151
|
Marty MT, Zhang H, Cui W, Gross ML, Sligar SG. Interpretation and deconvolution of nanodisc native mass spectra. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:269-77. [PMID: 24353133 PMCID: PMC3918181 DOI: 10.1007/s13361-013-0782-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/27/2013] [Accepted: 11/08/2013] [Indexed: 05/11/2023]
Abstract
Nanodiscs are a promising system for studying gas-phase and solution complexes of membrane proteins and lipids. We previously demonstrated that native electrospray ionization allows mass spectral analysis of intact Nanodisc complexes at single lipid resolution. This report details an improved theoretical framework for interpreting and deconvoluting native mass spectra of Nanodisc lipoprotein complexes. In addition to the intrinsic lipid count and charge distributions, Nanodisc mass spectra are significantly shaped by constructive overlap of adjacent charge states at integer multiples of the lipid mass. We describe the mathematical basis for this effect and develop a probability-based algorithm to deconvolute the underlying mass and charge distributions. The probability-based deconvolution algorithm is applied to a series of dimyristoylphosphatidylcholine Nanodisc native mass spectra and used to provide a quantitative picture of the lipid loss in gas-phase fragmentation.
Collapse
Affiliation(s)
- Michael T. Marty
- University of Illinois Urbana-Champaign, Department of Chemistry, Urbana, IL 61801
| | - Hao Zhang
- Washington University in St. Louis, Department of Chemistry, St. Louis, MO 63130
- Washington University in St. Louis, Photosynthetic Antenna Research Center (PARC), St. Louis, MO 63130
| | - Weidong Cui
- Washington University in St. Louis, Department of Chemistry, St. Louis, MO 63130
| | - Michael L. Gross
- Washington University in St. Louis, Department of Chemistry, St. Louis, MO 63130
| | - Stephen G. Sligar
- University of Illinois Urbana-Champaign, Department of Chemistry, Urbana, IL 61801
- University of Illinois Urbana-Champaign, Department of Biochemistry, Urbana, IL 61801
- Address reprint requests to: Stephen G. Sligar, 116 Morrill Hall, 505 S. Goodwin MC-119, Urbana, IL 61801, , Phone: 217-244-7395, Fax: 217-265-4073
| |
Collapse
|
152
|
Schmidt C, Robinson CV. Dynamic protein ligand interactions--insights from MS. FEBS J 2014; 281:1950-64. [PMID: 24393119 PMCID: PMC4154455 DOI: 10.1111/febs.12707] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/19/2013] [Accepted: 12/30/2013] [Indexed: 12/31/2022]
Abstract
Proteins undergo dynamic interactions with carbohydrates, lipids and nucleotides to form catalytic cores, fine‐tuned for different cellular actions. The study of dynamic interactions between proteins and their cognate ligands is therefore fundamental to the understanding of biological systems. During the last two decades MS, and its associated techniques, has become accepted as a method for the study of protein–ligand interactions, not only for covalent complexes, where the use of MS is well established, but also, and significantly for protein–ligand interactions, for noncovalent assemblies. In this review, we employ a broad definition of a ligand to encompass protein subunits, drug molecules, oligonucleotides, carbohydrates, and lipids. Under the appropriate conditions, MS can reveal the composition, heterogeneity and dynamics of these protein–ligand interactions, and in some cases their structural arrangements and binding affinities. Herein, we highlight MS approaches for studying protein–ligand complexes, including those containing integral membrane subunits, and showcase examples from recent literature. Specifically, we tabulate the myriad of methodologies, including hydrogen exchange, proteomics, hydroxyl radical footprinting, intact complexes, and crosslinking, which, when combined with MS, provide insights into conformational changes and subtle modifications in response to ligand‐binding interactions.
Collapse
|
153
|
Mitochondrial activity, hemocyte parameters and lipid composition modulation by dietary conditioning in the Pacific oyster Crassostrea gigas. J Comp Physiol B 2014; 184:303-17. [DOI: 10.1007/s00360-013-0800-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/27/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
|
154
|
Alam J, Yamato I, Arai S, Saijo S, Mizutani K, Ishizuka-Katsura Y, Ohsawa N, Terada T, Shirouzu M, Yokoyama S, Iwata S, Kakinuma Y, Murata T. Mutant LV(476-7)AA of A-subunit of Enterococcus hirae V1-ATPase: High affinity of A3B3 complex to DF axis and low ATPase activity. SPRINGERPLUS 2014; 2:689. [PMID: 24404436 PMCID: PMC3879392 DOI: 10.1186/2193-1801-2-689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/20/2013] [Indexed: 11/22/2022]
Abstract
Vacuolar ATPase (V-ATPase) of Enterococcus hirae is composed of a soluble functional domain V1 (A3B3DF) and an integral membrane domain Vo (ac), where V1 and Vo domains are connected by a central stalk, composed of D-, F-, and d-subunits; and two peripheral stalks (E- and G-subunits). We identified 120 interacting residues of A3B3 heterohexamer with D-subunit in DF heterodimer in the crystal structures of A3B3 and A3B3DF. In our previous study, we reported 10 mutants of E. hirae V1-ATPase, which showed lower binding affinities of DF with A3B3 complex leading to higher initial specific ATPase activities compared to the wild-type. In this study, we identified a mutation of A-subunit (LV476-7AA) at its C-terminal domain resulting in the A3B3 complex with higher binding affinities for wild-type or mutant DF heterodimers and lower initial ATPase activities compared to the wild-type A3B3 complex, consistent with our previous proposal of reciprocal relationship between the ATPase activity and the protein-protein binding affinity of DF axis to the A3B3 catalytic domain of E. hirae V-ATPase. These observations suggest that the binding of DF axis at the contact region of A3B3 rotary ring is relevant to its rotation activity.
Collapse
Affiliation(s)
- Jahangir Alam
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585 Japan ; Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Ichiro Yamato
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585 Japan
| | - Satoshi Arai
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585 Japan ; Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-choInage, Chiba, 263-8522 Japan
| | - Shinya Saijo
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585 Japan ; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148 Japan ; Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801 Japan
| | - Kenji Mizutani
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585 Japan ; Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-choInage, Chiba, 263-8522 Japan
| | - Yoshiko Ishizuka-Katsura
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Noboru Ohsawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Takaho Terada
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - So Iwata
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; Department of Cell Biology, Faculty of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Yoshimi Kakinuma
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566 Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-choInage, Chiba, 263-8522 Japan ; RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; JST, PRESTO, 1-33 Yayoi-cho, Inage, Chiba, 263-8522 Japan
| |
Collapse
|
155
|
Konermann L, Pan Y. Exploring membrane protein structural features by oxidative labeling and mass spectrometry. Expert Rev Proteomics 2014. [DOI: 10.1586/epr.12.42] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
156
|
Snijder J, Heck AJR. Analytical approaches for size and mass analysis of large protein assemblies. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:43-64. [PMID: 25014341 DOI: 10.1146/annurev-anchem-071213-020015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Analysis of the size and mass of nanoparticles, whether they are natural biomacromolecular or synthetic supramolecular assemblies, is an important step in the characterization of such molecular species. In recent years, electrospray ionization (ESI) has emerged as a technology through which particles with masses up to 100 MDa can be ionized and transferred into the gas phase, preparing them for accurate mass analysis. Here we review currently used methodologies, with a clear focus on native mass spectrometry (MS). Additional complementary methodologies are also covered, including ion-mobility analysis, nanomechanical mass sensors, and charge-detection MS. The literature discussed clearly demonstrates the great potential of ESI-based methodologies for the size and mass analysis of nanoparticles, including very large naturally occurring protein assemblies. The analytical approaches discussed are powerful tools in not only structural biology, but also nanotechnology.
Collapse
Affiliation(s)
- Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands; ,
| | | |
Collapse
|
157
|
|
158
|
Stewart AG, Laming EM, Sobti M, Stock D. Rotary ATPases--dynamic molecular machines. Curr Opin Struct Biol 2013; 25:40-8. [PMID: 24878343 DOI: 10.1016/j.sbi.2013.11.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/20/2013] [Accepted: 11/26/2013] [Indexed: 01/14/2023]
Abstract
Recent work has provided the detailed overall architecture and subunit composition of three subtypes of rotary ATPases. Composite models of F-type, V-type and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual components into electron microscopy derived envelopes of the intact enzymes. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria. An inherent flexibility in rotary ATPases observed by different techniques suggests greater dynamics during operation than previously envisioned. The concerted movement of subunits within the complex might provide means of regulation and information transfer between distant parts of rotary ATPases thereby fine tuning these molecular machines to their cellular environment, while optimizing their efficiency.
Collapse
Affiliation(s)
- Alastair G Stewart
- The Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; The University of New South Wales, Sydney, NSW, Australia.
| | - Elise M Laming
- The Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; The University of New South Wales, Sydney, NSW, Australia
| | - Meghna Sobti
- The Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; The University of New South Wales, Sydney, NSW, Australia
| | - Daniela Stock
- The Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
159
|
Konermann L, Vahidi S, Sowole MA. Mass Spectrometry Methods for Studying Structure and Dynamics of Biological Macromolecules. Anal Chem 2013; 86:213-32. [DOI: 10.1021/ac4039306] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Siavash Vahidi
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Modupeola A. Sowole
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| |
Collapse
|
160
|
Zhong Y, Feng J, Ruotolo BT. Robotically assisted titration coupled to ion mobility-mass spectrometry reveals the interface structures and analysis parameters critical for multiprotein topology mapping. Anal Chem 2013; 85:11360-8. [PMID: 24164205 DOI: 10.1021/ac402276k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Multiprotein complexes have three-dimensional shapes and dynamic functions that impact almost every aspect of biochemistry. Despite this, our ability to rapidly assess the structures of such macromolecules lags significantly behind high-throughput efforts to identify their function, especially in the context of human disease. Here, we describe results obtained by coupling ion mobility-mass spectrometry with automated robotic sampling of different solvent compositions. This combination of technologies has allowed us to explore an extensive set of solution conditions for a group of eight protein homotetramers, representing a broad sample of protein structure and stability space. We find that altering solution ionic strength in concert with dimethylsulfoxide content is sufficient to disrupt the protein-protein interfaces of all of the complexes studied here. Ion mobility measurements captured for both intact assemblies and subcomplexes match expected values from available X-ray structures in all cases save two. For these exceptions, we find that distorted subcomplexes result from extreme disruption conditions, and are accompanied by small shifts in intact tetramers size, thus enabling the removal of distorted subcomplex data in downstream models. Furthermore, we find strong correlations between the relative intensities of disrupted protein tetramers and the relative number and type of interactions present at interfaces as a function of disrupting agent added. In most cases, this correlation appears strong enough to quantify various types of protein interfacial interactions within unknown proteins following appropriate calibration.
Collapse
Affiliation(s)
- Yueyang Zhong
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
161
|
Kevany BM, Tsybovsky Y, Campuzano IDG, Schnier PD, Engel A, Palczewski K. Structural and functional analysis of the native peripherin-ROM1 complex isolated from photoreceptor cells. J Biol Chem 2013; 288:36272-84. [PMID: 24196967 DOI: 10.1074/jbc.m113.520700] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Peripherin and its homologue ROM1 are retina-specific members of the tetraspanin family of integral membrane proteins required for morphogenesis and maintenance of photoreceptor outer segments, regions that collect light stimuli. Over 100 pathogenic mutations in peripherin cause inherited rod- and cone-related dystrophies in humans. Peripherin and ROM1 interact in vivo and are predicted to form a core heterotetrameric complex capable of creating higher order oligomers. However, structural analysis of tetraspanin proteins has been hampered by their resistance to crystallization. Here we present a simplified methodology for high yield purification of peripherin-ROM1 from bovine retinas that permitted its biochemical and biophysical characterization. Using size exclusion chromatography and blue native gel electrophoresis, we confirmed that the core native peripherin-ROM1 complex exists as a tetramer. Peripherin, but not ROM1, is glycosylated and we examined the glycosylation site and glycan composition of ROM1 by liquid chromatographic tandem mass spectrometry. Mass spectrometry was used to analyze the native complex in detergent micelles, demonstrating its tetrameric state. Our electron microscopy-generated structure solved to 18 Å displayed the tetramer as an elongated structure with an apparent 2-fold symmetry. Finally, we demonstrated that peripherin-ROM1 tetramers induce membrane curvature when reconstituted in lipid vesicles. These results provide critical insights into this key retinal component with a poorly defined function.
Collapse
Affiliation(s)
- Brian M Kevany
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965 and
| | | | | | | | | | | |
Collapse
|
162
|
Alam MJ, Arai S, Saijo S, Suzuki K, Mizutani K, Ishizuka-Katsura Y, Ohsawa N, Terada T, Shirouzu M, Yokoyama S, Iwata S, Kakinuma Y, Yamato I, Murata T. Loose binding of the DF axis with the A3B3 complex stimulates the initial activity of Enterococcus hirae V1-ATPase. PLoS One 2013; 8:e74291. [PMID: 24058539 PMCID: PMC3772951 DOI: 10.1371/journal.pone.0074291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/30/2013] [Indexed: 11/17/2022] Open
Abstract
Vacuolar ATPases (V-ATPases) function as proton pumps in various cellular membrane systems. The hydrophilic V1 portion of the V-ATPase is a rotary motor, in which a central-axis DF complex rotates inside a hexagonally arranged catalytic A3B3 complex by using ATP hydrolysis energy. We have previously reported crystal structures of Enterococcushirae V-ATPase A3B3 and A3B3DF (V1) complexes; the result suggested that the DF axis induces structural changes in the A3B3 complex through extensive protein-protein interactions. In this study, we mutated 10 residues at the interface between A3B3 and DF complexes and examined the ATPase activities of the mutated V1 complexes as well as the binding affinities between the mutated A3B3 and DF complexes. Surprisingly, several V1 mutants showed higher initial ATPase activities than wild-type V1-ATPase, whereas these mutated A3B3 and DF complexes showed decreased binding affinities for each other. However, the high ATP hydrolysis activities of the mutants decreased faster over time than the activity of the wild-type V1 complex, suggesting that the mutants were unstable in the reaction because the mutant A3B3 and DF complexes bound each other more weakly. These findings suggest that strong interaction between the DF complex and A3B3 complex lowers ATPase activity, but also that the tight binding is responsible for the stable ATPase activity of the complex.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Department of Biological Science and Technology, Tokyo University of Science, Chiba, Japan ; Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Scarff CA, Sicorello A, Tomé RJ, Macedo-Ribeiro S, Ashcroft AE, Radford SE. A tale of a tail: Structural insights into the conformational properties of the polyglutamine protein ataxin-3. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2013; 345-347:63-70. [PMID: 25844046 PMCID: PMC4375668 DOI: 10.1016/j.ijms.2012.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 05/24/2023]
Abstract
Ataxin-3 is the protein responsible for the neurodegenerative polyglutamine disease Spinocerebellar ataxia type 3. Full structural characterisation of ataxin-3 is required to aid in understanding the mechanism of disease. Despite extensive study, little is known about the conformational properties of the full-length protein, in either its non-expanded healthy or expanded pathogenic forms, particularly since its polyglutamine-containing region has denied structural elucidation. In this work, travelling-wave ion mobility spectrometry-mass spectrometry and limited proteolysis have been used to compare the conformational properties of full-length non-expanded ataxin-3 (14Q) and its isolated N-terminal Josephin domain (JD). Limited proteolysis experiments have confirmed that the JD is stable, being extremely resistant to trypsin digestion, with the exception of the α2/α3 hairpin which is flexible and exposed to protease cleavage in solution. The C-terminal region of ataxin-3 which contains the glutamine-rich sequences is largely unstructured, showing little resistance to limited proteolysis. Using ion mobility spectrometry-mass spectrometry we show that ataxin-3 (14Q) adopts a wide range of conformational states in vitro conferred by the flexibility of its C-terminal tail and the α2/α3 hairpin of the N-terminal JD. This study highlights how the power of MS-based approaches to protein structural characterisation can be particularly useful when the target protein is aggregation-prone and has intrinsically unordered regions.
Collapse
Affiliation(s)
- Charlotte A. Scarff
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Alessandro Sicorello
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Ricardo J.L. Tomé
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Alison E. Ashcroft
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
164
|
Sivalingam GN, Yan J, Sahota H, Thalassinos K. Amphitrite: A program for processing travelling wave ion mobility mass spectrometry data. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2013; 345-347:54-62. [PMID: 25844045 PMCID: PMC4375678 DOI: 10.1016/j.ijms.2012.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 09/04/2012] [Accepted: 09/13/2012] [Indexed: 05/11/2023]
Abstract
Since the introduction of travelling wave (T-Wave)-based ion mobility in 2007 a large number of research laboratories have embraced the technique, particularly those working in the field of structural biology. The development of software to process the data generated from this technique, however, has been limited. We present a novel software package that enables the processing of T-Wave ion mobility data. The program can deconvolute components in a mass spectrum and uses this information to extract corresponding arrival time distributions (ATDs) with minimal user intervention. It can also be used to automatically create a collision cross section (CCS) calibration and apply this to subsequent files of interest. A number of applications of the software, and how it enhances the information content extracted from the raw data, are illustrated using model proteins.
Collapse
Affiliation(s)
- Ganesh N. Sivalingam
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Jun Yan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Harpal Sahota
- Institute of Structural and Molecular Biology, Crystallography, Birkbeck College, London, UK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
- Corresponding author. Tel.: +44 20 7679 2197; fax: +44 20 7679 7193.
| |
Collapse
|
165
|
Marcoux J, Wang SC, Politis A, Reading E, Ma J, Biggin PC, Zhou M, Tao H, Zhang Q, Chang G, Morgner N, Robinson CV. Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump. Proc Natl Acad Sci U S A 2013; 110:9704-9. [PMID: 23690617 PMCID: PMC3683783 DOI: 10.1073/pnas.1303888110] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Multidrug resistance is a serious barrier to successful treatment of many human diseases, including cancer, wherein chemotherapeutics are exported from target cells by membrane-embedded pumps. The most prevalent of these pumps, the ATP-Binding Cassette transporter P-glycoprotein (P-gp), consists of two homologous halves each comprising one nucleotide-binding domain and six transmembrane helices. The transmembrane region encapsulates a hydrophobic cavity, accessed by portals in the membrane, that binds cytotoxic compounds as well as lipids and peptides. Here we use mass spectrometry (MS) to probe the intact P-gp small molecule-bound complex in a detergent micelle. Activation in the gas phase leads to formation of ions, largely devoid of detergent, yet retaining drug molecules as well as charged or zwitterionic lipids. Measuring the rates of lipid binding and calculating apparent KD values shows that up to six negatively charged diacylglycerides bind more favorably than zwitterionic lipids. Similar experiments confirm binding of cardiolipins and show that prior binding of the immunosuppressant and antifungal antibiotic cyclosporin A enhances subsequent binding of cardiolipin. Ion mobility MS reveals that P-gp exists in an equilibrium between different states, readily interconverted by ligand binding. Overall these MS results show how concerted small molecule binding leads to synergistic effects on binding affinities and conformations of a multidrug efflux pump.
Collapse
Affiliation(s)
| | | | | | | | - Jerome Ma
- Biochemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Philip C. Biggin
- Biochemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | | | - Houchao Tao
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Qinghai Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Geoffrey Chang
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, CA 92093
| | | | | |
Collapse
|
166
|
Resetca D, Wilson DJ. Characterizing rapid, activity-linked conformational transitions in proteins via sub-second hydrogen deuterium exchange mass spectrometry. FEBS J 2013; 280:5616-25. [DOI: 10.1111/febs.12332] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Diana Resetca
- Department of Chemistry; York University; Toronto Ontario Canada
| | - Derek J. Wilson
- Department of Chemistry; York University; Toronto Ontario Canada
- Center for Research in Mass Spectrometry; Department of Chemistry; York University; Toronto Ontario Canada
| |
Collapse
|
167
|
Jiang D, Jiang GY, Li XX, Xu FX, Wang L, Ding L, Ding CF. Printed Circuit Board Ion Trap Mass Analyzer: Its Structure and Performance. Anal Chem 2013; 85:6041-6. [DOI: 10.1021/ac400864k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dan Jiang
- Department of Chemistry, Fudan
University, 220 Handan Road, Shanghai 200433, China
| | - Gong-Yu Jiang
- Department of Chemistry, Fudan
University, 220 Handan Road, Shanghai 200433, China
| | - Xiao-Xu Li
- Department of Chemistry, Fudan
University, 220 Handan Road, Shanghai 200433, China
| | - Fu-xing Xu
- Department of Chemistry, Fudan
University, 220 Handan Road, Shanghai 200433, China
| | - Liang Wang
- Department of Chemistry, Fudan
University, 220 Handan Road, Shanghai 200433, China
| | - Li Ding
- Shimadzu Research Laboratory
(Europe) Ltd., Manchester, United Kingdom
| | - Chuan-Fan Ding
- Department of Chemistry, Fudan
University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
168
|
|
169
|
Zhang H, Cui W, Gross ML, Blankenship RE. Native mass spectrometry of photosynthetic pigment-protein complexes. FEBS Lett 2013; 587:1012-20. [PMID: 23337874 PMCID: PMC3856239 DOI: 10.1016/j.febslet.2013.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/25/2012] [Accepted: 01/06/2013] [Indexed: 12/16/2022]
Abstract
Native mass spectrometry (MS), or as is sometimes called "native electrospray ionization" allows proteins in their native or near-native states in solution to be introduced into the gas phase and interrogated by mass spectrometry. This approach is now a powerful tool to investigate protein complexes. This article reviews the background of native MS of protein complexes and describes its strengths, taking photosynthetic pigment-protein complexes as examples. Native MS can be utilized in combination with other MS-based approaches to obtain complementary information to that provided by tools such as X-ray crystallography and NMR spectroscopy to understand the structure-function relationships of protein complexes. When additional information beyond that provided by native MS is required, other MS-based strategies can be successfully applied to augment the results of native MS.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | | | |
Collapse
|
170
|
The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell 2013; 49:583-90. [PMID: 23438854 DOI: 10.1016/j.molcel.2013.01.029] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/18/2013] [Accepted: 01/18/2013] [Indexed: 01/22/2023]
Abstract
High-resolution mass spectrometry (MS)-based proteomics has progressed tremendously over the years. For model organisms like yeast, we can now quantify complete proteomes in just a few hours. Developments discussed in this Perspective will soon enable complete proteome analysis of mammalian cells, as well, with profound impact on biology and biomedicine.
Collapse
|
171
|
Integrative modelling coupled with ion mobility mass spectrometry reveals structural features of the clamp loader in complex with single-stranded DNA binding protein. J Mol Biol 2013; 425:4790-801. [PMID: 23583780 DOI: 10.1016/j.jmb.2013.04.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/14/2013] [Accepted: 04/03/2013] [Indexed: 01/26/2023]
Abstract
DNA polymerase III, a decameric 420-kDa assembly, simultaneously replicates both strands of the chromosome in Escherichia coli. A subassembly of this holoenzyme, the seven-subunit clamp loader complex, is responsible for loading the sliding clamp (β2) onto DNA. Here, we use structural information derived from ion mobility mass spectrometry (IM-MS) to build three-dimensional models of one form of the full clamp loader complex, γ3δδ'ψχ (254 kDa). By probing the interaction between the clamp loader and a single-stranded DNA (ssDNA) binding protein (SSB4) and by identifying two distinct conformational states, with and without ssDNA, we assemble models of ψχ-SSB4 (108 kDa) and the clamp loader-SSB4 (340 kDa) consistent with IM data. A significant increase in measured collision cross-section (~10%) of the clamp loader-SSB4 complex upon DNA binding suggests large conformational rearrangements. This DNA bound conformation represents the active state and, along with the presence of ψχ, stabilises the clamp loader-SSB4 complex. Overall, this study of a large heteromeric complex analysed by IM-MS, coupled with integrative modelling, highlights the potential of such an approach to reveal structural features of previously unknown complexes of high biological importance.
Collapse
|
172
|
Borysik AJ, Hewitt DJ, Robinson CV. Detergent release prolongs the lifetime of native-like membrane protein conformations in the gas-phase. J Am Chem Soc 2013; 135:6078-83. [PMID: 23521660 DOI: 10.1021/ja401736v] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent studies have suggested that detergents can protect the structure of membrane proteins during their transition from solution to the gas-phase. Here we provide mechanistic insights into this process by interrogating the structures of membrane protein-detergent assemblies in the gas-phase using ion mobility mass spectrometry. We show a clear correlation between the population of native-like protein conformations and the degree of detergent attachment to the protein in the gas-phase. Interrogation of these protein-detergent assemblies, by tandem mass spectrometry, enables us to define the mechanism by which detergents preserve native-like protein conformations in a solvent free environment. We show that the release of detergent is more central to the survival of these conformations than the physical presence of detergent bound to the protein. We propose that detergent release competes with structural collapse for the internal energy of the ion and permits the observation of transient native-like membrane protein conformations that are otherwise lost to structural rearrangement in the gas-phase.
Collapse
Affiliation(s)
- Antoni J Borysik
- Chemistry Research Laboratory, South Parks Road, University of Oxford, Oxford OX1 3QY, United Kingdom
| | | | | |
Collapse
|
173
|
Rey FA, Sundquist WI. Macromolecular assemblies. Curr Opin Struct Biol 2013; 23:224-8. [DOI: 10.1016/j.sbi.2013.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
174
|
Abstract
Mass spectrometry (MS) of intact soluble protein complexes has emerged as a powerful technique to study the stoichiometry, structure-function and dynamics of protein assemblies. Recent developments have extended this technique to the study of membrane protein complexes, where it has already revealed subunit stoichiometries and specific phospholipid interactions. Here we describe a protocol for MS of membrane protein complexes. The protocol begins with the preparation of the membrane protein complex, enabling not only the direct assessment of stoichiometry, delipidation and quality of the target complex but also the evaluation of the purification strategy. A detailed list of compatible nonionic detergents is included, along with a protocol for screening detergents to find an optimal one for MS, biochemical and structural studies. This protocol also covers the preparation of lipids for protein-lipid binding studies and includes detailed settings for a quadrupole time-of-flight (Q-TOF) mass spectrometer after the introduction of complexes from gold-coated nanoflow capillaries.
Collapse
Affiliation(s)
- Arthur Laganowsky
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 5QY, UK
| | - Eamonn Reading
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 5QY, UK
| | - Jonathan T.S. Hopper
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 5QY, UK
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 5QY, UK
| |
Collapse
|
175
|
Vitale R, Roine E, Bamford D, Corcelli A. Lipid fingerprints of intact viruses by MALDI-TOF/mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:872-9. [DOI: 10.1016/j.bbalip.2013.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/08/2013] [Accepted: 01/15/2013] [Indexed: 11/27/2022]
|
176
|
Walzthoeni T, Leitner A, Stengel F, Aebersold R. Mass spectrometry supported determination of protein complex structure. Curr Opin Struct Biol 2013; 23:252-60. [PMID: 23522702 DOI: 10.1016/j.sbi.2013.02.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/17/2013] [Accepted: 02/26/2013] [Indexed: 12/23/2022]
Abstract
Virtually all the biological processes are controlled and catalyzed by proteins which are, in many cases, in complexes with other proteins. Therefore, understanding the architecture and structure of protein complexes is critical to understanding their biological role and function. Traditionally, high-resolution data for structural analysis of proteins or protein complexes have been generated by the powerful methods of X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. More recently, mass spectrometry (MS)-based methods have been developed that provide low-resolution structural information, which contributes to the determination of the native structure of protein complexes that have remained refractory to the high-resolution methods. Native MS and affinity purification coupled with MS (AP-MS) have been used to characterize the composition, stoichiometry and connectivity of protein complexes. Chemical cross-linking MS (CX-MS) provides protein-protein interaction data supplemented with distance information that indicates residues that are in close spatial proximity in the native protein structure. Hydrogen-deuterium exchange combined with MS has been used to map protein-protein binding sites. Here, we focus on recent developments in CX-MS and native MS and their application to challenging problems in structural biology.
Collapse
Affiliation(s)
- Thomas Walzthoeni
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Wolfgang-Pauli-Str. 16, 8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
177
|
Abstract
Integral membrane proteins reside within the bilayer membranes that surround cells and organelles, playing critical roles in movement of molecules across them and the transduction of energy and signals. While their extreme amphipathicity presents technical challenges, biological mass spectrometry has been applied to all aspects of membrane protein chemistry and biology, including analysis of primary, secondary, tertiary, and quaternary structures as well as the dynamics that accompany functional cycles and catalysis.
Collapse
Affiliation(s)
- Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory, The NPI-Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, California 90095, United States.
| |
Collapse
|
178
|
Kang HJ, Lee C, Drew D. Breaking the barriers in membrane protein crystallography. Int J Biochem Cell Biol 2013; 45:636-44. [DOI: 10.1016/j.biocel.2012.12.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 12/03/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
|
179
|
Frankevich V, Barylyuk K, Chingin K, Nieckarz R, Zenobi R. Native Biomolecules in the Gas Phase? The Case of Green Fluorescent Protein. Chemphyschem 2013; 14:929-35. [DOI: 10.1002/cphc.201200959] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/22/2013] [Indexed: 01/19/2023]
|
180
|
Han L, Ruotolo BT. Traveling-wave Ion Mobility-Mass Spectrometry Reveals Additional Mechanistic Details in the Stabilization of Protein Complex Ions through Tuned Salt Additives. ACTA ACUST UNITED AC 2013; 16:41-50. [PMID: 23539363 DOI: 10.1007/s12127-013-0121-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion mobility-mass spectrometry is often applied to the structural elucidation of multiprotein assemblies in cases where X-ray crystallography or NMR experiments have proved challenging. Such applications are growing steadily as we continue to probe regions of the proteome that are less-accessible to such high-resolution structural biology tools. Since ion mobility measures protein structure in the absence of bulk solvent, strategies designed to more-broadly stabilize native-like protein structures in the gas-phase would greatly enable the application of such measurements to challenging structural targets. Recently, we have begun investigating the ability of salt-based solution additives that remain bound to protein ions in the gas-phase to stabilize native-like protein structures. These experiments, which utilize collision induced unfolding and collision induced dissociation in a tandem mass spectrometry mode to measure protein stability, seek to develop a rank-order similar to the Hofmeister series that categorizes the general ability of different anions and cations to stabilize gas-phase protein structure. Here, we study magnesium chloride as a potential stabilizing additive for protein structures in vacuo, and find that the addition of this salt to solutions prior to nano-electrospray ionization dramatically enhances multiprotein complex structural stability in the gas-phase. Based on these experiments, we also refine the physical mechanism of cation-based protein complex ion stabilization by tracking the unfolding transitions experienced by cation-bound complexes. Upon comparison with unbound proteins, we find strong evidence that stabilizing cations act to tether protein complex structure. We conclude by putting the results reported here in context, and by projecting the future applications of this method.
Collapse
Affiliation(s)
- Linjie Han
- University of Michigan, Department of Chemistry, 930 N. University Ave., Ann Arbor, MI, 48108
| | | |
Collapse
|
181
|
Ngounou Wetie AG, Sokolowska I, Woods AG, Roy U, Loo JA, Darie CC. Investigation of stable and transient protein-protein interactions: Past, present, and future. Proteomics 2013. [PMID: 23193082 DOI: 10.1002/pmic.201200328] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This article presents an overview of the literature and a review of recent advances in the analysis of stable and transient protein-protein interactions (PPIs) with a focus on their function within cells, organs, and organisms. The significance of PTMs within the PPIs is also discussed. We focus on methods to study PPIs and methods of detecting PPIs, with particular emphasis on electrophoresis-based and MS-based investigation of PPIs, including specific examples. The validation of PPIs is emphasized and the limitations of the current methods for studying stable and transient PPIs are discussed. Perspectives regarding PPIs, with focus on bioinformatics and transient PPIs are also provided.
Collapse
Affiliation(s)
- Armand G Ngounou Wetie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA
| | | | | | | | | | | |
Collapse
|
182
|
|
183
|
Arai S, Saijo S, Suzuki K, Mizutani K, Kakinuma Y, Ishizuka-Katsura Y, Ohsawa N, Terada T, Shirouzu M, Yokoyama S, Iwata S, Yamato I, Murata T. Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric crystal structures. Nature 2013; 493:703-7. [PMID: 23334411 DOI: 10.1038/nature11778] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 11/08/2012] [Indexed: 11/09/2022]
Abstract
In various cellular membrane systems, vacuolar ATPases (V-ATPases) function as proton pumps, which are involved in many processes such as bone resorption and cancer metastasis, and these membrane proteins represent attractive drug targets for osteoporosis and cancer. The hydrophilic V(1) portion is known as a rotary motor, in which a central axis DF complex rotates inside a hexagonally arranged catalytic A(3)B(3) complex using ATP hydrolysis energy, but the molecular mechanism is not well defined owing to a lack of high-resolution structural information. We previously reported on the in vitro expression, purification and reconstitution of Enterococcus hirae V(1)-ATPase from the A(3)B(3) and DF complexes. Here we report the asymmetric structures of the nucleotide-free (2.8 Å) and nucleotide-bound (3.4 Å) A(3)B(3) complex that demonstrate conformational changes induced by nucleotide binding, suggesting a binding order in the right-handed rotational orientation in a cooperative manner. The crystal structures of the nucleotide-free (2.2 Å) and nucleotide-bound (2.7 Å) V(1)-ATPase are also reported. The more tightly packed nucleotide-binding site seems to be induced by DF binding, and ATP hydrolysis seems to be stimulated by the approach of a conserved arginine residue. To our knowledge, these asymmetric structures represent the first high-resolution view of the rotational mechanism of V(1)-ATPase.
Collapse
Affiliation(s)
- Satoshi Arai
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Young L, Ndlovu H, Knapman TW, Harris SA, Radford SE, Ashcroft AE. Monitoring oligomer formation from self-aggregating amylin peptides using ESI-IMS-MS. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s12127-012-0115-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
185
|
Han L, Hyung SJ, Ruotolo BT. Dramatically stabilizing multiprotein complex structure in the absence of bulk water using tuned Hofmeister salts. Faraday Discuss 2013; 160:371-88; discussion 389-403. [PMID: 23795511 PMCID: PMC3695445 DOI: 10.1039/c2fd20099f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The role that water plays in the salt-based stabilization of proteins is central to our understanding of protein biophysics. Ion hydration and the ability of ions to alter water surface tension are typically invoked, along with direct ion-protein binding, to describe Hofmeister stabilization phenomena observed for proteins experimentally, but the relative influence of these forces has been extraordinarily difficult to measure directly. Recently, we have used gas-phase measurements of proteins and large multiprotein complexes, using a combination of innovative ion mobility (IM) and mass spectrometry (MS) techniques, to assess the ability of bound cations and anions to stabilize protein ions in the absence of the solvation forces described above. Our previous work has studied a broad set of 12 anions bound to a range of proteins and protein complexes, and while primarily motivated by the analytical challenges surrounding the gas-phase measurement of solution-phase relevant protein structures, our work has also lead to a detailed physical mechanism of anion-protein complex stabilization in the absence of bulk solvent. Our more-recent work has screened a similarly-broad set of cations for their ability to stabilize gas-phase protein structure, and we have discovered surprising differences between the operative mechanisms for cations and anions in gas-phase protein stabilization. In both cases, cations and anions affect protein stabilization in the absence of solvent in a manner that is generally reversed relative to their ability to stabilize the same proteins in solution. In addition, our evidence suggests that the relative solution-phase binding affinity of the anions and cations studied here is preserved in our gas-phase measurements, allowing us to study the influence of such interactions in detail. In this report, we collect and summarize such gas-phase measurements to distill a generalized picture of salt-based protein stabilization in the absence of bulk water. Further, we communicate our most recent efforts to study the combined effects of stabilizing cations and anions on gas-phase proteins, and identify those salts that bear anion/cation pairs having the strongest stabilizing influence on protein structures
Collapse
Affiliation(s)
- Linjie Han
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109
| | - Suk-Joon Hyung
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109
| |
Collapse
|
186
|
López A, Tarragó T, Vilaseca M, Giralt E. Applications and future of ion mobility mass spectrometry in structural biology. NEW J CHEM 2013. [DOI: 10.1039/c3nj41051j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
187
|
Abstract
Native state mass spectrometry (MS) has been recognised as a rapid, sensitive, and high throughput method to directly investigate protein-ligand interactions for some time, however there are few examples reporting this approach as a screening method to identify relevant protein–fragment interactions in fragment-based drug discovery (FBDD). In this paper an overview of native state MS will be presented, highlighting the attractive properties of this method within the context of fragment screening applications. A summary of published examples using MS for fragment screening will be described and reflection on the outlook for the future adoption and implementation of native state MS as a complementary fragment screening method will be presented.
Collapse
|
188
|
Stewart AG, Sobti M, Harvey RP, Stock D. Rotary ATPases: models, machine elements and technical specifications. BIOARCHITECTURE 2013; 3:2-12. [PMID: 23369889 PMCID: PMC3639240 DOI: 10.4161/bioa.23301] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual “machine elements” to the requirement of the right “fuel” and “oil” for different types of motors.
Collapse
Affiliation(s)
- Alastair G Stewart
- The Victor Chang Cardiac Research Institute, Faculty of Medicine, The University of New South Wales, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
189
|
Schmidt C, Zhou M, Marriott H, Morgner N, Politis A, Robinson CV. Comparative cross-linking and mass spectrometry of an intact F-type ATPase suggest a role for phosphorylation. Nat Commun 2013; 4:1985. [PMID: 23756419 PMCID: PMC3709506 DOI: 10.1038/ncomms2985] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/07/2013] [Indexed: 11/13/2022] Open
Abstract
F-type ATPases are highly conserved enzymes used primarily for the synthesis of ATP. Here we apply mass spectrometry to the F1FO-ATPase, isolated from spinach chloroplasts, and uncover multiple modifications in soluble and membrane subunits. Mass spectra of the intact ATPase define a stable lipid 'plug' in the FO complex and reveal the stoichiometry of nucleotide binding in the F1 head. Comparing complexes formed in solution from an untreated ATPase with one incubated with a phosphatase reveals that the dephosphorylated enzyme has reduced nucleotide occupancy and decreased stability. By contrasting chemical cross-linking of untreated and dephosphorylated forms we show that cross-links are retained between the head and base, but are significantly reduced in the head, stators and stalk. Conformational changes at the catalytic interface, evidenced by changes in cross-linking, provide a rationale for reduced nucleotide occupancy and highlight a role for phosphorylation in regulating nucleotide binding and stability of the chloroplast ATPase.
Collapse
Affiliation(s)
- Carla Schmidt
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Min Zhou
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Hazel Marriott
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Nina Morgner
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Argyris Politis
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Carol V. Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| |
Collapse
|
190
|
Konijnenberg A, Butterer A, Sobott F. Native ion mobility-mass spectrometry and related methods in structural biology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:1239-56. [PMID: 23246828 DOI: 10.1016/j.bbapap.2012.11.013] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 11/19/2012] [Accepted: 11/29/2012] [Indexed: 12/12/2022]
Abstract
Mass spectrometry-based methods have become increasingly important in structural biology - in particular for large and dynamic, even heterogeneous assemblies of biomolecules. Native electrospray ionization coupled to ion mobility-mass spectrometry provides access to stoichiometry, size and architecture of noncovalent assemblies; while non-native approaches such as covalent labeling and H/D exchange can highlight dynamic details of protein structures and capture intermediate states. In this overview article we will describe these methods and highlight some recent applications for proteins and protein complexes, with particular emphasis on native MS analysis. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.
Collapse
|
191
|
Borysik AJ, Robinson CV. The 'sticky business' of cleaning gas-phase membrane proteins: a detergent oriented perspective. Phys Chem Chem Phys 2012; 14:14439-49. [PMID: 23032570 DOI: 10.1039/c2cp41687e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
In recent years the properties of gas-phase detergent clusters have come under close scrutiny due in part to their participation in the analysis of intact membrane protein complexes by mass spectrometry. The detergent molecules that cover the protein complex are removed in the gas-phase by thermally agitating the ions by collision-induced dissociation. This process however, is not readily controlled and can frequently result in the disruption of protein structure. Improved methods of releasing proteins from detergent clusters are clearly required. To facilitate this the structural properties of detergent clusters along with the mechanistic details of their dissociation need to be understood. Pivotal to understanding the properties of gas-phase detergent clusters is the technique of ion mobility mass spectrometry. This technique can be used to assign polydisperse detergent clusters and provide information about their geometries and packing densities. In this article we consider the shapes of detergent clusters and show that these clusters possess geometries that are inconsistent with those in solution. We analyse the distributions of clusters in detail using tandem mass spectrometry and suggest that the mean charge of clusters formed from certain detergents is governed by electrostatic repulsion. We discuss the dissociation of detergent clusters and propose that detergent evaporation it a key process in the protection of protein complexes during high energy collisions in the gas-phase.
Collapse
|
192
|
Marty MT, Zhang H, Cui W, Blankenship RE, Gross ML, Sligar SG. Native mass spectrometry characterization of intact nanodisc lipoprotein complexes. Anal Chem 2012; 84:8957-60. [PMID: 23061736 DOI: 10.1021/ac302663f] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We describe here the analysis of nanodisc complexes by using native mass spectrometry (MS) to characterize their molecular weight (MW) and polydispersity. Nanodiscs are nanoscale lipid bilayers that offer a platform for solubilizing membrane proteins. Unlike detergent micelles, nanodiscs are native-like lipid bilayers that are well-defined and potentially monodisperse. Their mass spectra allow peak assignment based on differences in the mass of a single lipid per complex. Resultant masses agree closely with predicted values and demonstrate conclusively the narrow dispersity of lipid molecules in the nanodisc. Fragmentation with collisionally activated dissociation (CAD) or electron-capture dissociation (ECD) shows loss of a small number of lipids and eventual collapse of the nanodisc with release of the scaffold protein. These results provide a foundation for future studies utilizing nanodiscs as a platform for launching membrane proteins into the gas phase.
Collapse
|
193
|
High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat Methods 2012; 9:1084-6. [DOI: 10.1038/nmeth.2208] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/17/2012] [Indexed: 12/19/2022]
|
194
|
Morgner N, Montenegro F, Barrera NP, Robinson CV. Mass spectrometry--from peripheral proteins to membrane motors. J Mol Biol 2012; 423:1-13. [PMID: 22750574 PMCID: PMC4058634 DOI: 10.1016/j.jmb.2012.06.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
Abstract
That membrane protein complexes could survive in the gas phase had always seemed impossible. The lack of chargeable residues, high hydrophobicity, and poor solubility and the vast excess of detergent contributed to the view that it would not be possible to obtain mass spectra of intact membrane complexes. With the recent success in recording mass spectra of these complexes, first from recombinant sources and later from the cellular environment, many surprising properties of these gas phase membrane complexes have been revealed. The first of these was that the interactions between membrane and soluble subunits could survive in vacuum, without detergent molecules adhering to the complex. The second unexpected feature was that their hydrophobicity and, consequently, lower charge state did not preclude ionization. The final surprising finding was that these gas phase membrane complexes carry with them lipids, bound specifically in subunit interfaces. This provides us with an opportunity to distinguish annular lipids that surround the membrane complexes, from structural lipids that have a role in maintaining structure and subunit interactions. In this perspective, we track these developments and suggest explanations for the various discoveries made during this research.
Collapse
Affiliation(s)
- Nina Morgner
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 5QY, UK
| | | | | | | |
Collapse
|
195
|
Samhan-Arias AK, Ji J, Demidova OM, Sparvero LJ, Feng W, Tyurin V, Tyurina YY, Epperly MW, Shvedova AA, Greenberger JS, Bayir H, Kagan VE, Amoscato AA. Oxidized phospholipids as biomarkers of tissue and cell damage with a focus on cardiolipin. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:2413-23. [PMID: 22200675 PMCID: PMC3398793 DOI: 10.1016/j.bbamem.2012.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/20/2012] [Accepted: 03/14/2012] [Indexed: 12/12/2022]
Abstract
Oxidized phospholipid species are important, biologically relevant, lipid signaling molecules that usually exist in low abundance in biological tissues. Along with their inherent stability issues, these oxidized lipids present themselves as a challenge in their detection and identification. Often times, oxidized lipid species can co-chromatograph with non-oxidized species making the detection of the former extremely difficult, even with the use of mass spectrometry. In this study, a normal-phase and reverse-phase two dimensional high performance liquid chromatography (HPLC)-mass spectrometric system was applied to separate oxidized phospholipids from their non-oxidized counterparts, allowing unambiguous detection in a total lipid extract. We have utilized bovine heart cardiolipin as well as commercially available tetralinoleoyl cardiolipin oxidized with cytochrome c (cyt c) and hydrogen peroxide as well as with lipoxygenase to test the separation power of the system. Our findings indicate that oxidized species of not only cardiolipin, but other phospholipid species, can be effectively separated from their non-oxidized counterparts in this two dimensional system. We utilized three types of biological tissues and oxidative insults, namely rotenone treatment of lymphocytes to induce mitochondrial damage and cell death, pulmonary inhalation exposure to single walled carbon nanotubes, as well as total body irradiation, in order to identify cardiolipin oxidation products, critical to the cell damage/cell death pathways in these tissues following cellular stress/injury. Our results indicate that selective cardiolipin (CL) oxidation is a result of a non-random free radical process. In addition, we assessed the ability of the system to identify CL oxidation products in the brain, a tissue known for its extreme complexity and diversity of CL species. The ability of the two dimensional HPLC-mass spectrometric system to detect and characterize oxidized lipid products will allow new studies to be formulated to probe the answers to biologically important questions with regard to oxidative lipidomics and cellular insult. This article is part of a Special Issue entitled: Oxidized phospholipids - their properties and interactions with proteins.
Collapse
Affiliation(s)
- Alejandro K. Samhan-Arias
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA
| | - Jing Ji
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA
| | - Olga M. Demidova
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA
| | - Louis J. Sparvero
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA
| | - Weihong Feng
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA
| | - Vladimir Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA
| | - Yulia Y. Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA
| | - Michael W. Epperly
- Department of Radiation Oncology, Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Anna A. Shvedova
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV
| | - Joel S. Greenberger
- Department of Radiation Oncology, Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Hülya Bayir
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA
| | - Andrew A. Amoscato
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
196
|
Kelleher NL. A cell-based approach to the human proteome project. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1617-1624. [PMID: 22976808 PMCID: PMC3456959 DOI: 10.1007/s13361-012-0469-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 05/30/2023]
Abstract
The general scope of a project to determine the protein molecules that comprise the cells within the human body is framed. By focusing on protein primary structure as expressed in specific cell types, this concept for a cell-based version of the Human Proteome Project (CB-HPP) is crafted in a manner analogous to the Human Genome Project while recognizing that cells provide a primary context in which to define a proteome. Several activities flow from this articulation of the HPP, which enables the definition of clear milestones and deliverables. The CB-HPP highlights major gaps in our knowledge regarding cell heterogeneity and protein isoforms, and calls for development of technology that is capable of defining all human cell types and their proteomes. The main activities will involve mapping and sorting cell types combined with the application of beyond the state-of-the art in protein mass spectrometry.
Collapse
Affiliation(s)
- Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
197
|
Wang L, Xu F, Ding CF. Performance and geometry optimization of the ceramic-based rectilinear ion traps. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:2068-2074. [PMID: 22847707 DOI: 10.1002/rcm.6308] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RATIONALE The rectilinear ion trap (RIT), as a simplified linear ion trap, has shown great potential in the field of portable mass spectrometers for its simple structure and easy manufacture. In this study, the new ceramic-based rectilinear ion trap (cRIT) was constructed, and the performance and geometry optimization of a series of cRITs were examined. METHODS Gold-plated zirconia ceramic electrodes were used to build the cRITs. A home-built electrospray ionization mass spectrometry (ESI-MS) platform was used to test the properties of the cRITs. The protonated ions of arginine (m/z 175) and reserpine (m/z 609) were produced in the experiments by ESI. RESULTS A series of cRITs with different geometries were constructed, and the overall mechanical accuracy of all parts and the cRIT assembly is within ~10 µm. The mass resolution, the first stability diagram and the tandem mass (MS/MS) analysis capability were tested. For a 6 mm × 5 mm cRIT, the mass resolution was higher than 1800 at m/z 609 when the scan speed was 2190 Th/s. A MS/MS capability with a ca. 94.8% CID efficiency on the cRIT 6 × 5 was obtained. CONCLUSIONS The ceramic-based rectilinear ion trap (cRIT) can be a qualified linear ion trap mass analyzer with high ion storage capability, excellent mass resolution, and high tandem mass analysis efficiency. It can be easily manufactured and operated, and has great potential in ion trap mass spectrometry.
Collapse
Affiliation(s)
- Liang Wang
- Department of Chemistry and Laser Chemistry Institute, Fudan University, Shanghai 200433, China
| | | | | |
Collapse
|
198
|
Barrera NP, Zhou M, Robinson CV. The role of lipids in defining membrane protein interactions: insights from mass spectrometry. Trends Cell Biol 2012; 23:1-8. [PMID: 22980035 DOI: 10.1016/j.tcb.2012.08.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 12/19/2022]
Abstract
Cellular membranes comprise hundreds of lipids in which protein complexes, such as ion channels, receptors, and scaffolding complexes, are embedded. These protein assemblies act as signalling and trafficking platforms for processes fundamental to life. Much effort in recent years has focused on identifying the protein components of these complexes after their extraction from the lipid membrane in detergent micelles. Spectacular advances have been made using X-ray crystallography, providing in some cases detailed information about the mechanism of pumping and channel gating. These structural studies are leading to a growing realisation that, to understand their function, it is not only the structures of the protein components that are important but also knowledge of the protein-lipid interactions. This review highlights recent insights gained from this knowledge, surveys methods being developed for probing these interactions, and focuses specifically on the potential of mass spectrometry in this growing area of research.
Collapse
Affiliation(s)
- Nelson P Barrera
- Department of Physiology, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, 8331150, Chile.
| | | | | |
Collapse
|
199
|
Kükrer B, Barbu IM, Copps J, Hogan P, Taylor SS, van Duijn E, Heck AJR. Conformational isomers of calcineurin follow distinct dissociation pathways. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1534-43. [PMID: 22811075 PMCID: PMC4120237 DOI: 10.1007/s13361-012-0441-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/28/2012] [Accepted: 06/28/2012] [Indexed: 05/12/2023]
Abstract
In the gas-phase, ions of protein complexes typically follow an asymmetric dissociation pathway upon collisional activation, whereby an expelled small monomer takes a disproportionately large amount of the charges from the precursor ion. This phenomenon has been rationalized by assuming that upon activation, a single monomer becomes unfolded, thereby attracting charges to its newly exposed basic residues. Here, we report on the atypical gas-phase dissociation of the therapeutically important, heterodimeric calcium/calmodulin-dependent serine/threonine phosphatase calcineurin, using a combination of tandem mass spectrometry, ion mobility mass spectrometry, and computational modeling. Therefore, a hetero-dimeric calcineurin construct (62 kDa), composed of CNa (44 kDa, a truncation mutant missing the calmodulin binding and auto-inhibitory domains), and CNb (18 kDa), was used. Upon collisional activation, this hetero-dimer follows the commonly observed dissociation behavior, whereby the smaller CNb becomes highly charged and is expelled. Surprisingly, in addition, a second atypical dissociation pathway, whereby the charge partitioning over the two entities is more symmetric is observed. The presence of two gas-phase conformational isomers of calcineurin as revealed by ion mobility mass spectrometry (IM-MS) may explain the co-occurrence of these two dissociation pathways. We reveal the direct relationship between the conformation of the calcineurin precursor ion and its concomitant dissociation pathway and provide insights into the mechanisms underlying this co-occurrence of the typical and atypical fragmentation mechanisms.
Collapse
Affiliation(s)
- Basak Kükrer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Ioana M. Barbu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Jeffrey Copps
- The Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Patrick Hogan
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Susan S. Taylor
- The Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Esther van Duijn
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| |
Collapse
|
200
|
Brown SHJ, Mitchell TW, Oakley AJ, Pham HT, Blanksby SJ. Time to face the fats: what can mass spectrometry reveal about the structure of lipids and their interactions with proteins? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1441-1449. [PMID: 22669763 DOI: 10.1007/s13361-012-0410-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 06/01/2023]
Abstract
Since the 1950s, X-ray crystallography has been the mainstay of structural biology, providing detailed atomic-level structures that continue to revolutionize our understanding of protein function. From recent advances in this discipline, a picture has emerged of intimate and specific interactions between lipids and proteins that has driven renewed interest in the structure of lipids themselves and raised intriguing questions as to the specificity and stoichiometry in lipid-protein complexes. Herein we demonstrate some of the limitations of crystallography in resolving critical structural features of ligated lipids and thus determining how these motifs impact protein binding. As a consequence, mass spectrometry must play an important and complementary role in unraveling the complexities of lipid-protein interactions. We evaluate recent advances and highlight ongoing challenges towards the twin goals of (1) complete structure elucidation of low, abundant, and structurally diverse lipids by mass spectrometry alone, and (2) assignment of stoichiometry and specificity of lipid interactions within protein complexes.
Collapse
Affiliation(s)
- Simon H J Brown
- School of Chemistry, University of Wollongong, Wollongong, NSW, Australia.
| | | | | | | | | |
Collapse
|