Evol 2013; 3:2089-102. [PMID: 23919154 PMCID: PMC3728949 DOI: 10.1002/ece3.625] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 01/22/2023] Open
Abstract
Directional dominance is a prerequisite of inbreeding depression. Directionality arises when selection drives alleles that increase fitness to fixation and eliminates dominant deleterious alleles, while deleterious recessives are hidden from it and maintained at low frequencies. Traits under directional selection (i.e., fitness traits) are expected to show directional dominance and therefore an increased susceptibility to inbreeding depression. In contrast, traits under stabilizing selection or weakly linked to fitness are predicted to exhibit little-to-no inbreeding depression. Here, we quantify the extent of inbreeding depression in a range of male reproductive characters and then infer the mode of past selection on them. The use of transgenic populations of Drosophila melanogaster with red or green fluorescent-tagged sperm heads permitted in vivo discrimination of sperm from competing males and quantification of characteristics of ejaculate composition, performance, and fate. We found that male attractiveness (mating latency) and competitive fertilization success (P2) both show some inbreeding depression, suggesting they may have been under directional selection, whereas sperm length showed no inbreeding depression suggesting a history of stabilizing selection. However, despite having measured several sperm quality and quantity traits, our data did not allow us to discern the mechanism underlying the lowered competitive fertilization success of inbred (f = 0.50) males.
Collapse
Affiliation(s)
- Outi Ala-Honkola
- Department of Biology, Syracuse University Syracuse, New York ; Department of Biological and Environmental Science, University of Jyväskylä PO Box 35, 40014, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Manier MK, Belote JM, Berben KS, Lüpold S, Ala-Honkola O, Collins WF, Pitnick S. Rapid diversification of sperm precedence traits and processes among three sibling Drosophila species. Evolution 2013; 67:2348-62. [PMID: 23888856 DOI: 10.1111/evo.12117] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/12/2013] [Indexed: 01/13/2023]
Abstract
Postcopulatory sexual selection is credited with driving rapid evolutionary diversification of reproductive traits and the formation of reproductive isolating barriers between species. This judgment, however, has largely been inferred rather than demonstrated due to general lack of knowledge about processes and traits underlying variation in competitive fertilization success. Here, we resolved processes determining sperm fate in twice-mated females, using transgenic Drosophila simulans and Drosophila mauritiana populations with fluorescently labeled sperm heads. Comparisons among these two species and Drosophila melanogaster revealed a shared motif in the mechanisms of sperm precedence, with postcopulatory sexual selection potentially occurring during any of the three discrete stages: (1) insemination; (2) sperm storage; and (3) sperm use for fertilization, and involving four distinct phenomena: (1) sperm transfer; (2) sperm displacement; (3) sperm ejection; and (4) sperm selection for fertilizations. Yet, underlying the qualitative similarities were significant quantitative differences in nearly every relevant character and process. We evaluate these species differences in light of concurrent investigations of within-population variation in competitive fertilization success and postmating/prezygotic reproductive isolation in hybrid matings between species to forge an understanding of the relationship between microevolutionary processes and macroevolutionary patterns as pertains to postcopulatory sexual selection in this group.
Collapse
Affiliation(s)
- Mollie K Manier
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA
| | | | | | | | | | | | | |
Collapse
|
159
|
Divergent mating patterns and a unique mode of external sperm transfer in Zoraptera: an enigmatic group of pterygote insects. Naturwissenschaften 2013; 100:581-94. [DOI: 10.1007/s00114-013-1055-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/24/2013] [Accepted: 04/27/2013] [Indexed: 10/26/2022]
|
160
|
Nandy B, Chakraborty P, Gupta V, Ali SZ, Prasad NG. Sperm competitive ability evolves in response to experimental alteration of operational sex ratio. Evolution 2013; 67:2133-41. [PMID: 23815666 DOI: 10.1111/evo.12076] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/29/2013] [Indexed: 11/29/2022]
Abstract
In naturally polygamous organisms such as Drosophila, sperm competitive ability is one of the most important components of male fitness and is expected to evolve in response to varying degrees of male-male competition. Several studies have documented the existence of ample genetic variation in sperm competitive ability of males. However, many experimental evolution studies have found sperm competitive ability to be unresponsive to selection. Even direct selection for increased sperm competitive ability has failed to yield any measurable changes. Here we report the evolution of sperm competitive ability (sperm defense-P1, offense-P2) in a set of replicate populations of Drosophila melanogaster subjected to altered levels of male-male competition (generated by varying the operational sex ratio) for 55-60 generations. Males from populations with female-biased operational sex ratio evolved reduced P1 and P2, without any measurable change in the male reproductive behavior. Males in the male-biased regime evolved increased P1, but there was no significant change in P2. Increase in P1 was associated with an increase in copulation duration, possibly indicating greater ejaculate investment by these males. This study is one of the few to provide empirical evidence for the evolution of sperm competitive ability of males under different levels of male-male competition.
Collapse
Affiliation(s)
- Bodhisatta Nandy
- Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | | | | | | | | |
Collapse
|
161
|
Coevolution between male and female genitalia in the Drosophila melanogaster species subgroup. PLoS One 2013; 8:e57158. [PMID: 23451172 PMCID: PMC3581563 DOI: 10.1371/journal.pone.0057158] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/17/2013] [Indexed: 11/19/2022] Open
Abstract
In contrast to male genitalia that typically exhibit patterns of rapid and divergent evolution among internally fertilizing animals, female genitalia have been less well studied and are generally thought to evolve slowly among closely-related species. As a result, few cases of male-female genital coevolution have been documented. In Drosophila, female copulatory structures have been claimed to be mostly invariant compared to male structures. Here, we re-examined male and female genitalia in the nine species of the D. melanogaster subgroup. We describe several new species-specific female genital structures that appear to coevolve with male genital structures, and provide evidence that the coevolving structures contact each other during copulation. Several female structures might be defensive shields against apparently harmful male structures, such as cercal teeth, phallic hooks and spines. Evidence for male-female morphological coevolution in Drosophila has previously been shown at the post-copulatory level (e.g., sperm length and sperm storage organ size), and our results provide support for male-female coevolution at the copulatory level.
Collapse
|
162
|
Mautz BS, Møller AP, Jennions MD. Do male secondary sexual characters signal ejaculate quality? A meta-analysis. Biol Rev Camb Philos Soc 2013; 88:669-82. [PMID: 23374138 DOI: 10.1111/brv.12022] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 12/20/2012] [Accepted: 01/07/2013] [Indexed: 12/23/2022]
Abstract
There are two reasons why researchers are interested in the phenotypic relationship between the expression of male secondary sexual characters (SSCs) and 'ejaculate quality' (defined as sperm/ejaculate traits that are widely assumed to increase female fertility and/or sperm competitiveness). First, if the relationship is positive then females could gain a direct benefit by choosing more attractive males for fertility assurance reasons ('the phenotype-linked fertility' hypothesis). Second, there is much interest in the direction of the correlation between traits favoured by pre-copulatory sexual selection (i.e. affecting mating success) and those favoured by post-copulatory sexual selection (i.e. increasing sperm competitiveness). If the relationship is negative this could lead to the two forms of selection counteracting each other. Theory predicts that the direction of the relationship could be either positive or negative depending on the underlying genetic variance and covariance in each trait, the extent of variation among males in condition (resources available to allocate to reproductive traits), and variation among males in the cost or rate of mating. We conducted a meta-analysis to determine the average relationship between the expression of behavioural and morphological male secondary sexual characters and four assays of ejaculate quality (sperm number, viability, swimming speed and size). Regardless of how the data were partitioned the mean relationship was consistently positive, but always statistically non-significant. The only exception was that secondary sexual character expression was weakly but significantly positively correlated with sperm viability (r = 0.07, P < 0.05). There was no significant difference in the strength or direction of the relationship between behavioural and morphological SSCs, nor among relationships using the four ejaculate quality assays. The implications of our findings are discussed.
Collapse
Affiliation(s)
- Brian S Mautz
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
163
|
Wedell N. The dynamic relationship between polyandry and selfish genetic elements. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120049. [PMID: 23339240 DOI: 10.1098/rstb.2012.0049] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Selfish genetic elements (SGEs) are ubiquitous in eukaryotes and bacteria, and make up a large part of the genome. They frequently target sperm to increase their transmission success, but these manipulations are often associated with reduced male fertility. Low fertility of SGE-carrying males is suggested to promote polyandry as a female strategy to bias paternity against male carriers. Support for this hypothesis is found in several taxa, where SGE-carrying males have reduced sperm competitive ability. In contrast, when SGEs give rise to reproductive incompatibilities between SGE-carrying males and females, polyandry is not necessarily favoured, irrespective of the detrimental impact on male fertility. This is due to the frequency-dependent nature of these incompatibilities, because they will decrease in the population as the frequency of SGEs increases. However, reduced fertility of SGE-carrying males can prevent the successful population invasion of SGEs. In addition, SGEs can directly influence male and female mating behaviour, mating rates and reproductive traits (e.g. female reproductive tract length and male sperm). This reveals a potent and dynamic interaction between SGEs and polyandry highlighting the potential to generate sexual selection and conflict, but also indicates that polyandry can promote harmony within the genome by undermining the spread of SGEs.
Collapse
Affiliation(s)
- Nina Wedell
- Biosciences, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9EZ, UK.
| |
Collapse
|
164
|
Engqvist L. A GENERAL DESCRIPTION OF ADDITIVE AND NONADDITIVE ELEMENTS OF SPERM COMPETITIVENESS AND THEIR RELATION TO MALE FERTILIZATION SUCCESS. Evolution 2012; 67:1396-405. [DOI: 10.1111/evo.12024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 11/12/2012] [Indexed: 01/02/2023]
|
165
|
Evans JP, Gasparini C. The genetic basis of female multiple mating in a polyandrous livebearing fish. Ecol Evol 2012; 3:61-6. [PMID: 23403856 PMCID: PMC3568843 DOI: 10.1002/ece3.435] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 11/01/2012] [Indexed: 11/06/2022] Open
Abstract
The widespread occurrence of female multiple mating (FMM) demands evolutionary explanation, particularly in the light of the costs of mating. One explanation encapsulated by "good sperm" and "sexy-sperm" (GS-SS) theoretical models is that FMM facilitates sperm competition, thus ensuring paternity by males that pass on genes for elevated sperm competitiveness to their male offspring. While support for this component of GS-SS theory is accumulating, a second but poorly tested assumption of these models is that there should be corresponding heritable genetic variation in FMM - the proposed mechanism of postcopulatory preferences underlying GS-SS models. Here, we conduct quantitative genetic analyses on paternal half-siblings to test this component of GS-SS theory in the guppy (Poecilia reticulata), a freshwater fish with some of the highest known rates of FMM in vertebrates. As with most previous quantitative genetic analyses of FMM in other species, our results reveal high levels of phenotypic variation in this trait and a correspondingly low narrow-sense heritability (h(2) = 0.11). Furthermore, although our analysis of additive genetic variance in FMM was not statistically significant (probably owing to limited statistical power), the ensuing estimate of mean-standardized additive genetic variance (I(A) = 0.7) was nevertheless relatively low compared with estimates published for life-history traits across a broad range of taxa. Our results therefore add to a growing body of evidence that FMM is characterized by relatively low additive genetic variation, thus apparently contradicting GS-SS theory. However, we qualify this conclusion by drawing attention to potential deficiencies in most designs (including ours) that have tested for genetic variation in FMM, particularly those that fail to account for intersexual interactions that underlie FMM in many systems.
Collapse
Affiliation(s)
- Jonathan P Evans
- Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia Crawley, 6009, WA, Australia
| | | |
Collapse
|
166
|
Lüpold S, Birkhead TR, Westneat DF. Seasonal variation in ejaculate traits of male red-winged blackbirds (Agelaius phoeniceus). Behav Ecol Sociobiol 2012. [DOI: 10.1007/s00265-012-1415-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
167
|
Abstract
Females frequently mate with several males, whose sperm then compete to fertilize available ova. Sperm competition represents a potent selective force that is expected to shape male expenditure on the ejaculate. Here, we review empirical data that illustrate the evolutionary consequences of sperm competition. Sperm competition favors the evolution of increased testes size and sperm production. In some species, males appear capable of adjusting the number of sperm ejaculated, depending on the perceived levels of sperm competition. Selection is also expected to act on sperm form and function, although the evidence for this remains equivocal. Comparative studies suggest that sperm length and swimming speed may increase in response to selection from sperm competition. However, the mechanisms driving this pattern remain unclear. Evidence that sperm length influences sperm swimming speed is mixed and fertilization trials performed across a broad range of species demonstrate inconsistent relationships between sperm form and function. This ambiguity may in part reflect the important role that seminal fluid proteins (sfps) play in affecting sperm function. There is good evidence that sfps are subject to selection from sperm competition, and recent work is pointing to an ability of males to adjust their seminal fluid chemistry in response to sperm competition from rival males. We argue that future research must consider sperm and seminal fluid components of the ejaculate as a functional unity. Research at the genomic level will identify the genes that ultimately control male fertility.
Collapse
Affiliation(s)
- Leigh W Simmons
- Centre for Evolutionary Biology, , School of Animal Biology (M092), The University of Western Australia, Crawley, Western Australia 6009, Australia.
| | | |
Collapse
|
168
|
Immler S, Gonzalez-Voyer A, Birkhead TR. Distinct evolutionary patterns of morphometric sperm traits in passerine birds. Proc Biol Sci 2012; 279:4174-82. [PMID: 22896646 DOI: 10.1098/rspb.2012.1398] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The striking diversity of sperm shape across the animal kingdom is still poorly understood. Postcopulatory sexual selection is an important factor driving the evolution of sperm size and shape. Interestingly, morphometric sperm traits, such as the length of the head, midpiece and flagellum, exhibit a strong positive phenotypic correlation across species. Here we used recently developed comparative methods to investigate how such phenotypic correlations between morphometric sperm traits may evolve. We compare allometric relationships and evolutionary trajectories of three morphometric sperm traits (length of head, midpiece and flagellum) in passerine birds. We show that these traits exhibit strong phenotypic correlations but that allometry varies across families. In addition, the evolutionary trajectories of the midpiece and flagellum are similar while the trajectory for head length differs. We discuss our findings in the light of three scenarios accounting for correlated trait evolution: (i) genetic correlation; (ii) concerted response to selection acting simultaneously on different traits; and (iii) phenotypic correlation between traits driven by mechanistic constraints owing to selection on sperm performance. Our results suggest that concerted response to selection is the most likely explanation for the phenotypic correlation between morphometric sperm traits.
Collapse
Affiliation(s)
- Simone Immler
- Department of Animal and Plant Sciences, University of Sheffield, , Western Bank, Sheffield S10 2TN, UK.
| | | | | |
Collapse
|
169
|
Lüpold S, Manier MK, Berben KS, Smith KJ, Daley BD, Buckley SH, Belote JM, Pitnick S. How multivariate ejaculate traits determine competitive fertilization success in Drosophila melanogaster. Curr Biol 2012; 22:1667-72. [PMID: 22840512 DOI: 10.1016/j.cub.2012.06.059] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/18/2012] [Accepted: 06/21/2012] [Indexed: 11/19/2022]
Abstract
Success in sperm competition, occurring whenever females mate with multiple males, is predicted to be influenced by variation in ejaculate quality and interactions among competing sperm. Yet, apart from sperm number, relevant ejaculate characteristics and sperm-sperm interactions are poorly understood, particularly within a multivariate framework and the natural selective environment of the female reproductive tract. Here, we used isogenic lines of Drosophila melanogaster with distinguishable sperm to demonstrate and partition genetic variation in multiple sperm quality and performance traits. Next, by competing males from different lines, we show how rival sperm significantly influence each other's velocity and reveal that males with relatively slow and/or long sperm better displace rival sperm and resist displacement, thus avoiding ejection by the female from her reproductive tract. Finally, we establish fitness consequences of genetic variation in sperm quality and its role in securing a numerical advantage in storage by showing that offspring paternity is determined strictly by the representation of stored, competing sperm. These results provide novel insight into complex postcopulatory processes, illustrate that different ejaculate traits are critical at different biologically relevant time-points, and provide a critical foundation for elucidating the role of postcopulatory sexual selection in trait diversification and speciation.
Collapse
Affiliation(s)
- Stefan Lüpold
- Department of Biology, Syracuse University, Syracuse, NY 13244-1270, USA.
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Dallai R, Mercati D, Gottardo M, Dossey AT, Machida R, Mashimo Y, Beutel RG. The male and female reproductive systems of Zorotypus hubbardi Caudell, 1918 (Zoraptera). ARTHROPOD STRUCTURE & DEVELOPMENT 2012; 41:337-359. [PMID: 22343467 DOI: 10.1016/j.asd.2012.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 05/31/2023]
Abstract
Here we present an ultrastructural study of the male and female reproductive systems of Zorotypus hubbardi and compare the findings to those presented in an earlier study. The male reproductive system consists of small testes and thin and short deferent ducts opening into a huge seminal vesicle. At the end of the deferent duct a wiredrawer structure is present which initiates the spermatophore formation. A long ejaculatory duct, originating from the seminal vesicle, receives the secretions of three accessory glands. The copulatory organ is a relatively stout structure consisting of two cuticular claspers connected to a ventral sclerite. The testes contain very large and few germ cells (32 sperm in each cyst) which give rise to large sperm characterized by two giant mitochondrial derivatives, two large accessory bodies, and an axoneme with accessory tubules with 17 protofilaments in their tubular wall. In the seminal vesicle the sperm are joined by a secretion to form an elongate spermatophore. The female system consists of panoistic ovarioles, two lateral oviducts, and a common oviduct which receives the spermathecal duct of a huge spermathecal sac in the terminal part of the vagina. The duct is an anterior prolongation of the sac. Its distal part turns back twisting around its proximal portion. At this level a conspicuous muscle layer gives rise to a valve. The bent spermatophore is hosted in the spermathecal sac, with the sperm heads placed in the proximal part of the spermathecal duct. The opening of the duct is close to the female genital opening. The reproductive systems of Zorotypus caudelli and Z. hubbardi, apart from a distinctly different general organization, also have a different sperm structure: those of the former species are free long-moving cells, while the sperm of Z. hubbardi are giant cells joined in a spermatophore. This allows to hypothesize and discuss a different reproductive behaviour in the two species: monandric in Z. hubbardi and polyandric in Z. caudelli. Apparently different forms of selection have resulted in a very uniform general morphology in Zoraptera, and in highly divergent features related to the reproductive system. The presence of 17 protofilaments in the accessory microtubules of the flagellar axoneme is a potential synapomorphy of Zoraptera and Phasmatodea.
Collapse
Affiliation(s)
- R Dallai
- Department of Evolutionary Biology, University of Siena, Via A. Moro 2, I-53100 Siena, Italy.
| | | | | | | | | | | | | |
Collapse
|
171
|
Weber MG, Agrawal AA. Phylogeny, ecology, and the coupling of comparative and experimental approaches. Trends Ecol Evol 2012; 27:394-403. [DOI: 10.1016/j.tree.2012.04.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 11/27/2022]
|
172
|
Higginson DM, Miller KB, Segraves KA, Pitnick S. Convergence, recurrence and diversification of complex sperm traits in diving beetles (Dytiscidae). Evolution 2012; 66:1650-61. [PMID: 22519797 PMCID: PMC3775504 DOI: 10.1111/j.1558-5646.2011.01532.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sperm display remarkable morphological diversity among even closely related species, a pattern that is widely attributed to postcopulatory sexual selection. Surprisingly few studies have used phylogenetic analyses to discern the details of evolutionary diversification in ornaments and armaments subject to sexual selection, and the origins of novel sperm traits and their subsequent modification are particularly poorly understood. Here we investigate sperm evolution in diving beetles (Dytiscidae), revealing dramatic diversification in flagellum length, head shape, presence of sperm heteromorphism, and the presence/type of sperm conjugation, an unusual trait where two or more sperm unite for motility or transport. Sperm conjugation was found to be the ancestral condition in diving beetles, with subsequent diversification into three forms, each exhibiting varying degrees of evolutionary loss, convergence, and recurrence. Sperm head shape, but not length or heteromorphism, was found to evolve in a significantly correlated manner with conjugation, consistent with the different mechanisms of head alignment and binding required for the different forms of conjugation. Our study reveals that sperm morphological evolution is channeled along particular evolutionary pathways (i.e., conjugate form), yet subject to considerable diversification within those pathways through modification in sperm length, head shape, and heteromorphism.
Collapse
Affiliation(s)
- Dawn M. Higginson
- Department of Biology, Syracuse University, Syracuse, New York 13244
| | - Kelly B. Miller
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Kari A. Segraves
- Department of Biology, Syracuse University, Syracuse, New York 13244
| | - Scott Pitnick
- Department of Biology, Syracuse University, Syracuse, New York 13244
| |
Collapse
|
173
|
Noguchi T, Koizumi M, Hayashi S. Mitochondria-driven cell elongation mechanism for competing sperms. Fly (Austin) 2012; 6:113-6. [PMID: 22634483 PMCID: PMC3397921 DOI: 10.4161/fly.19862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sexual competition has selected a number of extreme phenotypes like the tail ornament of peacock male. Sperm tail of Drosophilidae elongate up to 6 cm as a result of evolutionary selection for reproductive fitness among competing sperms. Sperm elongation takes place post meiotically and can proceed in the absence of an axoneme. Here, we used primary cultures of elongating spermatids of D. melanogaster to demonstrate that sperm elongation is driven by interdependent extension of giant mitochondria and microtubule array that is formed around the mitochondrial surface. This work established that, in addition to functioning as an energy source, mitochondria can serve as internal skeleton for shaping cell morphology.
Collapse
Affiliation(s)
- Tatsuhiko Noguchi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | | | | |
Collapse
|
174
|
|
175
|
Pischedda A, Rice WR. Partitioning sexual selection into its mating success and fertilization success components. Proc Natl Acad Sci U S A 2012; 109:2049-53. [PMID: 22308337 PMCID: PMC3277537 DOI: 10.1073/pnas.1110841109] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Postcopulatory sexual selection due to sperm competition and/or cryptic female choice has been documented in a diversity of taxonomic groups and is considered a pivotal component of sexual selection. Despite this apparent importance, the relative contribution of postcopulatory fertilization success to overall sexual selection has not yet been measured in any species. Here, we used a laboratory-adapted population of the promiscuous fruit fly Drosophila melanogaster to partition the variance in male reproductive success into mating success (a major component of precopulatory sexual selection) and fertilization success (a major component of postcopulatory sexual selection). We found that fertilization success contributed nearly as strongly as mating success to a male's net performance in sexual selection, but that most of this postcopulatory component was attributable to variation in male mating order (the tendency to be the last male to mate a female). After adjusting for mating order, only ≈2% of the residual variation in male reproductive success was attributable to differential fertilization success. We found no correlation between male mating success and fertilization success in this system. Unlike natural populations of Drosophila, our laboratory population is adapted to a semelparous lifecycle, so our findings will be most applicable to other promiscuous species with strong sperm precedence and one short breeding period per year or lifetime. In these species, fertilization success may have as much influence on male reproductive success as mating success, but the timing of mating (mating order) may be the predominant factor contributing to variation in fertilization success.
Collapse
Affiliation(s)
- Alison Pischedda
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106-9620, USA.
| | | |
Collapse
|
176
|
Female reproductive tract form drives the evolution of complex sperm morphology. Proc Natl Acad Sci U S A 2012; 109:4538-43. [PMID: 22323584 DOI: 10.1073/pnas.1111474109] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The coevolution of female mate preferences and exaggerated male traits is a fundamental prediction of many sexual selection models, but has largely defied testing due to the challenges of quantifying the sensory and cognitive bases of female preferences. We overcome this difficulty by focusing on postcopulatory sexual selection, where readily quantifiable female reproductive tract structures are capable of biasing paternity in favor of preferred sperm morphologies and thus represent a proximate mechanism of female mate choice when ejaculates from multiple males overlap within the tract. Here, we use phylogenetically controlled generalized least squares and logistic regression to test whether the evolution of female reproductive tract design might have driven the evolution of complex, multivariate sperm form in a family of aquatic beetles. The results indicate that female reproductive tracts have undergone extensive diversification in diving beetles, with remodeling of size and shape of several organs and structures being significantly associated with changes in sperm size, head shape, gains/losses of conjugation and conjugate size. Further, results of Bayesian analyses suggest that the loss of sperm conjugation is driven by elongation of the female reproductive tract. Behavioral and ultrastructural examination of sperm conjugates stored in the female tract indicates that conjugates anchor in optimal positions for fertilization. The results underscore the importance of postcopulatory sexual selection as an agent of diversification.
Collapse
|
177
|
Lattao R, Bonaccorsi S, Gatti M. Giant meiotic spindles in males from Drosophila species with giant sperm tails. J Cell Sci 2012; 125:584-8. [DOI: 10.1242/jcs.101469] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The spindle is a highly dynamic molecular machine that mediates precise chromosome segregation during cell division. Spindle size can vary dramatically, not only between species but also between different cells of the same organism. However, the reasons for spindle size variability are largely unknown. Here we show that variations in spindle size can be linked to a precise developmental requirement. Drosophila species have dramatically different sperm flagella that range in length from 0.3 mm in D. persimilis to 58.3 mm in D. bifurca. We found that males of different species exhibit striking variations in meiotic spindle size, which positively correlate with sperm length, with D. bifurca showing 30-fold larger spindles than D. persimilis. This suggests that primary spermatocytes of Drosophila species manufacture and store amounts of tubulin that are proportional to the axoneme length and use these tubulin pools for spindle assembly. These findings highlight an unsuspected plasticity of the meiotic spindle in response to the selective forces controlling sperm length.
Collapse
Affiliation(s)
- Ramona Lattao
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “Charles Darwin” Sapienza, Università di Roma, 00185, Italy
| | - Silvia Bonaccorsi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “Charles Darwin” Sapienza, Università di Roma, 00185, Italy
| | - Maurizio Gatti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “Charles Darwin” Sapienza, Università di Roma, 00185, Italy
| |
Collapse
|
178
|
Rapid Evolution of Assortative Fertilization between Recently Allopatric Species of Drosophila. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:285468. [PMID: 22315696 PMCID: PMC3270401 DOI: 10.1155/2012/285468] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/11/2011] [Indexed: 12/02/2022]
Abstract
The virilis group of Drosophila represents a relatively unexplored but potentially useful model to investigate the genetics of speciation. Good resolution of phylogenetic relationships and the ability to obtain fertile hybrid offspring make the group especially promising for analysis of genetic changes underlying reproductive isolation separate from hybrid sterility and inviability. Phylogenetic analyses reveal a close relationship between the sister species, Drosophila americana and D. novamexicana, yet excepting their contemporary allopatric distributions, factors that contribute to reproductive isolation between this species pair remain uncharacterized. A previous report has shown reduced progeny numbers in laboratory crosses between the two species, especially when female D. novamexicana are crossed with male D. americana. We show that the hatch rate of eggs produced from heterospecific matings is reduced relative to conspecific matings. Failure of eggs to hatch, and consequent reduction in hybrid progeny number, is caused by low fertilization success of heterospecific sperm, thus representing a postmating, prezygotic incompatibility. Following insemination, storage and motility of heterospecific sperm is visibly compromised in female D. novamexicana. Our results provide evidence for a mechanism of reproductive isolation that is seldom reported for Drosophila species, and indicate the rapid evolution of postmating, prezygotic reproductive barriers in allopatry.
Collapse
|
179
|
Holman L, Stürup M, Trontti K, Boomsma JJ. Random sperm use and genetic effects on worker caste fate in Atta colombica leaf-cutting ants. Mol Ecol 2011; 20:5092-102. [PMID: 22053996 DOI: 10.1111/j.1365-294x.2011.05338.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sperm competition can produce fascinating adaptations with far-reaching evolutionary consequences. Social taxa make particularly interesting models, because the outcome of sexual selection determines the genetic composition of groups, with attendant sociobiological consequences. Here, we use molecular tools to uncover some of the mechanisms and consequences of sperm competition in the leaf-cutting ant Atta colombica, a species with extreme worker size polymorphism. Competitive PCR allowed quantification of the relative numbers of sperm stored by queens from different males, and offspring genotyping revealed how sperm number translated into paternity of eggs and adult workers. We demonstrate that fertilization success is directly related to sperm numbers, that stored sperm are well-mixed and that egg paternity is constant over time. Moreover, worker size was found to have a considerable genetic component, despite expectations that genetic effects on caste fate should be minor in species with a low degree of polyandry. Our data suggest that sexual conflict over paternity is largely resolved by the lifetime commitment between mates generated by long-term sperm storage, and show that genetic variation for caste can persist in societies with comparatively high relatedness.
Collapse
Affiliation(s)
- Luke Holman
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
180
|
Dallai R, Mercati D, Gottardo M, Machida R, Mashimo Y, Beutel RG. The male reproductive system of Zorotypus caudelli Karny (Zoraptera): Sperm structure and spermiogenesis. ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:531-547. [PMID: 21996133 DOI: 10.1016/j.asd.2011.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 05/31/2023]
Abstract
Considering the overall uniformity of the morphology of Zoraptera, the structural diversity of the male genital system is remarkable. Structures related to the male reproductive system of Zorotypus caudelli differ profoundly from those of Zorotypus hubbardi. The testes are elongated rather than spherical, the seminal vesicle is apparently absent, and the deferent ducts are very long. A feature shared by these two species and other zorapterans examined is that the two accessory glands are closely adherent to each other and form a single large structure, from which the ejaculatory duct originates. This is a potential zorapteran autapomorphy. Another feature possibly present in the groundplan of the order is the strong elongation of the sperm cells. This may be connected with a reproductive strategy of males trying to avoid re-mating of females with other males after the first copulation. The extremely long and coiled spermathecal duct of Z. caudelli and other zorapteran species is possibly correlated with the sperm elongation, and both features combined may result in a sexual isolating mechanism. The short duration of mating of Zorotypus barberi and Zorotypus gurneyi suggests that the male introduces sperm into the female tract up to the opening of the spermathecal duct using their long coiled aedeagus. A thick glycocalyx around the sperm in the distal part of the deferent ducts probably protects the sperm cells during their forward progression towards the long spermathecal duct, and is removed when they reach the apical receptacle. The spermatogenesis of Z. caudelli follows a pattern commonly found in insects, but differs distinctly from that of Z. hubbardi in the number of spermatids in each sperm cyst. An unusual and possibly autapomorphic feature of Z. caudelli is a disconnection of sub-tubules A and B at the level of microtubule doublets 1 and 6 of the mature sperm cells. It is conceivable that this results in a shorter period of sperm motility. The character combination found in different zorapteran species supports the view that the sperm, a very compact functional unit, does not evolve as a unit, but like in other more complex body regions, sperm components can also be modified independently from each other. This results in different mosaic patterns of plesiomorphic and derived features in a very compact entity in different species of the very small and otherwise uniform order Zoraptera. In Z. caudelli, for instance, the bi-layered acrosome and small accessory bodies are plesiomorphic states among several others, whereas the mitochondrial derivatives and the elongate nucleus are apparently derived conditions. Other combinations likely occur in other zorapteran species. Only few but noteworthy sperm characters indicate possible phylogenetic affinities of Zoraptera. A possible synapomorphic feature, the presence of dense laminae radiating in a cartwheel array between neighbouring centriolar triplets, is shared with Phasmatodea and Embioptera. Another potential synapomorphy shared with Phasmatodea is the presence of 17 protofilaments in the tubular wall of the outer accessory microtubules.
Collapse
Affiliation(s)
- R Dallai
- Department of Evolutionary Biology, Via A. Moro 2, I-53100 Siena, Italy.
| | | | | | | | | | | |
Collapse
|
181
|
Iwata Y, Shaw P, Fujiwara E, Shiba K, Kakiuchi Y, Hirohashi N. Why small males have big sperm: dimorphic squid sperm linked to alternative mating behaviours. BMC Evol Biol 2011; 11:236. [PMID: 21831296 PMCID: PMC3176235 DOI: 10.1186/1471-2148-11-236] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 08/10/2011] [Indexed: 11/25/2022] Open
Abstract
Background Sperm cells are the target of strong sexual selection that may drive changes in sperm structure and function to maximize fertilisation success. Sperm evolution is regarded to be one of the major consequences of sperm competition in polyandrous species, however it can also be driven by adaptation to the environmental conditions at the site of fertilization. Strong stabilizing selection limits intra-specific variation, and therefore polymorphism, among fertile sperm (eusperm). Here we analyzed reproductive morphology differences among males employing characteristic alternative mating behaviours, and so potentially different conditions of sperm competition and fertilization environment, in the squid Loligo bleekeri. Results Large consort males transfer smaller (average total length = 73 μm) sperm to a female's internal sperm storage location, inside the oviduct; whereas small sneaker males transfer larger (99 μm) sperm to an external location around the seminal receptacle near the mouth. No significant difference in swimming speed was observed between consort and sneaker sperm. Furthermore, sperm precedence in the seminal receptacle was not biased toward longer sperm, suggesting no evidence for large sperm being favoured in competition for space in the sperm storage organ among sneaker males. Conclusions Here we report the first case, in the squid Loligo bleekeri, where distinctly dimorphic eusperm are produced by different sized males that employ alternative mating behaviours. Our results found no evidence that the distinct sperm dimorphism was driven by between- and within-tactic sperm competition. We propose that presence of alternative fertilization environments with distinct characteristics (i.e. internal or external), whether or not in combination with the effects of sperm competition, can drive the disruptive evolution of sperm size.
Collapse
Affiliation(s)
- Yoko Iwata
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, SY23 3DA, UK.
| | | | | | | | | | | |
Collapse
|
182
|
Berger D, Bauerfeind SS, Blanckenhorn WU, Schäfer MA. HIGH TEMPERATURES REVEAL CRYPTIC GENETIC VARIATION IN A POLYMORPHIC FEMALE SPERM STORAGE ORGAN. Evolution 2011; 65:2830-42. [DOI: 10.1111/j.1558-5646.2011.01392.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
183
|
|
184
|
Noguchi T, Koizumi M, Hayashi S. Sustained elongation of sperm tail promoted by local remodeling of giant mitochondria in Drosophila. Curr Biol 2011; 21:805-14. [PMID: 21549602 DOI: 10.1016/j.cub.2011.04.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 02/22/2011] [Accepted: 04/11/2011] [Indexed: 01/01/2023]
Abstract
BACKGROUND Sperm length in Drosophilidae varies from a few hundred microns to 6 cm as a result of evolutionary selection. In postcopulatory competition, longer sperm have an advantage in positioning their head closer to the egg. Sperm cell elongation can proceed in the absence of an axoneme, suggesting that a mechanism besides intraflagellar transport emerged to sustain it. RESULTS Here we report that sperm elongation in Drosophila melanogaster is driven by the interdependent extension of giant mitochondria and microtubule array that is formed around the mitochondrial surface. In primary cultures of elongating spermatids, we demonstrated that the mitochondrial integrity and local dynamics of microtubules at the tail tip region are essential for uniaxial elongation of the sperm tail. Mitochondria-microtubule linker protein Milton accumulated on mitochondria near the tail tip and is required for the sliding movement of microtubules. Disruption of Milton and its associated protein dMiro, and of potential microtubule crosslinkers Nebbish and Fascetto, caused strong elongation defects, indicating that mitochondria-microtubule association and microtubule crosslinking are required for spermatid tail elongation. CONCLUSIONS Mitochondria play unexpected roles in sperm tail elongation in Drosophila by providing a structural platform for microtubule reorganization to support the robust elongation taking place at the tip of the very long sperm tail. The identification of mitochondria as an organizer of cytoskeletal dynamics extends our understanding of mechanisms of cell morphogenesis.
Collapse
Affiliation(s)
- Tatsuhiko Noguchi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | | | | |
Collapse
|
185
|
Thüler K, Bussière LF, Postma E, Ward PI, Blanckenhorn WU. Genetic and environmental sources of covariance among internal reproductive traits in the yellow dung fly. J Evol Biol 2011; 24:1477-86. [PMID: 21545422 DOI: 10.1111/j.1420-9101.2011.02280.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Substantial inter- and intraspecific variation is found in reproductive traits, but the evolutionary implications of this variation remain unclear. One hypothesis is that natural selection favours female reproductive morphology that allows females to control mating and fertilization and that diverse male reproductive traits arise as counter adaptations to subvert this control. Such co-evolution predicts the establishment of genetic correlations between male and female reproductive traits that closely interact during mating. Therefore, we measured phenotypic and genetic correlations between male and female reproductive tract characteristics in the yellow dung fly, Scathophaga stercoraria (Diptera: Scathophagidae), using a nested half-sib breeding experiment. We found significant heritabilities for the size of most reproductive tract traits investigated in both females (spermathecae and their ducts, accessory glands and their ducts) and males (testis size but not sperm length). Within the sexes, phenotypic and genetic correlations were mostly nil or positive, suggesting functional integration of or condition-dependent investment in internal reproductive traits. Negative intrasexual genetic correlations, potentially suggestive of resource allocation trade-offs, were not evident. Intersexual genetic correlations were mostly positive, reflecting expected allometries between male and female morphologies. Most interestingly, testis size correlated positively with female accessory gland size and duct length, potentially indicative of a co-evolutionary arms race. We discuss these and alternative explanations for these patterns of genetic covariance.
Collapse
Affiliation(s)
- K Thüler
- Zoological Museum, Institute for Evolutionary Biology and Environmental Studies, Winterthurerstrasse, University of Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
186
|
Karlsson Green K, Madjidian JA. Active males, reactive females: stereotypic sex roles in sexual conflict research? Anim Behav 2011. [DOI: 10.1016/j.anbehav.2011.01.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
187
|
Resolving variation in the reproductive tradeoff between sperm size and number. Proc Natl Acad Sci U S A 2011; 108:5325-30. [PMID: 21402912 DOI: 10.1073/pnas.1009059108] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spermatozoa are amongst the most variable cells, and three factors are thought to account for this variation in design: fertilization mode, phylogeny, and postcopulatory sexual selection. In addition, it has long been assumed that a tradeoff exists between sperm size and number, and although postcopulatory sexual selection affects both traits, empirical evidence for a tradeoff has so far been elusive. Our recent theoretical model predicts that the nature of a direct tradeoff between sperm size and number varies with sperm competition mechanism and sperm competition risk. We test these predictions using a comparative approach in two very different taxa with different sperm competition mechanisms: passerine birds (mechanism: simple raffle) and Drosophila fruit flies (sperm displacement). We show that in both groups, males increase their total ejaculate investment with increasing sperm competition risk, but whereas passerine birds allocate disproportionately to sperm number, drosophilids allocate disproportionately to sperm size. This striking difference between the two groups can be at least partly explained by sperm competition mechanisms depending on sperm size relative to the size of the female reproductive tract: in large animals (passerines), sperm numbers are advantageous in sperm competition owing to dilution inside the female tract, whereas in small animals (drosophilids), large sperm are advantageous for physical competition (sperm displacement). Our study provides two important results. First, we provide convincing evidence for the existence of a sperm size-number tradeoff. Second, we show that by considering both sperm competition mechanism and dilution, can we account for variation in sperm size between different taxa.
Collapse
|
188
|
Lüpold S, Wistuba J, Damm OS, Rivers JW, Birkhead TR. Sperm competition leads to functional adaptations in avian testes to maximize sperm quantity and quality. Reproduction 2011; 141:595-605. [PMID: 21307271 DOI: 10.1530/rep-10-0501] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The outcome of sperm competition (i.e. competition for fertilization between ejaculates from different males) is primarily determined by the relative number and quality of rival sperm. Therefore, the testes are under strong selection to maximize both sperm number and quality, which are likely to result in trade-offs in the process of spermatogenesis (e.g. between the rate of spermatogenesis and sperm length or sperm energetics). Comparative studies have shown positive associations between the level of sperm competition and both relative testis size and the proportion of seminiferous (sperm-producing) tissue within the testes. However, it is unknown how the seminiferous tissue itself or the process of spermatogenesis might evolve in response to sperm competition. Therefore, we quantified the different germ cell types and Sertoli cells (SC) in testes to assess the efficiency of sperm production and its associations with sperm length and mating system across 10 species of New World Blackbirds (Icteridae) that show marked variation in sperm length and sperm competition level. We found that species under strong sperm competition generate more round spermatids (RS)/spermatogonium and have SC that support a greater number of germ cells, both of which are likely to increase the maximum sperm output. However, fewer of the RS appeared to elongate to mature spermatozoa in these species, which might be the result of selection for discarding spermatids with undesirable characteristics as they develop. Our results suggest that, in addition to overall size and gross morphology, testes have also evolved functional adaptations to maximize sperm quantity and quality.
Collapse
Affiliation(s)
- Stefan Lüpold
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | | | | | | | | |
Collapse
|
189
|
Abstract
Motile cilia and flagella exhibit many waveforms as outputs of dynein activation sequences on the highly conserved axoneme. Motility change of sperm in the reproductive tract is difficult to study and remains an important area of investigation. Sperm typically execute a sinusoidal waveform. Increased viscosity in the medium induces somewhat unusual arc-line and helical waveforms in some sperm. However, whether the latter two waveforms occur in vivo is not known. Using green fluorescence protein imaging, we show that Drosophila sperm in the uterus move in circular foci via arc-line waves, predominantly in a tail-leading orientation. From the uterus, a small fraction of the sperm enters the seminal receptacle (SR) in parallel formations. After sperm storage and coincident with fertilization of the egg, the sperm exit the SR via head-leading helical waves. Consistent with the observed bidirectional movements, the sperm show the ability to propagate both base-to-tip and tip-to-base flagellar waves. Numerous studies have shown that sperm motility is regulated by intraflagellar calcium concentrations; in particular, the Pkd2 calcium channel has been shown to affect sperm storage. Our analyses here suggest that Pkd2 is required for the sperm to adopt the correct waveform and movement orientation during SR entry. A working model for the sperm's SR entry movement is proposed.
Collapse
Affiliation(s)
- Yong Yang
- Institute of Environmental Health Sciences and Department of Biochemistry and Molecular Biology, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | | |
Collapse
|
190
|
Yang Y, Cochran DA, Gargano MD, King I, Samhat NK, Burger BP, Sabourin KR, Hou Y, Awata J, Parry DAD, Marshall WF, Witman GB, Lu X. Regulation of flagellar motility by the conserved flagellar protein CG34110/Ccdc135/FAP50. Mol Biol Cell 2011; 22:976-87. [PMID: 21289096 PMCID: PMC3069022 DOI: 10.1091/mbc.e10-04-0331] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Eukaryotic cilia and flagella are vital sensory and motile organelles. The calcium channel PKD2 mediates sensory perception on cilia and flagella, and defects in this can contribute to ciliopathic diseases. Signaling from Pkd2-dependent Ca²+ rise in the cilium to downstream effectors may require intermediary proteins that are largely unknown. To identify these proteins, we carried out genetic screens for mutations affecting Drosophila melanogaster sperm storage, a process mediated by Drosophila Pkd2. Here we show that a new mutation lost boys (lobo) encodes a conserved flagellar protein CG34110, which corresponds to vertebrate Ccdc135 (E = 6e-78) highly expressed in ciliated respiratory epithelia and sperm, and to FAP50 (E = 1e-28) in the Chlamydomonas reinhardtii flagellar proteome. CG34110 localizes along the fly sperm flagellum. FAP50 is tightly associated with the outer doublet microtubules of the axoneme and appears not to be a component of the central pair, radial spokes, dynein arms, or structures defined by the mbo waveform mutants. Phenotypic analyses indicate that both Pkd2 and lobo specifically affect sperm movement into the female storage receptacle. We hypothesize that the CG34110/Ccdc135/FAP50 family of conserved flagellar proteins functions within the axoneme to mediate Pkd2-dependent processes in the sperm flagellum and other motile cilia.
Collapse
Affiliation(s)
- Yong Yang
- Institute of Environmental Health Sciences and Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Schärer L, Littlewood DTJ, Waeschenbach A, Yoshida W, Vizoso DB. Mating behavior and the evolution of sperm design. Proc Natl Acad Sci U S A 2011; 108:1490-5. [PMID: 21220334 PMCID: PMC3029721 DOI: 10.1073/pnas.1013892108] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sperm are the most diverse of all animal cell types, and much of the diversity in sperm design is thought to reflect adaptations to the highly variable conditions under which sperm function and compete to achieve fertilization. Recent work has shown that these conditions often evolve rapidly as a consequence of multiple mating, suggesting a role for sexual selection and sexual conflict in the evolution of sperm design. However, very little of the striking diversity in sperm design is understood functionally, particularly in internally fertilizing organisms. We use phylogenetic comparative analyses covering 16 species of the hermaphroditic flatworm genus Macrostomum to show that a complex sperm design is associated with reciprocal mating and that this complexity is lost secondarily when hypodermic insemination--sperm injection through the epidermis--evolves. Specifically, the complex sperm design, which includes stiff lateral bristles, is likely a male persistence trait associated with sexual conflicts over the fate of received ejaculates and linked to female resistance traits, namely an intriguing postcopulatory sucking behavior and a thickened epithelium of the sperm-receiving organ. Our results suggest that the interactions between sperm donor, sperm, and sperm recipient can change drastically when hypodermic insemination evolves, involving convergent evolution of a needle-like copulatory organ, a simpler sperm design, and a simpler female genital morphology. Our study documents that a shift in the mating behavior may alter fundamentally the conditions under which sperm compete and thereby lead to a drastic change in sperm design.
Collapse
Affiliation(s)
- Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, 4051 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
192
|
Tourmente M, Gomendio M, Roldan ERS. Sperm competition and the evolution of sperm design in mammals. BMC Evol Biol 2011; 11:12. [PMID: 21232104 PMCID: PMC3030547 DOI: 10.1186/1471-2148-11-12] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 01/13/2011] [Indexed: 11/10/2022] Open
Abstract
Background The influence of sperm competition upon sperm size has been a controversial issue during the last 20 years which remains unresolved for mammals. The hypothesis that, when ejaculates compete with rival males, an increase in sperm size would make sperm more competitive because it would increase sperm swimming speed, has generated contradictory results from both theoretical and empirical studies. In addition, the debate has extended to which sperm components should increase in size: the midpiece to accommodate more mitochondria and produce more energy to fuel motility, or the principal piece to generate greater propulsion forces. Results In this study we examined the influence of sperm competition upon sperm design in mammals using a much larger data set (226 species) than in previous analyses, and we corrected for phylogenetic effects by using a more complete and resolved phylogeny, and more robust phylogenetic control methods. Our results show that, as sperm competition increases, all sperm components increase in an integrated manner and sperm heads become more elongated. The increase in sperm length was found to be associated with enhanced swimming velocity, an adaptive trait under sperm competition. Conclusions We conclude that sperm competition has played an important role in the evolution of sperm design in mammals, and discuss why previous studies have failed to detect it.
Collapse
Affiliation(s)
- Maximiliano Tourmente
- Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | | | | |
Collapse
|
193
|
Pasini ME, Intra J, Gomulski LM, Calvenzani V, Petroni K, Briani F, Perotti ME. Identification and expression profiling of Ceratitis capitata genes coding for β-hexosaminidases. Gene 2010; 473:44-56. [PMID: 21094225 DOI: 10.1016/j.gene.2010.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/05/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
The goal of this study was to identify the genes coding for β-N-acetylhexosaminidases in the Mediterranean fruit fly (medfly) Ceratitis capitata, one of the most destructive agricultural pests, belonging to the Tephritidae family, order Diptera. Two dimeric β-N-acetylhexosaminidases, HEXA and HEXB, have been recently identified on Drosophila sperm. These enzymes are involved in egg binding through interactions with complementary carbohydrates on the surface of the egg shell. Three genes, Hexosaminidase 1 (Hexo1), Hexosaminidase 2 (Hexo2) and fused lobes (fdl), encode for HEXA and HEXB subunits. The availability of C. capitata EST libraries derived from embryos and adult heads allowed us to identify three sequences homologous to the D. melanogaster Hexo1, Hexo2 and fdl genes. Here, we report the expression profile analysis of CcHexo1, CcHexo2 and Ccfdld in several tissues, organs and stages. Ccfdl expression was highest in heads of both sexes and in whole adult females. In the testis and ovary the three genes showed distinct spatial and temporal expression patterns. All the mRNAs were detectable in early stages of spermatogenesis; CcHexo2 and Ccfdl were also expressed in early elongating spermatid cysts. All three genes are expressed in the ovarian nurse cells. CcHexo1 and Ccfdl are stage specific, since they have been observed in stages 12 and 13 during oocyte growth, when programmed cell death occurs in nurse cells. The expression pattern of the three genes in medfly gonads suggests that, as their Drosophila counterparts, they may encode for proteins involved in gametogenesis and fertilization.
Collapse
Affiliation(s)
- Maria E Pasini
- Department of Biomolecular Sciences and Biotechnology, University of Milano, Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
194
|
Rönn JL, Katvala M, Arnqvist G. Correlated evolution between male and female primary reproductive characters in seed beetles. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2010.01809.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
195
|
NARRAWAY C, HUNT J, WEDELL N, HOSKEN DJ. Genotype-by-environment interactions for female preference. J Evol Biol 2010; 23:2550-7. [DOI: 10.1111/j.1420-9101.2010.02113.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
196
|
Puniamoorthy N, Kotrba M, Meier R. Unlocking the "Black box": internal female genitalia in Sepsidae (Diptera) evolve fast and are species-specific. BMC Evol Biol 2010; 10:275. [PMID: 20831809 PMCID: PMC2944183 DOI: 10.1186/1471-2148-10-275] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 09/10/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The species-specificity of male genitalia has been well documented in many insect groups and sexual selection has been proposed as the evolutionary force driving the often rapid, morphological divergence. The internal female genitalia, in sharp contrast, remain poorly studied. Here, we present the first comparative study of the internal reproductive system of Sepsidae. We test the species-specificity of the female genitalia by comparing recently diverged sister taxa. We also compare the rate of change in female morphological characters with the rate of fast-evolving, molecular and behavioral characters. RESULTS We describe the ectodermal parts of the female reproductive tract for 41 species representing 21 of the 37 described genera and define 19 morphological characters with discontinuous variation found in eight structures that are part of the reproductive tract. Using a well-resolved molecular phylogeny based on 10 genes, we reconstruct the evolution of these characters across the family [120 steps; Consistency Index (CI): 0.41]. Two structures, in particular, evolve faster than the rest. The first is the ventral receptacle, which is a secondary sperm storage organ. It accounts for more than half of all the evolutionary changes observed (7 characters; 61 steps; CI: 0.46). It is morphologically diverse across genera, can be bi-lobed or multi-chambered (up to 80 chambers), and is strongly sclerotized in one clade. The second structure is the dorsal sclerite, which is present in all sepsids except Orygma luctuosum and Ortalischema albitarse. It is associated with the opening of the spermathecal ducts and is often distinct even among sister species (4 characters; 16 steps; CI: 0.56). CONCLUSIONS We find the internal female genitalia are diverse in Sepsidae and diagnostic for all species. In particular, fast-evolving structures like the ventral receptacle and dorsal sclerite are likely involved in post-copulatory sexual selection. In comparison to behavioral and molecular data, the female structures are evolving 2/3 as fast as the non-constant third positions of the COI barcoding gene. They display less convergent evolution in characters (CI = 0.54) than the third positions or sepsid mating behavior (CICOI = 0.36; CIBEHAV = 0.45).
Collapse
Affiliation(s)
- Nalini Puniamoorthy
- Institute of Evolutionary Biology and Environmental Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Department of Biological Sciences and University Scholars Programme, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Marion Kotrba
- Bavarian State collection of Zoology, Münchhausenstrasse 21, D-81247 Munich, Germany
| | - Rudolf Meier
- Department of Biological Sciences and University Scholars Programme, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
197
|
Abbott JK, Bedhomme S, Chippindale AK. Sexual conflict in wing size and shape in Drosophila melanogaster. J Evol Biol 2010; 23:1989-97. [PMID: 20695965 DOI: 10.1111/j.1420-9101.2010.02064.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Intralocus sexual conflict occurs when opposing selection pressures operate on loci expressed in both sexes, constraining the evolution of sexual dimorphism and displacing one or both sexes from their optimum. We eliminated intralocus conflict in Drosophila melanogaster by limiting transmission of all major chromosomes to males, thereby allowing them to win the intersexual tug-of-war. Here, we show that this male-limited (ML) evolution treatment led to the evolution (in both sexes) of masculinized wing morphology, body size, growth rate, wing loading, and allometry. In addition to more male-like size and shape, ML evolution resulted in an increase in developmental stability for males. However, females expressing ML chromosomes were less developmentally stable, suggesting that being ontogenetically more male-like was disruptive to development. We suggest that sexual selection over size and shape of the imago may therefore explain the persistence of substantial genetic variation in these characters and the ontogenetic processes underlying them.
Collapse
Affiliation(s)
- J K Abbott
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
198
|
|
199
|
Shah C, VanGompel MJW, Naeem V, Chen Y, Lee T, Angeloni N, Wang Y, Xu EY. Widespread presence of human BOULE homologs among animals and conservation of their ancient reproductive function. PLoS Genet 2010; 6:e1001022. [PMID: 20657660 PMCID: PMC2904765 DOI: 10.1371/journal.pgen.1001022] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 06/14/2010] [Indexed: 11/18/2022] Open
Abstract
Sex-specific traits that lead to the production of dimorphic gametes, sperm in males and eggs in females, are fundamental for sexual reproduction and accordingly widespread among animals. Yet the sex-biased genes that underlie these sex-specific traits are under strong selective pressure, and as a result of adaptive evolution they often become divergent. Indeed out of hundreds of male or female fertility genes identified in diverse organisms, only a very small number of them are implicated specifically in reproduction in more than one lineage. Few genes have exhibited a sex-biased, reproductive-specific requirement beyond a given phylum, raising the question of whether any sex-specific gametogenesis factors could be conserved and whether gametogenesis might have evolved multiple times. Here we describe a metazoan origin of a conserved human reproductive protein, BOULE, and its prevalence from primitive basal metazoans to chordates. We found that BOULE homologs are present in the genomes of representative species of each of the major lineages of metazoans and exhibit reproductive-specific expression in all species examined, with a preponderance of male-biased expression. Examination of Boule evolution within insect and mammalian lineages revealed little evidence for accelerated evolution, unlike most reproductive genes. Instead, purifying selection was the major force behind Boule evolution. Furthermore, loss of function of mammalian Boule resulted in male-specific infertility and a global arrest of sperm development remarkably similar to the phenotype in an insect boule mutation. This work demonstrates the conservation of a reproductive protein throughout eumetazoa, its predominant testis-biased expression in diverse bilaterian species, and conservation of a male gametogenic requirement in mice. This shows an ancient gametogenesis requirement for Boule among Bilateria and supports a model of a common origin of spermatogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Eugene Yujun Xu
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
200
|
Smith CC, Ryan MJ. Evolution of sperm quality but not quantity in the internally fertilized fish Xiphophorus nigrensis. J Evol Biol 2010; 23:1759-71. [PMID: 20626545 DOI: 10.1111/j.1420-9101.2010.02041.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Species with alternative reproductive strategies are characterized by discrete differences among males in suites of traits related to competition for fertilizations. Models predict sneaker males should allocate more resources to their ejaculates because they experience sperm competition more frequently and often occupy a disfavoured 'role' owing to subordinance in intramale competition and female preferences for larger males. We examined whether sperm number and quality differed between male strategies in the internally fertilized fish Xiphophorus nigrensis and explored the relationship between sperm morphology and performance. We found sneaker males had similar testes sizes compared to courting males but ejaculates with both more viable and longer lived sperm. Sneaker sperm also had longer midpieces, which was positively correlated with both velocity and longevity. Our study suggests that the evolution of sperm quantity and quality can be decoupled and that the sperm morphology is likely to play an important role in mediating sperm competition through its effects on sperm performance.
Collapse
Affiliation(s)
- C C Smith
- University of Texas at Austin, Section of Integrative Biology, Austin, TX 78712, USA.
| | | |
Collapse
|