151
|
Davila DR, Davis DP, Campbell K, Cambier JC, Zigmond LA, Burchiel SW. Role of alterations in Ca(2+)-associated signaling pathways in the immunotoxicity of polycyclic aromatic hydrocarbons. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1995; 45:101-26. [PMID: 7783249 DOI: 10.1080/15287399509531985] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are an important class of environmental pollutants that are known to be carcinogenic and immunotoxic. The effects of PAHs on the immune system of various animals and models have been studied for at least 30 yr. Despite these efforts, the mechanism or mechanisms by which PAHs exert their effects on the immune system are still largely unknown. During recent years, the molecular events associated with lymphocyte activation and receptor-mediated signaling have become increasingly clear. Substantial progress has been made in understanding the molecular and cellular bases for toxicant-induced immune cell injury. Understanding mechanisms of drug or chemical effects on the immune system is an important area of research in the field of immunotoxicology, and indeed in all fields of toxicology. Mechanistic toxicology plays an important role in risk assessment and extrapolation of potential human health effects. In this review, we have summarized recent evidence that has examined the effects of PAHs on the immune system of animals and humans. In particular, we have focused on the effects of PAHs on cell signaling in lymphoid cells and have examined the hypothesis that PAHs alter lymphocyte activation via calcium-dependent mechanisms. Previously published reports are discussed, and new data obtained with murine B cells and cell lines are presented demonstrating the relationship between alterations in intracellular calcium and immune dysregulation. These data demonstrate a strong association between PAH-induced alterations in B- and T-lymphocyte activation and changes in calcium homeostasis.
Collapse
Affiliation(s)
- D R Davila
- University of New Mexico College of Pharmacy, Toxicology Program, Albuquerque 87131, USA
| | | | | | | | | | | |
Collapse
|
152
|
Caplan S, Baniyash M. Multisubunit receptors in the immune system and their association with the cytoskeleton: in search of functional significance. Immunol Res 1995; 14:98-118. [PMID: 8530880 DOI: 10.1007/bf02918171] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Various multisubunit receptors of the immune system share similarities in structure and induce closely related signal transduction pathways upon ligand binding. Examples include the T cell antigen receptor (TCR), the B cell antigen receptor (BCR), and the high-affinity receptor for immunoglobulin E (Fc epsilon RI). Although these receptors are devoid of intrinsic kinase activity, they can associate with a similar array of intracellular kinases, phosphatases and other signaling molecules. Furthermore, these receptor complexes all form an association with the cytoskeletal matrix. In this review, we compare the structural and functional characteristics of the TCR, BCR and Fc epsilon RI. We examine the role of the cytoskeleton in regulating receptor-mediated signal transduction, as analyzed in other well-characterized receptors, including the epidermal growth factor receptor and integrin receptors. On the basis of this evidence, we review the current data depicting a cytoskeletal association for multisubunit immune system receptors and explore the potential bearing of this interaction on signaling function.
Collapse
Affiliation(s)
- S Caplan
- Lautenberg Center for General and Tumor Immunology, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
153
|
Bu JY, Shaw AS, Chan AC. Analysis of the interaction of ZAP-70 and syk protein-tyrosine kinases with the T-cell antigen receptor by plasmon resonance. Proc Natl Acad Sci U S A 1995; 92:5106-10. [PMID: 7761456 PMCID: PMC41857 DOI: 10.1073/pnas.92.11.5106] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Tyrosine phosphorylation of a 17-amino acid immunoreceptor tyrosine-based activation motif (ITAM), conserved in each of the signaling subunits of the T-cell antigen receptor (TCR), mediates the recruitment of ZAP-70 and syk protein-tyrosine kinases (PTKs) to the activated receptor. The interaction between the two tandemly arranged Src-homology 2 (SH2) domains of this family of PTKs and each of the phosphotyrosine-containing ITAMs was examined by real-time measurements of kinetic parameters. The association rate and equilibrium binding constants for the ZAP-70 and syk SH2 domains were determined for the CD3 epsilon ITAM. Both PTKs bound with ka and Kd values of 5 x 10(6) M-1.sec-1 and approximately 25 nM, respectively. Bindings to the other TCR ITAMs (zeta 1, zeta 2, gamma, and delta ITAMs) were comparable, although the zeta 3 ITAM bound approximately 2.5-fold less well. Studies of the affinity of a single functional SH2 domain of ZAP-70 provided evidence for the cooperative nature of binding of the dual SH2 domains. Mutation of either single SH2 domain decreased the Kd by > 100-fold. Finally, the critical features of the ITAM for syk binding were found to be similar to those required for ZAP-70 binding. These data provide insight into the mechanism by which the multisubunit TCR interacts with downstream effector molecules.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Electrophoresis, Polyacrylamide Gel
- Enzyme Precursors/biosynthesis
- Enzyme Precursors/isolation & purification
- Enzyme Precursors/metabolism
- Glutathione Transferase/biosynthesis
- Humans
- Intracellular Signaling Peptides and Proteins
- Kinetics
- Molecular Sequence Data
- Protein-Tyrosine Kinases/biosynthesis
- Protein-Tyrosine Kinases/isolation & purification
- Protein-Tyrosine Kinases/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/isolation & purification
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/isolation & purification
- Receptors, Antigen, T-Cell/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/isolation & purification
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Amino Acid
- Syk Kinase
- ZAP-70 Protein-Tyrosine Kinase
Collapse
Affiliation(s)
- J Y Bu
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
154
|
Sillman AL, Monroe JG. Association of p72syk with the src homology-2 (SH2) domains of PLC gamma 1 in B lymphocytes. J Biol Chem 1995; 270:11806-11. [PMID: 7744830 DOI: 10.1074/jbc.270.20.11806] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Phospholipase C gamma-catalyzed inositol phospholipid hydrolysis, a critical step in B cell antigen receptor signaling leading to second messenger generation and proliferation, depends upon tyrosine kinase activation. The B cell antigen receptor-associated tyrosine kinases p53/56lyn, p59fyn, p55blk, and p72syk are assumed to participate in receptor-initiated signaling. It is unknown, however, which of these kinases is involved in the tyrosine phosphorylation and resulting activation of phospholipase C gamma in response to antigen receptor cross-linking. We have used a fusion protein containing the tandem src homology-2 (SH2) domains of phospholipase C gamma 1 (PLC gamma 1) to identify B cell kinases which associate with PLC gamma 1. Using an in vitro kinase assay, we demonstrate SH2-dependent association of tyrosine kinase activity from anti-mu-stimulated B cells. The PLC gamma 1 SH2 domains associate with a prominent 70-72-kDa tyrosine phosphoprotein from anti-mu-stimulated, but not resting, B cells. Immunoblotting and secondary immunoprecipitation studies definitively identify this protein as p72syk. These results imply a physical interaction between PLC gamma 1 and p72syk in antigen receptor-stimulated B cells. This conclusion is confirmed by our ability to co-immunoprecipitate p72syk and PLC gamma 1 from lysates of anti-mu-stimulated B cells. These results implicate p72syk in the activation of phospholipase C gamma 1 during B cell antigen receptor signaling.
Collapse
Affiliation(s)
- A L Sillman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
155
|
Papavasiliou F, Misulovin Z, Suh H, Nussenzweig MC. The role of Ig beta in precursor B cell transition and allelic exclusion. Science 1995; 268:408-11. [PMID: 7716544 DOI: 10.1126/science.7716544] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Lymphocytes express multicomponent receptor complexes that mediate diverse antigen-dependent and antigen-independent responses. Despite the central role of antigen-independent events in B cell development, little is known about the mechanisms by which they are initiated. The association between the membrane immunoglobulin (Ig) M heavy chair (micron) and the Ig alpha-Ig beta heterodimer is now shown to be essential in inducing both the transition from progenitor to precursor B cells and subsequent allelic exclusion in transgenic mice. The cytoplasmic domain of Ig beta is sufficient to induce these early antigen-independent events by a mechanism that requires conserved tyrosine residues in this protein.
Collapse
Affiliation(s)
- F Papavasiliou
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
156
|
Abstract
The specificity of immune responses depends upon the activation of only those lymphocytes that recognize the introduced antigen. In recent years, a great deal has been learned about the structure of lymphocyte receptors for antigens and about their signal transduction mechanism. These receptors activate intracellular protein tyrosine kinases of at least two families, the Src family and the Syk/ZAP-70 family. Recent studies have given us considerable insight into the interactions of these two types of kinases and how they mediate antigen receptor signaling.
Collapse
Affiliation(s)
- A L DeFranco
- Department of Microbiology and Immunology, University of California, San Francisco 94143-0552, USA
| |
Collapse
|
157
|
Rao P, Mufson RA. A membrane proximal domain of the human interleukin-3 receptor beta c subunit that signals DNA synthesis in NIH 3T3 cells specifically binds a complex of Src and Janus family tyrosine kinases and phosphatidylinositol 3-kinase. J Biol Chem 1995; 270:6886-93. [PMID: 7896837 DOI: 10.1074/jbc.270.12.6886] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The high affinity human interleukin-3 receptor is a heterodimeric protein consisting of an alpha and beta c subunit. The beta c subunit is responsible for receptor signal transduction. We have shown that a membrane proximal domain of the cytoplasmic tail of the human beta c subunit (amino acids 451-517) is minimally required for human IL-3 to signal DNA synthesis in quiescent transfected NIH 3T3 cells. Glutathione S-transferase (GST) fusion proteins of this 451-517 region and another region 451-562 that includes an acidic domain previously shown in other receptors to bind Src family kinases were constructed. Purified Lyn and Lck kinase, but not Fes, could phosphorylate tyrosines in both domains. Adsorption with lysates from the human IL-3-dependent hematopoietic cell line (TF-1) or 3T3 cells and in vitro phosphorylation showed that both these domains were intensely phosphorylated. Phosphoamino acid analysis, however, revealed that the majority of phosphorylation was on serine and threonine rather than tyrosine. Adsorption of these domains with 3T3 or TF-1 cell lysates, followed by immunoblotting, showed that cytoplasmic tyrosine kinases Lyn, Fes, and JAK-2 could also stably associate with both domains; however, Src family kinases are more strongly recognized by both regions than JAK-2 kinase. In addition, phosphatidylinositol 3-kinase from cell lysates was also found stably associated with these domains, but GTPase activating protein, Vav, Sos1, or Grb2 were not.
Collapse
Affiliation(s)
- P Rao
- Holland Laboratory for BioMedical Science, American Red Cross, Rockville, Maryland 20855
| | | |
Collapse
|
158
|
Nagai K, Takata M, Yamamura H, Kurosaki T. Tyrosine phosphorylation of Shc is mediated through Lyn and Syk in B cell receptor signaling. J Biol Chem 1995; 270:6824-9. [PMID: 7896829 DOI: 10.1074/jbc.270.12.6824] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Shc protein is tyrosine phosphorylated upon B cell receptor (BCR) activation and after its phosphorylation interacts with the adaptor protein Grb2. In turn, Grb2 interacts with the guanine nucleotide exchange factor for Ras, mSOS. Several protein-tyrosine kinases (PTKs) participate in BCR signaling. However, it is not clear which PTK is involved in the phosphorylation of Shc, resulting in coupling to the Ras pathway. Tyrosine phosphorylation of Shc and its association with Grb2 were profoundly reduced in both Lyn- and Syk-deficient B cells upon BCR stimulation. Furthermore, kinase activity of these PTKs was required for phosphorylation of Shc. Shc interacted with Syk in B cells. This interaction and the requirement of Syk kinase activity for phosphorylation of Shc were also demonstrated by cotransfection in COS cells. Because Lyn is required for activation of Syk upon receptor stimulation, our results suggest that the Lyn-activated Syk phosphorylates Shc during BCR signaling.
Collapse
Affiliation(s)
- K Nagai
- Department of Biochemistry, Fukui Medical School, Japan
| | | | | | | |
Collapse
|
159
|
Kim KM, Reth M. The B cell antigen receptor of class IgD induces a stronger and more prolonged protein tyrosine phosphorylation than that of class IgM. J Exp Med 1995; 181:1005-14. [PMID: 7869025 PMCID: PMC2191939 DOI: 10.1084/jem.181.3.1005] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Most mature B lymphocytes coexpress two classes of antigen receptor, immunoglobulin (Ig)M and IgD. The differences in the signal transduction from the two receptors are still a matter of controversy. We have analyzed B cell lines expressing IgM or IgD antigen receptors with the same antigen specificity. Cross-linking of these receptors with either antigen, or class-specific antibodies, results in the activation of protein tyrosine kinases and the phosphorylation of the same substrate proteins. The kinetic and the intensity of phosphorylation, however, was quite different between the two receptors when they were cross-linked by antigen. In membrane IgM-expressing cells, the substrate phosphorylation reached a maximum after 1 minute and diminished after 60 minutes whereas, in the membrane IgD-expressing cells, the substrate phosphorylation increased further over time, reached its maximum at 60 minutes, and persisted longer than 240 minutes after exposure to antigen. As a result, the intensity of protein tyrosine phosphorylation induced by cross-linking of membrane IgD was stronger than that induced by membrane IgM. Studies of chimeric receptors demonstrate that only the membrane-proximal C domain and/or the transmembrane part of membrane-bound IgD molecule is required for the long-lasting substrate phosphorylation. Together, these data suggest that the signal emission from the two receptors is controlled differently.
Collapse
Affiliation(s)
- K M Kim
- Max-Planck Institut für Immunbiologie, Freiburg, Germany
| | | |
Collapse
|
160
|
Abstract
Receptors which induce immune system effector function bear similar intracellular sequences and respond to aggregation through a nonreceptor tyrosine kinase-dependent pathway. The mechanism by which receptor aggregation leads to cell activation is poorly understood, but recent experiments with chimeric receptors and kinases have begun to simplify the analysis.
Collapse
Affiliation(s)
- B Seed
- Massachusetts General Hospital, Boston 02114, USA
| |
Collapse
|
161
|
|
162
|
Abstract
The tyrosine activating motif (TAM) is a conserved signaling motif present in many hematopoietic receptors. Although the exact definition and the function of these motifs is not known, it is likely that these motifs bind and activate protein tyrosine kinases. Here we summarize the data regarding tyrosine kinase interactions with the T cell receptor TAMs and integrate much of the information into a functional and testable model. We propose that phosphorylated TAMs are important for the activation of tyrosine kinases as well as for the recruitment of critical signaling molecules.
Collapse
MESH Headings
- Amino Acid Sequence
- Conserved Sequence
- Enzyme Activation/immunology
- Enzyme Precursors/immunology
- Enzyme Precursors/metabolism
- Gene Expression Regulation, Enzymologic
- Intracellular Signaling Peptides and Proteins
- Lymphocyte Activation
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Models, Immunological
- Molecular Sequence Data
- Oncogene Proteins, Viral/immunology
- Oncogene Proteins, Viral/metabolism
- Phosphorylation
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/immunology
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins/immunology
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-fyn
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Sequence Alignment
- Signal Transduction/immunology
- Syk Kinase
- ZAP-70 Protein-Tyrosine Kinase
Collapse
Affiliation(s)
- A S Shaw
- Center for Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
163
|
Daëron M, Malbec O, Latour S, Arock M, Fridman WH. Regulation of high-affinity IgE receptor-mediated mast cell activation by murine low-affinity IgG receptors. J Clin Invest 1995; 95:577-85. [PMID: 7860741 PMCID: PMC295517 DOI: 10.1172/jci117701] [Citation(s) in RCA: 260] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Allergic symptoms result from the release of granular and lipidic mediators and of cytokines by inflammatory cells. The whole process is initiated by the aggregation of mast cell and basophil high-affinity IgE receptors (Fc epsilon RI) by IgE and antigen. We report here that IgE-induced release of mediator and cytokine can be inhibited by cross-linking Fc epsilon RI to low-affinity IgG receptors (Fc gamma RII) which are constitutively expressed on mast cells and basophils. Using a model of stable transfectants in RBL-2H3 cells expressing endogeneous rat Fc epsilon RI and recombinant murine Fc gamma RII, we showed that inhibition requires that Fc epsilon RI be crosslinked to Fc gamma RII by the same multivalent ligand. Inhibition of cross-linked receptors left non-cross-linked Fc epsilon RI capable of triggering mediator release and was reversible upon disengagement. Both isoforms of wild-type Fc gamma RII were equally capable of inhibiting Fc epsilon RI-mediated mast cell activation provided they had an intact intracytoplasmic domain. Our results demonstrate that mast cell secretory responses triggered by high-affinity receptors for IgE may be controlled by low-affinity receptors for IgG. This regulation of Fc epsilon RI-mediated mast cell activation is of potential interest in mast cell physiology and in allergic pathology.
Collapse
Affiliation(s)
- M Daëron
- Laboratoire d'Immunologie Cellulaire et Clinique, INSERM U255, Institut Curie, Paris, France
| | | | | | | | | |
Collapse
|
164
|
Sidorenko SP, Law CL, Chandran KA, Clark EA. Human spleen tyrosine kinase p72Syk associates with the Src-family kinase p53/56Lyn and a 120-kDa phosphoprotein. Proc Natl Acad Sci U S A 1995; 92:359-63. [PMID: 7831290 PMCID: PMC42739 DOI: 10.1073/pnas.92.2.359] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The 72-kDa spleen tyrosine kinase (Syk) and Src-family kinase p53/56Lyn (Lyn) contribute to signaling via the B-cell antigen receptor complex. Here we show that Syk and Lyn from human B lymphocytes can interact directly. Syk and Lyn coimmunoprecipitated from mature and activated B-cell lines, and gel-purified Syk and Lyn reassociated in vitro, demonstrating their direct interaction. This Syk-Lyn interaction may be dependent on the stage of B-cell differentiation, since Syk-Lyn associations were not detected in pre-B and myeloma cell lines and Syk from an immature B-cell line did not reassociate with Lyn in vitro. Serine/threonine kinase activity was also associated with Syk. Crosslinking of cell surface IgM led to rapid activation of both tyrosine and serine/threonine protein kinase activities that resulted in phosphorylation in vitro of proteins coprecipitating with Syk--in particular, a serine/threonine phosphorylated protein 120 kDa in size (pp120). Several phosphoproteins, including one of 72 kDa and one of 120 kDa, coprecipitated with phospholipase C-gamma 1 (PLC gamma 1). Sequential immunoprecipitation identified the 72-kDa protein associated with PLC gamma 1 as Syk. The 120-kDa serine/threonine phosphorylated protein that coprecipitated with PLC gamma 1 resembled the Syk-associated pp120 by several criteria. Thus, pp120 may serve as a link between Syk and PLC gamma 1, coupling the B-cell antigen receptor to the phosphatidylinositol pathway.
Collapse
Affiliation(s)
- S P Sidorenko
- Department of Microbiology, University of Washington Medical Center, Seattle 98195
| | | | | | | |
Collapse
|
165
|
Ghazizadeh S, Bolen JB, Fleit HB. Tyrosine phosphorylation and association of Syk with Fc gamma RII in monocytic THP-1 cells. Biochem J 1995; 305 ( Pt 2):669-74. [PMID: 7530449 PMCID: PMC1136413 DOI: 10.1042/bj3050669] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although the cytoplasmic portion of the low-affinity receptor for immunoglobulin G, Fc gamma RII, does not contain a kinase domain, rapid tyrosine phosphorylation of intracellular substrates occurs in response to aggregation of the receptor. The use of specific tyrosine kinase inhibitors has suggested that these phosphorylations are required for subsequent cellular responses. We previously demonstrated the coprecipitation of a tyrosine kinase activity with Fc gamma RII, suggesting that non-receptor tyrosine kinases might associate with the cytoplasmic domain of Fc gamma RII. Anti-receptor immune complex kinase assays revealed the coprecipitation of several phosphoproteins, most notably p56/53lyn, an Src-family protein tyrosine kinase (PTK), and a 72 kDa phosphoprotein. Here we identify the 72 kDa Fc gamma RII-associated protein as p72syk (Syk), a member of a newly described family of non-receptor PTKs. A rapid and transient tyrosine phosphorylation of Syk was observed following Fc gamma RII activation. Syk was also tyrosyl-phosphorylated following aggregation of the high-affinity Fc gamma receptor, Fc gamma RI. The Fc gamma RI activation did not result in association of Syk with Fc gamma RII, implying that distinct pools of Syk are activated upon aggregation of each receptor in a localized manner. These results demonstrate a physical association between Syk and Fc gamma RII and suggest that the molecules involved in Fc gamma RII signalling are very similar to the ones utilized by multichain immune recognition receptors such as the B-cell antigen receptor and the high-affinity IgE receptor.
Collapse
Affiliation(s)
- S Ghazizadeh
- Department of Pathology, State University of New York at Stony Brook 11794
| | | | | |
Collapse
|
166
|
Abstract
Most mature B lymphocytes co-express two classes of antigen receptor, IgM and IgD. The differences in the signal transduction from the 2 receptors are still a matter of controversy. We have analysed B-cell lines expressing IgM or IgD antigen receptors with the same antigen specificity. Cross-linking of these receptors with either antigen or class-specific antibodies results in the activation of protein tyrosine kinases and the phosphorylation of the same substrate proteins. The kinetics and intensity of phosphorylation, however, were quite different between the 2 receptors when they were cross-linked by antigen. In membrane IgM-expressing cells, the substrate phosphorylation reached a maximum already after 1 min and diminished after 60 min whereas in the membrane IgD-expressing cells, the substrate phosphorylation increases further over time, reached its maximum at 60 min and persisted longer than 240 min after exposure to antigen. Recently prolonged signaling has been found to be responsible for signaling differences between tyrosine kinase receptors using otherwise similar signaling routes. Thus, the duration of a signal may be an important biological feature of signal transducing cascades.
Collapse
Affiliation(s)
- K M Kim
- Max-Planck Institut für Immunobiologie, Freiburg, Germany
| | | |
Collapse
|
167
|
Paolini R, Renard V, Vivier E, Ochiai K, Jouvin MH, Malissen B, Kinet JP. Different roles for the Fc epsilon RI gamma chain as a function of the receptor context. J Exp Med 1995; 181:247-55. [PMID: 7528770 PMCID: PMC2191817 DOI: 10.1084/jem.181.1.247] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The high affinity immunoglobulin E receptor (Fc epsilon RI) and the B and T cell antigen receptors (TCR) are multimeric complexes containing subunits with cytoplasmic antigen recognition activation motifs (ARAMs). The presence of multiple motifs may be a way to amplify a single signal or provide independent activation modules. Here we have compared the signaling capacity of the same Fc epsilon RI gamma motif in the context of two different receptors, Fc epsilon RI and TCR/CD3, simultaneously reconstituted on the surface of the same zeta-deficient T cell line. Both reconstituted receptors mediate early (phosphorylation) and late (interleukin [IL]-2 release) signals. Mutation of the two tyrosine residues of ARAM gamma alters early signaling by both receptors, but the set of substrates phosphorylated via ARAM gamma is different for each receptor and is thus dependent on the receptor context. Furthermore, the mutations prevent Fc epsilon RI- but not TCR/CD3-mediated IL-2 release. These data demonstrate that ARAM gamma is necessary for allowing both receptors to phosphorylate the complete set of substrates, and that the CD3 complex, unlike the Fc epsilon RI beta chain, contains activation modules capable of compensating for the absence of a functional ARAM gamma in generating late signals such as IL-2 release.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Electrophoresis, Gel, Two-Dimensional
- In Vitro Techniques
- Interleukin-2/metabolism
- Macromolecular Substances
- Mice
- Molecular Sequence Data
- Phosphoproteins/chemistry
- Phosphotyrosine
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Receptors, IgE/chemistry
- Receptors, IgE/physiology
- Signal Transduction
- Transfection
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
Collapse
Affiliation(s)
- R Paolini
- Molecular Allergy and Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| | | | | | | | | | | | | |
Collapse
|
168
|
Indik ZK, Park JG, Hunter S, Mantaring M, Schreiber AD. Molecular dissection of Fc gamma receptor-mediated phagocytosis. Immunol Lett 1995; 44:133-8. [PMID: 7797242 DOI: 10.1016/0165-2478(94)00204-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Using an experimental model in COS-1 cells, we have examined the structural requirements for phagocytosis of IgG-sensitized cells by Fc gamma receptors. We have established that isoforms of each of the 3 classes of the Fc gamma receptors, Fc gamma RI, Fc gamma RII and Fc gamma RIII, are able to transmit a phagocytic signal in the absence of the other receptor class. Fc gamma I and Rc gamma RIIIA require a gamma-subunit for this signaling event, but Fc gamma RIIA does not. Fc gamma RIIA and the gamma-subunit associated with Fc gamma RI and Fc gamma RIIIA contain 2 copies of a conserved tyrosine-containing cytoplasmic sequence, YXXL. This sequence is important for phagocytosis and is phosphorylated on tyrosine after receptor ligation. The Fc gamma receptors Fc gamma RIIB1 and Fc gamma RIIB2 which contain only 1 copy of the YXXL cytoplasmic sequence do not include the phagocytosis of IgG-coated cells. Thus, the Fc gamma receptor isoforms differ in their ability to transmit a phagocytic signal. Structure/function studies also indicate that the Fc gamma receptors which induce phagocytosis differ in their requirements for phagocytic signaling.
Collapse
Affiliation(s)
- Z K Indik
- University of Pennsylvania School of Medicine, Department of Medicine, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
169
|
Abstract
T- and B-cell antigen receptors, and certain receptors for IgG and IgE constant regions, transduce signals via a conserved amino acid sequence motif, termed ARH1 or TAM. Receptor ligation leads to phosphorylation of 2 tyrosines found within the motif and this phosphorylation appears critical for signal transduction. Although this 26-residue motif exhibits some functional redundancy, its variability in sequence and occurrence in multiple forms in individual receptor complexes, e.g., as many as 8 copies in TCR, suggests that individual ARH1 motifs may exhibit partially unique function. To begin to address this possibility, we compared the binding activity of doubly phosphorylated and non-phosphorylated Ig alpha, Ig beta, TcR zeta c and CD3 epsilon ARH1 motifs. Results demonstrate a clear difference in binding activity determined by both motif phosphorylation and primary structure. Among non-phosphorylated motifs, Ig alpha exhibits the most readily detectable binding activity; binding src-family kinases [1], CD22, MAPK, PI3-k, and Shc, but not CD19. Among doubly phosphorylated motifs, Ig alpha, Ig beta, TCR zeta c and CD3 epsilon all exhibit binding activity but have distinct effector preferences. For example, while Ig alpha prefers src-family kinases over the Syk kinase and binds Shc avidly, CD3 epsilon prefers Syk over src-kinases and does not bind Shc. TCR zeta c seems to bind Syk, src-kinases and Shc. These data are consistent with the possibility that ARH1 motifs may be coupled to distinct signal propagation mechanisms.
Collapse
Affiliation(s)
- J C Cambier
- Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, Denver, CO 80206, USA
| | | |
Collapse
|
170
|
Rozsnyay Z, Sarmay G, Gergely J. Rapid desensitization of B-cell receptor by a dithiol-reactive protein tyrosine phosphatase inhibitor: uncoupling of membrane IgM from syk inhibits signals leading to Ca2+ mobilization. Immunol Lett 1995; 44:149-56. [PMID: 7541023 DOI: 10.1016/0165-2478(94)00207-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
B-cell antigen receptor (BCR)-mediated calcium response can be blocked by phenylarsine oxide (PAO), a dithiol group-reactive protein tyrosine phosphatase inhibitor. We have examined the mechanism of this inhibition in BL41 Burkitt lymphoma cells. PAO-dependent inhibition is not restricted to the BCR-mediated functions, as evidenced by the failure of the same cells to mobilize Ca2+ in response to CD19 cross-linking. In contrast, calcium response induced by a putative syk activator, H2O2, exhibited only a moderate sensitivity to PAO, demonstrating that PAO did not cause general suppression of all the functions leading to Ca2+ mobilization. BCR cross-linking or H2O2 treatment leads to the induction of almost complete non-responsiveness for the reciprocal stimulation. Since BCR cross-linking did not generate non-responsiveness to H2O2 in the presence of PAO, and PAO-treated cells remained responsive to syk activation by H2O2, we suppose that PAO may inhibit BCR-mediated signal transduction events upstream of syk activation. This assumption was supported by additional data, indicating that PAO was able to modulate functions of at least 2 different protein tyrosine kinase enzymes involved in BCR-mediated signaling. PAO induced rapid and dose-dependent tyrosine phosphorylation of lyn and selectively inhibited BCR-mediated tyrosine phosphorylation of syk. The results presented in this paper demonstrate that PAO may provoke cellular desensitization process by alteration of the signal transducer functions of lyn and syk tyrosine kinase enzymes.
Collapse
Affiliation(s)
- Z Rozsnyay
- Laboratory of Immunoregulation, VIRCC, Sandoz Research Institute, Vienna, Austria
| | | | | |
Collapse
|
171
|
Gold MR, Matsuuchi L. Signal transduction by the antigen receptors of B and T lymphocytes. INTERNATIONAL REVIEW OF CYTOLOGY 1995; 157:181-276. [PMID: 7706020 DOI: 10.1016/s0074-7696(08)62159-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
B and T lymphocytes of the immune system recognize and destroy invading microorganisms but are tolerant to the cells and tissues of one's own body. The basis for this self/non-self-discrimination is the clonal nature of the B and T cell antigen receptors. Each lymphocyte has antigen receptors with a single unique antigen specificity. Multiple mechanisms ensure that self-reactive lymphocytes are eliminated or silenced whereas lymphocytes directed against foreign antigens are activated only when the appropriate antigen is present. The key element in these processes is the ability of the antigen receptors to transmit signals to the interior of the lymphocyte when they bind the antigen for which they are specific. Whether these signals lead to activation, tolerance, or cell death is dependent on the maturation state of the lymphocytes as well as on signals from other receptors. We review the role of antigen receptor signaling in the development and activation of B and T lymphocytes and also describe the biochemical signaling mechanisms employed by these receptors. In addition, we discuss how signal transduction pathways activated by the antigen receptors may alter gene expression, regulate the cell cycle, and induce or prevent programmed cell death.
Collapse
Affiliation(s)
- M R Gold
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
172
|
Tseng J, Lee YJ, Eisfelder BJ, Clark MR. The B cell antigen receptor complex: mechanisms and implications of tyrosine kinase activation. Immunol Res 1994; 13:299-310. [PMID: 7542303 DOI: 10.1007/bf02935621] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The B cell receptor is a multimeric receptor complex whose constituent chains appear to mediate distinct and possibly interrelated functions. In this review we have focused on how one chain, immunoglobulin (Ig)-alpha, may function to activate tyrosine kinases and the consequences of that activation. The cytoplasmic domain of Ig-alpha contains a consensus sequence, the antigen recognition homology 1 (ARH 1) motif, which is found in Ig-beta and other antigen recognition receptor associated chains. We argue that this conserved structure reflects an underlying conserved mechanism of secondary effector activation. Our data also indicates that the specificity of each motif (i.e., the elements which restrict secondary effector binding to particular motifs) is encoded within divergent sequences found in each ARH 1 motif. In the particular case of kinase activation by Ig-alpha, the subsequent phosphorylation of multiple tyrosines on Ig-alpha, Ig-beta, CD19, CD22 and possibly other functionally related chains form recruitment sites for a myriad of secondary signal transducers. In this model, proximal tyrosine kinases and phosphatases do not function so much to mediate the linear transfer of information as to establish and modulate an interrelated network of signal transducers capable of driving complicated cellular responses.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD19
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B-Lymphocytes/enzymology
- B-Lymphocytes/immunology
- CD79 Antigens
- Cell Adhesion Molecules
- Consensus Sequence/immunology
- Consensus Sequence/physiology
- Enzyme Activation/immunology
- Epitopes/genetics
- Epitopes/physiology
- Gene Expression Regulation/immunology
- Gene Expression Regulation/physiology
- Lectins
- Leukocyte Common Antigens/metabolism
- Models, Immunological
- Molecular Sequence Data
- Protein-Tyrosine Kinases/physiology
- Receptors, Antigen, B-Cell/chemistry
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/physiology
- Sialic Acid Binding Ig-like Lectin 2
- Signal Transduction/immunology
Collapse
Affiliation(s)
- J Tseng
- Department of Medicine, University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
173
|
Baixeras E, Bosca L, Stauber C, Gonzalez A, Carrera AC, Gonzalo JA, Martinez C. From apoptosis to autoimmunity: insights from the signaling pathways leading to proliferation or to programmed cell death. Immunol Rev 1994; 142:53-91. [PMID: 7535291 DOI: 10.1111/j.1600-065x.1994.tb00883.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- E Baixeras
- Centro Nacional de Biotecnologia CSIC, Universidad Autonoma, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
174
|
Abstract
In B cells, two classes of protein tyrosine kinases (PTKs), the Src family of PTKs (Lyn, Fyn, Lck, and Blk) and non-Src family of PTKs (Syk), are known to be involved in signal transduction induced by the stimulation of the B-cell antigen receptor (BCR). Previous studies using Lyn-negative chicken B-cell clones revealed that Lyn is necessary for transduction of signals through the BCR. The kinase activity of the Src family of PTKs is negatively regulated by phosphorylation at the C-terminal tyrosine residue, and the PTK Csk has been demonstrated to phosphorylate this C-terminal residue of the Src family of PTKs. To investigate the role of Csk in BCR signaling, Csk-negative chicken B-cell clones were generated. In these Csk-negative cells, Lyn became constitutively active and highly phosphorylated at the autophosphorylation site, indicating that Csk is necessary to sustain Lyn in an inactive state. Since the C-terminal tyrosine phosphorylation of Lyn is barely detectable in the unstimulated, wild-type B cells, our data suggest that the activities of Csk and a certain protein tyrosine phosphatase(s) are balanced to maintain Lyn at a hypophosphorylated and inactive state. Moreover, we show that the kinase activity of Syk was also constitutively activated in Csk-negative cells. The degree of activation of both the Lyn and Syk kinases in Csk-negative cells was comparable to that observed in wild-type cells after BCR stimulation. However, BCR stimulation was still necessary in Csk-negative cells to elicit tyrosine phosphorylation of cellular proteins, as well as calcium mobilization and inositol 1,4,5-trisphosphate generation. These results suggest that not only activation of the Lyn and Syk kinases but also additional signals induced by the cross-linking of the BCR are required for full transduction of BCR signaling.
Collapse
|
175
|
Hata A, Sabe H, Kurosaki T, Takata M, Hanafusa H. Functional analysis of Csk in signal transduction through the B-cell antigen receptor. Mol Cell Biol 1994; 14:7306-13. [PMID: 7935444 PMCID: PMC359265 DOI: 10.1128/mcb.14.11.7306-7313.1994] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In B cells, two classes of protein tyrosine kinases (PTKs), the Src family of PTKs (Lyn, Fyn, Lck, and Blk) and non-Src family of PTKs (Syk), are known to be involved in signal transduction induced by the stimulation of the B-cell antigen receptor (BCR). Previous studies using Lyn-negative chicken B-cell clones revealed that Lyn is necessary for transduction of signals through the BCR. The kinase activity of the Src family of PTKs is negatively regulated by phosphorylation at the C-terminal tyrosine residue, and the PTK Csk has been demonstrated to phosphorylate this C-terminal residue of the Src family of PTKs. To investigate the role of Csk in BCR signaling, Csk-negative chicken B-cell clones were generated. In these Csk-negative cells, Lyn became constitutively active and highly phosphorylated at the autophosphorylation site, indicating that Csk is necessary to sustain Lyn in an inactive state. Since the C-terminal tyrosine phosphorylation of Lyn is barely detectable in the unstimulated, wild-type B cells, our data suggest that the activities of Csk and a certain protein tyrosine phosphatase(s) are balanced to maintain Lyn at a hypophosphorylated and inactive state. Moreover, we show that the kinase activity of Syk was also constitutively activated in Csk-negative cells. The degree of activation of both the Lyn and Syk kinases in Csk-negative cells was comparable to that observed in wild-type cells after BCR stimulation. However, BCR stimulation was still necessary in Csk-negative cells to elicit tyrosine phosphorylation of cellular proteins, as well as calcium mobilization and inositol 1,4,5-trisphosphate generation. These results suggest that not only activation of the Lyn and Syk kinases but also additional signals induced by the cross-linking of the BCR are required for full transduction of BCR signaling.
Collapse
Affiliation(s)
- A Hata
- Laboratory of Molecular Oncology, Rockefeller University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
176
|
Ohnishi K, Takemori T. Molecular components and assembly of mu.surrogate light chain complexes in pre-B cell lines. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46934-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
177
|
|
178
|
Saouaf SJ, Mahajan S, Rowley RB, Kut SA, Fargnoli J, Burkhardt AL, Tsukada S, Witte ON, Bolen JB. Temporal differences in the activation of three classes of non-transmembrane protein tyrosine kinases following B-cell antigen receptor surface engagement. Proc Natl Acad Sci U S A 1994; 91:9524-8. [PMID: 7524079 PMCID: PMC44845 DOI: 10.1073/pnas.91.20.9524] [Citation(s) in RCA: 197] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We evaluated in WEHI 231 B cells the time-dependent responses of Lyn, Blk, Btk, Syk, and three members of the Jak family of protein tyrosine kinases following antibody-mediated surface engagement of the B-cell antigen receptor. Our results show that the enzyme activities of Lyn and Blk were stimulated within seconds of antigen receptor engagement and correlated with the initial tyrosine phosphorylation of the Ig alpha and Ig beta subunits of the B-cell antigen receptor. Btk enzyme activity was also transiently stimulated and was maximal at approximately 5 min after B-cell receptor surface binding. Syk activity gradually increased to a maximum at 10-30 min following receptor ligation and was found to parallel the association of Syk with the tyrosine phosphorylated Ig alpha and Ig beta subunits of the receptor. While the specific activities of the Jak1, Jak2, and Tyk2 protein tyrosine kinases were unaltered following B-cell receptor ligation, the abundance of Jak1 and Jak2 were increased 3- to 4-fold within 10 min of receptor engagement. These results demonstrate that multiple families of non-transmembrane protein tyrosine kinases are temporally regulated during the process of B-cell antigen receptor-initiated intracellular signal transduction.
Collapse
Affiliation(s)
- S J Saouaf
- Department of Molecular Biology, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543
| | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Mutations within the NH2-terminal transmembrane domain of membrane immunoglobulin (Ig) M alters Ig alpha and Ig beta association and signal transduction. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51073-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
180
|
Law CL, Sidorenko SP, Clark EA. Regulation of lymphocyte activation by the cell-surface molecule CD22. IMMUNOLOGY TODAY 1994; 15:442-9. [PMID: 7945784 DOI: 10.1016/0167-5699(94)90275-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Accessory molecules play an important role in the regulation of lymphocyte activation mediated by the B-cell antigen receptor (BCR). CD22 is one such accessory molecule expressed on B-lineage cells. Here, Che-Leung Law and colleagues review current knowledge on the structure-function relationship between CD22 and the BCR, discuss the role of CD22 as a cell-adhesion molecule and suggest models for potential in vivo functions of CD22.
Collapse
Affiliation(s)
- C L Law
- Dept of Microbiology, University of Washington, Seattle 98195
| | | | | |
Collapse
|
181
|
Pleiman CM, D'Ambrosio D, Cambier JC. The B-cell antigen receptor complex: structure and signal transduction. IMMUNOLOGY TODAY 1994; 15:393-9. [PMID: 7945780 DOI: 10.1016/0167-5699(94)90267-4] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The specificity of the immune response is determined by the interaction between the B-cell receptor (BCR) and its cognate structure, antigen. Recent studies have provided considerable insight into the compartmentalization of function within this extremely versatile hetero-oligomeric receptor complex. In this article, Christopher Pleiman, Daniele D'Ambrosio and John Cambier consolidate new findings regarding BCR structure and signal transduction.
Collapse
Affiliation(s)
- C M Pleiman
- National Jewish Center for Immunology and Respiratory Medicine, Denver, CO 80220
| | | | | |
Collapse
|
182
|
Wang AV, Scholl PR, Geha RS. Physical and functional association of the high affinity immunoglobulin G receptor (Fc gamma RI) with the kinases Hck and Lyn. J Exp Med 1994; 180:1165-70. [PMID: 8064233 PMCID: PMC2191633 DOI: 10.1084/jem.180.3.1165] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The high affinity immunoglobulin G (IgG) receptor Fc gamma RI (CD64) is expressed constitutively on monocytes and macrophages, and is inducible on neutrophils. Fc gamma RI has recently been shown to be associated with the signal transducing gamma subunit of the high-affinity IgE receptor (Fc epsilon RI gamma). Induction of cytoplasmic protein tyrosine phosphorylation by Fc gamma RI cross-linking is known to be important in mediating Fc gamma RI-coupled effector functions. Recently, syk has been implicated in this role. We now report that the src-type kinases hck and lyn are physically and functionally associated with Fc gamma RI. Hck and lyn coimmunoprecipitated with Fc gamma RI from detergent lysates of normal human monocytes and of the monocytic line THP-1. Hck and lyn showed rapidly increased phosphorylation and increased exogenous substrate kinase activity after cross-linking of Fc gamma RI. These results demonstrate both physical and functional association of the Fc gamma RI/Fc epsilon RI gamma receptor complex with hck and lyn, and suggest a potential signal transducing role for these kinases in monocyte/macrophage activation.
Collapse
Affiliation(s)
- A V Wang
- Division of Immunology, Children's Hospital, Boston, Massachusetts
| | | | | |
Collapse
|
183
|
Justement LB, Brown VK, Lin J. Regulation of B-cell activation by CD45: a question of mechanism. IMMUNOLOGY TODAY 1994; 15:399-406. [PMID: 7945781 DOI: 10.1016/0167-5699(94)90268-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent studies have demonstrated that the protein tyrosine phosphatase CD45 plays an integral role in regulation of B-cell function. Most notably, expression of this phosphatase is required for activation of B lymphocytes and entry into the cell cycle. Here, Louis Justement and colleagues review current information concerning the function of CD45 in the B cell. The discussion focuses on two questions that are of central importance: what are the physiological substrates for CD45 and how does reversible tyrosine phosphorylation affect their function?
Collapse
Affiliation(s)
- L B Justement
- Dept of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555-1019
| | | | | |
Collapse
|
184
|
Baumann G, Maier D, Freuler F, Tschopp C, Baudisch K, Wienands J. In vitro characterization of major ligands for Src homology 2 domains derived from protein tyrosine kinases, from the adaptor protein SHC and from GTPase-activating protein in Ramos B cells. Eur J Immunol 1994; 24:1799-807. [PMID: 7519995 DOI: 10.1002/eji.1830240812] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Antigen receptors of B lymphocytes transmit their activation signal to the cell interior by associating with and activation of specific non-receptor tyrosine kinases. Most of these kinases as well as other cytoplasmic effectors contain at least one Src homology 2 (SH2) domain, known to bind tyrosine-phosphorylated proteins. We examined the binding specificity of SH2 domains from different signaling molecules in B cells and found that each of the SH2 domains tested bound distinct subsets of stimulation-dependent phosphoproteins in vitro. SH2 domains from Src-like tyrosine kinases bound predominantly to the HS1 phosphoprotein. The tandem SH2 domains of the ZAP-70 tyrosine kinase bound to phosphorylated Ig-beta but only weakly to Ig-alpha. Also the SHC-derived SH2 domain formed complexes with the tyrosine-phosphorylated Ig-alpha/beta heterodimer, while the C- and N-terminal SH2 domains of GTPase-activating protein displayed completely different binding preferences. These results suggest that cytoplasmic effector molecules can be recruited to the activated B cell receptor in an SH2-phosphotyrosine-mediated manner. The data also provide a possible explanation for the notion that Ig-alpha and Ig-beta might couple to different biochemical pathways.
Collapse
Affiliation(s)
- G Baumann
- Sandoz Pharma Ltd., Preclinical Research, Basel, Germany
| | | | | | | | | | | |
Collapse
|
185
|
Darnay B, Reddy S, Aggarwal B. Identification of a protein kinase associated with the cytoplasmic domain of the p60 tumor necrosis factor receptor. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31991-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
186
|
Fry MJ. Structure, regulation and function of phosphoinositide 3-kinases. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1226:237-68. [PMID: 8054357 DOI: 10.1016/0925-4439(94)90036-1] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M J Fry
- Section of Cell Biology and Experimental Pathology, Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey, UK
| |
Collapse
|
187
|
Interactions of p59fyn and ZAP-70 with T-cell receptor activation motifs: defining the nature of a signalling motif. Mol Cell Biol 1994. [PMID: 8196616 DOI: 10.1128/mcb.14.6.3729] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tyrosine-based activation motif is a 20- to 25-amino-acid sequence contained in the cytoplasmic domains of many hematopoietic receptors which is sufficient by itself to reconstitute signalling. This motif is characterized by two YXXL/I sequences separated by approximately 10 residues. The molecular basis of signalling by this motif is unknown. Here we demonstrate that the tyrosine-based activation motif is required and sufficient for association with the tyrosine kinases p59fyn and ZAP-70, suggesting that association with these kinases is a general feature of this motif. Focusing on the single activation motif present in epsilon, we analyzed which residues of the motif were critical for binding of p59fyn and ZAP-70. Surprisingly, we found that no single mutation of any residue of epsilon resulted in the loss of p59fyn association. In contrast, single mutations at five residues of the epsilon activating motif abrogated ZAP-70 binding. Both of the tyrosines and the leucine or isoleucine residues that follow them were critical. The spacing between the tyrosines was also important, as deletion of two residues disrupted binding of ZAP-70, although p59fyn binding was not disrupted. Most of the defined features of the tyrosine activation motif are therefore requirements for ZAP-70 binding. Interestingly, the interaction of ZAP-70 with the motif was dependent on the presence of both ZAP-70 SH2 domains and both of the tyrosine residues in the motif, suggesting that ZAP-70 interacts with two phosphotyrosine residues and that the binding of the two SH2 domains is cooperative. In addition, we demonstrate that the interaction between the tyrosine activation motif is direct and requires prior tyrosine phosphorylation of the motif. We propose that the activation of cells by the tyrosine activating motif occurs in four discrete steps: binding of p59fyn, phosphorylation of the motif, binding of ZAP-70, and activation of ZAP-70 kinase activity.
Collapse
|
188
|
Abstract
Crosslinking the B-cell antigen receptor is sufficient to generate intracellular signals. Recent work has shown that this signalling capability can be ascribed to the presence of the alpha and beta sheath proteins within the antigen receptor that couple it to signal transduction pathways. However, a variety of other transmembrane proteins, including CD19, CD21, CD22, CD32 and CD45, can also associate with the receptor and we are beginning to understand how they may act in concert with it to efficiently regulate B lymphocyte activity in response to antigen.
Collapse
Affiliation(s)
- C J Peaker
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
189
|
Gauen LK, Zhu Y, Letourneur F, Hu Q, Bolen JB, Matis LA, Klausner RD, Shaw AS. Interactions of p59fyn and ZAP-70 with T-cell receptor activation motifs: defining the nature of a signalling motif. Mol Cell Biol 1994; 14:3729-41. [PMID: 8196616 PMCID: PMC358740 DOI: 10.1128/mcb.14.6.3729-3741.1994] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The tyrosine-based activation motif is a 20- to 25-amino-acid sequence contained in the cytoplasmic domains of many hematopoietic receptors which is sufficient by itself to reconstitute signalling. This motif is characterized by two YXXL/I sequences separated by approximately 10 residues. The molecular basis of signalling by this motif is unknown. Here we demonstrate that the tyrosine-based activation motif is required and sufficient for association with the tyrosine kinases p59fyn and ZAP-70, suggesting that association with these kinases is a general feature of this motif. Focusing on the single activation motif present in epsilon, we analyzed which residues of the motif were critical for binding of p59fyn and ZAP-70. Surprisingly, we found that no single mutation of any residue of epsilon resulted in the loss of p59fyn association. In contrast, single mutations at five residues of the epsilon activating motif abrogated ZAP-70 binding. Both of the tyrosines and the leucine or isoleucine residues that follow them were critical. The spacing between the tyrosines was also important, as deletion of two residues disrupted binding of ZAP-70, although p59fyn binding was not disrupted. Most of the defined features of the tyrosine activation motif are therefore requirements for ZAP-70 binding. Interestingly, the interaction of ZAP-70 with the motif was dependent on the presence of both ZAP-70 SH2 domains and both of the tyrosine residues in the motif, suggesting that ZAP-70 interacts with two phosphotyrosine residues and that the binding of the two SH2 domains is cooperative. In addition, we demonstrate that the interaction between the tyrosine activation motif is direct and requires prior tyrosine phosphorylation of the motif. We propose that the activation of cells by the tyrosine activating motif occurs in four discrete steps: binding of p59fyn, phosphorylation of the motif, binding of ZAP-70, and activation of ZAP-70 kinase activity.
Collapse
Affiliation(s)
- L K Gauen
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Abstract
Interaction of T- and B-cell antigen receptors with cytoplasmic non-receptor tyrosine protein kinases is critical to the activation of lymphocytes by antigen. Both the src-family tyrosine protein kinases Lck, Fyn, Lyn and Blk and the syk-family tyrosine protein kinases Syk and ZAP-70 play a role in lymphocyte activation. The antigen receptors are coupled to this cluster of kinases by the cytoplasmic tails of the gamma, delta, epsilon, zeta, and eta subunits of the T-cell receptor, and the Ig-alpha and Ig-beta subunits of the B-cell receptor. Each of these proteins contains one or more 'tyrosine based activation motifs', with the amino acid sequence D/EX7D/EXXYXXL/IX7YXXL/I. This motif appears to allow binding of one or more src-like kinases, via their unique amino termini, before the onset of lymphocyte activation. Invariant tyrosines in the motif become phosphorylated following the triggering of lymphocyte activation, and this modification induces the binding of the src- and syk-family tyrosine protein kinases, and potentially other signalling molecules, through SH2 domains to the antigen receptors.
Collapse
Affiliation(s)
- B M Sefton
- Molecular Biology and Virology Laboratory, Salk Institute, San Diego, California 92186
| | | |
Collapse
|
191
|
Brown V, Ogle E, Burkhardt A, Rowley R, Bolen J, Justement L. Multiple components of the B cell antigen receptor complex associate with the protein tyrosine phosphatase, CD45. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32545-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
192
|
Mori S, Takanashi M, Shiota M, Choi SH, Yamanashi Y, Watanabe T, Koike M. Down-regulation of membrane immunoglobulin-associated proteins, MB-1, B29 and Lyn, in AIDS-lymphomas and related conditions. Virchows Arch 1994; 424:553-61. [PMID: 8032536 DOI: 10.1007/bf00191443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
B-lymphocytes infected with Epstein-Barr virus (EBV) can proliferate in immunocompromised hosts to form lymphomas (MLs). Similar MLs are produced in mice with severe combined immune deficiency (SCID) by transfusion of human lymphocytes infected with EBV (SCID-EBV-positive BML). Mb-1 and B29 are recently found transmembrane proteins associated with membrane immunoglobulins (mIg) on the surface of B cells. Lyn is a src family gene product expressed in B cells submembranously, in association with mIg, possibly through Mb-1/B29 heterodimer. These mIg-associated proteins (Mb-1, B29 and Lyn) are known to mediate antigenic stimulation through mIgs. We noted recently that Lyn is decreased selectively in around a half of SCID-EBV-positive BMLs. We extended this line of investigation to other mIg-associated proteins. Five acquired immunodeficiency syndrome (AIDS)-MLs and ten SCID-EBV-positive BMLs were first analysed by immunohistochemistry for the expression of Mb-1, B29 and Lyn. It was found that in AIDS-MLs, all the mIg-associated proteins were heavily down-regulated. In SCID-EBV-positive BMLs, Mb-1 was down regulated in six of ten, B29 in nine of ten and Lyn in six of ten, whereas no down-regulation was noted in eight EBV-free B MLs that were also maintained in SCID mice. An additional flow-cytometric study of two SCID-EBV-positive and two EBV-negative BMLs showed similar down-regulation in the former cases exclusively. Whereas mIg was also decreased in three of five SCID-EBV positive BMLs, it did not necessarily match the decrease of mIg-associated proteins, which contrasts with the recent finding that mIgs coexist with Mb-1 or B29. Some EBV-encoded proteins may activate host molecules located downwardly; this, in turn, may lead to the suppression of these upwardly-located mIg-associated proteins.
Collapse
Affiliation(s)
- S Mori
- Department of Pathology, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
193
|
Pleiman CM, Abrams C, Gauen LT, Bedzyk W, Jongstra J, Shaw AS, Cambier JC. Distinct p53/56lyn and p59fyn domains associate with nonphosphorylated and phosphorylated Ig-alpha. Proc Natl Acad Sci U S A 1994; 91:4268-72. [PMID: 8183901 PMCID: PMC43766 DOI: 10.1073/pnas.91.10.4268] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Among the earliest detectable events in B-cell antigen receptor-mediated signal transduction are the activation of receptor-associated Src-family tyrosine kinases and the tyrosine phosphorylation of Ig-alpha and Ig-beta receptor subunits. These kinases appear to interact with resting B-cell antigen receptor complexes primarily through the Ig-alpha chain antigen receptor homology 1 (ARH1) motif. Recent studies showed a dramatic increase in the amount of Src-family kinase p59fyn bound to Ig-alpha when ARH1 motif tyrosines were phosphorylated. To explore the submolecular basis of these interactions, we conducted mutational analysis to localize sites in p53/56lyn and p59fyn that bind nonphosphorylated and phosphorylated Ig-alpha. Here we report that distinct regions within these kinases bind nonphosphorylated and phosphorylated Ig-alpha ARH1 motifs. The N-terminal 10 residues mediate binding to the nonphosphorylated Ig-alpha ARH1 motif. Association with the phosphorylated Ig-alpha ARH1 motif is mediated by Src homology 2 domains. These findings suggest a mechanism whereby ligand-induced Ig-alpha tyrosine phosphorylation initiates a change in the orientation of an associated kinase that may alter its activity and/or access to substrates and other effectors.
Collapse
Affiliation(s)
- C M Pleiman
- Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, Denver, CO 80206
| | | | | | | | | | | | | |
Collapse
|
194
|
Persin C, Korn M, Vogel L, Haustein D. The composition of the intracellular domains of the B cell antigen receptor complex studied from the cytoplasmic side of the membrane. Mol Immunol 1994; 31:503-10. [PMID: 8190125 DOI: 10.1016/0161-5890(94)90037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Immunoglobulins of the classes M and D function as antigen receptors on B lymphocytes. They are linked to other proteins to form B cell antigen receptor (BCR) complexes which transduce the signal triggered by the binding of antigen. In order to study the components that interact with BCR complexes in the cell it is essential that they are accessible to biochemical studies. Therefore, we have developed a simple and rapid method that allows the purification and labelling of B lymphocyte plasma membranes. For this, B cells are attached to polyacrylamide beads. Upon disruption of the cells, bead-bound membranes are obtained which expose the cytoplasmic side into the medium. The membrane proteins can then be radioiodinated and eluted with detergents. The combination of the improved methods for the preparation of bead-attached membrane patches and radiolabelling of the proteins has allowed for the first time an investigation into the cytoplasmic side of the BCR complex. All the subunits that had been previously described could be detected in 2D autoradiographs. Furthermore, it could be shown that the protein Ig-beta, which is part of an Ig-associated heterodimer, is predominantly labelled at the extracellular domain. The second component, Ig-alpha, is labelled to a higher degree at its intracellular domain. In addition, further proteins could be detected exclusively at the cytoplasmic side of the membrane. Results from 2D autoradiographs show that they may form heterodimers. These proteins are candidates for the interaction of BCR complexes with further members of the signalling cascade, such as protein tyrosine kinases and/or G proteins.
Collapse
Affiliation(s)
- C Persin
- Paul-Ehrlich-Institut, Langen, Germany
| | | | | | | |
Collapse
|
195
|
Association of phosphatidylinositol 3-kinase with a specific sequence of the T cell receptor zeta chain is dependent on T cell activation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36584-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
196
|
Zwollo P, Desiderio S. Specific recognition of the blk promoter by the B-lymphoid transcription factor B-cell-specific activator protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36607-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
197
|
Kurosaki T, Takata M, Yamanashi Y, Inazu T, Taniguchi T, Yamamoto T, Yamamura H. Syk activation by the Src-family tyrosine kinase in the B cell receptor signaling. J Exp Med 1994; 179:1725-9. [PMID: 7513017 PMCID: PMC2191497 DOI: 10.1084/jem.179.5.1725] [Citation(s) in RCA: 245] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Signaling through the B cell antigen receptor (BCR) results in rapid increases in tyrosine phosphorylation on a number of proteins. The BCR associates with two classes of tyrosine kinase: Src-family kinase (Src-protein-tyrosine kinase [PTK]; Lyn, Fyn, Blk, or Lck) and Syk kinase. We have investigated the interaction between the Src-PTK and the Syk kinase in the BCR signaling. In contrast to wild-type B cells, BCR-mediated tyrosine phosphorylation of Syk and activation of its in vitro kinase activity were profoundly reduced in lyn-negative cells. The requirement of the Src-PTK to induce tyrosine phosphorylation and activation of Syk was also demonstrated by cotransfection of syk and src-PTK cDNAs into COS cells. These results suggest that the Src-PTK associated with BCR phosphorylates the tyrosine residue(s) of Syk upon receptor stimulation, enhancing the activity of Syk.
Collapse
Affiliation(s)
- T Kurosaki
- Department of Cardiovascular Molecular Biology, Lederle Laboratories, Pearl River, New York 10965
| | | | | | | | | | | | | |
Collapse
|
198
|
Activation of B- and T-cells by the cytoplasmic domains of the B-cell antigen receptor proteins Ig-alpha and Ig-beta. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36863-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
199
|
Durden DL, Rosen H, Cooper JA. Serine/threonine phosphorylation of the gamma-subunit after activation of the high-affinity Fc receptor for immunoglobulin G. Biochem J 1994; 299 ( Pt 2):569-77. [PMID: 8172619 PMCID: PMC1138309 DOI: 10.1042/bj2990569] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this report we show that interferon gamma treatment of U937 cells induces increased expression of the gamma-subunit of the high-affinity Fc receptor for IgG (Fc gamma RI). Interferon treatment results in a 10-fold increased expression of the gamma-subunit and induces expression of a phosphorylated form (gamma 1). The increased expression of the gamma-subunit correlates with its ability to transmit a signal via Fc gamma R, as measured by activation of the respiratory burst using insoluble immune complexes. During Fc gamma R activation, a mobility shift occurs in the phosphorylated form of this gamma 1-subunit. Phosphoamino acid analysis demonstrates that this gamma 1 subunit is threonine phosphorylated in resting differentiated U937 cells and becomes predominantly serine phosphorylated on Fc receptor activation. The mobility shift in the gamma-subunit can be induced by treating U937 cells with phorbol 12-myristate 13-acetate or by monoclonal antibody cross-linking of Fc gamma RI. Hence the gamma-subunit is serine phosphorylated in response to Fc gamma RI and protein kinase C activation. Therefore the gamma-subunit, initially described as a subunit of Fc epsilon RI, now appears to be involved in signal transduction via Fc gamma RI. The data also suggest that the gamma-subunit, in contrast with the zeta-subunit of the T-cell receptor-CD3 complex, is a substrate for serine/threonine kinase(s) in the cell. The serine phosphorylation of the gamma-subunit suggests a divergence of structure and function between the gamma-subunit and its homologue, the zeta-subunit of the T-cell receptor. Phosphorylation of the gamma-subunit on serine may play some regulatory role in Fc gamma RI signal transduction in myeloid cells.
Collapse
Affiliation(s)
- D L Durden
- Department of Pediatrics, Childrens Hospital of Los Angeles University of Southern California 90027
| | | | | |
Collapse
|
200
|
Abstract
During B-cell development, immature and mature forms of the B cell antigen receptor complex are deployed in a regulated fashion; thus, B cell antigen receptor complexes play essential roles in the transit of cells through ontogeny. The past year has seen progress in our understanding of how antigen receptor gene assembly is controlled and in defining the requirements for antigen receptor mediated signaling at specific developmental stages. The discovery that a defective protein tyrosine kinase is responsible for X-linked agammaglobulinemia in man and X-linked immunodeficiency in the mouse is particularly interesting, as it may provide the means to link a specific intracellular signaling pathway with a particular step in B-cell development.
Collapse
Affiliation(s)
- S Desiderio
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| |
Collapse
|