151
|
Ozturk IK, Dupont PY, Chettri P, McDougal R, Böhl OJ, Cox RJ, Bradshaw RE. Evolutionary relics dominate the small number of secondary metabolism genes in the hemibiotrophic fungus Dothistroma septosporum. Fungal Biol 2019; 123:397-407. [PMID: 31053329 DOI: 10.1016/j.funbio.2019.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 10/27/2022]
Abstract
Fungal secondary metabolites have important functions for the fungi that produce them, such as roles in virulence and competition. The hemibiotrophic pine needle pathogen Dothistroma septosporum has one of the lowest complements of secondary metabolite (SM) backbone genes of plant pathogenic fungi, indicating that this fungus produces a limited range of SMs. Amongst these SMs is dothistromin, a well-characterised polyketide toxin and virulence factor that is required for expansion of disease lesions in Dothistroma needle blight disease. Dothistromin genes are dispersed across six loci on one chromosome, rather than being clustered as for most SM genes. We explored other D. septosporum SM genes to determine if they are associated with gene clusters, and to predict what their likely products and functions might be. Of nine functional SM backbone genes in the D. septosporum genome, only four were expressed under a range of in planta and in culture conditions, one of which was the dothistromin PKS backbone gene. Of the other three expressed genes, gene knockout studies suggested that DsPks1 and DsPks2 are not required for virulence and attempts to determine a functional squalestatin-like SM product for DsPks2 were not successful. However preliminary evidence suggested that DsNps3, the only SM backbone gene to be most highly expressed in the early stage of disease, appears to be a virulence factor. Thus, despite the small number of SM backbone genes in D. septosporum, most of them appear to be poorly expressed or dispensable for virulence in planta. This work contributes to a growing body of evidence that many fungal secondary metabolite gene clusters might be non-functional and may be evolutionary relics.
Collapse
Affiliation(s)
- I Kutay Ozturk
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Pierre-Yves Dupont
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand; Institute of Environmental Science and Research, Christchurch, 8041, New Zealand
| | - Pranav Chettri
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Rebecca McDougal
- Scion, NZ Forest Research Institute Ltd, Rotorua, 3010, New Zealand
| | - Ole J Böhl
- Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1b, Hannover, 30167, Germany
| | - Russell J Cox
- Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1b, Hannover, 30167, Germany
| | - Rosie E Bradshaw
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand.
| |
Collapse
|
152
|
Saur IML, Bauer S, Kracher B, Lu X, Franzeskakis L, Müller MC, Sabelleck B, Kümmel F, Panstruga R, Maekawa T, Schulze-Lefert P. Multiple pairs of allelic MLA immune receptor-powdery mildew AVR A effectors argue for a direct recognition mechanism. eLife 2019; 8:e44471. [PMID: 30777147 PMCID: PMC6414202 DOI: 10.7554/elife.44471] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/13/2019] [Indexed: 01/03/2023] Open
Abstract
Nucleotide-binding domain and leucine-rich repeat (NLR)-containing proteins in plants and animals mediate intracellular pathogen sensing. Plant NLRs typically detect strain-specific pathogen effectors and trigger immune responses often linked to localized host cell death. The barley Mla disease resistance locus has undergone extensive functional diversification in the host population and encodes numerous allelic NLRs each detecting a matching isolate-specific avirulence effector (AVRA) of the fungal pathogen Blumeria graminis f. sp. hordei (Bgh). We report here the isolation of Bgh AVRa7, AVRa9, AVRa10, and AVRa22, which encode small secreted proteins recognized by allelic MLA7, MLA9, MLA10, and MLA22 receptors, respectively. These effectors are sequence-unrelated, except for allelic AVRa10 and AVRa22 that are co-maintained in pathogen populations in the form of a balanced polymorphism. Contrary to numerous examples of indirect recognition of bacterial effectors by plant NLRs, co-expression experiments with matching Mla-AVRa pairs indicate direct detection of the sequence-unrelated fungal effectors by MLA receptors.
Collapse
Affiliation(s)
- Isabel ML Saur
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
| | - Saskia Bauer
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
| | - Barbara Kracher
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
| | - Xunli Lu
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
| | - Lamprinos Franzeskakis
- Unit of Plant Molecular Cell Biology, Institute for Biology IRWTH Aachen UniversityAachenGermany
| | - Marion C Müller
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Björn Sabelleck
- Unit of Plant Molecular Cell Biology, Institute for Biology IRWTH Aachen UniversityAachenGermany
| | - Florian Kümmel
- Unit of Plant Molecular Cell Biology, Institute for Biology IRWTH Aachen UniversityAachenGermany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology IRWTH Aachen UniversityAachenGermany
| | - Takaki Maekawa
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
| | - Paul Schulze-Lefert
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
- Cluster of Excellence on Plant SciencesDüsseldorfGermany
| |
Collapse
|
153
|
Wan L, Koeck M, Williams SJ, Ashton AR, Lawrence GJ, Sakakibara H, Kojima M, Böttcher C, Ericsson DJ, Hardham AR, Jones DA, Ellis JG, Kobe B, Dodds PN. Structural and functional insights into the modulation of the activity of a flax cytokinin oxidase by flax rust effector AvrL567-A. MOLECULAR PLANT PATHOLOGY 2019; 20:211-222. [PMID: 30242946 PMCID: PMC6637871 DOI: 10.1111/mpp.12749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
During infection, plant pathogens secrete effector proteins to facilitate colonization. In comparison with our knowledge of bacterial effectors, the current understanding of how fungal effectors function is limited. In this study, we show that the effector AvrL567-A from the flax rust fungus Melampsora lini interacts with a flax cytosolic cytokinin oxidase, LuCKX1.1, using both yeast two-hybrid and in planta bimolecular fluorescence assays. Purified LuCKX1.1 protein shows catalytic activity against both N6-(Δ2-isopentenyl)-adenine (2iP) and trans-zeatin (tZ) substrates. Incubation of LuCKX1.1 with AvrL567-A results in increased catalytic activity against both substrates. The crystal structure of LuCKX1.1 and docking studies with AvrL567-A indicate that the AvrL567 binding site involves a flexible surface-exposed region that surrounds the cytokinin substrate access site, which may explain its effect in modulating LuCKX1.1 activity. Expression of AvrL567-A in transgenic flax plants gave rise to an epinastic leaf phenotype consistent with hormonal effects, although no difference in overall cytokinin levels was observed. We propose that, during infection, plant pathogens may differentially modify the levels of extracellular and intracellular cytokinins.
Collapse
Affiliation(s)
- Li Wan
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular BioscienceUniversity of QueenslandBrisbaneQLD4072Australia
- Department of BiologyUniversity of North CarolinaChapel HillNorth Carolina27599‐3280USA
| | - Markus Koeck
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraACT2601Australia
| | - Simon J. Williams
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular BioscienceUniversity of QueenslandBrisbaneQLD4072Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Anthony R. Ashton
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraACT2601Australia
| | - Gregory J. Lawrence
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraACT2601Australia
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource ScienceYokohamaKanagawa230‐0045Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource ScienceYokohamaKanagawa230‐0045Japan
| | - Christine Böttcher
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodAdelaideSA5064Australia
| | - Daniel J. Ericsson
- Australian SynchrotronMacromolecular CrystallographyClaytonVictoria3168Australia
| | - Adrienne R. Hardham
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - David A. Jones
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Jeffrey G. Ellis
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraACT2601Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular BioscienceUniversity of QueenslandBrisbaneQLD4072Australia
| | - Peter N. Dodds
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraACT2601Australia
| |
Collapse
|
154
|
Liu L, Xu L, Jia Q, Pan R, Oelmüller R, Zhang W, Wu C. Arms race: diverse effector proteins with conserved motifs. PLANT SIGNALING & BEHAVIOR 2019; 14:1557008. [PMID: 30621489 PMCID: PMC6351098 DOI: 10.1080/15592324.2018.1557008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Effector proteins play important roles in the infection by pathogenic oomycetes and fungi or the colonization by endophytic and mycorrhizal fungi. They are either translocated into the host plant cells via specific translocation mechanisms and function in the host's cytoplasm or nucleus, or they reside in the apoplast of the plant cells and act at the extracellular host-microbe interface. Many effector proteins possess conserved motifs (such as the RXLR, CRN, LysM, RGD, DELD, EAR, RYWT, Y/F/WXC or CFEM motifs) localized in their N- or C-terminal regions. Analysis of the functions of effector proteins, especially so-called "core effectors", is crucial for the understanding of pathogenicity/symbiosis mechanisms and plant defense strategies, and helps to develop breeding strategies for pathogen-resistant cultivars, and to increase crop yield and quality as well as abiotic stress resistance. This review summarizes current knowledge about these effector proteins with the conversed motifs and their involvement in pathogenic or mutualistic plant/fungal interactions.
Collapse
Affiliation(s)
- Liping Liu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Qie Jia
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
- CONTACT Wenying Zhang Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou 434025, China; Chu Wu College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
- Institute of Plant Ecology and Environmental Restoration, Yangtze University, Jingzhou, China
| |
Collapse
|
155
|
Liang P, Liu S, Xu F, Jiang S, Yan J, He Q, Liu W, Lin C, Zheng F, Wang X, Miao W. Powdery Mildews Are Characterized by Contracted Carbohydrate Metabolism and Diverse Effectors to Adapt to Obligate Biotrophic Lifestyle. Front Microbiol 2018; 9:3160. [PMID: 30619222 PMCID: PMC6305591 DOI: 10.3389/fmicb.2018.03160] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/05/2018] [Indexed: 01/08/2023] Open
Abstract
Powdery mildew is a widespread plant disease caused by obligate biotrophic fungal pathogens involving species-specific interactions between host and parasite. To gain genomic insights into the underlying obligate biotrophic mechanisms, we analyzed 15 microbial genomes covering powdery and downy mildews and rusts. We observed a genome-wide, massive contraction of multiple gene families in powdery mildews, such as enzymes in the carbohydrate metabolism pathway, when compared with ascomycete phytopathogens, while the fatty acid metabolism pathway maintained its integrity. We also observed significant differences in candidate secreted effector protein (CSEP) families between monocot and dicot powdery mildews, perhaps due to different selection forces. While CSEPs in monocot mildews are likely subject to positive selection causing rapid expansion, CSEP families in dicot mildews are shrinking under strong purifying selection. Our results not only illustrate obligate biotrophic mechanisms of powdery mildews driven by gene family evolution in nutrient metabolism, but also demonstrate how the divergence of CSEPs between monocot and dicot lineages might contribute to species-specific adaption.
Collapse
Affiliation(s)
- Peng Liang
- College of Plant Protection, Hainan University, Haikou, China.,Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China.,Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Songyu Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Feng Xu
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Shuqin Jiang
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Jun Yan
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Qiguang He
- College of Plant Protection, Hainan University, Haikou, China.,Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Wenbo Liu
- College of Plant Protection, Hainan University, Haikou, China.,Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Chunhua Lin
- College of Plant Protection, Hainan University, Haikou, China.,Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Fucong Zheng
- College of Plant Protection, Hainan University, Haikou, China.,Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Xiangfeng Wang
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Weiguo Miao
- College of Plant Protection, Hainan University, Haikou, China.,Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| |
Collapse
|
156
|
Zhu M, Riederer M, Hildebrandt U. UV-C irradiation compromises conidial germination, formation of appressoria, and induces transcription of three putative photolyase genes in the barley powdery mildew fungus, Blumeria graminis f. sp. hordei. Fungal Biol 2018; 123:218-230. [PMID: 30798877 DOI: 10.1016/j.funbio.2018.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/22/2018] [Accepted: 12/11/2018] [Indexed: 11/29/2022]
Abstract
UV-C irradiation is known to compromise germination of Blumeria graminis conidia and to reduce powdery mildew infestation. However, only scarce information is available on the effects of UV-C irradiation on B. graminis appressorium formation. Applying a Formvar® resin-based in vitro system allowed for analyzing B. graminis germination and appressorium formation in absence of plant defense. UV-C irradiation more strongly affected the differentiation of appressoria than conidial germination. In vivo and in vitro, a single dose of 100 J m-2 UV-C was sufficient to reduce germination to less than 20 % and decrease appressorium formation to values below 5 %. UV-C irradiation negatively affected pustule size and conidiation. White light-mediated photoreactivation was most effective immediately after UV-C irradiation, indicating that a prolonged phase of darkness after UV-C treatment increases the efficacy of B. graminis control. UV-C irradiation increased transcript levels of three putative B. graminis photolyase genes, while mere white light or blue light irradiation did not contribute to the transcriptional up-regulation. Thus, UV-C irradiation effectively controls B. graminis infestation and proliferation by restricting prepenetration processes. Nevertheless, photoreactivation plays an important role in UV-C-based powdery mildew control in crops and hence has to be considered for planning specific irradiation schedules.
Collapse
Affiliation(s)
- Mo Zhu
- University of Würzburg, Julius-von-Sachs-Institute for Biosciences, Chair of Botany II, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany.
| | - Markus Riederer
- University of Würzburg, Julius-von-Sachs-Institute for Biosciences, Chair of Botany II, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany.
| | - Ulrich Hildebrandt
- University of Würzburg, Julius-von-Sachs-Institute for Biosciences, Chair of Botany II, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany.
| |
Collapse
|
157
|
Bourras S, Praz CR, Spanu PD, Keller B. Cereal powdery mildew effectors: a complex toolbox for an obligate pathogen. Curr Opin Microbiol 2018; 46:26-33. [DOI: 10.1016/j.mib.2018.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 01/25/2023]
|
158
|
Sonawala U, Dinkeloo K, Danna CH, McDowell JM, Pilot G. Review: Functional linkages between amino acid transporters and plant responses to pathogens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:79-88. [PMID: 30466603 DOI: 10.1016/j.plantsci.2018.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/11/2018] [Accepted: 09/12/2018] [Indexed: 06/09/2023]
Abstract
Upon infection, plant pathogens become dependent on their hosts for nutrition. Therefore, the interaction between the two organisms is tightly linked to the availability and flux of nutrients in the plant. The plant's nitrogen metabolism is reprogrammed during pathogen attack, likely reflecting plant's response to invasion by the pathogen and active modification by the pathogen to promote feeding. Several lines of evidence indicate that plant-derived amino acids are an important source of nitrogen for diverse pathogens. Moreover, amino acid homeostasis is interconnected with the plant's immune signaling pathways. Here, we critically examine the knowns and unknowns about connections between plant-encoded amino acid transporters and resistance or susceptibility to pathogens and pests. We use recent insights into sugar transporters to frame a perspective with potential applicability to amino acids and other nutrients. We emphasize different approaches that have provided insight in this topic and we conclude with suggestions to fill gaps in foundational knowledge and explore new avenues for disease control.
Collapse
Affiliation(s)
- Unnati Sonawala
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, 24060 VA, USA
| | - Kasia Dinkeloo
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, 24060 VA, USA
| | - Cristian H Danna
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - John M McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, 24060 VA, USA.
| | - Guillaume Pilot
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, 24060 VA, USA.
| |
Collapse
|
159
|
Daval S, Belcour A, Gazengel K, Legrand L, Gouzy J, Cottret L, Lebreton L, Aigu Y, Mougel C, Manzanares-Dauleux MJ. Computational analysis of the Plasmodiophora brassicae genome: mitochondrial sequence description and metabolic pathway database design. Genomics 2018; 111:1629-1640. [PMID: 30447277 DOI: 10.1016/j.ygeno.2018.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/23/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
Plasmodiophora brassicae is an obligate biotrophic pathogenic protist responsible for clubroot, a root gall disease of Brassicaceae species. In addition to the reference genome of the P. brassicae European e3 isolate and the draft genomes of Canadian or Chinese isolates, we present the genome of eH, a second European isolate. Refinement of the annotation of the eH genome led to the identification of the mitochondrial genome sequence, which was found to be bigger than that of Spongospora subterranea, another plant parasitic Plasmodiophorid phylogenetically related to P. brassicae. New pathways were also predicted, such as those for the synthesis of spermidine, a polyamine up-regulated in clubbed regions of roots. A P. brassicae pathway genome database was created to facilitate the functional study of metabolic pathways in transcriptomics approaches. These available tools can help in our understanding of the regulation of P. brassicae metabolism during infection and in response to diverse constraints.
Collapse
Affiliation(s)
- Stéphanie Daval
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Domaine de la Motte, Le Rheu F-35653, France.
| | - Arnaud Belcour
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Domaine de la Motte, Le Rheu F-35653, France
| | - Kévin Gazengel
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Domaine de la Motte, Le Rheu F-35653, France
| | - Ludovic Legrand
- LIPM, INRA, CNRS, Université de Toulouse, Castanet Tolosan, France
| | - Jérôme Gouzy
- LIPM, INRA, CNRS, Université de Toulouse, Castanet Tolosan, France
| | - Ludovic Cottret
- LIPM, INRA, CNRS, Université de Toulouse, Castanet Tolosan, France
| | - Lionel Lebreton
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Domaine de la Motte, Le Rheu F-35653, France
| | - Yoann Aigu
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Domaine de la Motte, Le Rheu F-35653, France
| | - Christophe Mougel
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Domaine de la Motte, Le Rheu F-35653, France
| | | |
Collapse
|
160
|
Shen XX, Opulente DA, Kominek J, Zhou X, Steenwyk JL, Buh KV, Haase MAB, Wisecaver JH, Wang M, Doering DT, Boudouris JT, Schneider RM, Langdon QK, Ohkuma M, Endoh R, Takashima M, Manabe RI, Čadež N, Libkind D, Rosa CA, DeVirgilio J, Hulfachor AB, Groenewald M, Kurtzman CP, Hittinger CT, Rokas A. Tempo and Mode of Genome Evolution in the Budding Yeast Subphylum. Cell 2018; 175:1533-1545.e20. [PMID: 30415838 DOI: 10.1016/j.cell.2018.10.023] [Citation(s) in RCA: 382] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/12/2018] [Accepted: 10/04/2018] [Indexed: 11/17/2022]
Abstract
Budding yeasts (subphylum Saccharomycotina) are found in every biome and are as genetically diverse as plants or animals. To understand budding yeast evolution, we analyzed the genomes of 332 yeast species, including 220 newly sequenced ones, which represent nearly one-third of all known budding yeast diversity. Here, we establish a robust genus-level phylogeny comprising 12 major clades, infer the timescale of diversification from the Devonian period to the present, quantify horizontal gene transfer (HGT), and reconstruct the evolution of 45 metabolic traits and the metabolic toolkit of the budding yeast common ancestor (BYCA). We infer that BYCA was metabolically complex and chronicle the tempo and mode of genomic and phenotypic evolution across the subphylum, which is characterized by very low HGT levels and widespread losses of traits and the genes that control them. More generally, our results argue that reductive evolution is a major mode of evolutionary diversification.
Collapse
Affiliation(s)
- Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Dana A Opulente
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jacek Kominek
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, 510642 Guangzhou, China
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Kelly V Buh
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Max A B Haase
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA; Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY 10016, USA
| | - Jennifer H Wisecaver
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Biochemistry, Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Mingshuang Wang
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Drew T Doering
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James T Boudouris
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rachel M Schneider
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Quinn K Langdon
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Rikiya Endoh
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Masako Takashima
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Ri-Ichiroh Manabe
- Division of Genomic Technologies, RIKEN Center For Life Science Technologies, Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Neža Čadež
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada y Biotecnología, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET)-Universidad Nacional del Comahue, 8400 Bariloche, Argentina
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, CP 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Jeremy DeVirgilio
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Cletus P Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
161
|
Martínez-Cruz J, Romero D, De Vicente A, Pérez-García A. Transformation by growth onto agro-infiltrated tissues (TGAT), a simple and efficient alternative for transient transformation of the cucurbit powdery mildew pathogen Podosphaera xanthii. MOLECULAR PLANT PATHOLOGY 2018; 19:2502-2515. [PMID: 30073764 PMCID: PMC6638186 DOI: 10.1111/mpp.12722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/21/2018] [Accepted: 06/24/2018] [Indexed: 05/30/2023]
Abstract
A major limitation of molecular studies in powdery mildew fungi (Erysiphales) is their genetic intractability. This is because they are obligate biotrophs. In these parasites, biotrophy is determined by the presence of haustoria, which are specialized structures of parasitism that play an essential role in the acquisition of nutrients and the deliverance of effectors. Podosphaera xanthii is the main causal agent of cucurbit powdery mildew and a major limitation for crop productivity. In a previous study using P. xanthii conidia, we showed, for the first time, the transformation of powdery mildew fungi by Agrobacterium tumefaciens. In this work, we hypothesized that the haustorium could also act as a natural route for the acquisition of DNA. To test our hypothesis, melon cotyledons were agro-infiltrated with A. tumefaciens that contained diverse transfer DNA (T-DNA) constructs harbouring different marker genes under the control of fungal promoters and, after elimination of the bacterium, the cotyledons were subsequently inoculated with P. xanthii conidia. Our results conclusively demonstrated the transfer of different T-DNAs from A. tumefaciens to P. xanthii, including two fungicide resistance markers (hph and tub2), a reporter gene (gfp) and a translational fusion (cfp-PxEC2). These results were further supported by the co-localization of translational fluorescent fusions of A. tumefaciens VirD2 and P. xanthii Rab5 proteins into small vesicles of haustorial and hyphal cells, suggesting endocytosis as the mechanism for T-DNA uptake, presumably by the haustorium. From our perspective, transformation by growth onto agro-infiltrated tissues (TGAT) is the easiest and most reliable method for the transient transformation of powdery mildew fungi.
Collapse
Affiliation(s)
- Jesús Martínez-Cruz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
| | - Diego Romero
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
| | - Antonio De Vicente
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
| | - Alejandro Pérez-García
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
| |
Collapse
|
162
|
Oelmüller R. Sensing environmental and developmental signals via cellooligomers. JOURNAL OF PLANT PHYSIOLOGY 2018; 229:1-6. [PMID: 30005268 DOI: 10.1016/j.jplph.2018.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Roots respond to a cocktail of chemicals from microbes in the rhizosphere. Infochemicals in nmol concentrations activate receptor-mediated signal pathways, which reprogram the plant responses to environmental changes. The microbial signals have to pass the cell wall to activate pattern recognition receptors at the surface of the plant plasma membrane. The structure of the cell wall is not only a barrier for the signaling molecules, but also changes permanently during growth and development, as well as in response to microbial attacks or abiotic stress. Recently, cellooligomers (COMs) were identified as novel chemical mediators in Arabidopsis thaliana, which inform the cell about the alterations in and around the cell wall. They can be of microbial and plant origin and represent novel invasion patterns (Cook et al., 2015). COMs initiate Ca2+-dependent signaling events that reprogram the cell and adjust the expression and metabolite profiles as well as innate immunity in response to changes in their rhizosphere environment and the state of the cell wall. COMs operate synergistically with other signals or their recognition machineries and activates local and systemic responses in the entire plant. They also adjust the performance of the areal parts of the plant to signals perceived by the roots. Here, I summarize our current knowledge about COMs and propose strategies for future investigations.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich-Schiller-University Jena, Dornburgerstr. 159, D-07743, Jena, Germany.
| |
Collapse
|
163
|
Wu Y, Ma X, Pan Z, Kale SD, Song Y, King H, Zhang Q, Presley C, Deng X, Wei CI, Xiao S. Comparative genome analyses reveal sequence features reflecting distinct modes of host-adaptation between dicot and monocot powdery mildew. BMC Genomics 2018; 19:705. [PMID: 30253736 PMCID: PMC6156980 DOI: 10.1186/s12864-018-5069-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 09/11/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Powdery mildew (PM) is one of the most important and widespread plant diseases caused by biotrophic fungi. Notably, while monocot (grass) PM fungi exhibit high-level of host-specialization, many dicot PM fungi display a broad host range. To understand such distinct modes of host-adaptation, we sequenced the genomes of four dicot PM biotypes belonging to Golovinomyces cichoracearum or Oidium neolycopersici. RESULTS We compared genomes of the four dicot PM together with those of Blumeria graminis f.sp. hordei (both DH14 and RACE1 isolates), B. graminis f.sp. tritici, and Erysiphe necator infectious on barley, wheat and grapevine, respectively. We found that despite having a similar gene number (6620-6961), the PM genomes vary from 120 to 222 Mb in size. This high-level of genome size variation is indicative of highly differential transposon activities in the PM genomes. While the total number of genes in any given PM genome is only about half of that in the genomes of closely related ascomycete fungi, most (~ 93%) of the ascomycete core genes (ACGs) can be found in the PM genomes. Yet, 186 ACGs were found absent in at least two of the eight PM genomes, of which 35 are missing in some dicot PM biotypes, but present in the three monocot PM genomes, indicating remarkable, independent and perhaps ongoing gene loss in different PM lineages. Consistent with this, we found that only 4192 (3819 singleton) genes are shared by all the eight PM genomes, the remaining genes are lineage- or biotype-specific. Strikingly, whereas the three monocot PM genomes possess up to 661 genes encoding candidate secreted effector proteins (CSEPs) with families containing up to 38 members, all the five dicot PM fungi have only 116-175 genes encoding CSEPs with limited gene amplification. CONCLUSIONS Compared to monocot (grass) PM fungi, dicot PM fungi have a much smaller effectorome. This is consistent with their contrasting modes of host-adaption: while the monocot PM fungi show a high-level of host specialization, which may reflect an advanced host-pathogen arms race, the dicot PM fungi tend to practice polyphagy, which might have lessened selective pressure for escalating an with a particular host.
Collapse
Affiliation(s)
- Ying Wu
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
| | - Xianfeng Ma
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, 410128 China
| | - Zhiyong Pan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shiv D. Kale
- Biocomplexity Institute, Virginia Tech, Blacksburg, VA 24061 USA
| | - Yi Song
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Harlan King
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
| | - Qiong Zhang
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
| | - Christian Presley
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Cheng-I Wei
- College of Agriculture & Natural Resources, University of Maryland, College Park, MD 20742 USA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
164
|
Rincão MP, de Carvalho MCDCG, Nascimento LC, Lopes-Caitar VS, de Carvalho K, Darben LM, Yokoyama A, Carazzolle MF, Abdelnoor RV, Marcelino-Guimarães FC. New insights into Phakopsora pachyrhizi infection based on transcriptome analysis in planta. Genet Mol Biol 2018; 41:671-691. [PMID: 30235396 PMCID: PMC6136362 DOI: 10.1590/1678-4685-gmb-2017-0161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/02/2018] [Indexed: 11/30/2022] Open
Abstract
Asian soybean rust (ASR) is one of the most destructive diseases affecting soybeans. The causative agent of ASR, the fungus Phakopsora pachyrhizi, presents characteristics that make it difficult to study in vitro, limiting our knowledge of plant-pathogen dynamics. Therefore, this work used leaf lesion laser microdissection associated with deep sequencing to determine the pathogen transcriptome during compatible and incompatible interactions with soybean. The 36,350 generated unisequences provided an overview of the main genes and biological pathways that were active in the fungus during the infection cycle. We also identified the most expressed transcripts, including sequences similar to other fungal virulence and signaling proteins. Enriched P. pachyrhizi transcripts in the resistant (PI561356) soybean genotype were related to extracellular matrix organization and metabolic signaling pathways and, among infection structures, in amino acid metabolism and intracellular transport. Unisequences were further grouped into gene families along predicted sequences from 15 other fungi and oomycetes, including rust fungi, allowing the identification of conserved multigenic families, as well as being specific to P. pachyrhizi. The results revealed important biological processes observed in P. pachyrhizi, contributing with information related to fungal biology and, consequently, a better understanding of ASR.
Collapse
Affiliation(s)
- Michelle Pires Rincão
- Programa de Pós-Graduação em Genétiva e Biologia Molecular, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, PR, Brazil
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina, PR, Brazil
| | | | - Leandro Costa Nascimento
- Laboratory of Genomics and Expression (LGE), Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | - Valéria S. Lopes-Caitar
- Programa de Pós-Graduação em Genétiva e Biologia Molecular, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, PR, Brazil
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina, PR, Brazil
| | - Kenia de Carvalho
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina, PR, Brazil
| | - Luana M. Darben
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina, PR, Brazil
| | - Alessandra Yokoyama
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina, PR, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratory of Genomics and Expression (LGE), Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | | | | |
Collapse
|
165
|
Xia C, Wang M, Yin C, Cornejo OE, Hulbert SH, Chen X. Genomic insights into host adaptation between the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) and the barley stripe rust pathogen (Puccinia striiformis f. sp. hordei). BMC Genomics 2018; 19:664. [PMID: 30208837 PMCID: PMC6134786 DOI: 10.1186/s12864-018-5041-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/27/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Plant fungal pathogens can rapidly evolve and adapt to new environmental conditions in response to sudden changes of host populations in agro-ecosystems. However, the genomic basis of their host adaptation, especially at the forma specialis level, remains unclear. RESULTS We sequenced two isolates each representing Puccinia striiformis f. sp. tritici (Pst) and P. striiformis f. sp. hordei (Psh), different formae speciales of the stripe rust fungus P. striiformis highly adapted to wheat and barley, respectively. The divergence of Pst and Psh, estimated to start 8.12 million years ago, has been driven by high nucleotide mutation rates. The high genomic variation within dikaryotic urediniospores of P. striiformis has provided raw genetic materials for genome evolution. No specific gene families have enriched in either isolate, but extensive gene loss events have occurred in both Pst and Psh after the divergence from their most recent common ancestor. A large number of isolate-specific genes were identified, with unique genomic features compared to the conserved genes, including 1) significantly shorter in length; 2) significantly less expressed; 3) significantly closer to transposable elements; and 4) redundant in pathways. The presence of specific genes in one isolate (or forma specialis) was resulted from the loss of the homologues in the other isolate (or forma specialis) by the replacements of transposable elements or losses of genomic fragments. In addition, different patterns and numbers of telomeric repeats were observed between the isolates. CONCLUSIONS Host adaptation of P. striiformis at the forma specialis level is a complex pathogenic trait, involving not only virulence-related genes but also other genes. Gene loss, which might be adaptive and driven by transposable element activities, provides genomic basis for host adaptation of different formae speciales of P. striiformis.
Collapse
Affiliation(s)
- Chongjing Xia
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430 USA
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430 USA
| | - Chuntao Yin
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430 USA
| | - Omar E. Cornejo
- School of Biological Sciences, Washington State University, Pullman, WA 99164-7520 USA
| | - Scot H. Hulbert
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430 USA
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430 USA
- Wheat Health, Genetics, and Quality Research Unit, Agriculture Research Service, U.S. Department of Agriculture, Pullman, WA 99164-6430 USA
| |
Collapse
|
166
|
Kusch S, Frantzeskakis L, Thieron H, Panstruga R. Small RNAs from cereal powdery mildew pathogens may target host plant genes. Fungal Biol 2018; 122:1050-1063. [PMID: 30342621 DOI: 10.1016/j.funbio.2018.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022]
Abstract
Small RNAs (sRNAs) play a key role in eukaryotic gene regulation, for example by gene silencing via RNA interference (RNAi). The biogenesis of sRNAs depends on proteins that are generally conserved in all eukaryotic lineages, yet some species that lack part or all the components of the mechanism exist. Here we explored the presence of the RNAi machinery and its expression as well as the occurrence of sRNA candidates and their putative endogenous as well as host targets in phytopathogenic powdery mildew fungi. We focused on the species Blumeria graminis, which occurs in various specialized forms (formae speciales) that each have a strictly limited host range. B. graminis f. sp. hordei and B. graminis f. sp. tritici, colonizing barley and wheat, respectively, have genomes that are characterized by extensive gene loss. Nonetheless, we find that the RNAi machinery appears to be largely complete and expressed during infection. sRNA sequencing data enabled the identification of putative sRNAs in both pathogens. While a considerable part of the sRNA candidates have predicted target sites in endogenous genes and transposable elements, a small proportion appears to have targets in planta, suggesting potential cross-kingdom RNA transfer between powdery mildew fungi and their respective plant hosts.
Collapse
Affiliation(s)
- Stefan Kusch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056 Aachen, Germany.
| | - Lamprinos Frantzeskakis
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056 Aachen, Germany.
| | - Hannah Thieron
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056 Aachen, Germany.
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056 Aachen, Germany.
| |
Collapse
|
167
|
|
168
|
Sperschneider J, Dodds PN, Gardiner DM, Singh KB, Taylor JM. Improved prediction of fungal effector proteins from secretomes with EffectorP 2.0. MOLECULAR PLANT PATHOLOGY 2018; 19:2094-2110. [PMID: 29569316 PMCID: PMC6638006 DOI: 10.1111/mpp.12682] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 05/14/2023]
Abstract
Plant-pathogenic fungi secrete effector proteins to facilitate infection. We describe extensive improvements to EffectorP, the first machine learning classifier for fungal effector prediction. EffectorP 2.0 is now trained on a larger set of effectors and utilizes a different approach based on an ensemble of classifiers trained on different subsets of negative data, offering different views on classification. EffectorP 2.0 achieves an accuracy of 89%, compared with 82% for EffectorP 1.0 and 59.8% for a small size classifier. Important features for effector prediction appear to be protein size, protein net charge as well as the amino acids serine and cysteine. EffectorP 2.0 decreases the number of predicted effectors in secretomes of fungal plant symbionts and saprophytes by 40% when compared with EffectorP 1.0. However, EffectorP 1.0 retains value, and combining EffectorP 1.0 and 2.0 results in a stringent classifier with a low false positive rate of 9%. EffectorP 2.0 predicts significant enrichments of effectors in 12 of 13 sets of infection-induced proteins from diverse fungal pathogens, whereas a small cysteine-rich classifier detects enrichment in only seven of 13. EffectorP 2.0 will fast track the prioritization of high-confidence effector candidates for functional validation and aid in improving our understanding of effector biology. EffectorP 2.0 is available at http://effectorp.csiro.au.
Collapse
Affiliation(s)
- Jana Sperschneider
- Centre for Environment and Life Sciences, CSIRO Agriculture and FoodPerth, WA 6014Australia
| | - Peter N. Dodds
- Black Mountain Laboratories, CSIRO Agriculture and FoodCanberra, ACT 2601Australia
| | - Donald M. Gardiner
- CSIRO Agriculture and FoodQueensland Bioscience PrecinctBrisbane, Qld 4067Australia
| | - Karam B. Singh
- Centre for Environment and Life Sciences, CSIRO Agriculture and FoodPerth, WA 6014Australia
- Department of Environment and Agriculture, Centre for Crop and Disease ManagementCurtin UniversityBentley, WA 6102Australia
| | - Jennifer M. Taylor
- Black Mountain Laboratories, CSIRO Agriculture and FoodCanberra, ACT 2601Australia
| |
Collapse
|
169
|
Martínez-Cruz J, Romero D, de la Torre FN, Fernández-Ortuño D, Torés JA, de Vicente A, Pérez-García A. The Functional Characterization of Podosphaera xanthii Candidate Effector Genes Reveals Novel Target Functions for Fungal Pathogenicity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:914-931. [PMID: 29513627 DOI: 10.1094/mpmi-12-17-0318-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Podosphaera xanthii is the main causal agent of powdery mildew disease in cucurbits. In a previous study, we determined that P. xanthii expresses approximately 50 Podosphaera effector candidates (PECs), identified based on the presence of a predicted signal peptide and the absence of functional annotation. In this work, we used host-induced gene silencing (HIGS), employing Agrobacterium tumefaciens as a vector for the delivery of the silencing constructs (ATM-HIGS), to identify genes involved in early plant-pathogen interaction. The analysis of seven selected PEC-encoding genes showed that six of them, PEC007, PEC009, PEC019, PEC032, PEC034, and PEC054, are required for P. xanthii pathogenesis, as revealed by reduced fungal growth and increased production of hydrogen peroxide by host cells. In addition, protein models and protein-ligand predictions allowed us to identify putative functions for these candidates. The biochemical activities of PEC019, PEC032, and PEC054 were elucidated using their corresponding proteins expressed in Escherichia coli. These proteins were confirmed as phospholipid-binding protein, α-mannosidase, and cellulose-binding protein. Further, BLAST searches showed that these three effectors are widely distributed in phytopathogenic fungi. These results suggest novel targets for fungal effectors, such as host-cell plasma membrane, host-cell glycosylation, and damage-associated molecular pattern-triggered immunity.
Collapse
Affiliation(s)
- Jesús Martínez-Cruz
- 1 Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga and Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Diego Romero
- 1 Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga and Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Fernando N de la Torre
- 2 Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; and
| | - Dolores Fernández-Ortuño
- 3 Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29750 Algarrobo-Costa, Málaga, Spain
| | - Juan A Torés
- 3 Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29750 Algarrobo-Costa, Málaga, Spain
| | - Antonio de Vicente
- 1 Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga and Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Alejandro Pérez-García
- 1 Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga and Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| |
Collapse
|
170
|
Sánchez-Vallet A, Fouché S, Fudal I, Hartmann FE, Soyer JL, Tellier A, Croll D. The Genome Biology of Effector Gene Evolution in Filamentous Plant Pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:21-40. [PMID: 29768136 DOI: 10.1146/annurev-phyto-080516-035303] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Filamentous pathogens, including fungi and oomycetes, pose major threats to global food security. Crop pathogens cause damage by secreting effectors that manipulate the host to the pathogen's advantage. Genes encoding such effectors are among the most rapidly evolving genes in pathogen genomes. Here, we review how the major characteristics of the emergence, function, and regulation of effector genes are tightly linked to the genomic compartments where these genes are located in pathogen genomes. The presence of repetitive elements in these compartments is associated with elevated rates of point mutations and sequence rearrangements with a major impact on effector diversification. The expression of many effectors converges on an epigenetic control mediated by the presence of repetitive elements. Population genomics analyses showed that rapidly evolving pathogens show high rates of turnover at effector loci and display a mosaic in effector presence-absence polymorphism among strains. We conclude that effective pathogen containment strategies require a thorough understanding of the effector genome biology and the pathogen's potential for rapid adaptation.
Collapse
Affiliation(s)
- Andrea Sánchez-Vallet
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Simone Fouché
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Isabelle Fudal
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Fanny E Hartmann
- Ecologie Systématique Evolution, AgroParisTech, Université Paris-Sud, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Jessica L Soyer
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Aurélien Tellier
- Section of Population Genetics, Technical University of Munich, 85354 Freising, Germany
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland;
| |
Collapse
|
171
|
Rivera Y, Salgado-Salazar C, Veltri D, Malapi-Wight M, Crouch JA. Genome analysis of the ubiquitous boxwood pathogen Pseudonectria foliicola. PeerJ 2018; 6:e5401. [PMID: 30155349 PMCID: PMC6110257 DOI: 10.7717/peerj.5401] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/18/2018] [Indexed: 01/15/2023] Open
Abstract
Boxwood (Buxus spp.) are broad-leaved, evergreen landscape plants valued for their longevity and ornamental qualities. Volutella leaf and stem blight, caused by the ascomycete fungi Pseudonectria foliicola and P. buxi, is one of the major diseases affecting the health and ornamental qualities of boxwood. Although this disease is less severe than boxwood blight caused by Calonectria pseudonaviculata and C. henricotiae, its widespread occurrence and disfiguring symptoms have caused substantial economic losses to the ornamental industry. In this study, we sequenced the genome of P. foliicola isolate ATCC13545 using Illumina technology and compared it to other publicly available fungal pathogen genomes to better understand the biology of this organism. A de novo assembly estimated the genome size of P. foliicola at 28.7 Mb (425 contigs; N50 = 184,987 bp; avg. coverage 188×), with just 9,272 protein-coding genes. To our knowledge, P. foliicola has the smallest known genome within the Nectriaceae. Consistent with the small size of the genome, the secretome, CAzyme and secondary metabolite profiles of this fungus are reduced relative to two other surveyed Nectriaceae fungal genomes: Dactylonectria macrodidyma JAC15-245 and Fusarium graminearum Ph-1. Interestingly, a large cohort of genes associated with reduced virulence and loss of pathogenicity was identified from the P. foliicola dataset. These data are consistent with the latest observations by plant pathologists that P. buxi and most likely P. foliicola, are opportunistic, latent pathogens that prey upon weak and stressed boxwood plants.
Collapse
Affiliation(s)
- Yazmín Rivera
- Mycology and Nematology Genetic Diversity and Biology Laboratory, US Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD, United States of America
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
- Current affiliation: Center for Plant Health, Science and Technology, USDA, Animal and Plant Health Inspection Service, Beltsville, MD, United States of America
| | - Catalina Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, US Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD, United States of America
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
- ARS Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States of America
| | - Daniel Veltri
- Mycology and Nematology Genetic Diversity and Biology Laboratory, US Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD, United States of America
- ARS Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States of America
- Current affiliation: Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States of America
| | - Martha Malapi-Wight
- Mycology and Nematology Genetic Diversity and Biology Laboratory, US Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD, United States of America
- Current affiliation: Plant Germplasm Quarantine Program, USDA, Animal and Plant Health Inspection Service, Beltsville, MD, United States of America
| | - Jo Anne Crouch
- Mycology and Nematology Genetic Diversity and Biology Laboratory, US Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD, United States of America
| |
Collapse
|
172
|
Keymer A, Gutjahr C. Cross-kingdom lipid transfer in arbuscular mycorrhiza symbiosis and beyond. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:137-144. [PMID: 29729528 DOI: 10.1016/j.pbi.2018.04.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 05/09/2023]
Abstract
Arbuscular mycorrhiza (AM) is a widespread symbiosis between most land plants and fungi of the Glomeromycotina, which has existed for more than 400million years. AM fungi (AMF) improve plant nutrition with mineral nutrients and conversely, their growth and development is fueled by organic carbon supplied from their host. Recent studies demonstrated independently and with different experimental approaches that lipids are transferred from plants to fungi in addition to sugars, and that AMF are dependent on this lipid supply because they lack genes encoding fatty acid synthase I subunits. Dependence on host lipids or lipid parasitism occur in a range of interorganismic associations with participants from almost all kingdoms. Thus, these phenomena seem rather common in mutualistic and parasitic interactions.
Collapse
Affiliation(s)
- Andreas Keymer
- Faculty of Biology, Genetics, LMU Munich, Biocenter Martinsried, Großhaderner Str. 2-4, 82152 Martinsried, Germany; Plant Genetics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany
| | - Caroline Gutjahr
- Plant Genetics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany.
| |
Collapse
|
173
|
Chang HX, Noel ZA, Sang H, Chilvers MI. Annotation resource of tandem repeat-containing secretory proteins in sixty fungi. Fungal Genet Biol 2018; 119:7-19. [PMID: 30026018 DOI: 10.1016/j.fgb.2018.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/06/2018] [Accepted: 07/15/2018] [Indexed: 11/17/2022]
Abstract
Fungal secretory proteins that interact with host plants are regarded as effectors. Because fungal effectors rarely contain conserved sequence features, identification and annotation of fungal effectors from predicted secretory proteins are difficult using outward comparison methods such as BLAST or hidden Markov model. In desire of more sequence features to prioritize research interests of fungal secretory proteins, this study developed a pipeline to identify tandem repeat (TR) domain within putative secretory proteins and tested a hypothesis that at least one type of TR domain in non-orthologous secretory proteins has emerged from convergent evolution for plant pathogenicity. There were 2804 types of TR domains and a total of 2925 TR-containing secretory proteins found from 60 fungi. There was no conserved type of TR domain shared only by plant pathogens, indicating functional divergence for different types of TR domain and TR-containing secretory proteins. The annotation resource of putative fungal TR-containing secretory proteins provides new sequence features that will be useful for the community interested in fungal effector biology.
Collapse
Affiliation(s)
- Hao-Xun Chang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824, MI, United States
| | - Zachary A Noel
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824, MI, United States
| | - Hyunkyu Sang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824, MI, United States
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824, MI, United States.
| |
Collapse
|
174
|
Dal Molin A, Minio A, Griggio F, Delledonne M, Infantino A, Aragona M. The genome assembly of the fungal pathogen Pyrenochaeta lycopersici from Single-Molecule Real-Time sequencing sheds new light on its biological complexity. PLoS One 2018; 13:e0200217. [PMID: 29979772 PMCID: PMC6034849 DOI: 10.1371/journal.pone.0200217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/21/2018] [Indexed: 12/19/2022] Open
Abstract
The first draft genome sequencing of the non-model fungal pathogen Pyrenochaeta lycopersici showed an expansion of gene families associated with heterokaryon incompatibility and lacking of mating-type genes, providing insights into the genetic basis of this “imperfect” fungus which lost the ability to produce the sexual stage. However, due to the Illumina short-read technology, the draft genome was too fragmented to allow a comprehensive characterization of the genome, especially of the repetitive sequence fraction. In this work, the sequencing of another P. lycopersici isolate using long-read Single Molecule Real-Time sequencing technology was performed with the aim of obtaining a gapless genome. Indeed, a gapless genome assembly of 62.7 Mb was obtained, with a fraction of repetitive sequences representing 30% of the total bases. The gene content of the two P. lycopersici isolates was very similar, and the large difference in genome size (about 8 Mb) might be attributable to the high fraction of repetitive sequences detected for the new sequenced isolate. The role of repetitive elements, including transposable elements, in modulating virulence effectors is well established in fungal plant pathogens. Moreover, transposable elements are of fundamental importance in creating and re-modelling genes, especially in imperfect fungi. Their abundance in P. lycopersici, together with the large expansion of heterokaryon incompatibility genes in both sequenced isolates, suggest the presence of possible mechanisms alternative to gene re-assorting mediated by sexual recombination. A quite large fraction (~9%) of repetitive elements in P. lycopersici, has no homology with known classes, strengthening this hypothesis. The availability of a gapless genome of P. lycopersici allowed the in-depth analysis of its genome content, by annotating functional genes and TEs. This goal will be an important resource for shedding light on the evolution of the reproductive and pathogenic behaviour of this soilborne pathogen and the onset of a possible speciation within this species.
Collapse
Affiliation(s)
| | - Andrea Minio
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Francesca Griggio
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Massimo Delledonne
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Alessandro Infantino
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Research Centre for Plant Protection and Certification, Rome, Italy
| | - Maria Aragona
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Research Centre for Plant Protection and Certification, Rome, Italy
- * E-mail:
| |
Collapse
|
175
|
Hu Y, Liang Y, Zhang M, Tan F, Zhong S, Li X, Gong G, Chang X, Shang J, Tang S, Li T, Luo P. Comparative transcriptome profiling of Blumeria graminis f. sp. tritici during compatible and incompatible interactions with sister wheat lines carrying and lacking Pm40. PLoS One 2018; 13:e0198891. [PMID: 29975700 PMCID: PMC6033381 DOI: 10.1371/journal.pone.0198891] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/25/2018] [Indexed: 11/18/2022] Open
Abstract
Blumeria graminis f. sp. tritici (Bgt) is an obligate biotrophic fungus that causes wheat powdery mildew, which is a devastating disease in wheat. However, little is known about the pathogenesis of this fungus, and differences in the pathogenesis of the same pathogen at various resistance levels in hosts have not been determined. In the present study, leaf tissues of both Pm40-expressing hexaploid wheat line L658 and its Pm40-deficient sister line L958 were harvested at 0 (without inoculation), 6, 12, 24, 48 and 72 hours post-inoculation (hpi) with Bgt race 15 and then subjected to RNA sequencing (RNA-seq). In addition, we also observed changes in fungal growth morphology at the aforementioned time points. There was a high correlation between percentage of reads mapped to the Bgt reference genome and biomass of the fungus within the leaf tissue during the growth process. The percentage of mapped reads of Bgt in compatible interactions was significantly higher (at the p<0.05 level) than that of reads in incompatible interactions from 24 to 72 hpi. Further functional annotations indicated that expression levels of genes encoding H+-transporting ATPase, putative secreted effector proteins (PSEPs) and heat shock proteins (HSPs) were significantly up-regulated in compatible interactions compared with these levels in incompatible interactions, particularly at 72 hpi. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that genes involved in the endocytosis pathway were also enriched in compatible interactions. Overall, genes encoding H+-transporting ATPase, PSEPs and HSPs possibly played crucial roles in successfully establishing the pathogenesis of compatible interactions during late stages of inoculation. The study results also indicated that endocytosis is likely to play a potential role in Bgt in establishing compatible interactions.
Collapse
Affiliation(s)
- Yuting Hu
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yinping Liang
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Min Zhang
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Feiquan Tan
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shengfu Zhong
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xin Li
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guoshu Gong
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Chang
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Shang
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shengwen Tang
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tao Li
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Peigao Luo
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
176
|
Nottensteiner M, Zechmann B, McCollum C, Hückelhoven R. A barley powdery mildew fungus non-autonomous retrotransposon encodes a peptide that supports penetration success on barley. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3745-3758. [PMID: 29757394 PMCID: PMC6022598 DOI: 10.1093/jxb/ery174] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/09/2018] [Indexed: 05/22/2023]
Abstract
Pathogens overcome plant immunity by means of secreted effectors. Host effector targets often act in pathogen defense, but might also support fungal accommodation or nutrition. The barley ROP GTPase HvRACB is involved in accommodation of fungal haustoria of the powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh) in barley epidermal cells. We found that HvRACB interacts with the ROP-interactive peptide 1 (ROPIP1) that is encoded on the active non-long terminal repeat retroelement Eg-R1 of Bgh. Overexpression of ROPIP1 in barley epidermal cells and host-induced post-transcriptional gene silencing (HIGS) of ROPIP1 suggested that ROPIP1 is involved in virulence of Bgh. Bimolecular fluorescence complementation and co-localization supported that ROPIP1 can interact with activated HvRACB in planta. We show that ROPIP1 is expressed by Bgh on barley and translocated into the cytoplasm of infected barley cells. ROPIP1 is recruited to microtubules upon co-expression of MICROTUBULE ASSOCIATED ROP GTPase ACTIVATING PROTEIN (HvMAGAP1) and can destabilize cortical microtubules. The data suggest that Bgh ROPIP targets HvRACB and manipulates host cell microtubule organization for facilitated host cell entry. This points to a possible neo-functionalization of retroelement-derived transcripts for the evolution of a pathogen virulence effector.
Collapse
Affiliation(s)
- Mathias Nottensteiner
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, TX, USA
| | - Christopher McCollum
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Correspondence:
| |
Collapse
|
177
|
Sabelleck B, Panstruga R. Novel jack-in-the-box effector of the barley powdery mildew pathogen? JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3511-3514. [PMID: 29947808 PMCID: PMC6022647 DOI: 10.1093/jxb/ery192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This article comments on: Nottensteiner M, Zechmann B, McCollum C, Hückelhoven R. 2018. A barley powdery mildew fungus non-autonomous retrotransposon encodes a peptide that supports penetration success on barley. Journal of Experimental Botany 69, 3745–3758.
Collapse
Affiliation(s)
- Björn Sabelleck
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Worringerweg, Aachen, Germany
| | - Ralph Panstruga
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Worringerweg, Aachen, Germany
| |
Collapse
|
178
|
Van Wyk S, Wingfield BD, De Vos L, Santana QC, Van der Merwe NA, Steenkamp ET. Multiple independent origins for a subtelomeric locus associated with growth rate in Fusarium circinatum. IMA Fungus 2018; 9:27-36. [PMID: 30018870 PMCID: PMC6048564 DOI: 10.5598/imafungus.2018.09.01.03] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/19/2018] [Indexed: 12/28/2022] Open
Abstract
Fusarium is a diverse assemblage that includes a large number of species of considerable medical and agricultural importance. Not surprisingly, whole genome sequences for many Fusarium species have been published or are in the process of being determined, the availability of which is invaluable for deciphering the genetic basis of key phenotypic traits. Here we investigated the distribution, genic composition, and evolutionary history of a locus potentially determining growth rate in the pitch canker pathogen F. circinatum. We found that the genomic region underlying this locus is highly conserved amongst F. circinatum and its close relatives, except for the presence of a 12 000 base pair insertion in all of the examined isolates of F. circinatum. This insertion encodes for five genes and our phylogenetic analyses revealed that each was most likely acquired through horizontal gene transfer from polyphyletic origins. Our data further showed that this region is located in a region low in G+C content and enriched for repetitive sequences and transposable elements, which is situated near the telomere of Chromosome 3 of F. circinatum. As have been shown for other fungi, these findings thus suggest that the emergence of the unique 12 000 bp region in F. circinatum is linked to the dynamic evolutionary processes associated with subtelomeres that, in turn, have been implicated in the ecological adaptation of fungal pathogens.
Collapse
Affiliation(s)
- Stephanie Van Wyk
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Lieschen De Vos
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Quentin C Santana
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Nicolaas A Van der Merwe
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| |
Collapse
|
179
|
Frantzeskakis L, Kracher B, Kusch S, Yoshikawa-Maekawa M, Bauer S, Pedersen C, Spanu PD, Maekawa T, Schulze-Lefert P, Panstruga R. Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. BMC Genomics 2018; 19:381. [PMID: 29788921 PMCID: PMC5964911 DOI: 10.1186/s12864-018-4750-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/02/2018] [Indexed: 12/30/2022] Open
Abstract
Background Powdery mildews are biotrophic pathogenic fungi infecting a number of economically important plants. The grass powdery mildew, Blumeria graminis, has become a model organism to study host specialization of obligate biotrophic fungal pathogens. We resolved the large-scale genomic architecture of B. graminis forma specialis hordei (Bgh) to explore the potential influence of its genome organization on the co-evolutionary process with its host plant, barley (Hordeum vulgare). Results The near-chromosome level assemblies of the Bgh reference isolate DH14 and one of the most diversified isolates, RACE1, enabled a comparative analysis of these haploid genomes, which are highly enriched with transposable elements (TEs). We found largely retained genome synteny and gene repertoires, yet detected copy number variation (CNV) of secretion signal peptide-containing protein-coding genes (SPs) and locally disrupted synteny blocks. Genes coding for sequence-related SPs are often locally clustered, but neither the SPs nor the TEs reside preferentially in genomic regions with unique features. Extended comparative analysis with different host-specific B. graminis formae speciales revealed the existence of a core suite of SPs, but also isolate-specific SP sets as well as congruence of SP CNV and phylogenetic relationship. We further detected evidence for a recent, lineage-specific expansion of TEs in the Bgh genome. Conclusions The characteristics of the Bgh genome (largely retained synteny, CNV of SP genes, recently proliferated TEs and a lack of significant compartmentalization) are consistent with a “one-speed” genome that differs in its architecture and (co-)evolutionary pattern from the “two-speed” genomes reported for several other filamentous phytopathogens. Electronic supplementary material The online version of this article (10.1186/s12864-018-4750-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lamprinos Frantzeskakis
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Barbara Kracher
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Stefan Kusch
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Makoto Yoshikawa-Maekawa
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Saskia Bauer
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Carsten Pedersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Pietro D Spanu
- Imperial College, Department of Life Sciences, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| | - Takaki Maekawa
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| | - Paul Schulze-Lefert
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany.
| |
Collapse
|
180
|
Plaumann PL, Schmidpeter J, Dahl M, Taher L, Koch C. A Dispensable Chromosome Is Required for Virulence in the Hemibiotrophic Plant Pathogen Colletotrichum higginsianum. Front Microbiol 2018; 9:1005. [PMID: 29867895 PMCID: PMC5968395 DOI: 10.3389/fmicb.2018.01005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/30/2018] [Indexed: 01/01/2023] Open
Abstract
The hemibiotrophic plant pathogen Colletotrichum higginsianum infects Brassicaceae and in combination with Arabidopsis thaliana, represents an important model system to investigate various ecologically important fungal pathogens and their infection strategies. After penetration of plant cells by appressoria, C. higginsianum establishes large biotrophic primary hyphae in the first infected cell. Shortly thereafter, a switch to necrotrophic growth occurs leading to the invasion of neighboring cells by secondary hyphae. In a forward genetic screen for virulence mutants by insertional mutagenesis, we identified mutants that penetrate the plant but show a defect in the passage from biotrophy to necrotrophy. Genome sequencing and pulsed-field gel electrophoresis revealed that two mutants were lacking chromosome 11, encoding potential pathogenicity genes. We established a chromosome loss assay to verify that strains lacking this small chromosome abort infection during biotrophy, while their ability to grow on artificial media was not affected. C. higginsianum harbors a second small chromosome, which can be lost without effects on virulence or growth on agar plates. Furthermore, we found that chromosome 11 is required to suppress Arabidopsis thaliana plant defense mechanisms dependent on tryptophan derived secondary metabolites.
Collapse
Affiliation(s)
- Peter-Louis Plaumann
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Schmidpeter
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marlis Dahl
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Leila Taher
- Division of Bioinformatics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Koch
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
181
|
Kijpornyongpan T, Mondo SJ, Barry K, Sandor L, Lee J, Lipzen A, Pangilinan J, LaButti K, Hainaut M, Henrissat B, Grigoriev IV, Spatafora JW, Aime MC. Broad Genomic Sampling Reveals a Smut Pathogenic Ancestry of the Fungal Clade Ustilaginomycotina. Mol Biol Evol 2018; 35:1840-1854. [DOI: 10.1093/molbev/msy072] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - Stephen J Mondo
- US Department of Energy Joint Genome Institute, Walnut Creek, CA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Walnut Creek, CA
| | - Laura Sandor
- US Department of Energy Joint Genome Institute, Walnut Creek, CA
| | - Juna Lee
- US Department of Energy Joint Genome Institute, Walnut Creek, CA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, CA
| | | | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Walnut Creek, CA
| | - Matthieu Hainaut
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN
| |
Collapse
|
182
|
Qin J, Wang K, Sun L, Xing H, Wang S, Li L, Chen S, Guo HS, Zhang J. The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity. eLife 2018; 7:34902. [PMID: 29757140 PMCID: PMC5993538 DOI: 10.7554/elife.34902] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/11/2018] [Indexed: 11/13/2022] Open
Abstract
The vascular pathogen Verticillium dahliae infects the roots of plants to cause Verticillium wilt. The molecular mechanisms underlying V. dahliae virulence and host resistance remain elusive. Here, we demonstrate that a secretory protein, VdSCP41, functions as an intracellular effector that promotes V. dahliae virulence. The Arabidopsis master immune regulators CBP60g and SARD1 and cotton GhCBP60b are targeted by VdSCP41. VdSCP41 binds the C-terminal portion of CBP60g to inhibit its transcription factor activity. Further analyses reveal a transcription activation domain within CBP60g that is required for VdSCP41 targeting. Mutations in both CBP60g and SARD1 compromise Arabidopsis resistance against V. dahliae and partially impair VdSCP41-mediated virulence. Moreover, virus-induced silencing of GhCBP60b compromises cotton resistance to V. dahliae. This work uncovers a virulence strategy in which the V. dahliae secretory protein VdSCP41 directly targets plant transcription factors to inhibit immunity, and reveals CBP60g, SARD1 and GhCBP60b as crucial components governing V. dahliae resistance. Like animals, plants have an immune system to protect themselves from disease. When a plant detects a disease-causing microbe, proteins that serve as master regulators of its immune system activate defense-related genes. Yet some microbes can overcome these defenses and successfully infect plants. Verticillium dahliae is a fungus, found in soil, that infects the roots of many plants – including cotton, tomatoes and potatoes. Infection by this fungus causes the leaves to curl and discolor, and the plant to wilt. The V. dahliae fungus releases, or secretes, nearly 800 proteins during an infection. Yet it remains unknown if and how any of these proteins help the fungus to infect plants. A better understanding of how V. dahliae impairs plant immunity to infect its hosts could give insights into ways to improve plant resistance against this fungus. Now, Qin et al. show that a secreted protein called VdSCP41 promotes V. dahliae infection in both cotton and Arabidopsis plants. Further experiments showed that after leaving the fungus, VdSCP41 enters into the plant’s own cells. Protein-protein interaction and biochemical studies then indicated VdSCP41 associates with a master immune regulator in Arabidopsis called CBP60g. This interaction interferes with CBP60g’s ability to activate the defense-related genes. Now that this role for VdSCP41 has been confirmed, the next step would be to see if targeting it would make plants more resistant to this fungus. One approach would be to genetically engineer plants so that they can specifically shut down, or ‘silence’, the fungal gene that encodes for this protein. Further experiments are required to see whether using this technique – known as host-induced gene silencing (or HIGS for short) – against VdSCP41would enhance plant resistance to V. dahliae. If it does prove effective, this approach may eventually reduce the need for chemical pesticides to protect crop plants.
Collapse
Affiliation(s)
- Jun Qin
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kailun Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lifan Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haiying Xing
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sheng Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
183
|
Menardo F, Wicker T, Keller B. Reconstructing the Evolutionary History of Powdery Mildew Lineages (Blumeria graminis) at Different Evolutionary Time Scales with NGS Data. Genome Biol Evol 2018; 9:446-456. [PMID: 28164219 PMCID: PMC5381671 DOI: 10.1093/gbe/evx008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 01/25/2023] Open
Abstract
Blumeria graminis (Ascomycota) includes fungal pathogens that infect numerous grasses and cereals. Despite its economic impact on agriculture and its scientific importance in plant–pathogen interaction studies, the evolution of different lineages with different host ranges is poorly understood. Moreover, the taxonomy of grass powdery mildew is rather exceptional: there is only one described species (B. graminis) subdivided in different formae speciales (ff.spp.), which are defined by their host range. In this study we applied phylogenomic and population genomic methods to whole genome sequence data of 31 isolates of B. graminis belonging to different ff.spp. and reconstructed the evolutionary relationships between different lineages. The results of the phylogenomic analysis support a pattern of co-evolution between some of the ff.spp. and their host plant. In addition, we identified exceptions to this pattern, namely host jump events and the recent radiation of a clade less than 280,000 years ago. Furthermore, we found a high level of gene tree incongruence localized in the youngest clade. To distinguish between incomplete lineage sorting and lateral gene flow, we applied a coalescent-based method of demographic inference and found evidence of horizontal gene flow between recently diverged lineages. Overall we found that different processes shaped the diversification of B. graminis, co-evolution with the host species, host jump and fast radiation. Our study is an example of how genomic data can resolve complex evolutionary histories of cryptic lineages at different time scales, dealing with incomplete lineage sorting and lateral gene flow.
Collapse
|
184
|
Yang M, Duan S, Mei X, Huang H, Chen W, Liu Y, Guo C, Yang T, Wei W, Liu X, He X, Dong Y, Zhu S. The Phytophthora cactorum genome provides insights into the adaptation to host defense compounds and fungicides. Sci Rep 2018; 8:6534. [PMID: 29695739 PMCID: PMC5916904 DOI: 10.1038/s41598-018-24939-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/12/2018] [Indexed: 02/08/2023] Open
Abstract
Phytophthora cactorum is a homothallic oomycete pathogen, which has a wide host range and high capability to adapt to host defense compounds and fungicides. Here we report the 121.5 Mb genome assembly of the P. cactorum using the third-generation single-molecule real-time (SMRT) sequencing technology. It is the second largest genome sequenced so far in the Phytophthora genera, which contains 27,981 protein-coding genes. Comparison with other Phytophthora genomes showed that P. cactorum had a closer relationship with P. parasitica, P. infestans and P. capsici. P. cactorum has similar gene families in the secondary metabolism and pathogenicity-related effector proteins compared with other oomycete species, but specific gene families associated with detoxification enzymes and carbohydrate-active enzymes (CAZymes) underwent expansion in P. cactorum. P. cactorum had a higher utilization and detoxification ability against ginsenosides-a group of defense compounds from Panax notoginseng-compared with the narrow host pathogen P. sojae. The elevated expression levels of detoxification enzymes and hydrolase activity-associated genes after exposure to ginsenosides further supported that the high detoxification and utilization ability of P. cactorum play a crucial role in the rapid adaptability of the pathogen to host plant defense compounds and fungicides.
Collapse
Affiliation(s)
- Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Shengchang Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Nowbio Biotechnology Company, Kunming, 650201, China
| | - Xinyue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, 650201, China
| | - Yixiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Cunwu Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Ting Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing, 100083, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China.
| | - Yang Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, 650201, China.
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
185
|
Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Sci Rep 2018; 8:6321. [PMID: 29679020 PMCID: PMC5910433 DOI: 10.1038/s41598-018-24686-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/06/2018] [Indexed: 01/09/2023] Open
Abstract
Dark septate endophytes (DSE) are a form-group of root endophytic fungi with elusive functions. Here, the genomes of two common DSE of semiarid areas, Cadophora sp. and Periconia macrospinosa were sequenced and analyzed with another 32 ascomycetes of different lifestyles. Cadophora sp. (Helotiales) and P. macrospinosa (Pleosporales) have genomes of 70.46 Mb and 54.99 Mb with 22,766 and 18,750 gene models, respectively. The majority of DSE-specific protein clusters lack functional annotation with no similarity to characterized proteins, implying that they have evolved unique genetic innovations. Both DSE possess an expanded number of carbohydrate active enzymes (CAZymes), including plant cell wall degrading enzymes (PCWDEs). Those were similar in three other DSE, and contributed a signal for the separation of root endophytes in principal component analyses of CAZymes, indicating shared genomic traits of DSE fungi. Number of secreted proteases and lipases, aquaporins, and genes linked to melanin synthesis were also relatively high in our fungi. In spite of certain similarities between our two DSE, we observed low levels of convergence in their gene family evolution. This suggests that, despite originating from the same habitat, these two fungi evolved along different evolutionary trajectories and display considerable functional differences within the endophytic lifestyle.
Collapse
|
186
|
Zulak KG, Cox BA, Tucker MA, Oliver RP, Lopez-Ruiz FJ. Improved Detection and Monitoring of Fungicide Resistance in Blumeria graminis f. sp. hordei With High-Throughput Genotype Quantification by Digital PCR. Front Microbiol 2018; 9:706. [PMID: 29706938 PMCID: PMC5908980 DOI: 10.3389/fmicb.2018.00706] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/27/2018] [Indexed: 01/09/2023] Open
Abstract
The increased occurrence of triazole fungicide resistant strains of Blumeria graminis f. sp. hordei (Bgh) is an economic concern for the barley industry in Australia and elsewhere. High levels of resistance to triazoles in the field are caused by two separate point mutations in the Cyp51 gene, Y136F and S509T. Early detection of these mutations arising in pathogen field populations is important as this allows time for changes in fungicide practices to be adopted, thus mitigating potential yield losses due to fungicide failure and preventing the resistance from becoming dominant. A digital PCR (dPCR) assay has been developed for the detection and quantification of the Y136F and S509T mutations in the Bgh Cyp51 gene. Mutation levels were quantifiable as low as 0.2% in genomic DNA extractions and field samples. This assay was applied to the high throughput screening of Bgh field and bait trial samples from barley growing regions across Australia in the 2015 and 2016 growing seasons and identified the S509T mutation for the first time in the Eastern states of Australia. This is the first report on the use of digital PCR technology for fungicide resistance detection and monitoring in agriculture. Here we describe the potential application of dPCR for the screening of fungicide resistance mutations in a network of specifically designed bait trials. The combination of these two tools constitute an early warning system for the development of fungicide resistance that allows for the timely adjustment of management practices.
Collapse
Affiliation(s)
- Katherine G Zulak
- The Fungicide Resistance Group, Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Belinda A Cox
- The Fungicide Resistance Group, Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Madeline A Tucker
- The Fungicide Resistance Group, Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Richard P Oliver
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Francisco J Lopez-Ruiz
- The Fungicide Resistance Group, Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
187
|
Bahram M, Vanderpool D, Pent M, Hiltunen M, Ryberg M. The genome and microbiome of a dikaryotic fungus (Inocybe terrigena, Inocybaceae) revealed by metagenomics. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:155-166. [PMID: 29327481 DOI: 10.1111/1758-2229.12612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/19/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
Recent advances in molecular methods have increased our understanding of various fungal symbioses. However, little is known about genomic and microbiome features of most uncultured symbiotic fungal clades. Here, we analysed the genome and microbiome of Inocybaceae (Agaricales, Basidiomycota), a largely uncultured ectomycorrhizal clade known to form symbiotic associations with a wide variety of plant species. We used metagenomic sequencing and assembly of dikaryotic fruiting-body tissues from Inocybe terrigena (Fr.) Kuyper, to classify fungal and bacterial genomic sequences, and obtained a nearly complete fungal genome containing 93% of core eukaryotic genes. Comparative genomics reveals that I. terrigena is more similar to ectomycorrhizal and brown rot fungi than to white rot fungi. The reduction in lignin degradation capacity has been independent from and significantly faster than in closely related ectomycorrhizal clades supporting that ectomycorrhizal symbiosis evolved independently in Inocybe. The microbiome of I. terrigena fruiting-bodies includes bacteria with known symbiotic functions in other fungal and non-fungal host environments, suggesting potential symbiotic functions of these bacteria in fungal tissues regardless of habitat conditions. Our study demonstrates the usefulness of direct metagenomics analysis of fruiting-body tissues for characterizing fungal genomes and microbiome.
Collapse
Affiliation(s)
- Mohammad Bahram
- Department of Organismal Biology, Evolutionary Biology Centre Uppsala University, Norbyvägen 18D, Uppsala, 75236 Sweden
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, Tartu, 51005 Estonia
| | - Dan Vanderpool
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Mari Pent
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, Tartu, 51005 Estonia
| | - Markus Hiltunen
- Department of Organismal Biology, Evolutionary Biology Centre Uppsala University, Norbyvägen 18D, Uppsala, 75236 Sweden
| | - Martin Ryberg
- Department of Organismal Biology, Evolutionary Biology Centre Uppsala University, Norbyvägen 18D, Uppsala, 75236 Sweden
| |
Collapse
|
188
|
Bourret TB, Choudhury RA, Mehl HK, Blomquist CL, McRoberts N, Rizzo DM. Multiple origins of downy mildews and mito-nuclear discordance within the paraphyletic genus Phytophthora. PLoS One 2018. [PMID: 29529094 PMCID: PMC5846723 DOI: 10.1371/journal.pone.0192502] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Phylogenetic relationships between thirteen species of downy mildew and 103 species of Phytophthora (plant-pathogenic oomycetes) were investigated with two nuclear and four mitochondrial loci, using several likelihood-based approaches. Three Phytophthora taxa and all downy mildew taxa were excluded from the previously recognized subgeneric clades of Phytophthora, though all were strongly supported within the paraphyletic genus. Downy mildews appear to be polyphyletic, with graminicolous downy mildews (GDM), brassicolous downy mildews (BDM) and downy mildews with colored conidia (DMCC) forming a clade with the previously unplaced Phytophthora taxon totara; downy mildews with pyriform haustoria (DMPH) were placed in their own clade with affinities to the obligate biotrophic P. cyperi. Results suggest the recognition of four additional clades within Phytophthora, but few relationships between clades could be resolved. Trees containing all twenty extant downy mildew genera were produced by adding partial coverage of seventeen additional downy mildew taxa; these trees supported the monophyly of the BDMs, DMCCs and DMPHs but suggested that the GDMs are paraphyletic in respect to the BDMs or polyphyletic. Incongruence between nuclear-only and mitochondrial-only trees suggests introgression may have occurred between several clades, particularly those containing biotrophs, questioning whether obligate biotrophic parasitism and other traits with polyphyletic distributions arose independently or were horizontally transferred. Phylogenetic approaches may be limited in their ability to resolve some of the complex relationships between the "subgeneric" clades of Phytophthora, which include twenty downy mildew genera and hundreds of species.
Collapse
Affiliation(s)
- Tyler B. Bourret
- Department of Plant Pathology, University of California, Davis, Davis, California, United States of America
- * E-mail:
| | - Robin A. Choudhury
- Plant Pathology Department, University of Florida, Gainesville, Florida, United States of America
| | - Heather K. Mehl
- Department of Plant Pathology, University of California, Davis, Davis, California, United States of America
| | - Cheryl L. Blomquist
- California Department of Food and Agriculture, Sacramento, California, United States of America
| | - Neil McRoberts
- Department of Plant Pathology, University of California, Davis, Davis, California, United States of America
| | - David M. Rizzo
- Department of Plant Pathology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
189
|
Navaud O, Barbacci A, Taylor A, Clarkson JP, Raffaele S. Shifts in diversification rates and host jump frequencies shaped the diversity of host range among Sclerotiniaceae fungal plant pathogens. Mol Ecol 2018; 27:1309-1323. [PMID: 29421852 PMCID: PMC5900718 DOI: 10.1111/mec.14523] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 01/07/2023]
Abstract
The range of hosts that a parasite can infect in nature is a trait determined by its own evolutionary history and that of its potential hosts. However, knowledge on host range diversity and evolution at the family level is often lacking. Here, we investigate host range variation and diversification trends within the Sclerotiniaceae, a family of Ascomycete fungi. Using a phylogenetic framework, we associate diversification rates, the frequency of host jump events and host range variation during the evolution of this family. Variations in diversification rate during the evolution of the Sclerotiniaceae define three major macro-evolutionary regimes with contrasted proportions of species infecting a broad range of hosts. Host-parasite cophylogenetic analyses pointed towards parasite radiation on distant hosts long after host speciation (host jump or duplication events) as the dominant mode of association with plants in the Sclerotiniaceae. The intermediate macro-evolutionary regime showed a low diversification rate, high frequency of duplication events and the highest proportion of broad host range species. Our findings suggest that the emergence of broad host range fungal pathogens results largely from host jumps, as previously reported for oomycete parasites, probably combined with low speciation rates. These results have important implications for our understanding of fungal parasites evolution and are of particular relevance for the durable management of disease epidemics.
Collapse
Affiliation(s)
- Olivier Navaud
- LIPM, Université de Toulouse, INRA, CNRSCastanet‐TolosanFrance
| | - Adelin Barbacci
- LIPM, Université de Toulouse, INRA, CNRSCastanet‐TolosanFrance
| | - Andrew Taylor
- Warwick Crop CentreSchool of Life SciencesUniversity of WarwickCoventryUK
| | - John P. Clarkson
- Warwick Crop CentreSchool of Life SciencesUniversity of WarwickCoventryUK
| | | |
Collapse
|
190
|
Fouché S, Plissonneau C, Croll D. The birth and death of effectors in rapidly evolving filamentous pathogen genomes. Curr Opin Microbiol 2018; 46:34-42. [PMID: 29455143 DOI: 10.1016/j.mib.2018.01.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 11/19/2022]
Abstract
Plant pathogenic fungi and oomycetes are major risks to food security due to their evolutionary success in overcoming plant defences. Pathogens produce effectors to interfere with host defences and metabolism. These effectors are often encoded in rapidly evolving compartments of the genome. We review how effector genes emerged and were lost in pathogen genomes drawing on the links between effector evolution and chromosomal rearrangements. Some new effectors entered pathogen genomes via horizontal transfer or introgression. However, new effector functions also arose through gene duplication or from previously non-coding sequences. The evolutionary success of an effector is tightly linked to its transcriptional regulation during host colonization. Some effectors converged on an epigenetic control of expression imposed by genomic defences against transposable elements. Transposable elements were also drivers of effector diversification and loss that led to mosaics in effector presence-absence variation. Such effector mosaics within species was the foundation for rapid pathogen adaptation.
Collapse
Affiliation(s)
- Simone Fouché
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Clémence Plissonneau
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Bretignières, BP 01, Thiverval-Grignon F-78850, France
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland.
| |
Collapse
|
191
|
Tang C, Xu Q, Zhao M, Wang X, Kang Z. Understanding the lifestyles and pathogenicity mechanisms of obligate biotrophic fungi in wheat: The emerging genomics era. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
192
|
Griffiths S, Mesarich CH, Overdijk EJR, Saccomanno B, de Wit PJGM, Collemare J. Down-regulation of cladofulvin biosynthesis is required for biotrophic growth of Cladosporium fulvum on tomato. MOLECULAR PLANT PATHOLOGY 2018; 19:369-380. [PMID: 27997759 PMCID: PMC6638085 DOI: 10.1111/mpp.12527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/01/2016] [Accepted: 12/09/2016] [Indexed: 05/19/2023]
Abstract
Fungal biotrophy is associated with a reduced capacity to produce potentially toxic secondary metabolites (SMs). Yet, the genome of the biotrophic plant pathogen Cladosporium fulvum contains many SM biosynthetic gene clusters, with several related to toxin production. These gene clusters are, however, poorly expressed during the colonization of tomato. The sole detectable SM produced by C. fulvum during in vitro growth is the anthraquinone cladofulvin. Although this pigment is not detected in infected leaves, cladofulvin biosynthetic genes are expressed throughout the pre-penetration phase and during conidiation at the end of the infection cycle, but are repressed during the biotrophic phase of tomato colonization. It has been suggested that the tight regulation of SM gene clusters is required for C. fulvum to behave as a biotrophic pathogen, whilst retaining potential fitness determinants for growth and survival outside its host. To address this hypothesis, we analysed the disease symptoms caused by mutant C. fulvum strains that do not produce or over-produce cladofulvin during the biotrophic growth phase. Non-producers infected tomato in a similar manner to the wild-type, suggesting that cladofulvin is not a virulence factor. In contrast, the cladofulvin over-producers caused strong necrosis and desiccation of tomato leaves, which, in turn, arrested conidiation. Consistent with the role of pigments in survival against abiotic stresses, cladofulvin protects conidia against UV light and low-temperature stress. Overall, this study demonstrates that the repression of cladofulvin production is required for C. fulvum to sustain its biotrophic lifestyle in tomato, whereas its production is important for survival outside its host.
Collapse
Affiliation(s)
- Scott Griffiths
- Laboratory of PhytopathologyWageningen UniversityWageningen6708 PBthe Netherlands
| | - Carl H. Mesarich
- Laboratory of PhytopathologyWageningen UniversityWageningen6708 PBthe Netherlands
- Present address:
Laboratory of Molecular Plant PathologyInstitute of Agriculture and Environment, Massey University, Private Bag 11222Palmerston North4442New Zealand
| | - Elysa J. R. Overdijk
- Laboratory of PhytopathologyWageningen UniversityWageningen6708 PBthe Netherlands
- Laboratory of Cell BiologyWageningen UniversityWageningen6708 PBthe Netherlands
| | - Benedetta Saccomanno
- Laboratory of PhytopathologyWageningen UniversityWageningen6708 PBthe Netherlands
| | | | - Jérôme Collemare
- Laboratory of PhytopathologyWageningen UniversityWageningen6708 PBthe Netherlands
- UMR1345 Institut de Recherche en Horticulture et Semences (IRHS)‐INRA, ACO, Université d'AngersBeaucouzé Cedex49071France
| |
Collapse
|
193
|
Yan JY, Zhao WS, Chen Z, Xing QK, Zhang W, Chethana KWT, Xue MF, Xu JP, Phillips AJL, Wang Y, Liu JH, Liu M, Zhou Y, Jayawardena RS, Manawasinghe IS, Huang JB, Qiao GH, Fu CY, Guo FF, Dissanayake AJ, Peng YL, Hyde KD, Li XH. Comparative genome and transcriptome analyses reveal adaptations to opportunistic infections in woody plant degrading pathogens of Botryosphaeriaceae. DNA Res 2018; 25:87-102. [PMID: 29036669 PMCID: PMC5824938 DOI: 10.1093/dnares/dsx040] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 09/10/2017] [Indexed: 11/13/2022] Open
Abstract
Botryosphaeriaceae are an important fungal family that cause woody plant diseases worldwide. Recent studies have established a correlation between environmental factors and disease expression; however, less is known about factors that trigger these diseases. The current study reports on the 43.3 Mb de novo genome of Lasiodiplodia theobromae and five other genomes of Botryosphaeriaceae pathogens. Botryosphaeriaceous genomes showed an expansion of gene families associated with cell wall degradation, nutrient uptake, secondary metabolism and membrane transport, which contribute to adaptations for wood degradation. Transcriptome analysis revealed that genes involved in carbohydrate catabolism, pectin, starch and sucrose metabolism, and pentose and glucuronate interconversion pathways were induced during infection. Furthermore, genes in carbohydrate-binding modules, lysine motif domain and the glycosyl hydrolase gene families were induced by high temperature. Among these genes, overexpression of two selected putative lignocellulase genes led to increased virulence in the transformants. These results demonstrate the importance of high temperatures in opportunistic infections. This study also presents a set of Botryosphaeriaceae-specific effectors responsible for the identification of virulence-related pathogen-associated molecular patterns and demonstrates their active participation in suppressing hypersensitive responses. Together, these findings significantly expand our understanding of the determinants of pathogenicity or virulence in Botryosphaeriaceae and provide new insights for developing management strategies against them.
Collapse
Affiliation(s)
- Ji Ye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wen Sheng Zhao
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Chen
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qi Kai Xing
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wei Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Plant Protection, China Agricultural University, Beijing, China
| | - K W Thilini Chethana
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Min Feng Xue
- Institute of Plant Protection, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jian Ping Xu
- Department of Biology, McMaster University, ON, Canada
| | - Alan J L Phillips
- University of Lisbon, Faculty of Sciences, Bio Systems and Integrative Sciences Institute (BioISI), Campo Grande, Lisbon, Portugal
| | - Yong Wang
- Department of Plant Pathology, Guizhou University, Guiyang, Guizhou, China
| | - Jian Hua Liu
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Mei Liu
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ying Zhou
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ruvishika S Jayawardena
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Ishara S Manawasinghe
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Jin Bao Huang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Guang Hang Qiao
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chun Yuan Fu
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fei Fei Guo
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Asha J Dissanayake
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - You Liang Peng
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Kevin D Hyde
- Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Xing Hong Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
194
|
Martino E, Morin E, Grelet GA, Kuo A, Kohler A, Daghino S, Barry KW, Cichocki N, Clum A, Dockter RB, Hainaut M, Kuo RC, LaButti K, Lindahl BD, Lindquist EA, Lipzen A, Khouja HR, Magnuson J, Murat C, Ohm RA, Singer SW, Spatafora JW, Wang M, Veneault-Fourrey C, Henrissat B, Grigoriev IV, Martin FM, Perotto S. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. THE NEW PHYTOLOGIST 2018; 217:1213-1229. [PMID: 29315638 DOI: 10.1111/nph.14974] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 11/25/2017] [Indexed: 05/10/2023]
Abstract
Some soil fungi in the Leotiomycetes form ericoid mycorrhizal (ERM) symbioses with Ericaceae. In the harsh habitats in which they occur, ERM plant survival relies on nutrient mobilization from soil organic matter (SOM) by their fungal partners. The characterization of the fungal genetic machinery underpinning both the symbiotic lifestyle and SOM degradation is needed to understand ERM symbiosis functioning and evolution, and its impact on soil carbon (C) turnover. We sequenced the genomes of the ERM fungi Meliniomyces bicolor, M. variabilis, Oidiodendron maius and Rhizoscyphus ericae, and compared their gene repertoires with those of fungi with different lifestyles (ecto- and orchid mycorrhiza, endophytes, saprotrophs, pathogens). We also identified fungal transcripts induced in symbiosis. The ERM fungal gene contents for polysaccharide-degrading enzymes, lipases, proteases and enzymes involved in secondary metabolism are closer to those of saprotrophs and pathogens than to those of ectomycorrhizal symbionts. The fungal genes most highly upregulated in symbiosis are those coding for fungal and plant cell wall-degrading enzymes (CWDEs), lipases, proteases, transporters and mycorrhiza-induced small secreted proteins (MiSSPs). The ERM fungal gene repertoire reveals a capacity for a dual saprotrophic and biotrophic lifestyle. This may reflect an incomplete transition from saprotrophy to the mycorrhizal habit, or a versatile life strategy similar to fungal endophytes.
Collapse
Affiliation(s)
- Elena Martino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10125, Italy
- INRA, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280, Champenoux, France
| | - Emmanuelle Morin
- INRA, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280, Champenoux, France
| | - Gwen-Aëlle Grelet
- Manaaki Whenua - Landcare Research, Ecosystems and Global Change Team, Gerald Street, PO Box 69040, Lincoln, 7640, New Zealand
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Annegret Kohler
- INRA, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280, Champenoux, France
| | - Stefania Daghino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10125, Italy
| | - Kerrie W Barry
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Nicolas Cichocki
- INRA, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280, Champenoux, France
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Rhyan B Dockter
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Matthieu Hainaut
- Architecture et Fonction des Macromolécules Biologiques, UMR7257 Centre National de la Recherche Scientifique - Aix-Marseille Université, Case 932, 163 Avenue de Luminy, Marseille, 13288, France
- INRA, USC 1408 AFMB, Marseille, 13288, France
| | - Rita C Kuo
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Björn D Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Erika A Lindquist
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | | | - Jon Magnuson
- Pacific Northwest National Laboratory, Chemical and Biological Process Development Group, Richland, WA, 99354, USA
| | - Claude Murat
- INRA, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280, Champenoux, France
| | - Robin A Ohm
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
- Microbiology, Department of Biology, Utrecht University, 3508, TB Utrecht, the Netherlands
| | - Steven W Singer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Mei Wang
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Claire Veneault-Fourrey
- INRA, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280, Champenoux, France
- Laboratoire d'Excellence ARBRE, Faculté des Sciences et Technologies, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Université de Lorraine, Campus Aiguillettes, BP 70239, Vandoeuvre les Nancy cedex, 54506, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, UMR7257 Centre National de la Recherche Scientifique - Aix-Marseille Université, Case 932, 163 Avenue de Luminy, Marseille, 13288, France
- INRA, USC 1408 AFMB, Marseille, 13288, France
- Department of Biological Sciences, King Abdulaziz University - KSA, Jeddah, 21589, Saudi Arabia
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Francis M Martin
- INRA, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280, Champenoux, France
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10125, Italy
| |
Collapse
|
195
|
Käsbauer CL, Pathuri IP, Hensel G, Kumlehn J, Hückelhoven R, Proels RK. Barley ADH-1 modulates susceptibility to Bgh and is involved in chitin-induced systemic resistance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:281-287. [PMID: 29275209 DOI: 10.1016/j.plaphy.2017.12.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 06/07/2023]
Abstract
The plant primary energy metabolism is profoundly reorganized under biotic stress conditions and there is increasing evidence for a role of the fermentative pathway in biotic interactions. Previously we showed via transient gene silencing or overexpression a function of barley alcohol dehydrogenase 1 (HvADH-1) in the interaction of barley with the parasitic fungus Blumeria graminis f.sp. hordei (Bgh). Here we extend our studies on stable transgenic barley events over- or under-expressing HvADH-1 to analyse ADH-1 functions at the level of whole plants. Knock-down (KD) of HvADH-1 by dsRNA interference resulted in reduced and overexpression of HvADH-1 in strongly increased HvADH-1 enzyme activity in leaves of stable transgenic barley plants. The KD of HvADH-1 coincided with a reduced susceptibility to Bgh of both excised leaves and leaves of intact plants. Overexpression (OE) of HvADH-1 results in increased susceptibility to Bgh when excised leaves but not when whole seedlings were inoculated. When first leaves of 10-day-old barley plants were treated with a chitin elicitor, we observed a reduced enzyme activity of ADH-1/-1 homodimers at 48 h after treatment in the second, systemic leaf for empty vector controls and HvADH-1 KD events, but not for the HvADH-1 OE events. Reduced ADH-1 activity in the systemic leaf of empty vector controls and HvADH-1 KD events coincided with chitin-induced resistance to Bgh. Taken together, stable HvADH-1 (KD) or systemic down-regulation of ADH-1/-1 activity by chitin treatment modulated the pathogen response of barley to the biotrophic fungal parasite Bgh and resulted in less successful infections by Bgh.
Collapse
Affiliation(s)
- Christoph L Käsbauer
- Chair of Phytopathology, Technical University of Munich, School of Life Sciences Weihenstephan, Freising-Weihenstephan, Germany
| | - Indira Priyadarshini Pathuri
- Chair of Phytopathology, Technical University of Munich, School of Life Sciences Weihenstephan, Freising-Weihenstephan, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, Technical University of Munich, School of Life Sciences Weihenstephan, Freising-Weihenstephan, Germany.
| | - Reinhard K Proels
- Chair of Phytopathology, Technical University of Munich, School of Life Sciences Weihenstephan, Freising-Weihenstephan, Germany.
| |
Collapse
|
196
|
Shi-Kunne X, Faino L, van den Berg GCM, Thomma BPHJ, Seidl MF. Evolution within the fungal genus Verticillium is characterized by chromosomal rearrangement and gene loss. Environ Microbiol 2018; 20:1362-1373. [PMID: 29282842 DOI: 10.1111/1462-2920.14037] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 01/09/2023]
Abstract
The fungal genus Verticillium contains ten species, some of which are notorious plant pathogens causing vascular wilt diseases in host plants, while others are known as saprophytes and opportunistic plant pathogens. Whereas the genome of V. dahliae, the most notorious plant pathogen of the genus, has been well characterized, evolution and speciation of other members of the genus received little attention thus far. Here, we sequenced the genomes of the nine haploid Verticillium spp. to study evolutionary trajectories of their divergence from a last common ancestor. Frequent occurrence of chromosomal rearrangement and gene family loss was identified. In addition to ∼11 000 genes that are shared at least between two species, only 200-600 species-specific genes occur. Intriguingly, these species-specific genes show different features than the shared genes.
Collapse
Affiliation(s)
- Xiaoqian Shi-Kunne
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, Wageningen, The Netherlands 6708 PB
| | - Luigi Faino
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, Wageningen, The Netherlands 6708 PB
| | - Grardy C M van den Berg
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, Wageningen, The Netherlands 6708 PB
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, Wageningen, The Netherlands 6708 PB
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, Wageningen, The Netherlands 6708 PB
| |
Collapse
|
197
|
Laur J, Ramakrishnan GB, Labbé C, Lefebvre F, Spanu PD, Bélanger RR. Effectors involved in fungal-fungal interaction lead to a rare phenomenon of hyperbiotrophy in the tritrophic system biocontrol agent-powdery mildew-plant. THE NEW PHYTOLOGIST 2018; 217:713-725. [PMID: 29044534 PMCID: PMC6079639 DOI: 10.1111/nph.14851] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/13/2017] [Indexed: 05/08/2023]
Abstract
Tritrophic interactions involving a biocontrol agent, a pathogen and a plant have been analyzed predominantly from the perspective of the biocontrol agent. We have conducted the first comprehensive transcriptomic analysis of all three organisms in an effort to understand the elusive properties of Pseudozyma flocculosa in the context of its biocontrol activity against Blumeria graminis f.sp. hordei as it parasitizes Hordeum vulgare. After inoculation of P. flocculosa, the tripartite interaction was monitored over time and samples collected for scanning electron microscopy and RNA sequencing. Based on our observations, P. flocculosa indirectly parasitizes barley, albeit transiently, by diverting nutrients extracted by B. graminis from barley leaves through a process involving unique effectors. This brings novel evidence that such molecules can also influence fungal-fungal interactions. Their release is synchronized with a higher expression of powdery mildew haustorial effectors, a sharp decline in the photosynthetic machinery of barley and a developmental peak in P. flocculosa. The interaction culminates with a collapse of B. graminis haustoria, thereby stopping P. flocculosa growth, as barley plants show higher metabolic activity. To conclude, our study has uncovered a complex and intricate phenomenon, described here as hyperbiotrophy, only achievable through the conjugated action of the three protagonists.
Collapse
Affiliation(s)
- Joan Laur
- Département de PhytologieUniversité LavalQuébecQCCanadaG1V 0A6
| | | | - Caroline Labbé
- Département de PhytologieUniversité LavalQuébecQCCanadaG1V 0A6
| | | | - Pietro D. Spanu
- Department of Life SciencesImperial College LondonSouth Kensington CampusLondonSW7 2AZUK
| | | |
Collapse
|
198
|
Pérez-López E, Waldner M, Hossain M, Kusalik AJ, Wei Y, Bonham-Smith PC, Todd CD. Identification of Plasmodiophora brassicae effectors - A challenging goal. Virulence 2018; 9:1344-1353. [PMID: 30146948 PMCID: PMC6177251 DOI: 10.1080/21505594.2018.1504560] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/18/2018] [Indexed: 11/06/2022] Open
Abstract
Clubroot is an economically important disease affecting Brassica plants worldwide. Plasmodiophora brassicae is the protist pathogen associated with the disease, and its soil-borne obligate parasitic nature has impeded studies related to its biology and the mechanisms involved in its infection of the plant host. The identification of effector proteins is key to understanding how the pathogen manipulates the plant's immune response and the genes involved in resistance. After more than 140 years studying clubroot and P. brassicae, very little is known about the effectors playing key roles in the infection process and subsequent disease progression. Here we analyze the information available for identified effectors and suggest several features of effector genes that can be used in the search for others. Based on the information presented in this review, we propose a comprehensive bioinformatics pipeline for effector identification and provide a list of the bioinformatics tools available for such.
Collapse
Affiliation(s)
- Edel Pérez-López
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - Matthew Waldner
- Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
| | - Musharaf Hossain
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - Anthony J. Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
199
|
Praz CR, Menardo F, Robinson MD, Müller MC, Wicker T, Bourras S, Keller B. Non-parent of Origin Expression of Numerous Effector Genes Indicates a Role of Gene Regulation in Host Adaption of the Hybrid Triticale Powdery Mildew Pathogen. FRONTIERS IN PLANT SCIENCE 2018; 9:49. [PMID: 29441081 PMCID: PMC5797619 DOI: 10.3389/fpls.2018.00049] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/10/2018] [Indexed: 05/20/2023]
Abstract
Powdery mildew is an important disease of cereals. It is caused by one species, Blumeria graminis, which is divided into formae speciales each of which is highly specialized to one host. Recently, a new form capable of growing on triticale (B.g. triticale) has emerged through hybridization between wheat and rye mildews (B.g. tritici and B.g. secalis, respectively). In this work, we used RNA sequencing to study the molecular basis of host adaptation in B.g. triticale. We analyzed gene expression in three B.g. tritici isolates, two B.g. secalis isolates and two B.g. triticale isolates and identified a core set of putative effector genes that are highly expressed in all formae speciales. We also found that the genes differentially expressed between isolates of the same form as well as between different formae speciales were enriched in putative effectors. Their coding genes belong to several families including some which contain known members of mildew avirulence (Avr) and suppressor (Svr) genes. Based on these findings we propose that effectors play an important role in host adaptation that is mechanistically based on Avr-Resistance gene-Svr interactions. We also found that gene expression in the B.g. triticale hybrid is mostly conserved with the parent-of-origin, but some genes inherited from B.g. tritici showed a B.g. secalis-like expression. Finally, we identified 11 unambiguous cases of putative effector genes with hybrid-specific, non-parent of origin gene expression, and we propose that they are possible determinants of host specialization in triticale mildew. These data suggest that altered expression of multiple effector genes, in particular Avr and Svr related factors, might play a role in mildew host adaptation based on hybridization.
Collapse
Affiliation(s)
- Coraline R. Praz
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Fabrizio Menardo
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Mark D. Robinson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zürich, Zürich, Switzerland
| | - Marion C. Müller
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Salim Bourras
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
- *Correspondence: Salim Bourras
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
- Beat Keller
| |
Collapse
|
200
|
Kwaaitaal M, Nielsen ME, Böhlenius H, Thordal-Christensen H. The plant membrane surrounding powdery mildew haustoria shares properties with the endoplasmic reticulum membrane. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5731-5743. [PMID: 29237056 PMCID: PMC5854130 DOI: 10.1093/jxb/erx403] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/26/2017] [Indexed: 05/18/2023]
Abstract
Many filamentous plant pathogens place specialized feeding structures, called haustoria, inside living host cells. As haustoria grow, they are believed to manipulate plant cells to generate a specialized, still enigmatic extrahaustorial membrane (EHM) around them. Here, we focused on revealing properties of the EHM. With the help of membrane-specific dyes and transient expression of membrane-associated proteins fused to fluorescent tags, we studied the nature of the EHM generated by barley leaf epidermal cells around powdery mildew haustoria. Observations suggesting that endoplasmic reticulum (ER) membrane-specific dyes labelled the EHM led us to find that Sar1 and RabD2a GTPases bind this membrane. These proteins are usually associated with the ER and the ER/cis-Golgi membrane, respectively. In contrast, transmembrane and luminal ER and Golgi markers failed to label the EHM, suggesting that it is not a continuum of the ER. Furthermore, GDP-locked Sar1 and a nucleotide-free RabD2a, which block ER to Golgi exit, did not hamper haustorium formation. These results indicated that the EHM shares features with the plant ER membrane, but that the EHM membrane is not dependent on conventional secretion. This raises the prospect that an unconventional secretory pathway from the ER may provide this membrane's material. Understanding these processes will assist future approaches to providing resistance by preventing EHM generation.
Collapse
Affiliation(s)
- Mark Kwaaitaal
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center (CPSC), Faculty of Science, University of Copenhagen, Denmark
| | - Mads Eggert Nielsen
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center (CPSC), Faculty of Science, University of Copenhagen, Denmark
| | - Henrik Böhlenius
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center (CPSC), Faculty of Science, University of Copenhagen, Denmark
| | - Hans Thordal-Christensen
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center (CPSC), Faculty of Science, University of Copenhagen, Denmark
- Correspondence:
| |
Collapse
|