151
|
Ni JZ, Chen E, Gu SG. Complex coding of endogenous siRNA, transcriptional silencing and H3K9 methylation on native targets of germline nuclear RNAi in C. elegans. BMC Genomics 2014; 15:1157. [PMID: 25534009 PMCID: PMC4367959 DOI: 10.1186/1471-2164-15-1157] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/10/2014] [Indexed: 11/14/2022] Open
Abstract
Background Small RNA-guided transcriptional silencing (nuclear RNAi) is fundamental to genome integrity and epigenetic inheritance. Despite recent progress in identifying the capability and genetic requirements for nuclear RNAi in Caenorhabditis elegans, the natural targets and cellular functions of nuclear RNAi remain elusive. Methods To resolve this gap, we coordinately examined the genome-wide profiles of transcription, histone H3 lysine 9 methylation (H3K9me) and endogenous siRNAs of a germline nuclear Argonaute (hrde-1/wago-9) mutant and identified regions on which transcription activity is markedly increased and/or H3K9me level is markedly decreased relative to wild type animals. Results Our data revealed a distinct set of native targets of germline nuclear RNAi, with the H3K9me response exhibiting both overlapping and non-overlapping distribution with the transcriptional silencing response. Interestingly LTR retrotransposons, but not DNA transposons, are highly enriched in the targets of germline nuclear RNAi. The genomic distribution of the native targets is highly constrained, with >99% of the identified targets present in five autosomes but not in the sex chromosome. By contrast, HRDE-1-associated small RNAs correspond to all chromosomes. In addition, we found that the piRNA pathway is not required for germline nuclear RNAi activity on native targets. Conclusion Germline nuclear RNAi in C. elegans is required to silence retrotransposons but not DNA transposon. Transcriptional silencing and H3K9me can occur independently of each other on the native targets of nuclear RNAi in C. elegans. Our results rule out a simple model in which nuclear Argonaute protein-associated-small RNAs are sufficient to trigger germline nuclear RNAi responses. In addition, the piRNA pathway and germline nuclear RNAi are specialized to target different types of foreign genetic elements for genome surveillance in C. elegans. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1157) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Sam Guoping Gu
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Nelson Labs A125, 604 Allison Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
152
|
Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF, Koonin EV, Patel DJ, van der Oost J. The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol 2014; 21:743-53. [PMID: 25192263 DOI: 10.1038/nsmb.2879] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023]
Abstract
Argonaute proteins are conserved throughout all domains of life. Recently characterized prokaryotic Argonaute proteins (pAgos) participate in host defense by DNA interference, whereas eukaryotic Argonaute proteins (eAgos) control a wide range of processes by RNA interference. Here we review molecular mechanisms of guide and target binding by Argonaute proteins, and describe how the conformational changes induced by target binding lead to target cleavage. On the basis of structural comparisons and phylogenetic analyses of pAgos and eAgos, we reconstruct the evolutionary journey of the Argonaute proteins through the three domains of life and discuss how different structural features of pAgos and eAgos relate to their distinct physiological roles.
Collapse
Affiliation(s)
- Daan C Swarts
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Kira Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Yanli Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, USA
| | | | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
153
|
Soares ZG, Gonçalves ANA, de Oliveira KPV, Marques JT. Viral RNA recognition by the Drosophila small interfering RNA pathway. Microbes Infect 2014; 16:1013-21. [DOI: 10.1016/j.micinf.2014.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/31/2014] [Accepted: 09/01/2014] [Indexed: 12/24/2022]
|
154
|
Boesler B, Meier D, Förstner KU, Friedrich M, Hammann C, Sharma CM, Nellen W. Argonaute proteins affect siRNA levels and accumulation of a novel extrachromosomal DNA from the Dictyostelium retrotransposon DIRS-1. J Biol Chem 2014; 289:35124-38. [PMID: 25352599 DOI: 10.1074/jbc.m114.612663] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The retrotransposon DIRS-1 is the most abundant retroelement in Dictyostelium discoideum and constitutes the pericentromeric heterochromatin of the six chromosomes in D. discoideum. The vast majority of cellular siRNAs is derived from DIRS-1, suggesting that the element is controlled by RNAi-related mechanisms. We investigated the role of two of the five Argonaute proteins of D. discoideum, AgnA and AgnB, in DIRS-1 silencing. Deletion of agnA resulted in the accumulation of DIRS-1 transcripts, the expression of DIRS-1-encoded proteins, and the loss of most DIRS-1-derived secondary siRNAs. Simultaneously, extrachromosomal single-stranded DIRS-1 DNA accumulated in the cytoplasm of agnA- strains. These DNA molecules appear to be products of reverse transcription and thus could represent intermediate structures before transposition. We further show that transitivity of endogenous siRNAs is impaired in agnA- strains. The deletion of agnB alone had no strong effect on DIRS-1 transposon regulation. However, in agnA-/agnB- double mutant strains strongly reduced accumulation of extrachromosomal DNA compared with the single agnA- strains was observed.
Collapse
Affiliation(s)
- Benjamin Boesler
- From the Department of Genetics, FB10, Kassel University, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Doreen Meier
- From the Department of Genetics, FB10, Kassel University, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Konrad U Förstner
- Research Center for Infectious Diseases (ZINF), University of Würzburg, Josef-Schneider-Strasse 2/Bau D15, 97080 Würzburg, Germany, and
| | - Michael Friedrich
- From the Department of Genetics, FB10, Kassel University, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Christian Hammann
- Ribogenetics Biochemistry Laboratory, School of Engineering and Science, Molecular Life Sciences Research Center, Jacobs University, Campus Ring 1, DE-28759 Bremen, Germany
| | - Cynthia M Sharma
- Research Center for Infectious Diseases (ZINF), University of Würzburg, Josef-Schneider-Strasse 2/Bau D15, 97080 Würzburg, Germany, and
| | - Wolfgang Nellen
- From the Department of Genetics, FB10, Kassel University, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany,
| |
Collapse
|
155
|
Co-option of the piRNA pathway for germline-specific alternative splicing of C. elegans TOR. Cell Rep 2014; 8:1609-1616. [PMID: 25220461 DOI: 10.1016/j.celrep.2014.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 07/02/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022] Open
Abstract
Many eukaryotic genes contain embedded antisense transcripts and repetitive sequences of unknown function. We report that male germline-specific expression of an antisense transcript contained in an intron of C. elegans Target of Rapamycin (TOR, let-363) is associated with (1) accumulation of endo-small interfering RNAs (siRNAs) against an embedded Helitron transposon and (2) activation of an alternative 3' splice site of TOR. The germline-specific Argonaute proteins PRG-1 and CSR-1, which participate in self/nonself RNA recognition, antagonistically regulate the generation of these endo-siRNAs, TOR mRNA levels, and 3' splice-site selection. Supply of exogenous double-stranded RNA against the region of sense/antisense overlap reverses changes in TOR expression and splicing and suppresses the progressive multigenerational sterility phenotype of prg-1 mutants. We propose that recognition of a "nonself" intronic transposon by endo-siRNAs/the piRNA system provides physiological regulation of expression and alternative splicing of a host gene that, in turn, contributes to the maintenance of germline function across generations.
Collapse
|
156
|
RNAi pathway genes are resistant to small RNA mediated gene silencing in the protozoan parasite Entamoeba histolytica. PLoS One 2014; 9:e106477. [PMID: 25198343 PMCID: PMC4157801 DOI: 10.1371/journal.pone.0106477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/08/2014] [Indexed: 01/19/2023] Open
Abstract
The RNA interference pathway in the protist Entamoeba histolytica plays important roles in permanent gene silencing as well as in the regulation of virulence determinants. Recently, a novel RNA interference (RNAi)-based silencing technique was developed in this parasite that uses a gene endogenously silenced by small RNAs as a “trigger” to induce silencing of other genes that are fused to it. Fusion to a trigger gene induces the production of gene-specific antisense small RNAs, resulting in robust and permanent silencing of the cognate gene. This approach has silenced multiple genes including those involved in virulence and transcriptional regulation. We now demonstrate that all tested genes of the amebic RNAi pathway are unable to be silenced using the trigger approach, including Argonaute genes (Ago2-1, Ago2-2, and Ago2-3), RNaseIII, and RNA-dependent RNA polymerase (RdRP). In all situations (except for RdRP), fusion to a trigger successfully induces production of gene-specific antisense small RNAs to the cognate gene. These small RNAs are capable of silencing a target gene in trans, indicating that they are functional; despite this, however, they cannot silence the RNAi pathway genes. Interestingly, when a trigger is fused to RdRP, small RNA induction to RdRP does not occur, a unique phenotype hinting that either RdRP is highly resistant to being a target of small RNAs or that small RNA generation may be controlled by RdRP. The inability of the small RNA pathway to silence RNAi genes in E. histolytica, despite the generation of functional small RNAs to these loci suggest that epigenetic factors may protect certain genomic loci and thus determine susceptibility to small RNA mediated silencing.
Collapse
|
157
|
Sarkies P, Miska EA. Small RNAs break out: the molecular cell biology of mobile small RNAs. Nat Rev Mol Cell Biol 2014; 15:525-35. [DOI: 10.1038/nrm3840] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
158
|
Rechavi O, Houri-Ze'evi L, Anava S, Goh WSS, Kerk SY, Hannon GJ, Hobert O. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 2014; 158:277-287. [PMID: 25018105 PMCID: PMC4377509 DOI: 10.1016/j.cell.2014.06.020] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 05/30/2014] [Accepted: 06/11/2014] [Indexed: 01/03/2023]
Abstract
Evidence from animal studies and human famines suggests that starvation may affect the health of the progeny of famished individuals. However, it is not clear whether starvation affects only immediate offspring or has lasting effects; it is also unclear how such epigenetic information is inherited. Small RNA-induced gene silencing can persist over several generations via transgenerationally inherited small RNA molecules in C. elegans, but all known transgenerational silencing responses are directed against foreign DNA introduced into the organism. We found that starvation-induced developmental arrest, a natural and drastic environmental change, leads to the generation of small RNAs that are inherited through at least three consecutive generations. These small, endogenous, transgenerationally transmitted RNAs target genes with roles in nutrition. We defined genes that are essential for this multigenerational effect. Moreover, we show that the F3 offspring of starved animals show an increased lifespan, corroborating the notion of a transgenerational memory of past conditions.
Collapse
Affiliation(s)
- Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, New York, NY 10032, USA.
| | - Leah Houri-Ze'evi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sarit Anava
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Wee Siong Sho Goh
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, Howard Hughes Medical Institute, New York 11724, USA
| | - Sze Yen Kerk
- Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, New York, NY 10032, USA
| | - Gregory J Hannon
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, Howard Hughes Medical Institute, New York 11724, USA
| | - Oliver Hobert
- Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, New York, NY 10032, USA
| |
Collapse
|
159
|
Marker S, Carradec Q, Tanty V, Arnaiz O, Meyer E. A forward genetic screen reveals essential and non-essential RNAi factors in Paramecium tetraurelia. Nucleic Acids Res 2014; 42:7268-80. [PMID: 24860163 PMCID: PMC4066745 DOI: 10.1093/nar/gku223] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In most eukaryotes, small RNA-mediated gene silencing pathways form complex interacting networks. In the ciliate Paramecium tetraurelia, at least two RNA interference (RNAi) mechanisms coexist, involving distinct but overlapping sets of protein factors and producing different types of short interfering RNAs (siRNAs). One is specifically triggered by high-copy transgenes, and the other by feeding cells with double-stranded RNA (dsRNA)-producing bacteria. In this study, we designed a forward genetic screen for mutants deficient in dsRNA-induced silencing, and a powerful method to identify the relevant mutations by whole-genome sequencing. We present a set of 47 mutant alleles for five genes, revealing two previously unknown RNAi factors: a novel Paramecium-specific protein (Pds1) and a Cid1-like nucleotidyl transferase. Analyses of allelic diversity distinguish non-essential and essential genes and suggest that the screen is saturated for non-essential, single-copy genes. We show that non-essential genes are specifically involved in dsRNA-induced RNAi while essential ones are also involved in transgene-induced RNAi. One of the latter, the RNA-dependent RNA polymerase RDR2, is further shown to be required for all known types of siRNAs, as well as for sexual reproduction. These results open the way for the dissection of the genetic complexity, interconnection, mechanisms and natural functions of RNAi pathways in P. tetraurelia.
Collapse
Affiliation(s)
- Simone Marker
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Inserm, U1024, CNRS, UMR 8197, Paris F-75005, France
| | - Quentin Carradec
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Inserm, U1024, CNRS, UMR 8197, Paris F-75005, France Sorbonne Universités, UPMC Univ., IFD, 4 place Jussieu, F-75252 Paris cedex 05, France
| | - Véronique Tanty
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Inserm, U1024, CNRS, UMR 8197, Paris F-75005, France
| | - Olivier Arnaiz
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette F-91198 cedex, France; Université Paris-Sud, Département de Biologie, Orsay, F-91405, France
| | - Eric Meyer
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Inserm, U1024, CNRS, UMR 8197, Paris F-75005, France
| |
Collapse
|
160
|
Poole CB, Gu W, Kumar S, Jin J, Davis PJ, Bauche D, McReynolds LA. Diversity and expression of microRNAs in the filarial parasite, Brugia malayi. PLoS One 2014; 9:e96498. [PMID: 24824352 PMCID: PMC4019659 DOI: 10.1371/journal.pone.0096498] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/08/2014] [Indexed: 11/18/2022] Open
Abstract
Human filarial parasites infect an estimated 120 million people in 80 countries worldwide causing blindness and the gross disfigurement of limbs and genitals. An understanding of RNA-mediated regulatory pathways in these parasites may open new avenues for treatment. Toward this goal, small RNAs from Brugia malayi adult females, males and microfilariae were cloned for deep-sequencing. From ∼30 million sequencing reads, 145 miRNAs were identified in the B. malayi genome. Some microRNAs were validated using the p19 RNA binding protein and qPCR. B. malayi miRNAs segregate into 99 families each defined by a unique seed sequence. Sixty-one of the miRNA families are highly conserved with homologues in arthropods, vertebrates and helminths. Of those miRNAs not highly conserved, homologues of 20 B. malayi miRNA families were found in vertebrates. Nine B. malayi miRNA families appear to be filarial-specific as orthologues were not found in other organisms. The miR-2 family is the largest in B. malayi with 11 members. Analysis of the sequences shows that six members result from a recent expansion of the family. Library comparisons found that 1/3 of the B. malayi miRNAs are differentially expressed. For example, miR-71 is 5–7X more highly expressed in microfilariae than adults. Studies suggest that in C.elegans, miR-71 may enhance longevity by targeting the DAF-2 pathway. Characterization of B. malayi miRNAs and their targets will enhance our understanding of their regulatory pathways in filariads and aid in the search for novel therapeutics.
Collapse
Affiliation(s)
- Catherine B. Poole
- Division of RNA Biology, New England Biolabs, Ipswich, Massachusetts, United States of America
- Division of Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Weifeng Gu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sanjay Kumar
- Division of Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Jingmin Jin
- Division of RNA Biology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Paul J. Davis
- Division of Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - David Bauche
- Division of RNA Biology, New England Biolabs, Ipswich, Massachusetts, United States of America
- Cancer Research Center of Lyon, Lyon, France
| | - Larry A. McReynolds
- Division of RNA Biology, New England Biolabs, Ipswich, Massachusetts, United States of America
- Division of Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
161
|
Hirose T, Mishima Y, Tomari Y. Elements and machinery of non-coding RNAs: toward their taxonomy. EMBO Rep 2014; 15:489-507. [PMID: 24731943 PMCID: PMC4210095 DOI: 10.1002/embr.201338390] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 12/26/2022] Open
Abstract
Although recent transcriptome analyses have uncovered numerous non-coding RNAs (ncRNAs), their functions remain largely unknown. ncRNAs assemble with proteins and operate as ribonucleoprotein (RNP) machineries, formation of which is thought to be determined by specific fundamental elements embedded in the primary RNA transcripts. Knowledge about the relationships between RNA elements, RNP machinery, and molecular and physiological functions is critical for understanding the diverse roles of ncRNAs and may eventually allow their systematic classification or "taxonomy." In this review, we catalog and discuss representative small and long non-coding RNA classes, focusing on their currently known (and unknown) RNA elements and RNP machineries.
Collapse
Affiliation(s)
- Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido UniversitySapporo, Hokkaido, Japan
| | - Yuichiro Mishima
- Institute of Molecular and Cellular Biosciences, The University of TokyoBunkyo-ku, Tokyo, Japan
- Department of Medical Genome Sciences, The University of TokyoBunkyo-ku, Tokyo, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of TokyoBunkyo-ku, Tokyo, Japan
- Department of Medical Genome Sciences, The University of TokyoBunkyo-ku, Tokyo, Japan
| |
Collapse
|
162
|
Kennedy LM, Grishok A. Neuronal migration is regulated by endogenous RNAi and chromatin-binding factor ZFP-1/AF10 in Caenorhabditis elegans. Genetics 2014; 197:207-20. [PMID: 24558261 PMCID: PMC4012481 DOI: 10.1534/genetics.114.162917] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/13/2014] [Indexed: 01/05/2023] Open
Abstract
Endogenous short RNAs and the conserved plant homeodomain (PHD) zinc-finger protein ZFP-1/AF10 regulate overlapping sets of genes in Caenorhabditis elegans, which suggests that they control common biological pathways. We have shown recently that the RNAi factor RDE-4 and ZFP-1 negatively modulate transcription of the insulin/PI3 signaling-dependent kinase PDK-1 to promote C. elegans fitness. Moreover, we have demonstrated that the insulin/IGF-1-PI3K-signaling pathway regulates the activity of the DAF-16/FOXO transcription factor in the hypodermis to nonautonomously promote the anterior migrations of the hermaphrodite-specific neurons (HSNs) during embryogenesis of C. elegans. In this study, we implicate the PHD-containing isoform of ZFP-1 and endogenous RNAi in the regulation of HSN migration. ZFP-1 affects HSN migration in part through its negative effect on pdk-1 transcription and modulation of downstream DAF-16 activity. We also identify a novel role for ZFP-1 and RNAi pathway components, including RDE-4, in the regulation of HSN migration in parallel with DAF-16. Therefore, the coordinated activities of DAF-16, ZFP-1, and endogenous RNAi contribute to gene regulation during development to ensure proper neuronal positioning.
Collapse
Affiliation(s)
- Lisa M. Kennedy
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032
| | - Alla Grishok
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032
| |
Collapse
|
163
|
Di Lelio I, Varricchio P, Di Prisco G, Marinelli A, Lasco V, Caccia S, Casartelli M, Giordana B, Rao R, Gigliotti S, Pennacchio F. Functional analysis of an immune gene of Spodoptera littoralis by RNAi. JOURNAL OF INSECT PHYSIOLOGY 2014; 64:90-7. [PMID: 24662467 DOI: 10.1016/j.jinsphys.2014.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 05/05/2023]
Abstract
Insect immune defences rely on cellular and humoral responses targeting both microbial pathogens and metazoan parasites. Accumulating evidence indicates functional cross-talk between these two branches of insect immunity, but the underlying molecular mechanisms are still largely unknown. We recently described, in the tobacco budworm Heliothis virescens, the presence of amyloid fibers associated with melanogenesis in immune capsules formed by hemocytes, and identified a protein (P102) involved in their assembly. Non-self objects coated by antibodies directed against this protein escaped hemocyte encapsulation, suggesting that P102 might coordinate humoral and cellular defence responses at the surface of foreign invaders. Here we report the identification of a cDNA coding for a protein highly similar to P102 in a related Lepidoptera species, Spodoptera littoralis. Its transcript was abundant in the hemocytes and the protein accumulated in large cytoplasmic compartments, closely resembling the localization pattern of P102 in H. virescens. RNAi-mediated gene silencing provided direct evidence for the role played by this protein in the immune response. Oral delivery of dsRNA molecules directed against the gene strongly suppressed the encapsulation and melanization response, while hemocoelic injections did not result in evident phenotypic alterations. Shortly after their administration, dsRNA molecules were found in midgut cells, en route to the hemocytes where the target gene was significantly down-regulated. Taken together, our data demonstrate that P102 is a functionally conserved protein with a key role in insect immunity. Moreover, the ability to target this gene by dsRNA oral delivery may be exploited to develop novel technologies of pest control, based on immunosuppression as a strategy for enhancing the impact of natural antagonists.
Collapse
Affiliation(s)
- Ilaria Di Lelio
- Dipartimento di Agraria, Università degli Studi di Napoli "Federico II", via Università 100, 80055 Portici (Napoli), Italy
| | - Paola Varricchio
- Dipartimento di Agraria, Università degli Studi di Napoli "Federico II", via Università 100, 80055 Portici (Napoli), Italy
| | - Gennaro Di Prisco
- Dipartimento di Agraria, Università degli Studi di Napoli "Federico II", via Università 100, 80055 Portici (Napoli), Italy
| | - Adriana Marinelli
- Dipartimento di Agraria, Università degli Studi di Napoli "Federico II", via Università 100, 80055 Portici (Napoli), Italy
| | - Valentina Lasco
- Dipartimento di Agraria, Università degli Studi di Napoli "Federico II", via Università 100, 80055 Portici (Napoli), Italy; Istituto di Genetica e Biofisica "A. Buzzati-Traverso", CNR, via P. Castellino 111, 80131 Napoli, Italy; Istituto di Bioscienze e Biorisorse, CNR, via P. Castellino 111, 80131 Napoli, Italy
| | - Silvia Caccia
- Dipartimento di Agraria, Università degli Studi di Napoli "Federico II", via Università 100, 80055 Portici (Napoli), Italy
| | - Morena Casartelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Barbara Giordana
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Rosa Rao
- Dipartimento di Agraria, Università degli Studi di Napoli "Federico II", via Università 100, 80055 Portici (Napoli), Italy
| | - Silvia Gigliotti
- Istituto di Genetica e Biofisica "A. Buzzati-Traverso", CNR, via P. Castellino 111, 80131 Napoli, Italy; Istituto di Bioscienze e Biorisorse, CNR, via P. Castellino 111, 80131 Napoli, Italy.
| | - Francesco Pennacchio
- Dipartimento di Agraria, Università degli Studi di Napoli "Federico II", via Università 100, 80055 Portici (Napoli), Italy.
| |
Collapse
|
164
|
Song Y, Liu KJ, Wang TH. Elimination of ligation dependent artifacts in T4 RNA ligase to achieve high efficiency and low bias microRNA capture. PLoS One 2014; 9:e94619. [PMID: 24722341 PMCID: PMC3983213 DOI: 10.1371/journal.pone.0094619] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/18/2014] [Indexed: 01/22/2023] Open
Abstract
Adapter ligation is a critical first step in many microRNA analysis methods including microarray, qPCR, and sequencing. Previous studies have shown that ligation bias can have dramatic effects on both the fidelity of expression profiles and reproducibility across samples. We have developed a method for high efficiency and low bias microRNA capture by 3′ adapter ligation using T4 RNA ligase that does not require pooled adapters. Using a panel of 20 microRNA, we investigated the effects of ligase type, PEG concentration, ligase amount, adapter concentration, incubation time, incubation temperature, and adapter design on capture efficiency and bias. Of these factors, high PEG% was found to be critical in suppressing ligation bias. We obtained high average capture efficiency and low CV across the 20 microRNA panel, both in idealized buffer conditions (86%±10%) and total RNA spiking conditions (64%±17%). We demonstrate that this method is reliable across microRNA species that previous studies have had difficulty capturing and that our adapter design performs significantly better than the common adapter designs. Further, we demonstrate that the optimization methodology must be specifically designed for minimizing bias in order to obtain the ideal reaction parameters.
Collapse
Affiliation(s)
- Yunke Song
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kelvin J. Liu
- Mechanical Engineering Department, Johns Hopkins University, Baltimore, Maryland, United States of America
- Circulomics Inc, Baltimore, Maryland, United States of America
- * E-mail: (THW); (KJL)
| | - Tza-Huei Wang
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, Maryland, United States of America
- Mechanical Engineering Department, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (THW); (KJL)
| |
Collapse
|
165
|
Shirayama M, Stanney W, Gu W, Seth M, Mello CC. The Vasa Homolog RDE-12 engages target mRNA and multiple argonaute proteins to promote RNAi in C. elegans. Curr Biol 2014; 24:845-51. [PMID: 24684931 DOI: 10.1016/j.cub.2014.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 12/12/2022]
Abstract
Argonaute (AGO) proteins are key nuclease effectors of RNAi. Although purified AGOs can mediate a single round of target RNA cleavage in vitro, accessory factors are required for small interfering RNA (siRNA) loading and to achieve multiple-target turnover. To identify AGO cofactors, we immunoprecipitated the C. elegans AGO WAGO-1, which engages amplified small RNAs during RNAi. These studies identified a robust association between WAGO-1 and a conserved Vasa ATPase-related protein RDE-12. rde-12 mutants are deficient in RNAi, including viral suppression, and fail to produce amplified secondary siRNAs and certain endogenous siRNAs (endo-siRNAs). RDE-12 colocalizes with WAGO-1 in germline P granules and in cytoplasmic and perinuclear foci in somatic cells. These findings and our genetic studies suggest that RDE-12 is first recruited to target mRNA by upstream AGOs (RDE-1 and ERGO-1), where it promotes small RNA amplification and/or WAGO-1 loading. Downstream of these events, RDE-12 forms an RNase-resistant (target mRNA-independent) complex with WAGO-1 and may thus have additional functions in target mRNA surveillance and silencing.
Collapse
Affiliation(s)
- Masaki Shirayama
- Program in Molecular Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - William Stanney
- Program in Molecular Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Weifeng Gu
- Program in Molecular Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Meetu Seth
- Program in Molecular Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Craig C Mello
- Program in Molecular Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
166
|
Yang H, Vallandingham J, Shiu P, Li H, Hunter CP, Mak HY. The DEAD box helicase RDE-12 promotes amplification of RNAi in cytoplasmic foci in C. elegans. Curr Biol 2014; 24:832-8. [PMID: 24684930 DOI: 10.1016/j.cub.2014.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/20/2013] [Accepted: 01/03/2014] [Indexed: 11/26/2022]
Abstract
RNAi is a potent mechanism for downregulating gene expression. Conserved RNAi pathway components are found in animals, plants, fungi, and other eukaryotes. In C. elegans, the RNAi response is greatly amplified by the synthesis of abundant secondary small interfering RNAs (siRNAs). Exogenous double-stranded RNA is processed by Dicer and RDE-1/Argonaute into primary siRNA that guides target mRNA recognition. The RDE-10/RDE-11 complex and the RNA-dependent RNA polymerase RRF-1 then engage the target mRNA for secondary siRNA synthesis. However, the molecular link between primary siRNA production and secondary siRNA synthesis remains largely unknown. Furthermore, it is unclear whether the subcellular sites for target mRNA recognition and degradation coincide with sites where siRNA synthesis and amplification occur. In the C. elegans germline, cytoplasmic P granules at the nuclear pores and perinuclear Mutator foci contribute to target mRNA surveillance and siRNA amplification, respectively. We report that RDE-12, a conserved phenylalanine-glycine (FG) domain-containing DEAD box helicase, localizes in P granules and cytoplasmic foci that are enriched in RSD-6 but are excluded from the Mutator foci. Our results suggest that RDE-12 promotes secondary siRNA synthesis by orchestrating the recruitment of RDE-10 and RRF-1 to primary siRNA-targeted mRNA in distinct cytoplasmic compartments.
Collapse
Affiliation(s)
- Huan Yang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | - Philip Shiu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Craig P Hunter
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ho Yi Mak
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
167
|
Seth M, Shirayama M, Gu W, Ishidate T, Conte D, Mello CC. The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression. Dev Cell 2014; 27:656-63. [PMID: 24360782 DOI: 10.1016/j.devcel.2013.11.014] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/05/2013] [Accepted: 11/18/2013] [Indexed: 11/17/2022]
Abstract
Organisms can develop adaptive sequence-specific immunity by reexpressing pathogen-specific small RNAs that guide gene silencing. For example, the C. elegans PIWI-Argonaute/piwi-interacting RNA (piRNA) pathway recruits RNA-dependent RNA polymerase (RdRP) to foreign sequences to amplify a transgenerational small-RNA-induced epigenetic silencing signal (termed RNAe). Here, we provide evidence that, in addition to an adaptive memory of silenced sequences, C. elegans can also develop an opposing adaptive memory of expressed/self-mRNAs. We refer to this mechanism, which can prevent or reverse RNAe, as RNA-induced epigenetic gene activation (RNAa). We show that CSR-1, which engages RdRP-amplified small RNAs complementary to germline-expressed mRNAs, is required for RNAa. We show that a transgene with RNAa activity also exhibits accumulation of cognate CSR-1 small RNAs. Our findings suggest that C. elegans adaptively acquires and maintains a transgenerational CSR-1 memory that recognizes and protects self-mRNAs, allowing piRNAs to recognize foreign sequences innately, without the need for prior exposure
Collapse
|
168
|
Involvement of telomerase reverse transcriptase in heterochromatin maintenance. Mol Cell Biol 2014; 34:1576-93. [PMID: 24550003 DOI: 10.1128/mcb.00093-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In the fission yeast Schizosaccharomyces pombe, centromeric heterochromatin is maintained by an RNA-directed RNA polymerase complex (RDRC) and the RNA-induced transcriptional silencing (RITS) complex in a manner that depends on the generation of short interfering RNA. In association with the telomerase RNA component (TERC), the telomerase reverse transcriptase (TERT) forms telomerase and counteracts telomere attrition, and without TERC, TERT has been implicated in the regulation of heterochromatin at locations distinct from telomeres. Here, we describe a complex composed of human TERT (hTERT), Brahma-related gene 1 (BRG1), and nucleostemin (NS) that contributes to heterochromatin maintenance at centromeres and transposons. This complex produced double-stranded RNAs homologous to centromeric alpha-satellite (alphoid) repeat elements and transposons that were processed into small interfering RNAs targeted to these heterochromatic regions. These small interfering RNAs promoted heterochromatin assembly and mitotic progression in a manner dependent on the RNA interference machinery. These observations implicate the hTERT/BRG1/NS (TBN) complex in heterochromatin assembly at particular sites in the mammalian genome.
Collapse
|
169
|
Haugner JC, Seelig B. Universal labeling of 5'-triphosphate RNAs by artificial RNA ligase enzyme with broad substrate specificity. Chem Commun (Camb) 2014; 49:7322-4. [PMID: 23851643 DOI: 10.1039/c3cc44454f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An artificial RNA ligase specific to RNA with a 5'-triphosphate (PPP-RNA) exhibits broad sequence specificity on model substrates and secondary siRNAs with direct applications in the identification of PPP-RNAs through sequencing.
Collapse
Affiliation(s)
- John C Haugner
- Department of Biochemistry, Molecular Biology and Biophysics & BioTechnology Institute, University of Minnesota, 1479 Gortner Ave, Saint Paul, MN 55108, USA
| | | |
Collapse
|
170
|
Library preparation methods for next-generation sequencing: tone down the bias. Exp Cell Res 2014; 322:12-20. [PMID: 24440557 DOI: 10.1016/j.yexcr.2014.01.008] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/22/2022]
Abstract
Next-generation sequencing (NGS) has caused a revolution in biology. NGS requires the preparation of libraries in which (fragments of) DNA or RNA molecules are fused with adapters followed by PCR amplification and sequencing. It is evident that robust library preparation methods that produce a representative, non-biased source of nucleic acid material from the genome under investigation are of crucial importance. Nevertheless, it has become clear that NGS libraries for all types of applications contain biases that compromise the quality of NGS datasets and can lead to their erroneous interpretation. A detailed knowledge of the nature of these biases will be essential for a careful interpretation of NGS data on the one hand and will help to find ways to improve library quality or to develop bioinformatics tools to compensate for the bias on the other hand. In this review we discuss the literature on bias in the most common NGS library preparation protocols, both for DNA sequencing (DNA-seq) as well as for RNA sequencing (RNA-seq). Strikingly, almost all steps of the various protocols have been reported to introduce bias, especially in the case of RNA-seq, which is technically more challenging than DNA-seq. For each type of bias we discuss methods for improvement with a view to providing some useful advice to the researcher who wishes to convert any kind of raw nucleic acid into an NGS library.
Collapse
|
171
|
Fitzgerald ME, Vela A, Pyle AM. Dicer-related helicase 3 forms an obligate dimer for recognizing 22G-RNA. Nucleic Acids Res 2014; 42:3919-30. [PMID: 24435798 PMCID: PMC3973318 DOI: 10.1093/nar/gkt1383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dicer is a specialized nuclease that produces RNA molecules of specific lengths for use in gene silencing pathways. Dicer relies on the correct measurement of RNA target duplexes to generate products of specific lengths. It is thought that Dicer uses its multidomain architecture to calibrate RNA product length. However, this measurement model is derived from structural information from a protozoan Dicer, and does not account for the helicase domain present in higher organisms. The Caenorhabditis elegans Dicer-related helicase 3 (DRH-3) is an ortholog of the Dicer and RIG-I family of double-strand RNA activated ATPases essential for secondary siRNA production. We find that DRH-3 specifies 22 bp RNAs by dimerization of the helicase domain, a process mediated by ATPase activity and the N-terminal domain. This mechanism for RNA length discrimination by a Dicer family protein suggests an alternative model for RNA length measurement by Dicer, with implications for recognition of siRNA and miRNA targets.
Collapse
Affiliation(s)
- Megan E Fitzgerald
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA, Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
172
|
Shiu PK, Zhuang JJ, Hunter CP. Assays for direct and indirect effects of C. elegans endo-siRNAs. Methods Mol Biol 2014; 1173:71-87. [PMID: 24920361 DOI: 10.1007/978-1-4939-0931-5_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Ever since the discovery of the first microRNAs in C. elegans, increasing numbers of endogenous small RNAs have been discovered. Endogenous siRNAs (endo-siRNAs) have emerged in the last few years as a largely independent class of small RNAs that regulate endogenous gene expression, with mechanisms distinct from those of piRNAs and miRNAs. Quantification of these small RNAs and their effect on target RNAs is a powerful tool for the analysis of RNAi; however, detection of small RNAs can be difficult due to their small size and relatively low abundance. Here, we describe the novel FirePlex assay for directly detecting endo-siRNA levels in bulk, as well as an optimized qPCR method for detecting the effect of endo-siRNAs on gene targets. Intriguingly, the loss of endo-siRNAs frequently results in enhanced experimental RNAi. Thus, we also present an optimized method to assess the indirect impact of endo-siRNAs on experimental RNAi efficiency.
Collapse
Affiliation(s)
- Philip K Shiu
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Room 3044, Cambridge, MA, 02138, USA
| | | | | |
Collapse
|
173
|
Cecere G, Grishok A. A nuclear perspective on RNAi pathways in metazoans. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1839:223-33. [PMID: 24361586 DOI: 10.1016/j.bbagrm.2013.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 11/27/2013] [Accepted: 11/30/2013] [Indexed: 12/27/2022]
Abstract
The role of RNA interference (RNAi) in post-transcriptional regulation of complementary targets is well known. However, less is known about transcriptional silencing mechanisms mediated by RNAi. Such mechanisms have been characterized in yeast and plants, which suggests that similar RNA silencing mechanisms might operate in animals. A growing amount of experimental evidence indicates that short RNAs and their co-factor Argonaute proteins can regulate many nuclear processes in metazoans. PIWI-interacting RNAs (piRNAs) initiate transcriptional silencing of transposable elements, which leads to heterochromatin formation and/or DNA methylation. In addition, Argonaute proteins and short RNAs directly regulate Pol II transcription and splicing of euchromatic protein-coding genes and also affect genome architecture. Therefore, RNAi pathways can have a profound global impact on the transcriptional programs in cells during animal development. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Germano Cecere
- Department of Biochemistry and Molecular Biophysics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Alla Grishok
- Department of Biochemistry and Molecular Biophysics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
174
|
The role of innate immunity in conditioning mosquito susceptibility to West Nile virus. Viruses 2013; 5:3142-70. [PMID: 24351797 PMCID: PMC3967165 DOI: 10.3390/v5123142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/13/2013] [Accepted: 12/09/2013] [Indexed: 01/02/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) represent an emerging threat to human and livestock health globally. In particular, those transmitted by mosquitoes present the greatest challenges to disease control efforts. An understanding of the molecular basis for mosquito innate immunity to arbovirus infection is therefore critical to investigations regarding arbovirus evolution, virus-vector ecology, and mosquito vector competence. In this review, we discuss the current state of understanding regarding mosquito innate immunity to West Nile virus. We draw from the literature with respect to other virus-vector pairings to attempt to draw inferences to gaps in our knowledge about West Nile virus and relevant vectors.
Collapse
|
175
|
Abstract
In the last decade, many diverse RNAi (RNA interference) pathways have been discovered that mediate gene silencing at epigenetic, transcriptional and post-transcriptional levels. The diversity of RNAi pathways is inherently linked to the evolution of Ago (Argonaute) proteins, the central protein component of RISCs (RNA-induced silencing complexes). An increasing number of diverse Agos have been identified in different species. The functions of most of these proteins are not yet known, but they are generally assumed to play roles in development, genome stability and/or protection against viruses. Recent research in the nematode Caenorhabditis elegans has expanded the breadth of RNAi functions to include transgenerational epigenetic memory and, possibly, environmental sensing. These functions are inherently linked to the production of secondary siRNAs (small interfering RNAs) that bind to members of a clade of WAGOs (worm-specific Agos). In the present article, we review briefly what is known about the evolution and function of Ago proteins in eukaryotes, including the expansion of WAGOs in nematodes. We postulate that the rapid evolution of WAGOs enables the exceptional functional plasticity of nematodes, including their capacity for parasitism.
Collapse
|
176
|
Burroughs AM, Ando Y, Aravind L. New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:141-81. [PMID: 24311560 DOI: 10.1002/wrna.1210] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/03/2013] [Accepted: 11/01/2013] [Indexed: 12/19/2022]
Abstract
Our understanding of the pervasive involvement of small RNAs in regulating diverse biological processes has been greatly augmented by recent application of deep-sequencing technologies to small RNA across diverse eukaryotes. We review the currently known small RNA classes and place them in context of the reconstructed evolutionary history of the RNA interference (RNAi) protein machinery. This synthesis indicates that the earliest versions of eukaryotic RNAi systems likely utilized small RNA processed from three types of precursors: (1) sense-antisense transcriptional products, (2) genome-encoded, imperfectly complementary hairpin sequences, and (3) larger noncoding RNA precursor sequences. Structural dissection of PIWI proteins along with recent discovery of novel families (including Med13 of the Mediator complex) suggest that emergence of a distinct architecture with the N-terminal domains (also occurring separately fused to endoDNases in prokaryotes) formed via duplication of an ancestral unit was key to their recruitment as primary RNAi effectors and use of small RNAs of certain preferred lengths. Prokaryotic PIWI proteins are typically components of several RNA-directed DNA restriction or CRISPR/Cas systems. However, eukaryotic versions appear to have emerged from a subset that evolved RNA-directed RNAi. They were recruited alongside RNaseIII domains and RNA-dependent RNA polymerase (RdRP) domains, also from prokaryotic systems, to form the core eukaryotic RNAi system. Like certain regulatory systems, RNAi diversified into two distinct but linked arms concomitant with eukaryotic nucleocytoplasmic compartmentalization. Subsequent elaboration of RNAi proceeded via diversification of the core protein machinery through lineage-specific expansions and recruitment of new components from prokaryotes (nucleases and small RNA-modifying enzymes), allowing for diversification of associating small RNAs.
Collapse
Affiliation(s)
- Alexander Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
177
|
Scott JG, Michel K, Bartholomay L, Siegfried BD, Hunter WB, Smagghe G, Zhu KY, Douglas AE. Towards the elements of successful insect RNAi. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:1212-21. [PMID: 24041495 PMCID: PMC3870143 DOI: 10.1016/j.jinsphys.2013.08.014] [Citation(s) in RCA: 312] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 05/09/2023]
Abstract
RNA interference (RNAi), the sequence-specific suppression of gene expression, offers great opportunities for insect science, especially to analyze gene function, manage pest populations, and reduce disease pathogens. The accumulating body of literature on insect RNAi has revealed that the efficiency of RNAi varies between different species, the mode of RNAi delivery, and the genes being targeted. There is also variation in the duration of transcript suppression. At present, we have a limited capacity to predict the ideal experimental strategy for RNAi of a particular gene/insect because of our incomplete understanding of whether and how the RNAi signal is amplified and spread among insect cells. Consequently, development of the optimal RNAi protocols is a highly empirical process. This limitation can be relieved by systematic analysis of the molecular physiological basis of RNAi mechanisms in insects. An enhanced conceptual understanding of RNAi function in insects will facilitate the application of RNAi for dissection of gene function, and to fast-track the application of RNAi to both control pests and develop effective methods to protect beneficial insects and non-insect arthropods, particularly the honey bee (Apis mellifera) and cultured Pacific white shrimp (Litopenaeus vannamei) from viral and parasitic diseases.
Collapse
Affiliation(s)
- Jeffrey G. Scott
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Kristin Michel
- Department of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | - Blair D. Siegfried
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA
| | | | - Guy Smagghe
- Department of Crop Protection, Ghent University, B-9000 Ghent, Belgium
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Angela E. Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Author for correspondence: , Tel. 1-607-255-8539
| |
Collapse
|
178
|
de Faria IJDS, Olmo RP, Silva EG, Marques JT. dsRNA sensing during viral infection: lessons from plants, worms, insects, and mammals. J Interferon Cytokine Res 2013; 33:239-53. [PMID: 23656598 DOI: 10.1089/jir.2013.0026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Host defense systems often rely on direct and indirect pattern recognition to sense the presence of invading pathogens. Patterns can be molecules directly produced by the pathogen or indirectly generated by changes in host parameters as a consequence of infection. Viruses are intracellular pathogens that hijack the cellular machinery to synthesize their own molecules making direct recognition of viral molecules a great challenge. Antiviral systems in prokaryotes and eukaryotes commonly exploit aberrant nucleic acid sensing to recognize virus infection as host and viral nucleic acid metabolism can greatly differ. Indeed, the generation of dsRNA is often associated with viral infection. In this review, we discuss current knowledge on the mechanisms of viral dsRNA sensing utilized by 2 important antiviral defense systems, RNA interference (RNAi) and the vertebrate immune system. The major viral sensors of the vertebrate immune systems are RIG-like receptors, while RNAi pathways depend on Dicer proteins. These 2 families of sensors share a similar helicase domain with high specificity for dsRNA, which is necessary, but not sufficient for efficient recognition by these receptors. Additional intrinsic features to the dsRNA molecule are also necessary for activation of antiviral systems. Studies utilizing synthetic ligands, in vitro biochemistry and reporter systems have greatly helped increase our knowledge on intrinsic features of dsRNA recognition. However, characteristics such as subcellular localization are extrinsic to the dsRNA itself, but certainly influence the recognition in vivo. Thus, mechanisms of viral dsRNA recognition must address how cellular sensors are recruited to nucleic acids or vice versa. Accessory proteins are likely important for in vivo recognition of extrinsic features of viral RNA, but have mostly remained undiscovered due to the limitations of previous strategies. Hence, the identification of novel components of antiviral systems must take into account the complexities involved in viral recognition in vivo.
Collapse
|
179
|
MacKay CR, Wang JP, Kurt-Jones EA. Dicer's role as an antiviral: still an enigma. Curr Opin Immunol 2013; 26:49-55. [PMID: 24556400 DOI: 10.1016/j.coi.2013.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/21/2013] [Accepted: 10/28/2013] [Indexed: 12/31/2022]
Abstract
Dicer is a multifunctional protein that is essential across species for the generation of microRNAs, a function that is highly conserved across the plant and animal kingdoms. Intriguingly, Dicer exhibits antiviral functions in lower organisms including Drosophila melanogaster and Caenorhabditis elegans. Antiviral activity occurs via small interfering RNA production following cytoplasmic sensing of viral dsRNA. Notably, such antiviral activity has not yet been clearly demonstrated in higher organisms such as mammals. Here, we review the evidence for Dicer as an innate antiviral across species.
Collapse
Affiliation(s)
- Christopher R MacKay
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jennifer P Wang
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Evelyn A Kurt-Jones
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
180
|
López-Camarillo C, López-Rosas I, Ospina-Villa JD, Marchat LA. Deciphering molecular mechanisms of mRNA metabolism in the deep-branching eukaryoteEntamoeba histolytica. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:247-62. [DOI: 10.1002/wrna.1205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/04/2013] [Accepted: 10/09/2013] [Indexed: 11/05/2022]
Affiliation(s)
| | - Itzel López-Rosas
- Genomics Sciences Program; Autonomous University of Mexico City; Mexico City Mexico
| | - Juan David Ospina-Villa
- Institutional Program of Molecular Biomedicine; National School of Medicine and Homeopathy of the National Polytechnic Institute; Mexico City Mexico
| | - Laurence A. Marchat
- Institutional Program of Molecular Biomedicine; National School of Medicine and Homeopathy of the National Polytechnic Institute; Mexico City Mexico
- Biotechnology Program; National School of Medicine and Homeopathy of the National Polytechnic Institute; Mexico City Mexico
| |
Collapse
|
181
|
Raabe CA, Tang TH, Brosius J, Rozhdestvensky TS. Biases in small RNA deep sequencing data. Nucleic Acids Res 2013; 42:1414-26. [PMID: 24198247 PMCID: PMC3919602 DOI: 10.1093/nar/gkt1021] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
High-throughput RNA sequencing (RNA-seq) is considered a powerful tool for novel gene discovery and fine-tuned transcriptional profiling. The digital nature of RNA-seq is also believed to simplify meta-analysis and to reduce background noise associated with hybridization-based approaches. The development of multiplex sequencing enables efficient and economic parallel analysis of gene expression. In addition, RNA-seq is of particular value when low RNA expression or modest changes between samples are monitored. However, recent data uncovered severe bias in the sequencing of small non-protein coding RNA (small RNA-seq or sRNA-seq), such that the expression levels of some RNAs appeared to be artificially enhanced and others diminished or even undetectable. The use of different adapters and barcodes during ligation as well as complex RNA structures and modifications drastically influence cDNA synthesis efficacies and exemplify sources of bias in deep sequencing. In addition, variable specific RNA G/C-content is associated with unequal polymerase chain reaction amplification efficiencies. Given the central importance of RNA-seq to molecular biology and personalized medicine, we review recent findings that challenge small non-protein coding RNA-seq data and suggest approaches and precautions to overcome or minimize bias.
Collapse
Affiliation(s)
- Carsten A Raabe
- Institute of Experimental Pathology (ZMBE), University of Muenster, Von-Esmarch-Strasse 56, 48149 Muenster, Germany and Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Penang, Malaysia
| | | | | | | |
Collapse
|
182
|
Jex AR, Koehler AV, Ansell BR, Baker L, Karunajeewa H, Gasser RB. Getting to the guts of the matter: The status and potential of ‘omics’ research of parasitic protists of the human gastrointestinal system. Int J Parasitol 2013; 43:971-82. [DOI: 10.1016/j.ijpara.2013.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/07/2013] [Accepted: 06/07/2013] [Indexed: 11/17/2022]
|
183
|
|
184
|
Ashe A, Bélicard T, Le Pen J, Sarkies P, Frézal L, Lehrbach NJ, Félix MA, Miska EA. A deletion polymorphism in the Caenorhabditis elegans RIG-I homolog disables viral RNA dicing and antiviral immunity. eLife 2013; 2:e00994. [PMID: 24137537 PMCID: PMC3793227 DOI: 10.7554/elife.00994] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/20/2013] [Indexed: 12/12/2022] Open
Abstract
RNA interference defends against viral infection in plant and animal cells. The
nematode Caenorhabditis elegans and its natural pathogen, the
positive-strand RNA virus Orsay, have recently emerged as a new animal model of
host-virus interaction. Using a genome-wide association study in C.
elegans wild populations and quantitative trait locus mapping, we
identify a 159 base-pair deletion in the conserved drh-1 gene
(encoding a RIG-I-like helicase) as a major determinant of viral sensitivity. We
show that DRH-1 is required for the initiation of an antiviral RNAi pathway and
the generation of virus-derived siRNAs (viRNAs). In mammals, RIG-I-domain
containing proteins trigger an interferon-based innate immunity pathway in
response to RNA virus infection. Our work in C. elegans
demonstrates that the RIG-I domain has an ancient role in viral recognition. We
propose that RIG-I acts as modular viral recognition factor that couples viral
recognition to different effector pathways including RNAi and interferon
responses. DOI:http://dx.doi.org/10.7554/eLife.00994.001 Most organisms—from bacteria to mammals—have at least a rudimentary
immune system that can detect and defend against pathogens, particularly
viruses. This defense mechanism, which is known as the innate immune system,
uses sensor proteins to recognize viral RNA, and then mobilizes other immune
components to attack the invaders. The specific mechanisms used to destroy viruses differ between species. In
mammals, a protein called RIG-1 binds to viral RNA and activates a signaling
pathway that leads to the production of interferons: immune proteins named after
their ability to ‘interfere’ with viral replication. Plants and
insects do not use interferons, but instead use a mechanism called RNA
interference, in which long double-stranded RNAs are cleaved into shorter
fragments. The nematode worm C. elegans also deploys RNA interference
against viruses but, in contrast to insects and plants, worms do not possess a
specific set of RNA interference enzymes that participate solely in the
antiviral response. They do, however, express a protein called DRH-1 that is
related to the RIG-I protein found in mammals. To investigate whether DRH-1 contributes to innate immunity in C.
elegans, Ashe et al. infected 97 strains of C.
elegans from around the world with a virus, and showed that some
strains were more sensitive to the virus than others, with certain strains
showing complete resistance. By comparing a sensitive strain with a resistant
one, Ashe et al. revealed that viral sensitivity was caused by a mutation in the
gene encoding DRH-1. Further experiments showed that DRH-1 is required for the first step in RNA
interference. Ashe et al. have thus identified a conserved role for RIG-1 in
initiating antiviral responses, and propose that the protein couples virus
recognition to distinct defense mechanisms in different evolutionary groups. DOI:http://dx.doi.org/10.7554/eLife.00994.002
Collapse
Affiliation(s)
- Alyson Ashe
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge , Cambridge , United Kingdom ; Department of Biochemistry , University of Cambridge , Cambridge , United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Massirer KB, Pasquinelli AE. MicroRNAs that interfere with RNAi. WORM 2013; 2:e21835. [PMID: 24058860 PMCID: PMC3670461 DOI: 10.4161/worm.21835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/14/2012] [Indexed: 11/28/2022]
Abstract
A recent study by Massirer et al. in the nematode C. elegans has shown that a family of microRNAs (miRNAs), miR-35-41, regulates the efficiency of RNA interference (RNAi), revealing a new connection between these small RNA pathways. In this commentary, we discuss the potential mechanisms for cross regulation in the miRNA and RNAi pathways and the implications for gene expression. While miRNAs are genetically encoded, the small interfering RNAs (siRNAs) that function in RNAi can originate from processing of exogenous dsRNA (exo-RNAi) or from the production of siRNAs from endogenous transcripts (endo-RNAi). These small RNA pathways involve Dicer and Argonaute proteins and typically use antisense base pairing to target mRNAs for downregulated expression. The discovery that loss of miR-35–41 results in enhanced exo-RNAi sensitivity and reduced endo-RNAi effectiveness suggests that these miRNAs normally help balance the RNAi pathways. The effect of mir-35–41 on RNAi is largely through lin-35, the C. elegans homolog of the tumor suppressor Retinoblastoma (Rb) gene. lin-35/Rb previously has been shown to regulate RNAi sensitivity through unclear mechanisms and the new finding that accumulation of LIN-35/Rb protein is dependent on miR-35–41 adds another layer of complexity to this process. The utilization of miRNAs to control the responsiveness of RNAi exemplifies the cross-regulation embedded in small RNA-directed pathways.
Collapse
Affiliation(s)
- Katlin B Massirer
- Division of Biology; University of California San Diego; La Jolla, CA USA
| | | |
Collapse
|
186
|
Homologous RIG-I-like helicase proteins direct RNAi-mediated antiviral immunity in C. elegans by distinct mechanisms. Proc Natl Acad Sci U S A 2013; 110:16085-90. [PMID: 24043766 DOI: 10.1073/pnas.1307453110] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNAi-mediated antiviral immunity in Caenorhabditis elegans requires Dicer-related helicase 1 (DRH-1), which encodes the helicase and C-terminal domains homologous to the mammalian retinoic acid inducible gene I (RIG-I)-like helicase (RLH) family of cytosolic immune receptors. Here we show that the antiviral function of DRH-1 requires the RIG-I homologous domains as well as its worm-specific N-terminal domain. We also demonstrate that the helicase and C-terminal domains encoded by either worm DRH-2 or human RIG-I can functionally replace the corresponding domains of DRH-1 to mediate antiviral RNAi in C. elegans. Notably, substitutions in a three-residue motif of the C-terminal regulatory domain of RIG-I that physically interacts with viral double-stranded RNA abolish the antiviral activity of C-terminal regulatory domains of both RIG-I and DRH-1 in C. elegans. Genetic analysis revealed an essential role for both DRH-1 and DRH-3 in C. elegans antiviral RNAi targeting a natural viral pathogen. However, Northern blot and small RNA deep sequencing analyses indicate that DRH-1 acts to enhance production of viral primary siRNAs, whereas DRH-3 regulates antiviral RNAi by participating in the biogenesis of secondary siRNAs after Dicer-dependent production of primary siRNAs. We propose that DRH-1 facilitates the acquisition of viral double-stranded RNA by the worm dicing complex for the subsequent processing into primary siRNAs. The strong parallel for the antiviral function of RLHs in worms and mammals suggests that detection of viral double-stranded RNA may activate completely unrelated effector mechanisms or, alternatively, that the mammalian RLHs have a conserved activity to stimulate production of viral siRNAs for antiviral immunity by an RNAi effector mechanism.
Collapse
|
187
|
Morf L, Pearson RJ, Wang AS, Singh U. Robust gene silencing mediated by antisense small RNAs in the pathogenic protist Entamoeba histolytica. Nucleic Acids Res 2013; 41:9424-37. [PMID: 23935116 PMCID: PMC3814356 DOI: 10.1093/nar/gkt717] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
RNA interference uses small RNAs (sRNA), which target genes for sequence-specific silencing. The parasite Entamoeba histolytica contains an abundant repertoire of 27 nt antisense (AS) sRNA with 5′-polyphosphate termini, but their roles in regulating gene expression have not been well established. We demonstrate that a gene-coding region to which large numbers of AS sRNAs map can serve as a ‘trigger’ and silence the gene fused to it. Silencing is mediated by generation of AS sRNAs with 5′-polyphosphate termini that have sequence specificity to the fused gene. The mechanism of silencing is independent of the placement of the trigger relative to the silenced gene but is dependent on the sRNA concentration to the trigger. Silencing requires transcription of the trigger-gene fusion and is maintained despite loss of the trigger plasmid. We used this approach to silence multiple amebic genes, including an E. histolytica Myb gene, which is upregulated during oxidative stress response. Silencing of the EhMyb gene decreased parasite viability under oxidative stress conditions. Thus, we have developed a new tool for genetic manipulation in E. histolytica with many advantages over currently available technologies. Additionally, these data shed mechanistic insights into a eukaryotic RNA interference pathway with many novel aspects.
Collapse
Affiliation(s)
- Laura Morf
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, California 94305-5107, USA and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5107, USA
| | | | | | | |
Collapse
|
188
|
Antiviral RNA silencing initiated in the absence of RDE-4, a double-stranded RNA binding protein, in Caenorhabditis elegans. J Virol 2013; 87:10721-9. [PMID: 23885080 DOI: 10.1128/jvi.01305-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Small interfering RNAs (siRNAs) processed from double-stranded RNA (dsRNA) of virus origins mediate potent antiviral defense through a process referred to as RNA interference (RNAi) or RNA silencing in diverse organisms. In the simple invertebrate Caenorhabditis elegans, the RNAi process is initiated by a single Dicer, which partners with the dsRNA binding protein RDE-4 to process dsRNA into viral siRNAs (viRNAs). Notably, in C. elegans this RNA-directed viral immunity (RDVI) also requires a number of worm-specific genes for its full antiviral potential. One such gene is rsd-2 (RNAi spreading defective 2), which was implicated in RDVI in our previous studies. In the current study, we first established an antiviral role by showing that rsd-2 null mutants permitted higher levels of viral RNA accumulation, and that this enhanced viral susceptibility was reversed by ectopic expression of RSD-2. We then examined the relationship of rsd-2 with other known components of RNAi pathways and established that rsd-2 functions in a novel pathway that is independent of rde-4 but likely requires the RNA-dependent RNA polymerase RRF-1, suggesting a critical role for RSD-2 in secondary viRNA biogenesis, likely through coordinated action with RRF-1. Together, these results suggest that RDVI in the single-Dicer organism C. elegans depends on the collective actions of both RDE-4-dependent and RDE-4-independent mechanisms to produce RNAi-inducing viRNAs. Our study reveals, for the first time, a novel siRNA-producing mechanism in C. elegans that bypasses the need for a dsRNA-binding protein.
Collapse
|
189
|
RNAi pathways in the recognition of foreign RNA: antiviral responses and host–parasite interactions in nematodes. Biochem Soc Trans 2013; 41:876-80. [DOI: 10.1042/bst20130021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The nematode Caenorhabditis elegans was the first animal for which RNAi (RNA interference) in response to exogenous triggers was shown experimentally and subsequently the molecular components of the RNAi pathway have been characterized in some detail. However, the function of RNAi in the life cycle of nematodes in the wild is still unclear. In the present article, we argue that RNAi could be used in nematodes as a mechanism to sense and respond to foreign RNA that the animal might be exposed to either through viral infection or through ingestion of food sources. This could be of potential importance to the life cycle of parasitic nematodes as they ingest RNA from different hosts at different points during their life cycle. We postulate that RNA ingested from the host could be used by the parasite to regulate its own genes, through the amplification mechanism intrinsic to the nematode RNAi pathway.
Collapse
|
190
|
Sitikov AS. Antisense RNAs as envoys in intercellular communication: 20 years later. BIOCHEMISTRY (MOSCOW) 2013; 77:1478-86. [PMID: 23379523 DOI: 10.1134/s0006297912130068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
More than 20 years ago we showed that some types of cells are capable of secreting RNAs. It was suggested that these secreted RNAs could serve as molecular envoys in intercellular communication, for example, these RNAs being complementary to specific sites of the gene in another cell (e.g. to the variable region of immunoglobulin gene) could regulate the expression of genes that contain sites in coding regions complementary to antisense RNA. It has since been proven that eukaryotic cells contain antisense RNAs (particularly microRNAs and small interfering RNAs), which can regulate the expression of genes at the posttranscriptional level (the so-called regulatory pathway of RNA interference). Here I provide a short review of advances in the field of intracellular regulation of gene expression by different types of RNAs. In addition, an overview of recent data on the secretion of RNA molecules by different cell types and possible involvement of these secreted antisense RNAs in intercellular regulation of gene expression in target cells is given.
Collapse
|
191
|
Sarkies P, Ashe A, Le Pen J, McKie MA, Miska EA. Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans. Genome Res 2013; 23:1258-70. [PMID: 23811144 PMCID: PMC3730100 DOI: 10.1101/gr.153296.112] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Positive-strand RNA viruses encompass more than one-third of known virus genera and include many medically and agriculturally relevant human, animal, and plant pathogens. The nematode Caenorhabditis elegans and its natural pathogen, the positive-strand RNA virus Orsay, have recently emerged as a new animal model to understand the mechanisms and evolution of innate immune responses. In particular, the RNA interference (RNAi) pathway is required for C. elegans resistance to viral infection. Here we report the first genome-wide analyses of gene expression upon viral infection in C. elegans. Using the laboratory strain N2, we identify a novel C. elegans innate immune response specific to viral infection. A subset of these changes is driven by the RNAi response to the virus, which redirects the Argonaute protein RDE-1 from its endogenous small RNA cofactors, leading to loss of repression of endogenous RDE-1 targets. Additionally, we show that a C. elegans wild isolate, JU1580, has a distinct gene expression signature in response to viral infection. This is associated with a reduction in microRNA (miRNA) levels and an up-regulation of their target genes. Intriguingly, alterations in miRNA levels upon JU1580 infection are associated with a transformation of the antiviral transcriptional response into an antibacterial-like response. Together our data support a model whereby antiviral RNAi competes with endogenous small RNA pathways, causing widespread transcriptional changes. This provides an elegant mechanism for C. elegans to orchestrate its antiviral response, which may have significance for the relationship between small RNA pathways and immune regulation in other organisms.
Collapse
Affiliation(s)
- Peter Sarkies
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom.
| | | | | | | | | |
Collapse
|
192
|
Newhart A, Rafalska-Metcalf IU, Yang T, Joo LM, Powers SL, Kossenkov AV, Lopez-Jones M, Singer RH, Showe LC, Skordalakes E, Janicki SM. Single cell analysis of RNA-mediated histone H3.3 recruitment to a cytomegalovirus promoter-regulated transcription site. J Biol Chem 2013; 288:19882-99. [PMID: 23689370 DOI: 10.1074/jbc.m113.473181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Unlike the core histones, which are incorporated into nucleosomes concomitant with DNA replication, histone H3.3 is synthesized throughout the cell cycle and utilized for replication-independent (RI) chromatin assembly. The RI incorporation of H3.3 into nucleosomes is highly conserved and occurs at both euchromatin and heterochromatin. However, neither the mechanism of H3.3 recruitment nor its essential function is well understood. Several different chaperones regulate H3.3 assembly at distinct sites. The H3.3 chaperone, Daxx, and the chromatin-remodeling factor, ATRX, are required for H3.3 incorporation and heterochromatic silencing at telomeres, pericentromeres, and the cytomegalovirus (CMV) promoter. By evaluating H3.3 dynamics at a CMV promoter-regulated transcription site in a genetic background in which RI chromatin assembly is blocked, we have been able to decipher the regulatory events upstream of RI nucleosomal deposition. We find that at the activated transcription site, H3.3 accumulates with sense and antisense RNA, suggesting that it is recruited through an RNA-mediated mechanism. Sense and antisense transcription also increases after H3.3 knockdown, suggesting that the RNA signal is amplified when chromatin assembly is blocked and attenuated by nucleosomal deposition. Additionally, we find that H3.3 is still recruited after Daxx knockdown, supporting a chaperone-independent recruitment mechanism. Sequences in the H3.3 N-terminal tail and αN helix mediate both its recruitment to RNA at the activated transcription site and its interaction with double-stranded RNA in vitro. Interestingly, the H3.3 gain-of-function pediatric glioblastoma mutations, G34R and K27M, differentially affect H3.3 affinity in these assays, suggesting that disruption of an RNA-mediated regulatory event could drive malignant transformation.
Collapse
Affiliation(s)
- Alyshia Newhart
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Heinemann JA, Agapito-Tenfen SZ, Carman JA. A comparative evaluation of the regulation of GM crops or products containing dsRNA and suggested improvements to risk assessments. ENVIRONMENT INTERNATIONAL 2013; 55:43-55. [PMID: 23523853 DOI: 10.1016/j.envint.2013.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/08/2013] [Accepted: 02/22/2013] [Indexed: 05/20/2023]
Abstract
Changing the nature, kind and quantity of particular regulatory-RNA molecules through genetic engineering can create biosafety risks. While some genetically modified organisms (GMOs) are intended to produce new regulatory-RNA molecules, these may also arise in other GMOs not intended to express them. To characterise, assess and then mitigate the potential adverse effects arising from changes to RNA requires changing current approaches to food or environmental risk assessments of GMOs. We document risk assessment advice offered to government regulators in Australia, New Zealand and Brazil during official risk evaluations of GM plants for use as human food or for release into the environment (whether for field trials or commercial release), how the regulator considered those risks, and what that experience teaches us about the GMO risk assessment framework. We also suggest improvements to the process.
Collapse
Affiliation(s)
- Jack A Heinemann
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| | | | | |
Collapse
|
194
|
Abstract
RNA interference (RNAi) is an ancient process by which non-coding RNAs regulate gene expression in a sequence-specific manner. The core components of RNAi are small regulatory RNAs, approximately 21-30 nucleotides in length, including small interfering RNAs (siRNAs) and microRNAs (miRNAs). The past two decades have seen considerable progress in our understanding of the molecular mechanisms underlying the biogenesis of siRNAs and miRNAs. Recent advances have also revealed the crucial regulatory roles played by small RNAs in such diverse processes as development, homeostasis, innate immunity, and oncogenesis. Accumulating evidence indicates that RNAi initially evolved as a host defense mechanism against viruses and transposons. The ability of the host small RNA biogenesis machinery to recognize viral double-stranded RNA replication intermediates and transposon transcripts is critical to this process, as is small RNA-guided targeting of RNAs via complementary base pairing. Collectively, these properties confer unparalleled specificity and precision to RNAi-mediated gene silencing as an effective antiviral mechanism.
Collapse
Affiliation(s)
- Rui Zhou
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
195
|
Mei Y, Clark D, Mao L. Novel dimensions of piRNAs in cancer. Cancer Lett 2013; 336:46-52. [PMID: 23603435 DOI: 10.1016/j.canlet.2013.04.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/04/2013] [Accepted: 04/10/2013] [Indexed: 12/16/2022]
Abstract
Piwi-interacting RNAs (piRNAs), a newly identified class of small non-coding RNAs, direct the Piwi-dependent transposon silencing, heterochromatin modification and germ cell maintenance. Owing to our limited knowledge regarding their biogenesis, piRNAs are considered as the most mysterious class of small regulatory RNAs, particularly in pathogenesis such as tumorigenesis. Recently, several lines of evidence have emerged to suggest that piRNAs may be dis-regulated and play crucial roles in tumorigenesis in previously unsuspected ways. In this prospective piece, we will discuss the emerging insights into the potential novel roles of piRNAs in carcinogenesis and highlight their potential implications in cancer detection, classification and therapy.
Collapse
Affiliation(s)
- Yuping Mei
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
196
|
Duan G, Saint RB, Helliwell CA, Behm CA, Wang MB, Waterhouse PM, Gordon KHJ. C. elegans RNA-dependent RNA polymerases rrf-1 and ego-1 silence Drosophila transgenes by differing mechanisms. Cell Mol Life Sci 2013; 70:1469-81. [PMID: 23224429 PMCID: PMC11113355 DOI: 10.1007/s00018-012-1218-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/19/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
Abstract
Drosophila possesses the core gene silencing machinery but, like all insects, lacks the canonical RNA-dependent RNA polymerases (RdRps) that in C. elegans either trigger or enhance two major small RNA-dependent gene silencing pathways. Introduction of two different nematode RdRps into Drosophila showed them to be functional, resulting in differing silencing activities. While RRF-1 enhanced transitive dsRNA-dependent silencing, EGO-1 triggered dsRNA-independent silencing, specifically of transgenes. The strain w; da-Gal4; UAST-ego-1, constitutively expressing ego-1, is capable of silencing transgene including dsRNA hairpin upon a single cross, which created a powerful tool for research in Drosophila. In C. elegans, EGO-1 is involved in transcriptional gene silencing (TGS) of chromosome regions that are unpaired during meiosis. There was no opportunity for meiotic interactions involving EGO-1 in Drosophila that would explain the observed transgene silencing. Transgene DNA is, however, unpaired during the pairing of chromosomes in embryonic mitosis that is an unusual characteristic of Diptera, suggesting that in Drosophila, EGO-1 triggers transcriptional silencing of unpaired DNA during embryonic mitosis.
Collapse
Affiliation(s)
- Guowen Duan
- CSIRO Ecosystem Sciences, Clunies Ross St., Canberra, ACT, 2601, Australia.
| | | | | | | | | | | | | |
Collapse
|
197
|
Uryu O, Kamae Y, Tomioka K, Yoshii T. Long-term effect of systemic RNA interference on circadian clock genes in hemimetabolous insects. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:494-499. [PMID: 23458340 DOI: 10.1016/j.jinsphys.2013.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/20/2013] [Accepted: 02/20/2013] [Indexed: 06/01/2023]
Abstract
RNA interference (RNAi) strategy, which enables gene-specific knock-down of transcripts, has been spread across a wide area of insect studies for investigating gene function without regard to model and non-model insects. This technique is of particular benefit to promote molecular studies on non-model insects. However, the optimal conditions for RNAi are still not well understood because of its variable efficiency depending on the species, target genes, and experimental conditions. To apply RNAi technique to long-running experiments such as chronobiological studies, the effects of RNAi have to persist throughout the experiment. In this study, we attempted to determine the optimal concentration of double-stranded RNA (dsRNA) for systemic RNAi and its effective period in two different insect species, the cricket Gryllus bimaculatus and the firebrat Thermobia domestica. In both species, higher concentrations of dsRNA principally yielded a more efficient knock-down of mRNA levels of tested clock genes, although the effect depended on the gene and the species. Surprisingly, the effect of the RNAi reached its maximum effect 1-2 weeks and 1 month after the injection of dsRNA in the crickets and the firebrats, respectively, suggesting a slow but long-term effect of RNAi. Our study provides fundamental information for utilizing RNAi technique in any long-running experiment.
Collapse
Affiliation(s)
- Outa Uryu
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | |
Collapse
|
198
|
Castel SE, Martienssen RA. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 2013; 14:100-12. [PMID: 23329111 DOI: 10.1038/nrg3355] [Citation(s) in RCA: 679] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A growing number of functions are emerging for RNA interference (RNAi) in the nucleus, in addition to well-characterized roles in post-transcriptional gene silencing in the cytoplasm. Epigenetic modifications directed by small RNAs have been shown to cause transcriptional repression in plants, fungi and animals. Additionally, increasing evidence indicates that RNAi regulates transcription through interaction with transcriptional machinery. Nuclear small RNAs include small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs) and are implicated in nuclear processes such as transposon regulation, heterochromatin formation, developmental gene regulation and genome stability.
Collapse
Affiliation(s)
- Stephane E Castel
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
199
|
Characterization of virus-encoded RNA interference suppressors in Caenorhabditis elegans. J Virol 2013; 87:5414-23. [PMID: 23468484 DOI: 10.1128/jvi.00148-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In fungi, plants, and invertebrates, antiviral RNA interference (RNAi) directed by virus-derived small interfering RNAs (siRNAs) represents a major antiviral defense that the invading viruses have to overcome in order to establish infection. As a counterdefense mechanism, viruses of these hosts produce diverse classes of proteins capable of suppressing the biogenesis and/or function of viral siRNAs. This RNA-directed viral immunity (RDVI) in the nematode Caenorhabditis elegans is known to exhibit some unique features. Currently, little is known about viral suppression of RNAi in C. elegans. Here, we show that ectopic expression of the B2 protein encoded by Flock House virus (FHV) suppresses RNAi induced by either long double-stranded RNA (dsRNA) or an FHV-based replicon and facilitates the natural infection of C. elegans by Orsay virus but is not active against RNA silencing mediated by microRNAs. We report the development of an assay for the identification of viral suppressor of RNAi (VSR) in C. elegans based on the suppression of a viral replicon-triggered RDVI by ectopic expression of candidate proteins. No VSR activity was detected for either of the two Orsay viral proteins proposed previously as VSRs. We detected, among the known heterologous VSRs, VSR activity for B2 of Nodamura virus but not for 2b of tomato aspermy virus, p29 of fungus-infecting hypovirus, or p19 of tomato bushy stunt virus. We further show that, unlike that in plants and insects, FHV B2 suppresses worm RDVI mainly by interfering with the function of virus-derived primary siRNAs.
Collapse
|
200
|
Abstract
The Caenorhabditis elegans nuclear RNA interference defective (Nrde) mutants were identified by their inability to silence polycistronic transcripts in enhanced RNAi (Eri) mutant backgrounds. Here, we report additional nrde-3-dependent RNAi phenomena that extend the mechanisms, roles, and functions of nuclear RNAi. We show that nrde-3 mutants are broadly RNAi deficient and that overexpressing NRDE-3 enhances RNAi. Consistent with NRDE-3 being a dose-dependent limiting resource for effective RNAi, we find that NRDE-3 is required for eri-dependent enhanced RNAi phenotypes, although only for a subset of target genes. We then identify pgl-1 as an additional limiting RNAi resource important for eri-dependent silencing of a nonoverlapping subset of target genes, so that an nrde-3; pgl-1; eri-1 triple mutant fails to show enhanced RNAi for any tested gene. These results suggest that nrde-3 and pgl-1 define separate and independent limiting RNAi resource pathways. Limiting RNAi resources are proposed to primarily act via endogenous RNA silencing pathways. Consistent with this, we find that nrde-3 mutants misexpress genes regulated by endogenous siRNAs and incompletely silence repetitive transgene arrays. Finally, we find that nrde-3 contributes to transitive RNAi, whereby amplified silencing triggers act in trans to silence sequence-similar genes. Because nrde-dependent silencing is thought to act in cis to limit the production of primary transcripts, this result reveals an unexpected role for nuclear processes in RNAi silencing.
Collapse
|