151
|
Parasuraman P, Mulligan P, Walker JA, Li B, Boukhali M, Haas W, Bernards A. Interaction of p190A RhoGAP with eIF3A and Other Translation Preinitiation Factors Suggests a Role in Protein Biosynthesis. J Biol Chem 2016; 292:2679-2689. [PMID: 28007963 DOI: 10.1074/jbc.m116.769216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 11/06/2022] Open
Abstract
The negative regulator of Rho family GTPases, p190A RhoGAP, is one of six mammalian proteins harboring so-called FF motifs. To explore the function of these and other p190A segments, we identified interacting proteins by tandem mass spectrometry. Here we report that endogenous human p190A, but not its 50% identical p190B paralog, associates with all 13 eIF3 subunits and several other translational preinitiation factors. The interaction involves the first FF motif of p190A and the winged helix/PCI domain of eIF3A, is enhanced by serum stimulation and reduced by phosphatase treatment. The p190A/eIF3A interaction is unaffected by mutating phosphorylated p190A-Tyr308, but disrupted by a S296A mutation, targeting the only other known phosphorylated residue in the first FF domain. The p190A-eIF3 complex is distinct from eIF3 complexes containing S6K1 or mammalian target of rapamycin (mTOR), and appears to represent an incomplete preinitiation complex lacking several subunits. Based on these findings we propose that p190A may affect protein translation by controlling the assembly of functional preinitiation complexes. Whether such a role helps to explain why, unique among the large family of RhoGAPs, p190A exhibits a significantly increased mutation rate in cancer remains to be determined.
Collapse
Affiliation(s)
- Prasanna Parasuraman
- From the Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Peter Mulligan
- From the Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts 02129
| | - James A Walker
- From the Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Bihua Li
- From the Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Myriam Boukhali
- From the Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Wilhelm Haas
- From the Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Andre Bernards
- From the Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts 02129
| |
Collapse
|
152
|
Lin TC, Neuner A, Flemming D, Liu P, Chinen T, Jäkle U, Arkowitz R, Schiebel E. MOZART1 and γ-tubulin complex receptors are both required to turn γ-TuSC into an active microtubule nucleation template. J Cell Biol 2016; 215:823-840. [PMID: 27920216 PMCID: PMC5166503 DOI: 10.1083/jcb.201606092] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/03/2016] [Accepted: 11/04/2016] [Indexed: 01/14/2023] Open
Abstract
Cells use γ-tubulin complex to nucleate microtubules. The assembly of active microtubule nucleator is spatially and temporally regulated through the cell cycle. Lin et al. show that the protein Mzt1/MOZART1 and γ-tubulin complex receptors directly interact and act together to assemble the γ-tubulin small complex into an active microtubule nucleation template and that such interaction is conserved between Candida albicans and human cells. MOZART1/Mzt1 is required for the localization of γ-tubulin complexes to microtubule (MT)–organizing centers from yeast to human cells. Nevertheless, the molecular function of MOZART1/Mzt1 is largely unknown. Taking advantage of the minimal MT nucleation system of Candida albicans, we reconstituted the interactions of Mzt1, γ-tubulin small complex (γ-TuSC), and γ-tubulin complex receptors (γ-TuCRs) Spc72 and Spc110 in vitro. With affinity measurements, domain deletion, and swapping, we show that Spc110 and Mzt1 bind to distinct regions of the γ-TuSC. In contrast, both Mzt1 and γ-TuSC interact with the conserved CM1 motif of Spc110/Spc72. Spc110/Spc72 and Mzt1 constitute “oligomerization chaperones,” cooperatively promoting and directing γ-TuSC oligomerization into MT nucleation-competent rings. Consistent with the functions of Mzt1, human MOZART1 directly interacts with the CM1-containing region of the γ-TuCR CEP215. MOZART1 depletion in human cells destabilizes the large γ-tubulin ring complex and abolishes CEP215CM1-induced ectopic MT nucleation. Together, we reveal conserved functions of MOZART1/Mzt1 through interactions with γ-tubulin complex subunits and γ-TuCRs.
Collapse
Affiliation(s)
- Tien-Chen Lin
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH-Allianz, 69120 Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH-Allianz, 69120 Heidelberg, Germany
| | | | - Peng Liu
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH-Allianz, 69120 Heidelberg, Germany
| | - Takumi Chinen
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH-Allianz, 69120 Heidelberg, Germany
| | - Ursula Jäkle
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH-Allianz, 69120 Heidelberg, Germany
| | - Robert Arkowitz
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Biologie Valrose, 06108 Nice, France
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH-Allianz, 69120 Heidelberg, Germany
| |
Collapse
|
153
|
Takizawa Y, Binshtein E, Erwin AL, Pyburn TM, Mittendorf KF, Ohi MD. While the revolution will not be crystallized, biochemistry reigns supreme. Protein Sci 2016; 26:69-81. [PMID: 27673321 DOI: 10.1002/pro.3054] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/22/2016] [Indexed: 12/14/2022]
Abstract
Single-particle cryo-electron microscopy (EM) is currently gaining attention for the ability to calculate structures that reach sub-5 Å resolutions; however, the technique is more than just an alternative approach to X-ray crystallography. Molecular machines work via dynamic conformational changes, making structural flexibility the hallmark of function. While the dynamic regions in molecules are essential, they are also the most challenging to structurally characterize. Single-particle EM has the distinct advantage of being able to directly visualize purified molecules without the formation of ordered arrays of molecules locked into identical conformations. Additionally, structures determined using single-particle EM can span resolution ranges from very low- to atomic-levels (>30-1.8 Å), sometimes even in the same structure. The ability to accommodate various resolutions gives single-particle EM the unique capacity to structurally characterize dynamic regions of biological molecules, thereby contributing essential structural information needed for the development of molecular models that explain function. Further, many important molecular machines are intrinsically dynamic and compositionally heterogeneous. Structures of these complexes may never reach sub-5 Å resolutions due to this flexibility required for function. Thus, the biochemical quality of the sample, as well as, the calculation and interpretation of low- to mid-resolution cryo-EM structures (30-8 Å) remains critical for generating insights into the architecture of many challenging biological samples that cannot be visualized using alternative techniques.
Collapse
Affiliation(s)
- Yoshimasa Takizawa
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, 37232.,Center for Structural Biology Vanderbilt University, Nashville, Tennessee, 37232
| | - Elad Binshtein
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, 37232.,Center for Structural Biology Vanderbilt University, Nashville, Tennessee, 37232
| | - Amanda L Erwin
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, 37232.,Center for Structural Biology Vanderbilt University, Nashville, Tennessee, 37232
| | - Tasia M Pyburn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, 37232.,Center for Structural Biology Vanderbilt University, Nashville, Tennessee, 37232
| | - Kathleen F Mittendorf
- Vanderbilt-Ingram Cancer Center Vanderbilt University Medical Center, Nashville, Tennessee, 37232
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, 37232.,Center for Structural Biology Vanderbilt University, Nashville, Tennessee, 37232
| |
Collapse
|
154
|
Morelli E, Mastrodonato V, Beznoussenko GV, Mironov AA, Tognon E, Vaccari T. An essential step of kinetochore formation controlled by the SNARE protein Snap29. EMBO J 2016; 35:2223-2237. [PMID: 27647876 PMCID: PMC5069552 DOI: 10.15252/embj.201693991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 08/16/2016] [Indexed: 12/31/2022] Open
Abstract
The kinetochore is an essential structure that mediates accurate chromosome segregation in mitosis and meiosis. While many of the kinetochore components have been identified, the mechanisms of kinetochore assembly remain elusive. Here, we identify a novel role for Snap29, an unconventional SNARE, in promoting kinetochore assembly during mitosis in Drosophila and human cells. Snap29 localizes to the outer kinetochore and prevents chromosome mis‐segregation and the formation of cells with fragmented nuclei. Snap29 promotes accurate chromosome segregation by mediating the recruitment of Knl1 at the kinetochore and ensuring stable microtubule attachments. Correct Knl1 localization to kinetochore requires human or Drosophila Snap29, and is prevented by a Snap29 point mutant that blocks Snap29 release from SNARE fusion complexes. Such mutant causes ectopic Knl1 recruitment to trafficking compartments. We propose that part of the outer kinetochore is functionally similar to membrane fusion interfaces.
Collapse
Affiliation(s)
- Elena Morelli
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | | | - Emiliana Tognon
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Thomas Vaccari
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
155
|
Uusküla-Reimand L, Hou H, Samavarchi-Tehrani P, Rudan MV, Liang M, Medina-Rivera A, Mohammed H, Schmidt D, Schwalie P, Young EJ, Reimand J, Hadjur S, Gingras AC, Wilson MD. Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders. Genome Biol 2016; 17:182. [PMID: 27582050 PMCID: PMC5006368 DOI: 10.1186/s13059-016-1043-8] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 08/10/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Type II DNA topoisomerases (TOP2) regulate DNA topology by generating transient double stranded breaks during replication and transcription. Topoisomerase II beta (TOP2B) facilitates rapid gene expression and functions at the later stages of development and differentiation. To gain new insight into the genome biology of TOP2B, we used proteomics (BioID), chromatin immunoprecipitation, and high-throughput chromosome conformation capture (Hi-C) to identify novel proximal TOP2B protein interactions and characterize the genomic landscape of TOP2B binding at base pair resolution. RESULTS Our human TOP2B proximal protein interaction network included members of the cohesin complex and nucleolar proteins associated with rDNA biology. TOP2B associates with DNase I hypersensitivity sites, allele-specific transcription factor (TF) binding, and evolutionarily conserved TF binding sites on the mouse genome. Approximately half of all CTCF/cohesion-bound regions coincided with TOP2B binding. Base pair resolution ChIP-exo mapping of TOP2B, CTCF, and cohesin sites revealed a striking structural ordering of these proteins along the genome relative to the CTCF motif. These ordered TOP2B-CTCF-cohesin sites flank the boundaries of topologically associating domains (TADs) with TOP2B positioned externally and cohesin internally to the domain loop. CONCLUSIONS TOP2B is positioned to solve topological problems at diverse cis-regulatory elements and its occupancy is a highly ordered and prevalent feature of CTCF/cohesin binding sites that flank TADs.
Collapse
Affiliation(s)
- Liis Uusküla-Reimand
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Huayun Hou
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | | | - Matteo Vietri Rudan
- Research Department of Cancer Biology, Cancer Institute, University College London, London, UK
| | - Minggao Liang
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Alejandra Medina-Rivera
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
- Present address: International Laboratory for Research in Human Genomics, Universidad Nacional Autónoma de México, Juriquilla, Querétaro Mexico
| | - Hisham Mohammed
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
- Present address: The Babraham Institute, Cambridge, UK
| | - Dominic Schmidt
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
- Present address: Syncona Partners LLP, London, UK
| | - Petra Schwalie
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
- Present address: Laboratory of Systems Biology and Genetics, Lausanne, Switzerland
| | - Edwin J. Young
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
| | - Jüri Reimand
- Ontario Institute for Cancer Research, Toronto, ON Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Suzana Hadjur
- Research Department of Cancer Biology, Cancer Institute, University College London, London, UK
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Michael D. Wilson
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| |
Collapse
|
156
|
Gai M, Bianchi FT, Vagnoni C, Vernì F, Bonaccorsi S, Pasquero S, Berto GE, Sgrò F, Chiotto AM, Annaratone L, Sapino A, Bergo A, Landsberger N, Bond J, Huttner WB, Di Cunto F. ASPM and CITK regulate spindle orientation by affecting the dynamics of astral microtubules. EMBO Rep 2016; 17:1396-1409. [PMID: 27562601 DOI: 10.15252/embr.201541823] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 07/26/2016] [Indexed: 11/09/2022] Open
Abstract
Correct orientation of cell division is considered an important factor for the achievement of normal brain size, as mutations in genes that affect this process are among the leading causes of microcephaly. Abnormal spindle orientation is associated with reduction of the neuronal progenitor symmetric divisions, premature cell cycle exit, and reduced neurogenesis. This mechanism has been involved in microcephaly resulting from mutation of ASPM, the most frequently affected gene in autosomal recessive human primary microcephaly (MCPH), but it is presently unknown how ASPM regulates spindle orientation. In this report, we show that ASPM may control spindle positioning by interacting with citron kinase (CITK), a protein whose loss is also responsible for severe microcephaly in mammals. We show that the absence of CITK leads to abnormal spindle orientation in mammals and insects. In mouse cortical development, this phenotype correlates with increased production of basal progenitors. ASPM is required to recruit CITK at the spindle, and CITK overexpression rescues ASPM phenotype. ASPM and CITK affect the organization of astral microtubules (MT), and low doses of MT-stabilizing drug revert the spindle orientation phenotype produced by their knockdown. Finally, CITK regulates both astral-MT nucleation and stability. Our results provide a functional link between two established microcephaly proteins.
Collapse
Affiliation(s)
- Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Federico T Bianchi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Cristiana Vagnoni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Fiammetta Vernì
- Department of Biology and Biotechnologies "C. Darwin", Sapienza, Università di Roma, Rome, Italy
| | - Silvia Bonaccorsi
- Department of Biology and Biotechnologies "C. Darwin", Sapienza, Università di Roma, Rome, Italy
| | - Selina Pasquero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Gaia E Berto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesco Sgrò
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Alessandra Ma Chiotto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Laura Annaratone
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Anna Sapino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Anna Bergo
- San Raffaele Rett Research Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Nicoletta Landsberger
- San Raffaele Rett Research Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Jacqueline Bond
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Wieland B Huttner
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ferdinando Di Cunto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
157
|
Bauer M, Cubizolles F, Schmidt A, Nigg EA. Quantitative analysis of human centrosome architecture by targeted proteomics and fluorescence imaging. EMBO J 2016; 35:2152-2166. [PMID: 27539480 PMCID: PMC5048348 DOI: 10.15252/embj.201694462] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022] Open
Abstract
Centrioles are essential for the formation of centrosomes and cilia. While numerical and/or structural centrosomes aberrations are implicated in cancer, mutations in centriolar and centrosomal proteins are genetically linked to ciliopathies, microcephaly, and dwarfism. The evolutionarily conserved mechanisms underlying centrosome biogenesis are centered on a set of key proteins, including Plk4, Sas-6, and STIL, whose exact levels are critical to ensure accurate reproduction of centrioles during cell cycle progression. However, neither the intracellular levels of centrosomal proteins nor their stoichiometry within centrosomes is presently known. Here, we have used two complementary approaches, targeted proteomics and EGFP-tagging of centrosomal proteins at endogenous loci, to measure protein abundance in cultured human cells and purified centrosomes. Our results provide a first assessment of the absolute and relative amounts of major components of the human centrosome. Specifically, they predict that human centriolar cartwheels comprise up to 16 stacked hubs and 1 molecule of STIL for every dimer of Sas-6. This type of quantitative information will help guide future studies of the molecular basis of centrosome assembly and function.
Collapse
Affiliation(s)
- Manuel Bauer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Erich A Nigg
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
158
|
Cabrera-Quio LE, Herberg S, Pauli A. Decoding sORF translation - from small proteins to gene regulation. RNA Biol 2016; 13:1051-1059. [PMID: 27653973 DOI: 10.1080/15476286.2016.1218589] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Translation is best known as the fundamental mechanism by which the ribosome converts a sequence of nucleotides into a string of amino acids. Extensive research over many years has elucidated the key principles of translation, and the majority of translated regions were thought to be known. The recent discovery of wide-spread translation outside of annotated protein-coding open reading frames (ORFs) came therefore as a surprise, raising the intriguing possibility that these newly discovered translated regions might have unrecognized protein-coding or gene-regulatory functions. Here, we highlight recent findings that provide evidence that some of these newly discovered translated short ORFs (sORFs) encode functional, previously missed small proteins, while others have regulatory roles. Based on known examples we will also speculate about putative additional roles and the potentially much wider impact that these translated regions might have on cellular homeostasis and gene regulation.
Collapse
Affiliation(s)
| | - Sarah Herberg
- a The Research Institute of Molecular Pathology, Vienna Biocenter (VBC) , Vienna , Austria
| | - Andrea Pauli
- a The Research Institute of Molecular Pathology, Vienna Biocenter (VBC) , Vienna , Austria
| |
Collapse
|
159
|
Pitchai GP, Hickson ID, Streicher W, Montoya G, Mesa P. Characterization of the NTPR and BD1 interacting domains of the human PICH-BEND3 complex. Acta Crystallogr F Struct Biol Commun 2016; 72:646-51. [PMID: 27487930 PMCID: PMC4973307 DOI: 10.1107/s2053230x16010724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/01/2016] [Indexed: 11/10/2022] Open
Abstract
Chromosome integrity depends on DNA structure-specific processing complexes that resolve DNA entanglement between sister chromatids. If left unresolved, these entanglements can generate either chromatin bridging or ultrafine DNA bridging in the anaphase of mitosis. These bridge structures are defined by the presence of the PICH protein, which interacts with the BEND3 protein in mitosis. To obtain structural insights into PICH-BEND3 complex formation at the atomic level, their respective NTPR and BD1 domains were cloned, overexpressed and crystallized using 1.56 M ammonium sulfate as a precipitant at pH 7.0. The protein complex readily formed large hexagonal crystals belonging to space group P6122, with unit-cell parameters a = b = 47.28, c = 431.58 Å and with one heterodimer in the asymmetric unit. A complete multiwavelength anomalous dispersion (MAD) data set extending to 2.2 Å resolution was collected from a selenomethionine-labelled crystal at the Swiss Light Source.
Collapse
Affiliation(s)
- Ganesha P. Pitchai
- Protein Structure and Function Programme, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| | - Ian D. Hickson
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| | - Werner Streicher
- Protein Structure and Function Programme, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| | - Guillermo Montoya
- Protein Structure and Function Programme, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| | - Pablo Mesa
- Protein Structure and Function Programme, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| |
Collapse
|
160
|
Ohta S, Montaño-Gutierrez LF, de Lima Alves F, Ogawa H, Toramoto I, Sato N, Morrison CG, Takeda S, Hudson DF, Rappsilber J, Earnshaw WC. Proteomics Analysis with a Nano Random Forest Approach Reveals Novel Functional Interactions Regulated by SMC Complexes on Mitotic Chromosomes. Mol Cell Proteomics 2016; 15:2802-18. [PMID: 27231315 PMCID: PMC4974353 DOI: 10.1074/mcp.m116.057885] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/04/2016] [Indexed: 12/31/2022] Open
Abstract
Packaging of DNA into condensed chromosomes during mitosis is essential for the faithful segregation of the genome into daughter nuclei. Although the structure and composition of mitotic chromosomes have been studied for over 30 years, these aspects are yet to be fully elucidated. Here, we used stable isotope labeling with amino acids in cell culture to compare the proteomes of mitotic chromosomes isolated from cell lines harboring conditional knockouts of members of the condensin (SMC2, CAP-H, CAP-D3), cohesin (Scc1/Rad21), and SMC5/6 (SMC5) complexes. Our analysis revealed that these complexes associate with chromosomes independently of each other, with the SMC5/6 complex showing no significant dependence on any other chromosomal proteins during mitosis. To identify subtle relationships between chromosomal proteins, we employed a nano Random Forest (nanoRF) approach to detect protein complexes and the relationships between them. Our nanoRF results suggested that as few as 113 of 5058 detected chromosomal proteins are functionally linked to chromosome structure and segregation. Furthermore, nanoRF data revealed 23 proteins that were not previously suspected to have functional interactions with complexes playing important roles in mitosis. Subsequent small-interfering-RNA-based validation and localization tracking by green fluorescent protein-tagging highlighted novel candidates that might play significant roles in mitotic progression.
Collapse
Affiliation(s)
- Shinya Ohta
- From the ‡Center for Innovative and Translational Medicine, Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan; §Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3BF, UK;
| | - Luis F Montaño-Gutierrez
- §Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Flavia de Lima Alves
- §Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Hiromi Ogawa
- §Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Iyo Toramoto
- From the ‡Center for Innovative and Translational Medicine, Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Nobuko Sato
- From the ‡Center for Innovative and Translational Medicine, Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Ciaran G Morrison
- ¶Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Shunichi Takeda
- ‖Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Damien F Hudson
- **Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Juri Rappsilber
- §Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3BF, UK; ‡‡Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - William C Earnshaw
- §Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3BF, UK
| |
Collapse
|
161
|
Zhou H, Telonis AG, Jing Y, Xia NL, Biederman L, Jimbo M, Blanco F, Londin E, Brody JR, Rigoutsos I. GPRC5A is a potential oncogene in pancreatic ductal adenocarcinoma cells that is upregulated by gemcitabine with help from HuR. Cell Death Dis 2016; 7:e2294. [PMID: 27415424 PMCID: PMC4973341 DOI: 10.1038/cddis.2016.169] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/05/2023]
Abstract
GPRC5A is an orphan G-protein coupled receptor with an intriguing dual behavior, acting as an oncogene in some cancers and as a tumor suppressor in other cancers. In the pancreatic cancer context, very little is known about GPRC5A. By analyzing messenger RNA (mRNA) expression data from 675 human cancer cell lines and 10 609 samples from The Cancer Genome Atlas (TCGA) we found that GPRC5A's abundance in pancreatic cancer is highest (cell lines) or second highest (TCGA) among all tissues and cancer types. Further analyses of an independent set of 252 pancreatic normal and cancer samples showed GPRC5A mRNA to be more than twofold upregulated in primary tumor samples compared with normal pancreas (P-value<10−5), and even further upregulated in pancreatic cancer metastases to various organs (P-value=0.0021). Immunostaining of 208 cores (103 samples) of a tissue microarray showed generally low expression of GPRC5A protein in normal pancreatic ductal cells; on the other hand, in primary and metastatic samples, GPRC5A protein levels were dramatically increased in pancreatic ductal cells. In vitro studies of multiple pancreatic cancer cell lines showed that an increase in GPRC5A protein levels promoted pancreatic cancer cell growth and migration. Unexpectedly, when we treated pancreatic cancer cell lines with gemcitabine (2′,2′-difluorodeoxycytidine), we observed an increase in GPRC5A protein abundance. On the other hand, when we knocked down GPRC5A we sensitized pancreatic cancer cells to gemcitabine. Through further experimentation we showed that the monotonic increase in GPRC5A protein levels that we observe for the first 18 h following gemcitabine treatment results from interactions between GPRC5A's mRNA and the RNA-binding protein HuR, which is an established key mediator of gemcitabine's efficacy in cancer cells. As we discovered, the interaction between GPRC5A and HuR is mediated by at least one HuR-binding site in GPRC5A's mRNA. Our findings indicate that GPRC5A is part of a complex molecular axis that involves gemcitabine and HuR, and, possibly, other genes. Further work is warranted before it can be established unequivocally that GPRC5A is an oncogene in the pancreatic cancer context.
Collapse
Affiliation(s)
- H Zhou
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street Philadelphia, PA 19107, USA
| | - A G Telonis
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street Philadelphia, PA 19107, USA
| | - Y Jing
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street Philadelphia, PA 19107, USA
| | - N L Xia
- Department of Neuroscience and The Farber Institute for Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - L Biederman
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - M Jimbo
- Department of Surgery, The Jefferson Biliary and Related Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA 19107, USA
| | - F Blanco
- Department of Surgery, The Jefferson Biliary and Related Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA 19107, USA
| | - E Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street Philadelphia, PA 19107, USA
| | - J R Brody
- Department of Surgery, The Jefferson Biliary and Related Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA 19107, USA
| | - I Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street Philadelphia, PA 19107, USA
| |
Collapse
|
162
|
Huang DP, Luo RC. MLF1IP is correlated with progression and prognosis in luminal breast cancer. Biochem Biophys Res Commun 2016; 477:923-926. [PMID: 27378428 DOI: 10.1016/j.bbrc.2016.06.159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 11/15/2022]
Abstract
Myeloid leukemia factor 1-interacting protein (MLF1IP) has been found to be involved in the progression of several malignancies. The potential correlation between MLF1IP and clinical outcome in patients with luminal breast cancer, however, remains unknown. In the present study, we demonstrated that MLF1IP was significantly upregulated in luminal breast cancer tissue compared with adjacent normal tissue both in validated cohort and TCGA cohort. Upregulated expression of MLF1IP was correlated with more often lymph node metastasis and negative progesterone receptor expression in TCGA cohorts. Kaplan-Meier analysis indicated that patients with high MLF1IP expression had significantly lower overall survival. Moreover, multivariate analysis revealed that high MLF1IP expression was independent high risk factor as well as old age (>60) and distant metastasis. This study provides new insights and evidences that MLF1IP over-expression plays important roles in progression of luminal breast cancer. However, the precise cellular mechanisms for MLF1IP in luminal breast cancer need to be further explored.
Collapse
Affiliation(s)
- Du-Ping Huang
- Cancer Center, TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China.
| | - Rong-Cheng Luo
- Cancer Center, TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
163
|
Choi E, Zhang X, Xing C, Yu H. Mitotic Checkpoint Regulators Control Insulin Signaling and Metabolic Homeostasis. Cell 2016; 166:567-581. [PMID: 27374329 DOI: 10.1016/j.cell.2016.05.074] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 12/09/2015] [Accepted: 05/24/2016] [Indexed: 01/08/2023]
Abstract
Insulin signaling regulates many facets of animal physiology. Its dysregulation causes diabetes and other metabolic disorders. The spindle checkpoint proteins MAD2 and BUBR1 prevent precocious chromosome segregation and suppress aneuploidy. The MAD2 inhibitory protein p31(comet) promotes checkpoint inactivation and timely chromosome segregation. Here, we show that whole-body p31(comet) knockout mice die soon after birth and have reduced hepatic glycogen. Liver-specific ablation of p31(comet) causes insulin resistance, hyperinsulinemia, glucose intolerance, and hyperglycemia and diminishes the plasma membrane localization of the insulin receptor (IR) in hepatocytes. MAD2 directly binds to IR and facilitates BUBR1-dependent recruitment of the clathrin adaptor AP2 to IR. p31(comet) blocks the MAD2-BUBR1 interaction and prevents spontaneous clathrin-mediated IR endocytosis. BUBR1 deficiency enhances insulin sensitivity in mice. BUBR1 depletion in hepatocytes or the expression of MAD2-binding-deficient IR suppresses the metabolic phenotypes of p31(comet) ablation. Our findings establish a major IR regulatory mechanism and link guardians of chromosome stability to nutrient metabolism.
Collapse
Affiliation(s)
- Eunhee Choi
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Xiangli Zhang
- Bioinformatics Core, Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Chao Xing
- Bioinformatics Core, Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Hongtao Yu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA.
| |
Collapse
|
164
|
Masuda H, Toda T. Synergistic role of fission yeast Alp16GCP6 and Mzt1MOZART1 in γ-tubulin complex recruitment to mitotic spindle pole bodies and spindle assembly. Mol Biol Cell 2016; 27:1753-63. [PMID: 27053664 PMCID: PMC4884066 DOI: 10.1091/mbc.e15-08-0577] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 03/23/2016] [Accepted: 03/29/2016] [Indexed: 11/30/2022] Open
Abstract
In fission yeast, γ-tubulin ring complex (γTuRC)-specific components Gfh1(GCP4), Mod21(GCP5), and Alp16(GCP6) are nonessential for cell growth. Of these deletion mutants, only alp16Δ shows synthetic lethality with temperature-sensitive mutants of Mzt1(MOZART1), a component of the γTuRC required for recruitment of the complex to microtubule-organizing centers. γ-Tubulin small complex levels at mitotic spindle pole bodies (SPBs, the centrosome equivalent in fungi) and microtubule levels for preanaphase spindles are significantly reduced in alp16Δ cells but not in gfh1Δ or mod21Δ cells. Furthermore, alp16Δ cells often form monopolar spindles and frequently lose a minichromosome when the spindle assembly checkpoint is inactivated. Alp16(GCP6) promotes Mzt1-dependent γTuRC recruitment to mitotic SPBs and enhances spindle microtubule assembly in a manner dependent on its expression levels. Gfh1(GCP4) and Mod21(GCP5) are not required for Alp16(GCP6)-dependent γTuRC recruitment. Mzt1 has an additional role in the activation of the γTuRC for spindle microtubule assembly. The ratio of Mzt1 to γTuRC levels for preanaphase spindles is higher than at other stages of the cell cycle. Mzt1 overproduction enhances spindle microtubule assembly without affecting γTuRC levels at mitotic SPBs. We propose that Alp16(GCP6) and Mzt1 act synergistically for efficient bipolar spindle assembly to ensure faithful chromosome segregation.
Collapse
Affiliation(s)
- Hirohisa Masuda
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London WC2A 3LY, United Kingdom
| | - Takashi Toda
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London WC2A 3LY, United Kingdom Hiroshima Research Center for Healthy Aging, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| |
Collapse
|
165
|
Reish O, Aspit L, Zouella A, Roth Y, Polak-Charcon S, Baboushkin T, Benyamini L, Scheetz TE, Mussaffi H, Sheffield VC, Parvari R. A Homozygous Nme7 Mutation Is Associated with Situs Inversus Totalis. Hum Mutat 2016; 37:727-31. [PMID: 27060491 DOI: 10.1002/humu.22998] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/25/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023]
Abstract
We investigated the cause of situs inversus totalis (SIT) in two siblings from a consanguineous family. Genotyping and whole-exome analysis revealed a homozygous change in NME7, resulting in deletion of an exon causing an in-frame deletion of 34 amino acids located in the second NDK domain of the protein and segregated with the defective lateralization in the family. NME7 is an important developmental gene, and NME7 protein is a component of the γ-tubulin ring complex. This mutation is predicted to affect the interaction of NME7 protein with this complex as it deletes the amino acids crucial for the binding. SIT associated with homozygous deletion in our patients is in line with Nme7(-/-) mutant mice phenotypes consisting of congenital hydrocephalus and SIT, indicating a novel human laterality patterning role for NME7. Further cases are required to elaborate the full human phenotype associated with NME7 mutations.
Collapse
Affiliation(s)
- Orit Reish
- Genetic Institute, Assaf Harofeh Medical Center, Zerifin, Israel.,The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liam Aspit
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Arielle Zouella
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yehudah Roth
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Otolaryngology - Head and Neck Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Sylvie Polak-Charcon
- Department of Pathology, The Sheba Medical Center at Tel Hashomer, Ramat Gan, Israel
| | - Tatiana Baboushkin
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Pathology, The Sheba Medical Center at Tel Hashomer, Ramat Gan, Israel
| | - Lilach Benyamini
- Genetic Institute, Assaf Harofeh Medical Center, Zerifin, Israel
| | - Todd E Scheetz
- Stephen A Wynn Institute for Vision Research and Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa
| | - Huda Mussaffi
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Pulmunology Institute, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Val C Sheffield
- Department of Pediatrics, Division of Medical Genetics, University of Iowa, Iowa City, Iowa
| | - Ruti Parvari
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
166
|
Abstract
Protein-protein interactions (PPIs) underlie most, if not all, cellular functions. The comprehensive mapping of these complex networks of stable and transient associations thus remains a key goal, both for systems biology-based initiatives (where it can be combined with other 'omics' data to gain a better understanding of functional pathways and networks) and for focused biological studies. Despite the significant challenges of such an undertaking, major strides have been made over the past few years. They include improvements in the computation prediction of PPIs and the literature curation of low-throughput studies of specific protein complexes, but also an increase in the deposition of high-quality data from non-biased high-throughput experimental PPI mapping strategies into publicly available databases.
Collapse
Affiliation(s)
- Virja Mehta
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
167
|
Abstract
Life depends on cell proliferation and the accurate segregation of chromosomes, which are mediated by the microtubule (MT)-based mitotic spindle and ∼200 essential MT-associated proteins. Yet, a mechanistic understanding of how the mitotic spindle is assembled and achieves chromosome segregation is still missing. This is mostly due to the density of MTs in the spindle, which presumably precludes their direct observation. Recent insight has been gained into the molecular building plan of the metaphase spindle using bulk and single-molecule measurements combined with computational modeling. MT nucleation was uncovered as a key principle of spindle assembly, and mechanistic details about MT nucleation pathways and their coordination are starting to be revealed. Lastly, advances in studying spindle assembly can be applied to address the molecular mechanisms of how the spindle segregates chromosomes.
Collapse
Affiliation(s)
- Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014;
| |
Collapse
|
168
|
Chu CW, Ossipova O, Ioannou A, Sokol SY. Prickle3 synergizes with Wtip to regulate basal body organization and cilia growth. Sci Rep 2016; 6:24104. [PMID: 27062996 PMCID: PMC4827067 DOI: 10.1038/srep24104] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/21/2016] [Indexed: 12/21/2022] Open
Abstract
PCP proteins maintain planar polarity in many epithelial tissues and have been implicated in cilia development in vertebrate embryos. In this study we examine Prickle3 (Pk3), a vertebrate homologue of Drosophila Prickle, in Xenopus gastrocoel roof plate (GRP). GRP is a tissue equivalent to the mouse node, in which cilia-generated flow promotes left-right patterning. We show that Pk3 is enriched at the basal body of GRP cells but is recruited by Vangl2 to anterior cell borders. Interference with Pk3 function disrupted the anterior polarization of endogenous Vangl2 and the posterior localization of cilia in GRP cells, demonstrating its role in PCP. Strikingly, in cells with reduced Pk3 activity, cilia growth was inhibited and γ-tubulin and Nedd1 no longer associated with the basal body, suggesting that Pk3 has a novel function in basal body organization. Mechanistically, this function of Pk3 may involve Wilms tumor protein 1-interacting protein (Wtip), which physically associates with and cooperates with Pk3 to regulate ciliogenesis. We propose that, in addition to cell polarity, PCP components control basal body organization and function.
Collapse
Affiliation(s)
- Chih-Wen Chu
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Olga Ossipova
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andriani Ioannou
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
169
|
Sedgwick GG, Larsen MSY, Lischetti T, Streicher W, Jersie-Christensen RR, Olsen JV, Nilsson J. Conformation-specific anti-Mad2 monoclonal antibodies for the dissection of checkpoint signaling. MAbs 2016; 8:689-97. [PMID: 26986935 DOI: 10.1080/19420862.2016.1160988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The spindle assembly checkpoint (SAC) ensures accurate chromosome segregation during mitosis by delaying the activation of the anaphase-promoting complex/cyclosome (APC/C) in response to unattached kinetochores. The Mad2 protein is essential for a functional checkpoint because it binds directly to Cdc20, the mitotic co-activator of the APC/C, thereby inhibiting progression into anaphase. Mad2 exists in at least 2 different conformations, open-Mad2 (O-Mad2) and closed-Mad2 (C-Mad2), with the latter representing the active form that is able to bind Cdc20. Our ability to dissect Mad2 biology in vivo is limited by the absence of monoclonal antibodies (mAbs) useful for recognizing the different conformations of Mad2. Here, we describe and extensively characterize mAbs specific for either O-Mad2 or C-Mad2, as well as a pan-Mad2 antibody, and use these to investigate the different Mad2 complexes present in mitotic cells. Our antibodies validate current Mad2 models but also suggest that O-Mad2 can associate with checkpoint complexes, most likely through dimerization with C-Mad2. Furthermore, we investigate the makeup of checkpoint complexes bound to the APC/C, which indicate the presence of both Cdc20-BubR1-Bub3 and Mad2-Cdc20-BubR1-Bub3 complexes, with Cdc20 being ubiquitinated in both. Thus, our defined mAbs provide insight into checkpoint signaling and provide useful tools for future research on Mad2 function and regulation.
Collapse
Affiliation(s)
- Garry G Sedgwick
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Marie Sofie Yoo Larsen
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Tiziana Lischetti
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Werner Streicher
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Rosa Rakownikow Jersie-Christensen
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jesper V Olsen
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jakob Nilsson
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
170
|
Zhang X, Damacharla D, Ma D, Qi Y, Tagett R, Draghici S, Kowluru A, Yi Z. Quantitative proteomics reveals novel protein interaction partners of PP2A catalytic subunit in pancreatic β-cells. Mol Cell Endocrinol 2016; 424:1-11. [PMID: 26780722 PMCID: PMC4779412 DOI: 10.1016/j.mce.2016.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/15/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022]
Abstract
Protein phosphatase 2A (PP2A) is one of the major serine/threonine phosphatases. We hypothesize that PP2A regulates signaling cascades in pancreatic β-cells in the context of glucose-stimulated insulin secretion (GSIS). Using co-immunoprecipitation (co-IP) and tandem mass spectrometry, we globally identified the protein interaction partners of the PP2A catalytic subunit (PP2Ac) in insulin-secreting pancreatic β-cells. Among the 514 identified PP2Ac interaction partners, 476 were novel. This represents the first global view of PP2Ac protein-protein interactions caused by hyperglycemic conditions. Additionally, numerous PP2Ac partners were found involved in a variety of signaling pathways in the β-cell function, such as insulin secretion. Our data suggest that PP2A interacts with various signaling proteins necessary for physiological insulin secretion as well as signaling proteins known to regulate cell dysfunction and apoptosis in the pancreatic β-cells.
Collapse
Affiliation(s)
- Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Divyasri Damacharla
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Danjun Ma
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Yue Qi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Rebecca Tagett
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI, USA
| | - Sorin Draghici
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI, USA
| | - Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA; β-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, Detroit, MI, 48201, USA
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
171
|
A transducible nuclear/nucleolar protein, mLLP, regulates neuronal morphogenesis and synaptic transmission. Sci Rep 2016; 6:22892. [PMID: 26961175 PMCID: PMC4790632 DOI: 10.1038/srep22892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/23/2016] [Indexed: 12/03/2022] Open
Abstract
Cell-permeable proteins are emerging as unconventional regulators of signal transduction and providing a potential for therapeutic applications. However, only a few of them are identified and studied in detail. We identify a novel cell-permeable protein, mouse LLP homolog (mLLP), and uncover its roles in regulating neural development. We found that mLLP is strongly expressed in developing nervous system and that mLLP knockdown or overexpression during maturation of cultured neurons affected the neuronal growth and synaptic transmission. Interestingly, extracellular addition of mLLP protein enhanced dendritic arborization, demonstrating the non-cell-autonomous effect of mLLP. Moreover, mLLP interacts with CCCTC-binding factor (CTCF) as well as transcriptional machineries and modulates gene expression involved in neuronal growth. Together, these results illustrate the characteristics and roles of previously unknown cell-permeable protein mLLP in modulating neural development.
Collapse
|
172
|
Uehara R, Kamasaki T, Hiruma S, Poser I, Yoda K, Yajima J, Gerlich DW, Goshima G. Augmin shapes the anaphase spindle for efficient cytokinetic furrow ingression and abscission. Mol Biol Cell 2016; 27:812-27. [PMID: 26764096 PMCID: PMC4803307 DOI: 10.1091/mbc.e15-02-0101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 11/11/2022] Open
Abstract
During anaphase, distinct populations of microtubules (MTs) form by either centrosome-dependent or augmin-dependent nucleation. It remains largely unknown whether these different MT populations contribute distinct functions to cytokinesis. Here we show that augmin-dependent MTs are required for the progression of both furrow ingression and abscission. Augmin depletion reduced the accumulation of anillin, a contractile ring regulator at the cell equator, yet centrosomal MTs were sufficient to mediate RhoA activation at the furrow. This defect in contractile ring organization, combined with incomplete spindle pole separation during anaphase, led to impaired furrow ingression. During the late stages of cytokinesis, astral MTs formed bundles in the intercellular bridge, but these failed to assemble a focused midbody structure and did not establish tight linkage to the plasma membrane, resulting in furrow regression. Thus augmin-dependent acentrosomal MTs and centrosomal MTs contribute to nonredundant targeting mechanisms of different cytokinesis factors, which are required for the formation of a functional contractile ring and midbody.
Collapse
Affiliation(s)
- Ryota Uehara
- Creative Research Institution, Hokkaido University, Sapporo 001-0021, Japan Department of Life Sciences, School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tomoko Kamasaki
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Shota Hiruma
- Creative Research Institution, Hokkaido University, Sapporo 001-0021, Japan
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Kinya Yoda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Junichiro Yajima
- Department of Life Sciences, School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter Campus, 1030 Vienna, Austria
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
173
|
Chen D, Ito S, Yuan H, Hyodo T, Kadomatsu K, Hamaguchi M, Senga T. EML4 promotes the loading of NUDC to the spindle for mitotic progression. Cell Cycle 2016; 14:1529-39. [PMID: 25789526 DOI: 10.1080/15384101.2015.1026514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Echinoderm microtubule-associated protein (EMAP)-like (EML) family proteins are microtubule-associated proteins that have a conserved hydrophobic EMAP-like protein (HELP) domain and multiple WD40 domains. In this study, we examined the role of EML4, which is a member of the EML family, in cell division. Time-lapse microscopy analysis demonstrated that EML4 depletion induced chromosome misalignment during metaphase and delayed anaphase initiation. Further analysis by immunofluorescence showed that EML4 was required for the organization of the mitotic spindle and for the proper attachment of kinetochores to microtubules. We searched for EML4-associating proteins by mass spectrometry analysis and found that the nuclear distribution gene C (NUDC) protein, which is a critical factor for the progression of mitosis, was associated with EML4. This interaction was mediated by the WD40 repeat of EML4 and by the C-terminus of NUDC. In the absence of EML4, NUDC was no longer able to localize to the mitotic spindle, whereas NUDC was dispensable for EML4 localization. Our results show that EML4 is critical for the loading of NUDC onto the mitotic spindle for mitotic progression.
Collapse
Affiliation(s)
- Dan Chen
- a Division of Cancer Biology; Nagoya University Graduate School of Medicine ; Nagoya , Japan
| | | | | | | | | | | | | |
Collapse
|
174
|
VAP, a Versatile Access Point for the Endoplasmic Reticulum: Review and analysis of FFAT-like motifs in the VAPome. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:952-961. [PMID: 26898182 DOI: 10.1016/j.bbalip.2016.02.009] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 11/24/2022]
Abstract
Dysfunction of VAMP-associated protein (VAP) is associated with neurodegeneration, both Amyotrophic Lateral Sclerosis and Parkinson's disease. Here we summarize what is known about the intracellular interactions of VAP in humans and model organisms. VAP is a simple, small and highly conserved protein on the cytoplasmic face of the endoplasmic reticulum (ER). It is the sole protein on that large organelle that acts as a receptor for cytoplasmic proteins. This may explain the extremely wide range of interacting partners of VAP, with components of many cellular pathways binding it to access the ER. Many proteins that bind VAP also target other intracellular membranes, so VAP is a component of multiple molecular bridges at membrane contact sites between the ER and other organelles. So far approximately 100 proteins have been identified in the VAP interactome (VAPome), of which a small minority have a "two phenylalanines in an acidic tract" (FFAT) motif as it was originally defined. We have analyzed the entire VAPome in humans and yeast using a simple algorithm that identifies many more FFAT-like motifs. We show that approximately 50% of the VAPome binds directly or indirectly via the VAP-FFAT interaction. We also review evidence on pathogenesis in genetic disorders of VAP, which appear to arise from reduced overall VAP levels, leading to ER stress. It is not possible to identify one single interaction that underlies disease. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
175
|
Barr AR, Heldt FS, Zhang T, Bakal C, Novák B. A Dynamical Framework for the All-or-None G1/S Transition. Cell Syst 2016; 2:27-37. [PMID: 27136687 PMCID: PMC4802413 DOI: 10.1016/j.cels.2016.01.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/09/2015] [Accepted: 01/04/2016] [Indexed: 01/24/2023]
Abstract
The transition from G1 into DNA replication (S phase) is an emergent behavior resulting from dynamic and complex interactions between cyclin-dependent kinases (Cdks), Cdk inhibitors (CKIs), and the anaphase-promoting complex/cyclosome (APC/C). Understanding the cellular decision to commit to S phase requires a quantitative description of these interactions. We apply quantitative imaging of single human cells to track the expression of G1/S regulators and use these data to parametrize a stochastic mathematical model of the G1/S transition. We show that a rapid, proteolytic, double-negative feedback loop between Cdk2:Cyclin and the Cdk inhibitor p27(Kip1) drives a switch-like entry into S phase. Furthermore, our model predicts that increasing Emi1 levels throughout S phase are critical in maintaining irreversibility of the G1/S transition, which we validate using Emi1 knockdown and live imaging of G1/S reporters. This work provides insight into the general design principles of the signaling networks governing the temporally abrupt transitions between cell-cycle phases.
Collapse
Affiliation(s)
- Alexis R Barr
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Frank S Heldt
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Tongli Zhang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Chris Bakal
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Béla Novák
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
176
|
Control of APC/C-dependent ubiquitin chain elongation by reversible phosphorylation. Proc Natl Acad Sci U S A 2016; 113:1540-5. [PMID: 26811472 DOI: 10.1073/pnas.1522423113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Most metazoan E3 ligases contain a signature RING domain that promotes the transfer of ubiquitin from the active site of E2 conjugating enzymes to lysine residues in substrates. Although these RING-E3s depend on E2 enzymes for catalysis, how they turn on their E2s at the right time and place remains poorly understood. Here we report a phosphorylation-dependent mechanism that ensures timely activation of the E2 Ube2S by its RING-E3, the anaphase-promoting complex (APC/C); while phosphorylation of a specific serine residue in the APC/C coactivator Cdc20 prevents delivery of Ube2S to the APC/C, removal of this mark by PP2A(B56) allows Ube2S to bind the APC/C and catalyze ubiquitin chain elongation. PP2A(B56) also stabilizes kinetochore-microtubule attachments to shut off the spindle checkpoint, suggesting that cells regulate the E2-E3 interplay to coordinate ubiquitination with critical events during cell division.
Collapse
|
177
|
Serrano JB, da Cruz E Silva OAB, Rebelo S. Lamina Associated Polypeptide 1 (LAP1) Interactome and Its Functional Features. MEMBRANES 2016; 6:membranes6010008. [PMID: 26784240 PMCID: PMC4812414 DOI: 10.3390/membranes6010008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 12/26/2022]
Abstract
Lamina-associated polypeptide 1 (LAP1) is a type II transmembrane protein of the inner nuclear membrane encoded by the human gene TOR1AIP1. LAP1 is involved in maintaining the nuclear envelope structure and appears be involved in the positioning of lamins and chromatin. To date, LAP1’s precise function has not been fully elucidated but analysis of its interacting proteins will permit unraveling putative associations to specific cellular pathways and cellular processes. By assessing public databases it was possible to identify the LAP1 interactome, and this was curated. In total, 41 interactions were identified. Several functionally relevant proteins, such as TRF2, TERF2IP, RIF1, ATM, MAD2L1 and MAD2L1BP were identified and these support the putative functions proposed for LAP1. Furthermore, by making use of the Ingenuity Pathways Analysis tool and submitting the LAP1 interactors, the top two canonical pathways were “Telomerase signalling” and “Telomere Extension by Telomerase” and the top functions “Cell Morphology”, “Cellular Assembly and Organization” and “DNA Replication, Recombination, and Repair”. Once again, putative LAP1 functions are reinforced but novel functions are emerging.
Collapse
Affiliation(s)
- Joana B Serrano
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Odete A B da Cruz E Silva
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sandra Rebelo
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
178
|
Abstract
Microtubules mediate important cellular processes by forming highly ordered arrays. Organization of these networks is achieved by nucleating and anchoring microtubules at centrosomes and other structures collectively known as microtubule-organizing centers (MTOCs). However, the diverse microtubule configurations found in different cell types may not be generated and maintained by MTOCs alone. Work over the last few years has revealed a mechanism that has the capacity to generate cell-type-specific microtubule arrays independently of a specific organizer: nucleation of microtubules from the lateral surface of pre-existing microtubules. This type of nucleation requires cooperation between two different multi-subunit protein complexes, augmin and the γ-tubulin ring complex (γTuRC). Here we review recent molecular insight into microtubule-dependent nucleation and discuss the possibility that the augmin-γTuRC module, initially described in mitosis, may broadly contribute to microtubule organization also in non-mitotic cells.
Collapse
Affiliation(s)
- Carlos Sánchez-Huertas
- Institute for Research in Biomedicine (IRB Barcelona), C/ Baldiri Reixac 10, Barcelona, Spain
| | - Jens Lüders
- Institute for Research in Biomedicine (IRB Barcelona), C/ Baldiri Reixac 10, Barcelona, Spain.
| |
Collapse
|
179
|
Abstract
As spindle positioning during mitosis is a highly dynamic process, live cell imaging is a key technology when studying its underlying mechanisms. Recent advances in imaging tools and microscope systems have enabled us to simultaneously visualize several cellular components in living cells with high temporal and spatial resolution. By combining live cell imaging with functional assays such as RNAi-based depletions, drug inhibition, and micropatterned coverslips, novel and unexpected mechanisms of spindle positioning have been uncovered. In this chapter, I present methods for analyzing the dynamics of spindle positioning in cultured cells.
Collapse
Affiliation(s)
- Tomomi Kiyomitsu
- Division of Biological Science, Graduate School of Science, Nagoya University, Room 227 Building A, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
180
|
Cota RR, Teixidó-Travesa N, Ezquerra A, Eibes S, Lacasa C, Roig J, Lüders J. MZT1 regulates microtubule nucleation by linking γTuRC assembly to adapter-mediated targeting and activation. J Cell Sci 2016; 130:406-419. [DOI: 10.1242/jcs.195321] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/09/2016] [Indexed: 01/22/2023] Open
Abstract
Regulation of the γ-tubulin ring complex (γTuRC) through targeting and activation restricts nucleation of microtubules to microtubule organizing centers (MTOCs), aiding in the assembly of ordered microtubule arrays. However, the mechanistic basis of this important regulation remains poorly understood. Here we show that in human cells γTuRC integrity, determined by the presence of γ-tubulin complex proteins (GCPs) 2-6, is a prerequisite for interaction with the targeting factor NEDD1, impacting on essentially all γ-tubulin dependent functions. Recognition of γTuRC integrity is mediated by MZT1, which binds not only to the GCP3 subunit as previously shown, but cooperatively also to other GCPs through a conserved hydrophobic motif present in the N-termini of GCP2, GCP3, GCP5, and GCP6. MZT1 knockdown causes severe cellular defects under conditions that leave γTuRC intact, suggesting that the essential function of MZT1 is not in γTuRC assembly. Instead, MZT1 specifically binds fully assembled γTuRC to enable interaction with NEDD1 for targeting, and with the CM1 domain of CDK5RAP2 for stimulating nucleation activity. Thus, MZT1 is a ‘priming factor’ for the γTuRC that allows spatial regulation of nucleation.
Collapse
Affiliation(s)
- Rosa Ramírez Cota
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
| | | | - Artur Ezquerra
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
| | - Susana Eibes
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
| | - Cristina Lacasa
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
| | - Joan Roig
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
- Molecular Biology Institute of Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
| | - Jens Lüders
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
| |
Collapse
|
181
|
Kurtulmus B, Wang W, Ruppert T, Neuner A, Cerikan B, Viol L, Dueñas-Sánchez R, Gruss OJ, Pereira G. WDR8 is a centriolar satellite and centriole-associated protein that promotes ciliary vesicle docking during ciliogenesis. J Cell Sci 2015; 129:621-36. [PMID: 26675238 DOI: 10.1242/jcs.179713] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/09/2015] [Indexed: 12/30/2022] Open
Abstract
Ciliogenesis initiates at the mother centriole through a series of events that include membrane docking, displacement of cilia-inhibitory proteins and axoneme elongation. Centriolar proteins, in particular at distal and subdistal appendages, carry out these functions. Recently, cytoplasmic complexes named centriolar satellites have also been shown to promote ciliogenesis. Little is known about the functional and molecular relationship between appendage proteins, satellites and cilia biogenesis. Here, we identified the WD-repeat protein 8 (WDR8, also known as WRAP73) as a satellite and centriolar component. We show that WDR8 interacts with the satellite proteins SSX2IP and PCM1 as well as the centriolar proximal end component Cep135. Cep135 is required for the recruitment of WDR8 to centrioles. Depletion experiments revealed that WDR8 and Cep135 have strongly overlapping functions in ciliogenesis. Both are indispensable for ciliary vesicle docking to the mother centriole and for unlocking the distal end of the mother centriole from the ciliary inhibitory complex CP110-Cep97. Our data thus point to an important function of centriolar proximal end proteins in ciliary membrane biogenesis, and establish WDR8 and Cep135 as two factors that are essential for the initial steps of ciliation.
Collapse
Affiliation(s)
- Bahtiyar Kurtulmus
- Centre for Organismal Studies (COS), Im Neuenheimer Feld 230, Heidelberg 69120, Germany Division of Centrosomes and Cilia, German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Wenbo Wang
- Division of Centrosomes and Cilia, German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany
| | - Thomas Ruppert
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany
| | - Berati Cerikan
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany
| | - Linda Viol
- Centre for Organismal Studies (COS), Im Neuenheimer Feld 230, Heidelberg 69120, Germany Division of Centrosomes and Cilia, German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Rafael Dueñas-Sánchez
- Division of Centrosomes and Cilia, German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Oliver J Gruss
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany
| | - Gislene Pereira
- Centre for Organismal Studies (COS), Im Neuenheimer Feld 230, Heidelberg 69120, Germany Division of Centrosomes and Cilia, German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| |
Collapse
|
182
|
Hutchins JRA, Traver S, Coulombe P, Peiffer I, Kitzmann M, Latreille D, Méchali M. Proteomic data on the nuclear interactome of human MCM9. Data Brief 2015; 6:410-5. [PMID: 26870752 PMCID: PMC4712314 DOI: 10.1016/j.dib.2015.11.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 11/24/2022] Open
Abstract
We present data relating to the interactome of MCM9 from the nuclei of human cells. MCM9 belongs to the AAA+ superfamily, and contains an MCM domain and motifs that may confer DNA helicase activity. MCM9 has been shown to bind MCM8, and has been implicated in DNA replication and homologous recombination. However, the mechanistic basis of MCM9’s role in DNA repair is poorly understood, and proteins with which it interacts were hitherto unknown. We performed tandem affinity purification of MCM9 and its interacting proteins from nuclear extracts of human cells, followed by proteomic analysis, thereby generating a set of mass spectrometry data corresponding to the MCM9 interactome [1]. The proteomic data set comprises 29 mass spectrometry RAW files, deposited to the ProteomeXchange Consortium, and freely available from the PRIDE partner repository with the data set identifier PXD000212. A set of 22 interacting proteins identified from the proteomic data was used to create an MCM9-centered interactive network diagram, using the Cytoscape program. These data allow the scientific community to access, mine and explore the human nuclear MCM9 interactome.
Collapse
Affiliation(s)
- James R A Hutchins
- Laboratory of DNA Replication and Genome Dynamics, Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier, France
| | - Sabine Traver
- Laboratory of DNA Replication and Genome Dynamics, Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier, France
| | - Philippe Coulombe
- Laboratory of DNA Replication and Genome Dynamics, Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier, France
| | - Isabelle Peiffer
- Laboratory of DNA Replication and Genome Dynamics, Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier, France
| | - Magali Kitzmann
- Laboratory of DNA Replication and Genome Dynamics, Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier, France
| | - Daniel Latreille
- Laboratory of Gene Regulation, Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier, France
| | - Marcel Méchali
- Laboratory of DNA Replication and Genome Dynamics, Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier, France
| |
Collapse
|
183
|
Hori A, Morand A, Ikebe C, Frith D, Snijders AP, Toda T. The conserved Wdr8-hMsd1/SSX2IP complex localises to the centrosome and ensures proper spindle length and orientation. Biochem Biophys Res Commun 2015; 468:39-45. [PMID: 26545777 PMCID: PMC4669408 DOI: 10.1016/j.bbrc.2015.10.169] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 10/31/2015] [Indexed: 11/25/2022]
Abstract
The centrosome plays a pivotal role in a wide range of cellular processes and its dysfunction is causally linked to many human diseases including cancer and developmental and neurological disorders. This organelle contains more than one hundred components, and yet many of them remain uncharacterised. Here we identified a novel centrosome protein Wdr8, based upon the structural conservation of the fission yeast counterpart. We showed that Wdr8 constitutively localises to the centrosome and super resolution microscopy uncovered that this protein is enriched at the proximal end of the mother centriole. Furthermore, we identified hMsd1/SSX2IP, a conserved spindle anchoring protein, as one of Wdr8 interactors by mass spectrometry. Wdr8 formed a complex and partially colocalised with hMsd1/SSX2IP. Intriguingly, knockdown of Wdr8 or hMsd1/SSX2IP displayed very similar mitotic defects, in which spindle microtubules became shortened and misoriented. Indeed, Wdr8 depletion resulted in the reduced recruitment of hMsd1/SSX2IP to the mitotic centrosome, though the converse is not true. Together, we propose that the conserved Wdr8-hMsd1/SSX2IP complex plays a critical role in controlling proper spindle length and orientation. Human Wdr8 is a centrosomal protein enriched in the proximal end of the centriole. Wdr8 and hMsd1/SSX2IP form a complex conserved in fungi. Depletion of Wdr8 results in shorter, tilted spindle microtubules. Depletion phenotypes of Wdr8 are very similar to those of hMsd1/SSX2IP knockdown.
Collapse
Affiliation(s)
- Akiko Hori
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Agathe Morand
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Chiho Ikebe
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - David Frith
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | - Takashi Toda
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| |
Collapse
|
184
|
The γ-tubulin-specific inhibitor gatastatin reveals temporal requirements of microtubule nucleation during the cell cycle. Nat Commun 2015; 6:8722. [PMID: 26503935 PMCID: PMC4640066 DOI: 10.1038/ncomms9722] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/24/2015] [Indexed: 11/26/2022] Open
Abstract
Inhibitors of microtubule (MT) assembly or dynamics that target α/β-tubulin are widely exploited in cancer therapy and biological research. However, specific inhibitors of the MT nucleator γ-tubulin that would allow testing temporal functions of γ-tubulin during the cell cycle are yet to be identified. By evolving β-tubulin-binding drugs we now find that the glaziovianin A derivative gatastatin is a γ-tubulin-specific inhibitor. Gatastatin decreased interphase MT dynamics of human cells without affecting MT number. Gatastatin inhibited assembly of the mitotic spindle in prometaphase. Addition of gatastatin to preformed metaphase spindles altered MT dynamics, reduced the number of growing MTs and shortened spindle length. Furthermore, gatastatin prolonged anaphase duration by affecting anaphase spindle structure, indicating the continuous requirement of MT nucleation during mitosis. Thus, gatastatin facilitates the dissection of the role of γ-tubulin during the cell cycle and reveals the sustained role of γ-tubulin. Current microtubule inhibitors target α/β-tubulin, but no specific inhibitor of γ-tubulin has been developed. Here the authors present gatastatin as a γ-tubulin inhibitor and use it to probe the role of γ-tubulin during the cell cycle.
Collapse
|
185
|
Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N, Toyoda Y, Gak IA, Weisswange I, Mansfeld J, Buchholz F, Hyman AA, Mann M. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 2015; 163:712-23. [PMID: 26496610 DOI: 10.1016/j.cell.2015.09.053] [Citation(s) in RCA: 961] [Impact Index Per Article: 96.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/06/2015] [Accepted: 09/17/2015] [Indexed: 02/06/2023]
Abstract
The organization of a cell emerges from the interactions in protein networks. The interactome is critically dependent on the strengths of interactions and the cellular abundances of the connected proteins, both of which span orders of magnitude. However, these aspects have not yet been analyzed globally. Here, we have generated a library of HeLa cell lines expressing 1,125 GFP-tagged proteins under near-endogenous control, which we used as input for a next-generation interaction survey. Using quantitative proteomics, we detect specific interactions, estimate interaction stoichiometries, and measure cellular abundances of interacting proteins. These three quantitative dimensions reveal that the protein network is dominated by weak, substoichiometric interactions that play a pivotal role in defining network topology. The minority of stable complexes can be identified by their unique stoichiometry signature. This study provides a rich interaction dataset connecting thousands of proteins and introduces a framework for quantitative network analysis.
Collapse
Affiliation(s)
- Marco Y Hein
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nina C Hubner
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jürgen Cox
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | - Yusuke Toyoda
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Igor A Gak
- Cell Cycle, Biotechnology Center, TU Dresden, 01307 Dresden, Germany
| | - Ina Weisswange
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Eupheria Biotech GmbH, 01307 Dresden, Germany
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center, TU Dresden, 01307 Dresden, Germany
| | - Frank Buchholz
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Matthias Mann
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
186
|
Hasse S, Hyman AA, Sarov M. TransgeneOmics--A transgenic platform for protein localization based function exploration. Methods 2015; 96:69-74. [PMID: 26475212 DOI: 10.1016/j.ymeth.2015.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 12/17/2022] Open
Abstract
The localization of a protein is intrinsically linked to its role in the structural and functional organization of the cell. Advances in transgenic technology have streamlined the use of protein localization as a function discovery tool. Here we review the use of large genomic DNA constructs such as bacterial artificial chromosomes as a transgenic platform for systematic tag-based protein function exploration.
Collapse
Affiliation(s)
- Susanne Hasse
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| |
Collapse
|
187
|
Dalvai M, Loehr J, Jacquet K, Huard CC, Roques C, Herst P, Côté J, Doyon Y. A Scalable Genome-Editing-Based Approach for Mapping Multiprotein Complexes in Human Cells. Cell Rep 2015; 13:621-633. [PMID: 26456817 DOI: 10.1016/j.celrep.2015.09.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/27/2015] [Accepted: 09/02/2015] [Indexed: 12/18/2022] Open
Abstract
Conventional affinity purification followed by mass spectrometry (AP-MS) analysis is a broadly applicable method used to decipher molecular interaction networks and infer protein function. However, it is sensitive to perturbations induced by ectopically overexpressed target proteins and does not reflect multilevel physiological regulation in response to diverse stimuli. Here, we developed an interface between genome editing and proteomics to isolate native protein complexes produced from their natural genomic contexts. We used CRISPR/Cas9 and TAL effector nucleases (TALENs) to tag endogenous genes and purified several DNA repair and chromatin-modifying holoenzymes to near homogeneity. We uncovered subunits and interactions among well-characterized complexes and report the isolation of MCM8/9, highlighting the efficiency and robustness of the approach. These methods improve and simplify both small- and large-scale explorations of protein interactions as well as the study of biochemical activities and structure-function relationships.
Collapse
Affiliation(s)
- Mathieu Dalvai
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada; St-Patrick Research Group in Basic Oncology and Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Jeremy Loehr
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Karine Jacquet
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada; St-Patrick Research Group in Basic Oncology and Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Caroline C Huard
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Céline Roques
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada; St-Patrick Research Group in Basic Oncology and Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Pauline Herst
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada; St-Patrick Research Group in Basic Oncology and Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Jacques Côté
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada; St-Patrick Research Group in Basic Oncology and Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada.
| |
Collapse
|
188
|
The Prediction and Validation of Small CDSs Expand the Gene Repertoire of the Smallest Known Eukaryotic Genomes. PLoS One 2015; 10:e0139075. [PMID: 26421846 PMCID: PMC4589312 DOI: 10.1371/journal.pone.0139075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/09/2015] [Indexed: 01/05/2023] Open
Abstract
The proper prediction of the gene catalogue of an organism is essential to obtain a representative snapshot of its overall lifestyle, especially when it is not amenable to culturing. Microsporidia are obligate intracellular, sometimes hard to culture, eukaryotic parasites known to infect members of every animal phylum. To date, sequencing and annotation of microsporidian genomes have revealed a poor gene complement with highly reduced gene sizes. In the present paper, we investigated whether such gene sizes may have induced biases for the methodologies used for genome annotation, with an emphasis on small coding sequence (CDS) gene prediction. Using better delineated intergenic regions from four Encephalitozoon genomes, we predicted de novo new small CDSs with sizes ranging from 78 to 255 bp (median 168) and corroborated these predictions by RACE-PCR experiments in Encephalitozoon cuniculi. Most of the newly found genes are present in other distantly related microsporidian species, suggesting their biological relevance. The present study provides a better framework for annotating microsporidian genomes and to train and evaluate new computational methods dedicated at detecting ultra-small genes in various organisms.
Collapse
|
189
|
Ciferri C, Lander GC, Nogales E. Protein domain mapping by internal labeling and single particle electron microscopy. J Struct Biol 2015; 192:159-62. [PMID: 26431894 DOI: 10.1016/j.jsb.2015.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/26/2015] [Accepted: 09/28/2015] [Indexed: 11/30/2022]
Abstract
In recent years, electron microscopy (EM) and single particle analysis have emerged as essential tools for investigating the architecture of large biological complexes. When high resolution is achievable, crystal structure docking and de-novo modeling allows for precise assignment of individual protein domain sequences. However, the achievable resolution may limit the ability to do so, especially when small or flexible complexes are under study. In such cases, protein labeling has emerged as an important complementary tool to characterize domain architecture and elucidate functional mechanistic details. All labeling strategies proposed to date are either focused on the identification of the position of protein termini or require multi-step labeling strategies, potentially interfering with the final labeling efficiency. Here we describe a strategy for determining the position of internal protein domains within EM maps using a recombinant one-step labeling approach named Efficient Mapping by Internal Labeling (EMIL). EMIL takes advantage of the close spatial proximity of the GFP's N- and C-termini to generate protein chimeras containing an internal GFP at desired locations along the main protein chain. We apply this method to characterize the subunit domain localization of the human Polycomb Repressive Complex 2.
Collapse
Affiliation(s)
- Claudio Ciferri
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.
| | - Gabriel C Lander
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, United States; Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States; Howard Hughes Medical Institute, UC Berkeley, Berkeley, United States
| |
Collapse
|
190
|
Zhou Q, Li Z. γ-Tubulin complex in Trypanosoma brucei: molecular composition, subunit interdependence and requirement for axonemal central pair protein assembly. Mol Microbiol 2015. [PMID: 26224545 DOI: 10.1111/mmi.13149] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
γ-Tubulin complex constitutes a key component of the microtubule-organizing center and nucleates microtubule assembly. This complex differs in complexity in different organisms: the budding yeast contains the γ-tubulin small complex (γTuSC) composed of γ-tubulin, gamma-tubulin complex protein (GCP)2 and GCP3, whereas animals contain the γ-tubulin ring complex (γTuRC) composed of γTuSC and three additional proteins, GCP4, GCP5 and GCP6. In Trypanosoma brucei, the composition of the γ-tubulin complex remains elusive, and it is not known whether it also regulates assembly of the subpellicular microtubules and the spindle microtubules. Here we report that the γ-tubulin complex in T. brucei is composed of γ-tubulin and three GCP proteins, GCP2-GCP4, and is primarily localized in the basal body throughout the cell cycle. Depletion of GCP2 and GCP3, but not GCP4, disrupted the axonemal central pair microtubules, but not the subpellicular microtubules and the spindle microtubules. Furthermore, we showed that the γTuSC is required for assembly of two central pair proteins and that γTuSC subunits are mutually required for stability. Together, these results identified an unusual γ-tubulin complex in T. brucei, uncovered an essential role of γTuSC in central pair protein assembly, and demonstrated the interdependence of individual γTuSC components for maintaining a stable complex.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, 77030, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, 77030, USA
| |
Collapse
|
191
|
Oakley BR, Paolillo V, Zheng Y. γ-Tubulin complexes in microtubule nucleation and beyond. Mol Biol Cell 2015; 26:2957-62. [PMID: 26316498 PMCID: PMC4551311 DOI: 10.1091/mbc.e14-11-1514] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 01/07/2023] Open
Abstract
Tremendous progress has been made in understanding the functions of γ-tubulin and, in particular, its role in microtubule nucleation since the publication of its discovery in 1989. The structure of γ-tubulin has been determined, and the components of γ-tubulin complexes have been identified. Significant progress in understanding the structure of the γ-tubulin ring complex and its components has led to a persuasive model for how these complexes nucleate microtubule assembly. At the same time, data have accumulated that γ-tubulin has important but less well understood functions that are not simply a consequence of its function in microtubule nucleation. These include roles in the regulation of plus-end microtubule dynamics, gene regulation, and mitotic and cell cycle regulation. Finally, evidence is emerging that γ-tubulin mutations or alterations of γ-tubulin expression play an important role in certain types of cancer and in other diseases.
Collapse
Affiliation(s)
- Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Vitoria Paolillo
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| |
Collapse
|
192
|
Yeh C, Coyaud É, Bashkurov M, van der Lelij P, Cheung SWT, Peters JM, Raught B, Pelletier L. The Deubiquitinase USP37 Regulates Chromosome Cohesion and Mitotic Progression. Curr Biol 2015; 25:2290-9. [PMID: 26299517 DOI: 10.1016/j.cub.2015.07.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 06/08/2015] [Accepted: 07/09/2015] [Indexed: 12/31/2022]
Abstract
A bipolar mitotic spindle facilitates the equal segregation of chromosomes to two daughter cells. To achieve bipolar attachment of microtubules to kinetochores of sister chromatids, chromatids must remain paired after replication. This cohesion is mediated by the conserved cohesin complex comprised of SMC1, SMC3, SCC1, and either SA1 or SA2 in humans. Because defects in spindle assembly or sister chromatid cohesion can lead to aneuploidy in daughter cells, proper regulation of these processes is essential for fidelity in chromosome segregation. In an RNAi screen for regulators of spindle assembly, we identify the deubiquitinase USP37 as a regulator of mitotic progression, centrosome integrity, and chromosome alignment. USP37 associates with cohesin and contributes to sister chromatid resolution. Cohesion defects are rescued by expression of an RNAi-resistant USP37, but not the catalytically impaired USP37(C350A) mutant. Further, USP37 associates with WAPL, a negative regulator of cohesion necessary for cohesin release in prophase, in a manner dependent on USP37's second and third ubiquitin-interacting motifs. Depletion of USP37 reduces the stability of chromatin-associated WAPL and increases the fraction of WAPL that is more heavily ubiquitylated in mitosis. Consistently, overexpression of USP37(C350A) results in increased modification of WAPL, and addition of purified USP37(WT), but not USP37(C350A), to WAPL immunoprecipitates results in a reduction of ubiquitylated products. Taken together, our results ascribe a novel function for USP37 in mitotic progression and further suggest that USP37 positively regulates the stability of chromatin-associated WAPL to facilitate sister chromatid resolution.
Collapse
Affiliation(s)
- Christina Yeh
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Étienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Mikhail Bashkurov
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Petra van der Lelij
- Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Sally W T Cheung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Jan Michael Peters
- Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
193
|
|
194
|
Mitchison TJ, Ishihara K, Nguyen P, Wühr M. Size Scaling of Microtubule Assemblies in Early Xenopus Embryos. Cold Spring Harb Perspect Biol 2015; 7:a019182. [PMID: 26261283 DOI: 10.1101/cshperspect.a019182] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The first 12 cleavage divisions in Xenopus embryos provide a natural experiment in size scaling, as cell radius decreases ∼16-fold with little change in biochemistry. Analyzing both natural cleavage and egg extract partitioned into droplets revealed that mitotic spindle size scales with cell size, with an upper limit in very large cells. We discuss spindle-size scaling in the small- and large-cell regimes with a focus on the "limiting-component" hypotheses. Zygotes and early blastomeres show a scaling mismatch between spindle and cell size. This problem is solved, we argue, by interphase asters that act to position the spindle and transport chromosomes to the center of daughter cells. These tasks are executed by the spindle in smaller cells. We end by discussing possible mechanisms that limit mitotic aster size and promote interphase aster growth to cell-spanning dimensions.
Collapse
Affiliation(s)
- Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | - Keisuke Ishihara
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | - Phuong Nguyen
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | - Martin Wühr
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
195
|
Dong G. Building a ninefold symmetrical barrel: structural dissections of centriole assembly. Open Biol 2015; 5:150082. [PMID: 26269428 PMCID: PMC4554922 DOI: 10.1098/rsob.150082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/21/2015] [Indexed: 01/27/2023] Open
Abstract
Centrioles are short microtubule-based organelles with a conserved ninefold symmetry. They are essential for both centrosome formation and cilium biogenesis in most eukaryotes. A core set of five centriolar proteins has been identified and their sequential recruitment to procentrioles has been established. However, structures at atomic resolution for most of the centriolar components were scarce, and the underlying molecular mechanisms for centriole assembly had been a mystery--until recently. In this review, I briefly summarize recent advancements in high-resolution structural characterization of the core centriolar components and discuss perspectives in the field.
Collapse
Affiliation(s)
- Gang Dong
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna 1030, Austria
| |
Collapse
|
196
|
An Association Rule Mining Approach to Discover lncRNAs Expression Patterns in Cancer Datasets. BIOMED RESEARCH INTERNATIONAL 2015; 2015:146250. [PMID: 26273587 PMCID: PMC4530207 DOI: 10.1155/2015/146250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 01/17/2023]
Abstract
In the past few years, the role of long noncoding RNAs (lncRNAs) in tumor development and progression has been disclosed although their mechanisms of action remain to be elucidated. An important contribution to the comprehension of lncRNAs biology in cancer could be obtained through the integrated analysis of multiple expression datasets. However, the growing availability of public datasets requires new data mining techniques to integrate and describe relationship among data. In this perspective, we explored the powerness of the Association Rule Mining (ARM) approach in gene expression data analysis. By the ARM method, we performed a meta-analysis of cancer-related microarray data which allowed us to identify and characterize a set of ten lncRNAs simultaneously altered in different brain tumor datasets. The expression profiles of the ten lncRNAs appeared to be sufficient to distinguish between cancer and normal tissues. A further characterization of this lncRNAs signature through a comodulation expression analysis suggested that biological processes specific of the nervous system could be compromised.
Collapse
|
197
|
Asano E, Hasegawa H, Hyodo T, Ito S, Maeda M, Chen D, Takahashi M, Hamaguchi M, Senga T. SHCBP1 is required for midbody organization and cytokinesis completion. Cell Cycle 2015; 13:2744-51. [PMID: 25486361 DOI: 10.4161/15384101.2015.945840] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The centralspindlin complex, which is composed of MKLP1 and MgcRacGAP, is one of the crucial factors involved in cytokinesis initiation. Centralspindlin is localized at the middle of the central spindle during anaphase and then concentrates at the midbody to control abscission. A number of proteins that associate with centralspindlin have been identified. These associating factors regulate furrowing and abscission in coordination with centralspindlin. A recent study identified a novel centralspindlin partner, called Nessun Dorma, which is essential for germ cell cytokinesis in Drosophila melanogaster. SHCBP1 is a human ortholog of Nessun Dorma that associates with human centralspindlin. In this report, we analyzed the interaction of SHCBP1 with centralspindlin in detail and determined the regions that are required for the interaction. In addition, we demonstrate that the central region is necessary for the SHCBP1 dimerization. Both MgcRacGAP and MKLP1 are degraded once cells exit mitosis. Similarly, endogenous and exogenous SHCBP1 were degraded with mitosis progression. Interestingly, SHCBP1 expression was significantly reduced in the absence of centralspindlin, whereas centralspindlin expression was not affected by SHCBP1 knockdown. Finally, we demonstrate that SHCBP1 depletion promotes midbody structure disruption and inhibits abscission, a final stage of cytokinesis. Our study gives novel insight into the role of SHCBP in cytokinesis completion.
Collapse
Affiliation(s)
- Eri Asano
- a Division of Cancer Biology ; Nagoya University Graduate School of Medicine ; Nagoya , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Meyer K, Buettner S, Ghezzi D, Zeviani M, Bano D, Nicotera P. Loss of apoptosis-inducing factor critically affects MIA40 function. Cell Death Dis 2015; 6:e1814. [PMID: 26158520 PMCID: PMC4650723 DOI: 10.1038/cddis.2015.170] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 05/22/2015] [Indexed: 01/28/2023]
Abstract
Mitochondrial apoptosis-inducing factor (AIF) influences the oxidative phosphorylation (OXPHOS) system and can be recruited as a mediator of cell death. Pathogenic mutations in the AIFM1 gene cause severe human diseases. Clinical manifestations include inherited peripheral neuropathies, prenatal cerebral abnormalities and progressive mitochondrial encephalomyopathies. In humans, rodents and invertebrates, AIF deficiency results in loss of respiratory complexes and, therefore, impaired OXPHOS. The molecular mechanisms underlying AIF-induced mitochondrial dysfunction remain elusive. Here we show that AIF physically interacts with the oxidoreductase CHCHD4/MIA40. In patient-derived fibroblasts as well as in tissues and glia cells from Harlequin (Hq) mutant mice, AIF deficiency correlates with decreased MIA40 protein levels, without affecting mRNA transcription. Importantly, MIA40 overexpression counteracts loss of respiratory subunits in Hq cells. Together, our findings suggest that MIA40 reduction contributes to the effects of AIF deficiency on OXPHOS, as it may impact on the correct assembly and maintenance of the respiratory subunits. This may be relevant for the development of new therapeutic approaches for AIF-related mitochondrial disorders.
Collapse
Affiliation(s)
- K Meyer
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - S Buettner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - D Ghezzi
- IRCCS Foundation Institute of Neurology ‘C. Besta', Milan, Italy
| | - M Zeviani
- MRC Mitochondrial Biology Unit, Cambridge, UK
| | - D Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - P Nicotera
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
199
|
Arabidopsis MZT1 homologs GIP1 and GIP2 are essential for centromere architecture. Proc Natl Acad Sci U S A 2015; 112:8656-60. [PMID: 26124146 DOI: 10.1073/pnas.1506351112] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centromeres play a pivotal role in maintaining genome integrity by facilitating the recruitment of kinetochore and sister-chromatid cohesion proteins, both required for correct chromosome segregation. Centromeres are epigenetically specified by the presence of the histone H3 variant (CENH3). In this study, we investigate the role of the highly conserved γ-tubulin complex protein 3-interacting proteins (GIPs) in Arabidopsis centromere regulation. We show that GIPs form a complex with CENH3 in cycling cells. GIP depletion in the gip1gip2 knockdown mutant leads to a decreased CENH3 level at centromeres, despite a higher level of Mis18BP1/KNL2 present at both centromeric and ectopic sites. We thus postulate that GIPs are required to ensure CENH3 deposition and/or maintenance at centromeres. In addition, the recruitment at the centromere of other proteins such as the CENP-C kinetochore component and the cohesin subunit SMC3 is impaired in gip1gip2. These defects in centromere architecture result in aneuploidy due to severely altered centromeric cohesion. Altogether, we ascribe a central function to GIPs for the proper recruitment and/or stabilization of centromeric proteins essential in the specification of the centromere identity, as well as for centromeric cohesion in somatic cells.
Collapse
|
200
|
Gimenez M, Marie SKN, Oba-Shinjo S, Uno M, Izumi C, Oliveira JB, Rosa JC. Quantitative proteomic analysis shows differentially expressed HSPB1 in glioblastoma as a discriminating short from long survival factor and NOVA1 as a differentiation factor between low-grade astrocytoma and oligodendroglioma. BMC Cancer 2015; 15:481. [PMID: 26108672 PMCID: PMC4502388 DOI: 10.1186/s12885-015-1473-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/26/2015] [Indexed: 12/13/2022] Open
Abstract
Background Gliomas account for more than 60 % of all primary central nervous system neoplasms. Low-grade gliomas display a tendency to progress to more malignant phenotypes and the most frequent and malignant gliomas are glioblastomas (GBM). Another type of glioma, oligodendroglioma originates from oligodendrocytes and glial precursor cells and represents 2–5 % of gliomas. The discrimination between these two types of glioma is actually controversial, thus, a molecular distinction is necessary for better diagnosis. Methods iTRAQ-based quantitative proteomic analysis was performed on non-neoplastic brain tissue, on astrocytoma grade II, glioblastoma with short and long survival and oligodendrogliomas. Results We found that expression of nucleophosmin (NPM1), glucose regulated protein 78 kDa (GRP78), nucleolin (NCL) and heat shock protein 90 kDa (HSP90B1) were increased, Raf kinase inhibitor protein (RKIP/PEBP1) was decreased in glioblastoma and they were associated with a network related to tumor progression. Expression level of heat shock protein 27 (HSPB1/HSP27) discriminated glioblastoma presenting short (6 ± 4 months, n = 4) and long survival (43 ± 15 months, n = 4) (p = 0.00045). Expression level of RNA binding protein nova 1 (NOVA1) differentiated low-grade oligodendroglioma and astrocytoma grade II (p = 0.0082). Validation were done by Western blot, qRT-PCR and immunohistochemistry in a larger casuistry. Conclusion Taken together, our quantitative proteomic analysis detected the molecular triad, NPM1, GRP78 and RKIP participating together with NCL and HSP27/HSPB1 in a network related to tumor progression. Additionally, two new important targets were uncovered: NOVA1 useful for diagnostic refinement differentiating astrocytoma from oligodendroglioma, and HSPB1/HSP27, as a predictive factor of poor prognosis for GBM. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1473-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcela Gimenez
- Department Molecular and Cell Biology and Protein Chemistry Center, CTC-Center for Cell Therapy-CEPID-FAPESP-Hemocentro de Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Suely Kazue Nagahashi Marie
- Department of Neurology, São Paulo Medical School, University of Sao Paulo, Av. Bandeirantes, 3900-14049-900, Ribeirão Preto, São Paulo, Brazil.,Center for Studies of Cellular and Molecular Therapy (NETCEM) University of Sao Paulo, São Paulo, Brazil
| | - Sueli Oba-Shinjo
- Department of Neurology, São Paulo Medical School, University of Sao Paulo, Av. Bandeirantes, 3900-14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Miyuki Uno
- Department of Neurology, São Paulo Medical School, University of Sao Paulo, Av. Bandeirantes, 3900-14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Clarice Izumi
- Department Molecular and Cell Biology and Protein Chemistry Center, CTC-Center for Cell Therapy-CEPID-FAPESP-Hemocentro de Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - João Bosco Oliveira
- Instituto de Medicina Integral Prof. Fernando Figueira-IMIP, Pernambuco, Brazil
| | - Jose Cesar Rosa
- Department Molecular and Cell Biology and Protein Chemistry Center, CTC-Center for Cell Therapy-CEPID-FAPESP-Hemocentro de Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|