151
|
Shirani A, Stüve O. Natalizumab: Perspectives from the Bench to Bedside. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029066. [PMID: 29500304 DOI: 10.1101/cshperspect.a029066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Probably no other disease-modifying drug for multiple sclerosis has a more fascinating story than natalizumab from both the bench to bedside perspective and the postmarketing experience standpoint. Natalizumab is a monoclonal antibody that inhibits the trafficking of lymphocytes from the blood into the central nervous system by blocking the adhesion molecule α4-integrin. Natalizumab was approved as a disease-modifying drug for relapsing remitting multiple sclerosis only 12 years after the discovery of its target molecule-a time line that is rather fast for drug development. However, a few months after its U.S. Food and Drug Administration approval, natalizumab was withdrawn from the market because of an unanticipated complication-progressive multifocal leukoencephalopathy. It was later reinstated with required adherence to a strict monitoring program and incorporation of mitigation strategies.
Collapse
Affiliation(s)
- Afsaneh Shirani
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Neurology Section, VA North Texas Health Care System, Medical Service Dallas, VA Medical Center, Dallas, Texas 75216
| |
Collapse
|
152
|
Omega-3 fatty acids and leukocyte-endothelium adhesion: Novel anti-atherosclerotic actions. Mol Aspects Med 2018; 64:169-181. [DOI: 10.1016/j.mam.2018.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
|
153
|
Pokrywczynska M, Jundzill A, Rasmus M, Adamowicz J, Balcerczyk D, Buhl M, Warda K, Buchholz L, Gagat M, Grzanka D, Drewa T. Understanding the role of mesenchymal stem cells in urinary bladder regeneration-a preclinical study on a porcine model. Stem Cell Res Ther 2018; 9:328. [PMID: 30486856 PMCID: PMC6260700 DOI: 10.1186/s13287-018-1070-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/20/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The tissue engineering of urinary bladder advances rapidly reflecting clinical need for a new kind of therapeutic solution for patients requiring urinary bladder replacement. Majority of the bladder augmentation studies have been performed in small rodent or rabbit models. Insufficient number of studies examining regenerative capacity of tissue-engineered graft in urinary bladder augmentation in a large animal model does not allow for successful translation of this technology to the clinical setting. The aim of this study was to evaluate the role of adipose-derived stem cells (ADSCs) in regeneration of clinically significant urinary bladder wall defect in a large animal model. METHODS ADSCs isolated from a superficial abdominal Camper's fascia were labeled with PKH-26 tracking dye and subsequently seeded into bladder acellular matrix (BAM) grafts. Pigs underwent hemicystectomy followed by augmentation cystoplasty with BAM only (n = 10) or BAM seeded with autologous ADSCs (n = 10). Reconstructed bladders were subjected to macroscopic, histological, immunofluoresence, molecular, and radiological evaluations at 3 months post-augmentation. RESULTS Sixteen animals (n = 8 for each group) survived the 3-month follow-up without serious complications. Tissue-engineered bladder function was normal without any signs of post-voiding urine residual in bladders and in the upper urinary tracts. ADSCs enhanced regeneration of tissue-engineered urinary bladder but the process was incomplete in the central graft region. Only a small percentage of implanted ADSCs survived and differentiated into smooth muscle and endothelial cells. CONCLUSIONS The data demonstrate that ADSCs support regeneration of large defects of the urinary bladder wall but the process is incomplete in the central graft region. Stem cells enhance urinary bladder regeneration indirectly through paracrine effect.
Collapse
Affiliation(s)
- Marta Pokrywczynska
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Marii Sklodowskiej Curie 9 Street, 85-094 Bydgoszcz, Poland
| | - Arkadiusz Jundzill
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Marii Sklodowskiej Curie 9 Street, 85-094 Bydgoszcz, Poland
| | - Marta Rasmus
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Marii Sklodowskiej Curie 9 Street, 85-094 Bydgoszcz, Poland
| | - Jan Adamowicz
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Marii Sklodowskiej Curie 9 Street, 85-094 Bydgoszcz, Poland
| | - Daria Balcerczyk
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Marii Sklodowskiej Curie 9 Street, 85-094 Bydgoszcz, Poland
| | - Monika Buhl
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Marii Sklodowskiej Curie 9 Street, 85-094 Bydgoszcz, Poland
| | - Karolina Warda
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Marii Sklodowskiej Curie 9 Street, 85-094 Bydgoszcz, Poland
| | - Lukasz Buchholz
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Marii Sklodowskiej Curie 9 Street, 85-094 Bydgoszcz, Poland
| | - Maciej Gagat
- Department of Embryology and Histology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, 85-094 Bydgoszcz, Poland
| | - Tomasz Drewa
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Marii Sklodowskiej Curie 9 Street, 85-094 Bydgoszcz, Poland
| |
Collapse
|
154
|
Brunner-Weinzierl MC, Rudd CE. CTLA-4 and PD-1 Control of T-Cell Motility and Migration: Implications for Tumor Immunotherapy. Front Immunol 2018; 9:2737. [PMID: 30542345 PMCID: PMC6277866 DOI: 10.3389/fimmu.2018.02737] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
CTLA-4 is a co-receptor on T-cells that controls peripheral tolerance and the development of autoimmunity. Immune check-point blockade (ICB) uses monoclonal antibodies (MAbs) to block the binding of inhibitory receptors (IRs) to their natural ligands. A humanized antibody to CTLA-4 was first approved clinically followed by the use of antibody blockade against PD-1 and its ligand PD-L1. Effective anti-tumor immunity requires the activation of tumor-specific effector T-cells, the blockade of regulatory cells and the migration of T-cells into the tumor. Here, we review data implicating CTLA-4 and PD-1 in the motility of T-cells with a specific reference to the potential exploitation of these pathways for more effective tumor infiltration and eradication.
Collapse
Affiliation(s)
- Monika C Brunner-Weinzierl
- Department of Experimental Pediatrics, University Hospital, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Christopher E Rudd
- Research Center-Maisonneuve-Rosemont Hospital (CRHMR), Montreal, QC, Canada.,Département de Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
155
|
Ansari AS, Yazid MD, Sainik NQAV, Razali RA, Saim AB, Idrus RBH. Osteogenic Induction of Wharton's Jelly-Derived Mesenchymal Stem Cell for Bone Regeneration: A Systematic Review. Stem Cells Int 2018; 2018:2406462. [PMID: 30534156 PMCID: PMC6252214 DOI: 10.1155/2018/2406462] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/27/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022] Open
Abstract
Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are emerging as a promising source for bone regeneration in the treatment of bone defects. Previous studies have reported the ability of WJ-MSCs to be induced into the osteogenic lineage. The purpose of this review was to systematically assess the potential of WJ-MSC differentiation into the osteogenic lineage. A comprehensive search was conducted in Medline via Ebscohost and Scopus, where relevant studies published between 1961 and 2018 were selected. The main inclusion criteria were that articles must be primary studies published in English evaluating osteogenic induction of WJ-MSCs. The literature search identified 92 related articles, but only 18 articles met the inclusion criteria. These include two animal studies, three articles containing both in vitro and in vivo assessments, and 13 articles on in vitro studies, all of which are discussed in this review. There were two types of osteogenic induction used in these studies, either chemical or physical. The studies demonstrate that WJ-MSCs are able to differentiate into osteogenic lineage and promote osteogenesis. In light of these observations, it is suggested that WJ-MSCs can be a potential source of stem cells for osteogenic induction, as an alternative to bone marrow-derived mesenchymal stem cells.
Collapse
Affiliation(s)
- Ayu Suraya Ansari
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Nur Qisya Afifah Veronica Sainik
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Rabiatul Adawiyah Razali
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Aminuddin Bin Saim
- Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, 68000 Ampang, Selangor, Malaysia
| | - Ruszymah Bt Hj Idrus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
156
|
Pu X, Wu L, Su D, Mao W, Fang B. Immunotherapy for non-small cell lung cancers: biomarkers for predicting responses and strategies to overcome resistance. BMC Cancer 2018; 18:1082. [PMID: 30409126 PMCID: PMC6225701 DOI: 10.1186/s12885-018-4990-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022] Open
Abstract
Recent breakthroughs in targeted therapy and immunotherapy have revolutionized the treatment of lung cancer, the leading cause of cancer-related deaths in the United States and worldwide. Here we provide an overview of recent progress in immune checkpoint blockade therapy for treatment of non-small cell lung cancer (NSCLC), and discuss biomarkers associated with the treatment responses, mechanisms underlying resistance and strategies to overcome resistance. The success of immune checkpoint blockade therapies is driven by immunogenicity of tumor cells, which is associated with mutation burden and neoantigen burden in cancers. Lymphocyte infiltration in cancer tissues and interferon-γ-induced PD-L1 expression in tumor microenvironments may serve as surrogate biomarkers for adaptive immune resistance and likelihood of responses to immune checkpoint blockade therapy. In contrast, weak immunogenicity of, and/or impaired antigen presentation in, tumor cells are primary causes of resistance to these therapies. Thus, approaches that increase immunogenicity of cancer cells and/or enhance immune cell recruitment to cancer sites will likely overcome resistance to immunotherapy.
Collapse
Affiliation(s)
- Xingxiang Pu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
- Department of Thoracic Medical Oncology, Hunan Cancer Hospital/the affiliated Cancer Hospital of Xiangya school of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410013 Hunan China
| | - Lin Wu
- Department of Thoracic Medical Oncology, Hunan Cancer Hospital/the affiliated Cancer Hospital of Xiangya school of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410013 Hunan China
| | - Dan Su
- Department of Pathology, Zhejiang Cancer Hospital, 38 Guanji Road, Banshan Bridge, Hangzhou, 310022 Zejiang China
| | - Weimin Mao
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, 38 Guanji Road, Banshan Bridge, Hangzhou, 310022 Zejiang China
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| |
Collapse
|
157
|
Paramsothy S, Rosenstein AK, Mehandru S, Colombel JF. The current state of the art for biological therapies and new small molecules in inflammatory bowel disease. Mucosal Immunol 2018; 11:1558-1570. [PMID: 29907872 PMCID: PMC6279599 DOI: 10.1038/s41385-018-0050-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023]
Abstract
The emergence of biologic therapies is arguably the greatest therapeutic advance in the care of inflammatory bowel disease (IBD) to date, allowing directed treatments targeted at highly specific molecules shown to play critical roles in disease pathogenesis, with advantages in potency and selectivity. Furthermore, a large number of new biologic and small-molecule therapies in IBD targeting a variety of pathways are at various stages of development that should soon lead to a dramatic expansion in our therapeutic armamentarium. Additionally, since the initial introduction of biologics, there have been substantial advances in our understanding as to how biologics work, the practical realities of their administration, and how to enhance their efficacy and safety in the clinical setting. In this review, we will summarize the current state of the art for biological therapies in IBD, both in terms of agents available and their optimal use, as well as preview future advances in biologics and highly targeted small molecules in the IBD field.
Collapse
Affiliation(s)
- Sudarshan Paramsothy
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam K. Rosenstein
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA,PrIISM Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saurabh Mehandru
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA,PrIISM Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
158
|
Liu Y, Yang D. Cell lysates and egg white create homeostatic microenvironment for gene expression in cell-free system. Synth Syst Biotechnol 2018; 3:211-216. [PMID: 30370341 PMCID: PMC6199688 DOI: 10.1016/j.synbio.2018.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Homeostasis widely exists in living systems, and plays essential roles for maintaining normal physiological activities, enabling to preserve their functionalities against variations. Gene expression is a crucial process that allows cells to produce the necessary protein, giving cells the flexibility to adapt to variations. Herein we study homeostasis of gene expression in cell-free system. Heat-inactivated cell lysates and egg white are utilized to create homeostatic microenvironment. Results show that both in cell lysates and egg white, gene expression is maintained at relatively stable levels upon variations including gene amount, magnesium ions and temperature. Our work presents a nascent concept and experimental evidence for the homeostasis in cell-free systems, and provides implication for living systems.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Dayong Yang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
159
|
Lafouresse F, Groom JR. A Task Force Against Local Inflammation and Cancer: Lymphocyte Trafficking to and Within the Skin. Front Immunol 2018; 9:2454. [PMID: 30405637 PMCID: PMC6207597 DOI: 10.3389/fimmu.2018.02454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/04/2018] [Indexed: 01/08/2023] Open
Abstract
The skin represents a specialized site for immune surveillance consisting of resident, inflammatory and memory populations of lymphocytes. The entry and retention of T cells, B cells, and ILCs is tightly regulated to facilitate detection of pathogens, inflammation and tumors cells. Loss of individual or multiple populations in the skin may break tolerance or increase susceptibility to tumor growth and spread. Studies have significantly advanced our understanding of the role of skin T cells and ILCs at steady state and in inflammatory settings such as viral challenge, atopy, and autoimmune inflammation. The knowledge raised by these studies can benefit to our understanding of immune cell trafficking in primary melanoma, shedding light on the mechanisms of tumor immune surveillance and to improve immunotherapy. This review will focus on the T cells, B cells, and ILCs of the skin at steady state, in inflammatory context and in melanoma. In particular, we will detail the core chemokine and adhesion molecules that regulate cell trafficking to and within the skin, which may provide therapeutic avenues to promote tumor homing for a team of lymphocytes.
Collapse
Affiliation(s)
- Fanny Lafouresse
- Divisions of Immunology and Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Joanna R Groom
- Divisions of Immunology and Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
160
|
Imakawa K, Bai R, Kusama K. Integration of molecules to construct the processes of conceptus implantation to the maternal endometrium. J Anim Sci 2018; 96:3009-3021. [PMID: 29554266 DOI: 10.1093/jas/sky103] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/15/2018] [Indexed: 12/22/2022] Open
Abstract
During the peri-implantation period, ruminant conceptuses go through rapid elongation, followed by their attachment to the uterine endometrial epithelial cells, during which interferon-tau (IFNT), a trophectodermal cytokine required for the process of maternal recognition of pregnancy, is expressed in a temporal and spatial manner. On day 22 (day 0 = day of estrus), 2 to 3 d after the initiation of bovine conceptus attachment to the uterine epithelium, when IFNT production begins to subside, the expression of molecules related to epithelial-mesenchymal transition, zinc finger E-box binding homeobox 1, snail family transcriptional repressor 2, N-cadherin, and vimentin was found in the trophectoderm. Through the use of in vitro coculture system with bovine trophoblast CT-1 and endometrial epithelial cells, a series of experiments have been conducted to elucidate mechanisms associated with the regulation of IFNT gene transcription and conceptus implantation, including epithelial-mesenchymal transition processes. Expression of IFNT, both up- and downregulation, during the peri-implantation period is tightly controlled. Cytokines and cell adhesion molecules such as epidermal growth factor, basic fibroblast growth factor, transforming growth factor beta, activin A, L-selectin-podocalyxin, and vascular cell adhesion molecule 1-integrin α4 expressed in utero all contribute to the initiation of epithelial-mesenchymal transition in the trophectoderm. These results indicate that conceptus implantation to the uterine endometrium proceeds while elongated conceptuses and endometria express cell adhesion molecules and their receptors, and the trophectoderm experiences epithelial-mesenchymal transition. Data accumulated suggest that while the conceptus and the endometrial epithelium adhere, trophectodermal cells must gain more flexibility for binucleate and possibly trinucleate cell formation during the peri-implantation period, and that understanding and constructing the conditions throughout implantation processes is key to improving ruminants' fertility.
Collapse
Affiliation(s)
- K Imakawa
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ago, Kasama, Ibaraki, Japan
| | - R Bai
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ago, Kasama, Ibaraki, Japan
| | - K Kusama
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ago, Kasama, Ibaraki, Japan
| |
Collapse
|
161
|
Sengupta M, Wang BD, Lee NH, Marx A, Kusner LL, Kaminski HJ. MicroRNA and mRNA expression associated with ectopic germinal centers in thymus of myasthenia gravis. PLoS One 2018; 13:e0205464. [PMID: 30308012 PMCID: PMC6181382 DOI: 10.1371/journal.pone.0205464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND A characteristic pathology of early onset myasthenia gravis is thymic hyperplasia with ectopic germinal centers (GC). However, the mechanisms that trigger and maintain thymic hyperplasia are poorly characterized. Dysregulation of small, non-coding microRNAs (miRNAs) and their target genes has been identified in the pathology of several autoimmune diseases. We assessed the miRNA and mRNA profiles of the MG thymus and have investigated their role in GC formation and maintenance. METHODS MG thymus samples were assessed by histology and grouped based upon the appearance of GC; GC positive and GC negative. A systems biology approach was used to study the differences between the groups. Our study included miRNA and mRNA profiling, quantitative real-time PCR validation, miRNA target identification, pathway analysis, miRNA-mRNA reciprocal expression pairing and interaction. RESULTS Thirty-eight mature miRNAs and forty-six annotated mRNA transcripts were differentially expressed between the two groups (>1.5 fold change, ANOVA p<0.05). The miRNAs were found to be involved in immune response pathways and identified in other autoimmune diseases. The cellular and molecular functions of the mRNAs showed involvement in cell death and cell survival, cellular proliferation, cytokine signaling and extra-cellular matrix reorganization. Eleven miRNA and mRNA pairs were reciprocally regulated. The Regulator of G protein Signalling 13 (RGS13), known to be involved in GC regulation, was identified in specimens with GC and was paired with downregulation of miR-452-5p and miR-139-5p. MiRNA target sites were validated by dual luciferase assay. Transfection of miRNA mimics led to down regulation of RGS13 expression in Raji cells. CONCLUSION Our study indicates a distinct miRNA and mRNA expression pattern in ectopic GC in MG thymus. These miRNAs and mRNAs are involved in regulatory pathways common to inflammation and immune response, cell cycle regulation and anti-apoptotic pathways suggesting their involvement in support of GC formation in the thymus. We demonstrate for the first time that miR-139-5p and miR-452-5p negatively regulate RGS13 expression.
Collapse
Affiliation(s)
- Manjistha Sengupta
- Department of Neurology, George Washington University, Washington, D.C., United States of America
| | - Bi-Dar Wang
- Department of Pharmacology and Physiology, George Washington University, Washington, D.C., United States of America
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, United States of America
| | - Norman H. Lee
- Department of Pharmacology and Physiology, George Washington University, Washington, D.C., United States of America
| | - Alexander Marx
- University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Linda L. Kusner
- Department of Pharmacology and Physiology, George Washington University, Washington, D.C., United States of America
- * E-mail:
| | - Henry J. Kaminski
- Department of Neurology, George Washington University, Washington, D.C., United States of America
| |
Collapse
|
162
|
Zheng X, Zhou Y, Yi X, Chen C, Wen C, Ye G, Li X, Tang L, Zhang X, Yang F, Liu G, Li Y, Hou J. IL-21 receptor signaling is essential for control of hepatocellular carcinoma growth and immunological memory for tumor challenge. Oncoimmunology 2018; 7:e1500673. [PMID: 30524894 DOI: 10.1080/2162402x.2018.1500673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a typical inflammation-associated cancer. IL-21 regulates both innate and adaptive immune responses and has key roles in antitumor and antiviral responses. However, the role of IL-21 in HCC development is poorly defined. In the current study, we explored the role of IL-21R signaling in HCC growth by using IL-21R knockout mice and HCC mouse models. We discovered that IL-21R signaling deficiency promoted HCC growth in tumor-bearing mice. We showed that IL-21R deletion reduced T cells infiltration and activation as well as their function but increased the accumulation of myeloid-derived suppressor cells in tumor tissues to enhance HCC growth. Furthermore, loss of IL-21R signaling in tumor-bearing mice resulted in an imbalance of the systemic immune system characterized by decreased antitumor immune cells and increased immunosuppressive cells in the spleen and lymph nodes. In addition, we revealed that IL-21R signaling is critical for the expansion of antitumor immune cells in the memory immune response to tumor rechallenge. Finally, we showed that the transcriptional levels of IL-21 in the peritumoral region and IL-21R within the tumor are associated with survival and recurrence of HCC patients. In conclusion, our study demonstrates that IL-21R signaling is essential for controlling the development of HCC and immunological memory response to tumor challenge.
Collapse
Affiliation(s)
- Xinchun Zheng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Yi
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengcong Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhua Wen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guofu Ye
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyi Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fuqiang Yang
- Liver Disease Research Center, The 458th Hospital of PLA, Guangzhou, China
| | - Guangze Liu
- Liver Disease Research Center, The 458th Hospital of PLA, Guangzhou, China
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
163
|
Santegoets SJ, van Ham VJ, Ehsan I, Charoentong P, Duurland CL, van Unen V, Höllt T, van der Velden LA, van Egmond SL, Kortekaas KE, de Vos van Steenwijk PJ, van Poelgeest MIE, Welters MJP, van der Burg SH. The Anatomical Location Shapes the Immune Infiltrate in Tumors of Same Etiology and Affects Survival. Clin Cancer Res 2018; 25:240-252. [PMID: 30224343 DOI: 10.1158/1078-0432.ccr-18-1749] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Accepted: 09/10/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE The tumor immune microenvironment determines clinical outcome. Whether the original tissue in which a primary tumor develops influences this microenvironment is not well understood. EXPERIMENTAL DESIGN We applied high-dimensional single-cell mass cytometry [Cytometry by Time-Of-Flight (CyTOF)] analysis and functional studies to analyze immune cell populations in human papillomavirus (HPV)-induced primary tumors of the cervix (cervical carcinoma) and oropharynx (oropharyngeal squamous cell carcinoma, OPSCC). RESULTS Despite the same etiology of these tumors, the composition and functionality of their lymphocytic infiltrate substantially differed. Cervical carcinoma displayed a 3-fold lower CD4:CD8 ratio and contained more activated CD8+CD103+CD161+ effector T cells and less CD4+CD161+ effector memory T cells than OPSCC. CD161+ effector cells produced the highest cytokine levels among tumor-specific T cells. Differences in CD4+ T-cell infiltration between cervical carcinoma and OPSCC were reflected in the detection rate of intratumoral HPV-specific CD4+ T cells and in their impact on OPSCC and cervical carcinoma survival. The peripheral blood mononuclear cell composition of these patients, however, was similar. CONCLUSIONS The tissue of origin significantly affects the overall shape of the immune infiltrate in primary tumors.
Collapse
Affiliation(s)
- Saskia J Santegoets
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Vanessa J van Ham
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ilina Ehsan
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pornpimol Charoentong
- Department of Medical Oncology, National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Chantal L Duurland
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Vincent van Unen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Thomas Höllt
- Department of Computational Biology Center, Leiden University Medical Center, Leiden, the Netherlands.,Computer Graphics and Visualization Group, Delft University of Technology, Delft, the Netherlands
| | - Lilly-Ann van der Velden
- Department of Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Sylvia L van Egmond
- Department of Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Kim E Kortekaas
- Department of Gynaecology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Marij J P Welters
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
164
|
Regenerative medicine in kidney disease: where we stand and where to go. Pediatr Nephrol 2018; 33:1457-1465. [PMID: 28735502 DOI: 10.1007/s00467-017-3754-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023]
Abstract
The kidney is a complex organ with more than 20 types of specialized cells that play an important role in maintaining the body's homeostasis. The epithelial tubular cell is formed during embryonic development and has little proliferative capacity under physiological conditions, but after acute injury the kidney does have regenerative capacity. However, after repetitive or severe lesions, it may undergo a maladaptation process that predisposes it to chronic kidney injury. Regenerative medicine includes various repair and regeneration techniques, and these have gained increasing attention in the scientific literature. In the future, not only will these techniques contribute to the repair and regeneration of the human kidney, but probably also to the construction of an entire organ. New mechanisms studied for kidney regeneration and repair include circulating stem cells as mesenchymal stromal/stem cells and their paracrine mechanisms of action; renal progenitor stem cells; the leading role of tubular epithelial cells in the tubular repair process; the study of zebrafish larvae to understand the process of nephron development, kidney scaffold and its repopulation; and, finally, the development of organoids. This review elucidates where we are in terms of current scientific knowledge regarding these mechanisms and the promises of future scientific perspectives.
Collapse
|
165
|
Zheng S, Li H, Lai K, Chen M, Fu G, Liu WH, Fu G, Nie L. Noninvasive photoacoustic and fluorescent tracking of optical dye labeled T cellular activities of diseased sites at new depth. JOURNAL OF BIOPHOTONICS 2018; 11:e201800073. [PMID: 29701012 DOI: 10.1002/jbio.201800073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/25/2018] [Indexed: 05/06/2023]
Abstract
The migration of immune cells is crucial to the immune response. Visualization of these processes has previously been limited because of the imaging depth. We developed a deep-penetrating, sensitive and high-resolution method to use fast photoacoustic tomography (PAT) to image the dynamic changes of T cells in lymph node and diseases at new depth (up to 9.5 mm). T cells labeled with NIR-797-isothiocyanate, an excellent near-infrared photoacoustic and fluorescent agent, were intravenously injected to the mice. We used fluorescence imaging to determine the location of T cells roughly and photoacoustic imaging is used to observe T-cell responses in diseased sites deeply and carefully. The dynamic changes of T cells in lymph node, acute disease (bacterial infection) and chronic disease (tumor) were observed noninvasively by photoacoustic and fluorescence imaging at different time points. T cells accumulated gradually and reached a maximum at 4 hours and declined afterwards in lymph node and bacterial infection site. At tumor model, T cells immigrated to the tumor with a maximum at 12 hours. Our study can not only provide a new observing method for immune activities tracking, but also enable continuous monitoring for therapeutic interventions.
Collapse
Affiliation(s)
- Shuai Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Honghui Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Kejiong Lai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Maomao Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Guofeng Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
166
|
Shu K, Zheng Y, Chen J, Li W, Jiang K. Prognostic value of selected preoperative inflammation-based scores in patients with high-risk localized prostate cancer who underwent radical prostatectomy. Onco Targets Ther 2018; 11:4551-4558. [PMID: 30122947 PMCID: PMC6082347 DOI: 10.2147/ott.s151314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background This study investigated the prognostic value of inflammation-based scores in patients with high-risk localized prostate cancer who underwent radical prostatectomy with or without neoadjuvant androgen deprivation therapy (ADT). Methods Inflammation-based scores included the neutrophil-to-lymphocyte ratio (NLR), derived NLR (dNLR), platelet-to-lymphocyte ratio (PLR), prognostic nutritional index (PNI), and plasma fibrinogen. A total of 440 patients (380 patients treated without neoadjuvant ADT and 60 patients treated with neoadjuvant ADT) were retrospectively evaluated in our medical center. Receiver operating characteristic (ROC) curves and Kaplan-Meier analyses were performed to compare the prognostic value of these scores. Univariate and multivariate Cox regression analyses were also performed. Results For all patients, dNLR and PNI were predictive of biochemical recurrence (.=0.041 and <0.001, respectively). Subgroup analysis of neoadjuvant strategies was also performed. For patients treated with neoadjuvant ADT, no selected inflammation-based scores were significantly correlated with biochemical recurrence (.>0.05). In contrast, for patients treated without neoadjuvant ADT, NLR (area under the ROC curve [AUC] =0.576, P=0.033), dNLR (.=0.585 and 0.017), PLR (AUC =0.582, P=0.024), and PNI (AUC =0.622, P<0.001) were predictive of biochemical recurrence. Kaplan-Meier analyses showed that dNLR (.=0.044), PLR (.=0.028), and PNI (.=0.004) were significantly associated with biochemical recurrence. Based on multivariable models, PNI was an independent predictor of biochemical recurrence (hazard ratio: 0.56, 95% confidence interval: 0.35-0.90, P=0.016). Conclusion High dNLR, high PLR, and low PNI were associated with poor biochemical recurrence-free survival in patients undergoing radical prostatectomy for high-risk localized prostate cancer not treated with neoadjuvant ADT. In particular, PNI was an independent prognostic factor for biochemical recurrence.
Collapse
Affiliation(s)
| | | | - Junru Chen
- Department of Urology, Institute of Urology
| | - Wenbin Li
- Huaxi MR Research Center (HMRRC), Department of Radiology,
| | - Ke Jiang
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China,
| |
Collapse
|
167
|
Zheng DW, Fan JX, Liu XH, Dong X, Pan P, Xu L, Zhang XZ. A Simply Modified Lymphocyte for Systematic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801622. [PMID: 29926990 DOI: 10.1002/adma.201801622] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/12/2018] [Indexed: 06/08/2023]
Abstract
Cytotherapy has received considerable attention in the field of cancer therapy, and various chemical or genetic methods have been applied to remold natural cells for improved therapeutic outcome of cytotherapy. A simple method to modify lymphocytes for cancer treatment by using a clinically used molecule, δ-aminolevulinic acid (δ-ALA), is reported here. After incubation with this molecule, tumor-targeted lymphocytes spontaneously synthesize anti-neoplastic drug protoporphyrin X (PpIX), and specifically accumulate in cancer tissue. Under periodic 630 nm laser irradiation, lymphocytes generate vesicle-like apoptotic body (Ab) containing the above-produced PpIX, and the facilitated delivery of PpIX from Ab makes an excellent therapeutic effect for Ras-mutated cancer cells under a second irradiation. Importantly, a microfluidic device is further fabricated to simplify cell sorting and drug synthesis with a one-step operation, which could promote generalization of this strategy. In vitro and in vivo studies confirm the success of such an easy-operated and global-regulated strategy for cancer therapy.
Collapse
Affiliation(s)
- Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jin-Xuan Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xue Dong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Pei Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Lu Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
168
|
Piao W, Xiong Y, Famulski K, Brinkman CC, Li L, Toney N, Wagner C, Saxena V, Simon T, Bromberg JS. Regulation of T cell afferent lymphatic migration by targeting LTβR-mediated non-classical NFκB signaling. Nat Commun 2018; 9:3020. [PMID: 30069025 PMCID: PMC6070541 DOI: 10.1038/s41467-018-05412-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/02/2018] [Indexed: 12/23/2022] Open
Abstract
Lymphotoxin-beta receptor (LTβR) signaling in lymphatic endothelial cells (LEC) regulates leukocyte afferent lymphatic transendothelial migration (TEM). The function of individual signaling pathways for different leukocyte subsets is currently unknown. Here, we show that LTβR signals predominantly via the constitutive and ligand-driven non-classical NIK pathway. Targeting LTβR-NIK by an LTβR-derived decoy peptide (nciLT) suppresses the production of chemokines CCL21 and CXCL12, and enhances the expression of classical NFκB-driven VCAM-1 and integrin β4 to retain T cells on LEC and precludes T cell and dendritic cell TEM. nciLT inhibits contact hypersensitivity (CHS) at both the sensitization and elicitation stages, likely by inhibiting leukocyte migration. By contrast, targeting LTβR-classical NFκB signaling during the elicitation and resolution stages attenuates CHS, possibly by promoting leukocyte egress. These findings demonstrate the importance of LTβR signaling in leukocyte migration and LEC and lymphatic vessel function, and show that antagonist peptides may serve as lead compounds for therapeutic applications.
Collapse
Affiliation(s)
- Wenji Piao
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yanbao Xiong
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Konrad Famulski
- Department of Laboratory Medicine and Pathology, University of Alberta, 250 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
| | - C Colin Brinkman
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lushen Li
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nicholas Toney
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Chelsea Wagner
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Vikas Saxena
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Thomas Simon
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jonathan S Bromberg
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
169
|
Patrushev AV, Samtsov AV, Nikitin VY, Ivanov AМ, Gumilevskaya OР, Sukharev AV, Sukhina IA. Origin, function and role in the development of skin diseases CLA+T-lymphocytes. VESTNIK DERMATOLOGII I VENEROLOGII 2018. [DOI: 10.25208/0042-4609-2018-94-3-20-29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The idea of CLA+T-lymphocytes, which are a special subpopulation of cells with a tropic to the skin, is given. The issues of maturation, migration and functional features of CLA+T-cells are considered. Special attention is paid to the different phenotype of memory T-cells. Modern data concerning the role of CLA+T-cells in the pathogenesis of autoimmune and allergic dermatoses, as well as malignant skin tumors are also presented. The conclusion about the necessity of further study of CLA +T-lymphocytes for detailed understanding of pathogenesis and search of variants of targeted therapy in psoriasis, atopic dermatitis, skin lymphomas and other skin diseases is made.
Collapse
|
170
|
Rosado-Sánchez I, Herrero-Fernández I, Genebat M, Del Romero J, Riera M, Podzamczer D, Olalla J, Vidal F, Muñoz-Fernández MA, Leal M, Pacheco YM. HIV-Infected Subjects With Poor CD4 T-Cell Recovery Despite Effective Therapy Express High Levels of OX40 and α4β7 on CD4 T-Cells Prior Therapy Initiation. Front Immunol 2018; 9:1673. [PMID: 30073002 PMCID: PMC6058017 DOI: 10.3389/fimmu.2018.01673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/05/2018] [Indexed: 01/02/2023] Open
Abstract
Background HIV-infected subjects with suboptimal CD4 restoration despite suppressive combined antiretroviral treatment (cART) (immunodiscordant subjects) have been classically characterized after a variable period of time under cART. Recently, we have reported that an increased frequency of proliferating CD4 T-cells in these subjects is already present before the cART onset. The potential contribution of peripheral compensatory homeostatic proliferation (HP) is yet unknown. We aimed to analyze the expression of HP-related cellular markers on CD4 T-cells of immunodiscordant subjects before cART. Methods We analyzed the expression of OX40 and α4β7 on peripheral CD4 T-cells from immunodiscordant and control subjects (n = 21 each group) before cART initiation, and also on available follow-up samples (after 24 month of suppressive cART). Additionally, we tested the expression of these markers in an in vitro system for the study of human HP processes. Results Immunodiscordant subjects showed increased levels of OX40 and α4β7 on CD4 T-cells before cART initiation. While the cART tended to reduce these levels, immunodiscordant subjects still maintained comparatively higher levels of OX40 and α4β7 after 24 months under suppressive cART. These HP-related markers were upregulated in vitro during the human HP, especially during the fast HP. Conclusion Our results are compatible with exacerbated HP processes in immunodiscordant subjects, already before the cART onset.
Collapse
Affiliation(s)
- Isaac Rosado-Sánchez
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Inés Herrero-Fernández
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Miguel Genebat
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | | | - Melchor Riera
- Son Espases University Hospital, Palma de Mallorca, Spain
| | | | | | - Francesc Vidal
- Joan XXIII University Hospital, IISPV, Rovira I Virgili University, Tarragona, Spain
| | - Mª Angeles Muñoz-Fernández
- Section Immunology, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Spanish HIV HGM BioBank, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,CIBER-BBN, Madrid, Spain
| | - Manuel Leal
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain.,Internal Medicine Service, Viamed-Santa Ángela Hospital, Seville, Spain
| | - Yolanda M Pacheco
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| |
Collapse
|
171
|
Steinert EM, Thompson EA, Beura LK, Adam OA, Mitchell JS, Guo M, Breed ER, Sjaastad FV, Vezys V, Masopust D. Cutting Edge: Evidence for Nonvascular Route of Visceral Organ Immunosurveillance by T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:337-342. [PMID: 29875151 PMCID: PMC6039241 DOI: 10.4049/jimmunol.1800279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023]
Abstract
Lymphocytes enter tissues from blood vessels through a well-characterized three-step process of extravasation. To our knowledge, nonvascular routes of lymphocyte entry have not been described. In this article, we report that Ag-experienced CD8 T cells in mice recirculate from blood through the peritoneal cavity. In the event of infection, Ag-experienced CD8 T cell subsets adhered to visceral organs, indicating potential transcapsular immunosurveillance. Focusing on the male genital tract (MGT), we observed Ag-experienced CD8 T cell migration from the peritoneal cavity directly to the infected MGT across the capsule, which was dependent on the extracellular matrix receptor CD44. We also observed that, following clearance of infection, the MGT retained functional resident memory CD8 T cells. These data suggest that recirculation through body cavities may provide T cells with opportunities for broad immunosurveillance and potential nonvascular mechanisms of entry.
Collapse
Affiliation(s)
- Elizabeth M Steinert
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - Emily A Thompson
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - Lalit K Beura
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - Omar A Adam
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - Jason S Mitchell
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Mengdi Guo
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - Elise R Breed
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Frances V Sjaastad
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - Vaiva Vezys
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - David Masopust
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| |
Collapse
|
172
|
Lanitis E, Dangaj D, Irving M, Coukos G. Mechanisms regulating T-cell infiltration and activity in solid tumors. Ann Oncol 2018; 28:xii18-xii32. [PMID: 29045511 DOI: 10.1093/annonc/mdx238] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
T-lymphocytes play a critical role in cancer immunity as evidenced by their presence in resected tumor samples derived from long-surviving patients, and impressive clinical responses to various immunotherapies that reinvigorate them. Indeed, tumors can upregulate a wide array of defense mechanisms, both direct and indirect, to suppress the ability of Tcells to reach the tumor bed and mount curative responses upon infiltration. In addition, patient and tumor genetics, previous antigenic experience, and the microbiome, are all important factors in shaping the T-cell repertoire and sensitivity to immunotherapy. Here, we review the mechanisms that regulate T-cell homing, infiltration, and activity within the solid tumor bed. Finally, we summarize different immunotherapies and combinatorial treatment strategies that enable the immune system to overcome barriers for enhanced tumor control and improved patient outcome.
Collapse
Affiliation(s)
- E Lanitis
- The Ludwig Branch for Cancer Research of the University of Lausanne, Epalinges
| | - D Dangaj
- The Ludwig Branch for Cancer Research of the University of Lausanne, Epalinges
| | - M Irving
- The Ludwig Branch for Cancer Research of the University of Lausanne, Epalinges
| | - G Coukos
- The Ludwig Branch for Cancer Research of the University of Lausanne, Epalinges.,Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| |
Collapse
|
173
|
Biomimetic post-capillary venule expansions for leukocyte adhesion studies. Sci Rep 2018; 8:9328. [PMID: 29921896 PMCID: PMC6008471 DOI: 10.1038/s41598-018-27566-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/05/2018] [Indexed: 02/02/2023] Open
Abstract
Leukocyte adhesion and extravasation are maximal near the transition from capillary to post-capillary venule, and are strongly influenced by a confluence of scale-dependent physical effects. Mimicking the scale of physiological vessels using in vitro microfluidic systems allows the capture of these effects on leukocyte adhesion assays, but imposes practical limits on reproducibility and reliable quantification. Here we present a microfluidic platform that provides multiple (54-512) technical replicates within a 15-minute sample collection time, coupled with an automated computer vision analysis pipeline that captures leukocyte adhesion probabilities as a function of shear and extensional stresses. We report that in post-capillary channels of physiological scale, efficient leukocyte adhesion requires erythrocytes forcing leukocytes against the wall, a phenomenon that is promoted by the transitional flow in post-capillary venule expansions and dependent on the adhesion molecule ICAM-1.
Collapse
|
174
|
Low S, Hirakawa J, Hoshino H, Uchimura K, Kawashima H, Kobayashi M. Role of MAdCAM-1-Expressing High Endothelial Venule-Like Vessels in Colitis Induced in Mice Lacking Sulfotransferases Catalyzing L-Selectin Ligand Biosynthesis. J Histochem Cytochem 2018; 66:415-425. [PMID: 29350564 PMCID: PMC5977439 DOI: 10.1369/0022155417753363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/18/2017] [Indexed: 01/28/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease histologically characterized by diffuse mononuclear cell infiltrates in colonic mucosa. These inflammatory cells are considered to be recruited via high endothelial venule (HEV)-like vessels displaying mucosal addressin cell adhesion molecule 1 (MAdCAM-1), the ligand for α4β7 integrin, and/or peripheral lymph node addressin (PNAd), an L-selectin ligand. 6- O-sulfation of N-acetylglucosamine in the carbohydrate moiety of PNAd is catalyzed exclusively by N-acetylglucosamine-6- O-sulfotransferase 1 (GlcNAc6ST-1) and GlcNAc6ST-2. To determine the role of 6- O-sulfation of N-acetylglucosamine on HEV-like vessels in UC, we used a chronic dextran sulfate sodium-induced colitis model using mice deficient in both GlcNAc6ST-1 and GlcNAc6ST-2. We found that more inflammatory cells, with expression of tumor necrosis factor α, were infiltrated in double knockout mouse colitis compared with that in wild-type mice. Moreover, the number of MAdCAM-1-positive vessels was increased in double knockout mouse colitis, and these vessels were bound by E-selectin•IgM chimeras that bind to unsulfated sialyl Lewis X (sLeX). These findings suggest that interactions between MAdCAM-1 and α4β7 integrin and/or unsulfated sLeX and L-selectin may become a dominant mechanism for inflammatory cell recruitment in the absence of 6-sulfo sLeX and contribute to more severe colitis phenotypes seen in double knockout mice.
Collapse
Affiliation(s)
- Shulin Low
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Jotaro Hirakawa
- Department of Biochemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
- Laboratory of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hitomi Hoshino
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroto Kawashima
- Department of Biochemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
- Laboratory of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Motohiro Kobayashi
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
175
|
Gosselin EA, Eppler HB, Bromberg JS, Jewell CM. Designing natural and synthetic immune tissues. NATURE MATERIALS 2018; 17:484-498. [PMID: 29784994 PMCID: PMC6283404 DOI: 10.1038/s41563-018-0077-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 04/11/2018] [Indexed: 05/10/2023]
Abstract
Vaccines and immunotherapies have provided enormous improvements for public health, but there are fundamental disconnects between where most studies are performed-in cell culture and animal models-and the ultimate application in humans. Engineering immune tissues and organs, such as bone marrow, thymus, lymph nodes and spleen, could be instrumental in overcoming these hurdles. Fundamentally, designed immune tissues could serve as in vitro tools to more accurately study human immune function and disease, while immune tissues engineered for implantation as next-generation vaccines or immunotherapies could enable direct, on-demand control over generation and regulation of immune function. In this Review, we discuss recent interdisciplinary strategies that are merging materials science and immunology to create engineered immune tissues in vitro and in vivo. We also highlight the hurdles facing these approaches and the need for comparison to existing clinical options, relevant animal models, and other emerging technologies.
Collapse
Affiliation(s)
- Emily A Gosselin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Haleigh B Eppler
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Molecular and Cellular Biology, Biological Sciences Training Program, University of Maryland, College Park, MD, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Molecular and Cellular Biology, Biological Sciences Training Program, University of Maryland, College Park, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, USA.
- United States Department of Veterans Affairs, Maryland VA Health Care System, Baltimore, MD, USA.
| |
Collapse
|
176
|
Wang S, Wu C, Zhang Y, Zhong Q, Sun H, Cao W, Ge G, Li G, Zhang XF, Chen J. Integrin α4β7 switches its ligand specificity via distinct conformer-specific activation. J Cell Biol 2018; 217:2799-2812. [PMID: 29789438 PMCID: PMC6080939 DOI: 10.1083/jcb.201710022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/11/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022] Open
Abstract
CCL25, CXCL10, and Mn2+ induce three distinct active conformations of integrin α4β7, which have selective high affinity for either MAdCAM-1, VCAM-1, or nonselective high affinity for both ligands. Via this mechanism, integrin α4β7 adopts different active conformations to switch its ligand-binding specificity. Chemokine (C-C motif) ligand 25 (CCL25) and C-X-C motif chemokine 10 (CXCL10) induce the ligand-specific activation of integrin α4β7 to mediate the selective adhesion of lymphocytes to mucosal vascular addressin cell adhesion molecule-1 (MAdCAM-1) or vascular cell adhesion molecule-1 (VCAM-1). However, the mechanism underlying the selective binding of different ligands by α4β7 remains obscure. In this study, we demonstrate that CCL25 and CXCL10 induce distinct active conformers of α4β7 with a high affinity for either MAdCAM-1 or VCAM-1. Single-cell force measurements show that CCL25 increases the affinity of α4β7 for MAdCAM-1 but decreases its affinity for VCAM-1, whereas CXCL10 has the opposite effect. Structurally, CCL25 induces a more extended active conformation of α4β7 compared with CXCL10-activated integrin. These two distinct intermediate open α4β7 conformers selectively bind to MAdCAM-1 or VCAM-1 by distinguishing their immunoglobulin domain 2. Notably, Mn2+ fully opens α4β7 with a high affinity for both ligands. Thus, integrin α4β7 adopts different active conformations to switch its ligand-binding specificity.
Collapse
Affiliation(s)
- ShiHui Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - ChenYu Wu
- Department of Bioengineering and Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA
| | - YueBin Zhang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
| | - QingLu Zhong
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
| | - Hao Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - WenPeng Cao
- Department of Bioengineering and Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA
| | - GaoXiang Ge
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - GuoHui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
| | - X Frank Zhang
- Department of Bioengineering and Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA
| | - JianFeng Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
177
|
Patry C, Stamm D, Betzen C, Tönshoff B, Yard BA, Beck GC, Rafat N. CXCR-4 expression by circulating endothelial progenitor cells and SDF-1 serum levels are elevated in septic patients. JOURNAL OF INFLAMMATION-LONDON 2018; 15:10. [PMID: 29796010 PMCID: PMC5956812 DOI: 10.1186/s12950-018-0186-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/07/2018] [Indexed: 12/26/2022]
Abstract
Background Endothelial progenitor cell (EPC) numbers are increased in septic patients and correlate with survival. In this study, we investigated, whether surface expression of chemokine receptors and other receptors important for EPC homing is upregulated by EPC from septic patients and if this is associated with clinical outcome. Methods Peripheral blood mononuclear cells from septic patients (n = 30), ICU control patients (n = 11) and healthy volunteers (n = 15) were isolated by Ficoll density gradient centrifugation. FACS-analysis was used to measure the expression of the CXC motif chemokine receptors (CXCR)-2 and − 4, the receptor for advanced glycation endproducts (RAGE) and the stem cell factor receptor c-Kit. Disease severity was assessed via the Simplified Acute Physiology Score (SAPS) II. The serum concentrations of vascular endothelial growth factor (VEGF), stromal cell-derived factor (SDF)-1α and angiopoietin (Ang)-2 were determined with Enzyme linked Immunosorbent Assays. Results EPC from septic patients expressed significantly more CXCR-4, c-Kit and RAGE compared to controls and were associated with survival-probability. Significantly higher serum concentrations of VEGF, SDF-1α and Ang-2 were found in septic patients. SDF-1α showed a significant association with survival. Conclusions Our data suggest that SDF-1α and CXCR-4 signaling could play a crucial role in EPC homing in the course of sepsis. Electronic supplementary material The online version of this article (10.1186/s12950-018-0186-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Patry
- 1Department of Pediatrics I, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany.,2Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Daniela Stamm
- 3Department of Anaesthesiology and Critical Care Medicine, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Christian Betzen
- 1Department of Pediatrics I, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Burkhard Tönshoff
- 1Department of Pediatrics I, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Benito A Yard
- 4Department of Medicine V, University Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Grietje Ch Beck
- Department of Anaesthesiology and Critical Care Medicine, HELIOS Dr. Horst Schmidt Kliniken, Wiesbaden, Ludwig-Erhard-Straße 100, 65199 Wiesbaden, Germany
| | - Neysan Rafat
- 1Department of Pediatrics I, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany.,6Department of Neonatology, University Children's Hospital Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.,Department of Pharmaceutical Sciences, Bahá'í Institute of Higher Education (BIHE), Teheran, Iran
| |
Collapse
|
178
|
Latli B, Hrapchak M, Cheveliakov M, Reeves JT, Marsini M, Busacca CA, Senanayake CH. Potent and selective CC chemokine receptor 1 antagonists labeled with carbon-13, carbon-14, and tritium. J Labelled Comp Radiopharm 2018; 61:764-772. [PMID: 29766547 DOI: 10.1002/jlcr.3635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 11/09/2022]
Abstract
1-(4-Fluorophenyl)-1H-pyrazolo[3,4-c]pyridine-4-carboxylic acid (2-methanesulfonyl-pyridin-4-ylmethyl)-amide (1) and its analogs (2) and (3) are potent CCR1 antagonists intended for the treatment of rheumatoid arthritis. The detailed syntheses of these 3 compounds labeled with carbon-13 as well as the preparation of (1) and (2) labeled with carbon-14, and (1) labeled with tritium, are described.
Collapse
Affiliation(s)
- Bachir Latli
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Matt Hrapchak
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Maxim Cheveliakov
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Jonathan T Reeves
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Maurice Marsini
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Carl A Busacca
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Chris H Senanayake
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| |
Collapse
|
179
|
Han J, Gu MJ, Yoo I, Choi Y, Jang H, Kim M, Yun CH, Ka H. Analysis of cysteine-X-cysteine motif chemokine ligands 9, 10, and 11, their receptor CXCR3, and their possible role on the recruitment of immune cells at the maternal-conceptus interface in pigs. Biol Reprod 2018; 97:69-80. [PMID: 28859287 DOI: 10.1093/biolre/iox074] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/11/2017] [Indexed: 11/14/2022] Open
Abstract
Chemokines play critical roles in the establishment and maintenance of pregnancy in animals. Cysteine-X-cysteine motif chemokine ligand 9 (CXCL9), CXCL10, and CXCL11 are involved in recruiting immune cells by binding to their shared receptor, CXC receptor 3 (CXCR3), in a variety of tissues. This study examined the expression and regulation of chemokines CXCL9, CXCL10, and CXCL11, their receptor CXCR3, and their role at the maternal-conceptus interface in pigs. The endometrium expressed CXCL9, CXCL10, CXCL11, and CXCR3 stage specifically during pregnancy, with the greatest abundance on Day 15 of pregnancy. It was noted that their expression was primarily localized to stromal cells, endothelial cells, or vascular smooth muscle cells in the endometrium. Interferon-γ increased the abundance of CXCL9, CXCL10, CXCL11 mRNAs, but not CXCR3, in endometrial explants. Furthermore, recombinant CXCL9 (rCXCL9), rCXCL10, and rCXCL11 proteins increased migration of cultured peripheral blood mononuclear cells (PBMCs) in a dose-dependent manner. Recombinant CXCL9 and rCXCL10 caused migration of CD4+, CD8+, CD4+CD8+ T cells, and natural killer (NK) cells, and rCXCL11 increased migration of CD4+ T and NK cells in PBMCs. The present study demonstrated that interferon-γ-induced CXCL9, CXCL10, and CXCL11, and their receptor CXCR3 were expressed in the uterus in stage- and cell-type specific manners and increased the migration of T and NK cells, which showed the greatest endometrial infiltration on Day 15 of pregnancy. These results suggest that CXCL9, CXCL10, and CXCL11 may play an important role in the recruitment of immune cells into the endometrium during the implantation period in pigs.
Collapse
Affiliation(s)
- Jisoo Han
- Department of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Min Jeong Gu
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Inkyu Yoo
- Department of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Yohan Choi
- Department of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Hwanhee Jang
- Department of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Minjeong Kim
- Department of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hakhyun Ka
- Department of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
180
|
Urine biomarkers informative of human kidney allograft rejection and tolerance. Hum Immunol 2018; 79:343-355. [DOI: 10.1016/j.humimm.2018.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
|
181
|
Wu XB, He LN, Jiang BC, Shi H, Bai XQ, Zhang WW, Gao YJ. Spinal CXCL9 and CXCL11 are not involved in neuropathic pain despite an upregulation in the spinal cord following spinal nerve injury. Mol Pain 2018; 14:1744806918777401. [PMID: 29712506 PMCID: PMC5967156 DOI: 10.1177/1744806918777401] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chemokines-mediated neuroinflammation in the spinal cord plays a critical role in the pathogenesis of neuropathic pain. Chemokine CXCL9, CXCL10, and CXCL11 have been identified as a same subfamily chemokine which bind to CXC chemokine receptor 3 to exert functions. Our recent work found that CXCL10 is upregulated in spinal astrocytes after spinal nerve ligation (SNL) and acts on chemokine receptor CXCR3 on neurons to contribute to central sensitization and neuropathic pain, but less is known about CXCL9 and CXCL11 in the maintenance of neuropathic pain. Here, we report that CXCL9 and CXCL11, same as CXCL10, were increased in spinal astrocytes after SNL. Surprisingly, inhibition of CXCL9 or CXCL11 by spinal injection of shRNA lentivirus did not attenuate SNL-induced neuropathic pain. In addition, intrathecal injection of CXCL9 and CXCL11 did not produce hyperalgesia or allodynia behaviors, and neither of them induced ERK activation, a marker of central sensitization. Whole-cell patch clamp recording on spinal neurons showed that CXCL9 and CXCL11 enhanced both excitatory synaptic transmission and inhibitory synaptic transmission, whereas CXCL10 only produced an increase in excitatory synaptic transmission. These results suggest that, although the expression of CXCL9 and CXCL11 are increased after SNL, they may not contribute to the maintenance of neuropathic pain.
Collapse
Affiliation(s)
- Xiao-Bo Wu
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Li-Na He
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Bao-Chun Jiang
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Hui Shi
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xue-Qiang Bai
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Wen-Wen Zhang
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Yong-Jing Gao
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.,2 Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
182
|
Shepard AM, Bharwani A, Durisko Z, Andrews PW. Reverse Engineering the Febrile System. QUARTERLY REVIEW OF BIOLOGY 2018; 91:419-57. [PMID: 29562118 DOI: 10.1086/689482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Fever, the elevation of core body temperature by behavioral or physiological means, is one of the most salient aspects of human sickness, yet there is debate regarding its functional role. In this paper, we demonstrate that the febrile system is an evolved adaptation shaped by natural selection to coordinate the immune system to fight pathogens. First, we show that previous arguments in favor of fever being an adaptation are epistemologically inadequate, and we describe how an adaptationist strategy addresses this issue more effectively. Second, we argue that the mechanisms producing fever provide clear indications of adaptation. Third, we demonstrate that there are many beneficial immune system responses activated during fever and that these responses are not mere byproducts of heat on chemical reactions. Rather, we show that natural selection appears to have modified several immune system effects to be coordinated by fever. Fourth, we argue that there are some adaptations that coordinate the febrile system with other important fitness components, particularly growth and reproduction. Finally, we discuss evidence that the febrile system may also have evolved an antitumor function, providing suggestions for future research into this area. This research informs the debate on the functional value of fever and antipyretic use.
Collapse
|
183
|
Natural nitration of CXCL12 reduces its signaling capacity and chemotactic activity in vitro and abrogates intra-articular lymphocyte recruitment in vivo. Oncotarget 2018; 7:62439-62459. [PMID: 27566567 PMCID: PMC5308738 DOI: 10.18632/oncotarget.11516] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 08/13/2016] [Indexed: 01/01/2023] Open
Abstract
The chemokine CXCL12/stromal cell-derived factor-1 is important for leukocyte migration to lymphoid organs and inflamed tissues and stimulates tumor development. In vitro, CXCL12 activity through CXCR4 is abolished by proteolytic processing. However, limited information is available on in vivo effects of posttranslationally modified CXCL12. Natural CXCL12 was purified from the coculture supernatant of stromal cells stimulated with leukocytes and inflammatory agents. In this conditioned medium, CXCL12 with a nitration on Tyr7, designated [3-NT7]CXCL12, was discovered via Edman degradation. CXCL12 and [3-NT7]CXCL12 were chemically synthesized to evaluate the biological effects of this modification. [3-NT7]CXCL12 recruited β-arrestin 2 and phosphorylated the Akt kinase similar to CXCL12 in receptor-transfected cells. Also the affinity of CXCL12 and [3-NT7]CXCL12 for glycosaminoglycans, the G protein-coupled chemokine receptor CXCR4 and the atypical chemokine receptor ACKR3 were comparable. However, [3-NT7]CXCL12 showed a reduced ability to enhance intracellular calcium concentrations, to generate inositol triphosphate, to phosphorylate ERK1/2 and to induce monocyte and lymphocyte chemotaxis in vitro. Moreover, nitrated CXCL12 failed to induce in vivo extravasation of lymphocytes to the joint. In summary, nitration on Tyr7 under inflammatory conditions is a novel natural posttranslational regulatory mechanism of CXCL12 which may downregulate the CXCR4-mediated inflammatory and tumor-promoting activities of CXCL12.
Collapse
|
184
|
Bogolitsyn KG, Kaplitsin PA, Dobrodeeva LK, Druzhinina AS, Ovchinnikov DV, Parshina AE, Shulgina EV. Fatty Acid Composition and Biological Activity of Supercritical Extracts from Arctic Brown Algae Fucus vesiculosus. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2018. [DOI: 10.1134/s1990793117070065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
185
|
Eini P, Shirvani M, Hajilooi M, Esna-Ashari F. Comparison of L-selectin blood level and gene polymorphism in tuberculosis patients with healthy individuals. J Clin Lab Anal 2018; 32:e22409. [PMID: 29430726 DOI: 10.1002/jcla.22409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/22/2018] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The inflammatory response to Mycobacterium tuberculosis bacilli influences tuberculosis (TB) progression. In this study, we aimed to identify the Phe206Leu polymorphism and serum L-selectin level in TB patients, compared to healthy individuals. METHODS Ninety patients with a diagnosis of TB and 90 healthy controls were selected in this study. The serum L-selectin level was determined, using ELISA. L-selectin polymorphism was also evaluated using PCR. For data analysis, SPSS was used at a significance level of 0.05. RESULTS According to the findings, the mean±SD age of the participants was 57.5 ± 18.4 and 56.5 ± 17.5 years in the TB and healthy groups, respectively. The TB group showed a significantly higher serum L-selectin level (1721.1 ± 330.9) versus the healthy controls (1624 ± 279). The L-selectin Phe allele frequencies were higher than the Leu allele frequencies in the main population, whereas the patients and controls were not significantly different. Eight (0.04%) subjects had Leu/Leu genotypes, 84 (46.6%) carried Phe/Leu genotypes, and 88 (48.8%) had Phe/Phe genotypes. Our results showed that the groups were not significantly different regarding L-selectin genotypes. CONCLUSION TB patients had a significantly higher serum L-selectin level, compared to the controls. Based on the findings, the incidence of TB and L-selectin polymorphism in the Phe206Leu gene had no significant association.
Collapse
Affiliation(s)
- Peyman Eini
- Department of Infectious Diseases, Hamadan University of Medical Sciences, Hamadan, Iran.,Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maria Shirvani
- Department of Infectious Diseases, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehrdad Hajilooi
- Department of Immunology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farzaneh Esna-Ashari
- Department of Community and Preventive Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
186
|
Uchida T, Ueta H, Xu XD, Hirakawa J, Tahara K, Zhou S, Sawanobori Y, Simmons S, Kitazawa Y, Kawashima H, Matsuno K. Rapid immunosurveillance by recirculating lymphocytes in the rat intestine: critical role of unsulfated sialyl-Lewis X on high endothelial venules of the Peyer's patches. Int Immunol 2018; 30:23-33. [PMID: 29365122 PMCID: PMC5917783 DOI: 10.1093/intimm/dxx072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/03/2018] [Indexed: 12/17/2022] Open
Abstract
Naive lymphocytes systemically recirculate for immunosurveillance inspecting foreign antigens and pathogens in the body. Trafficking behavior such as the migration pathway and transit time within the gastrointestinal tract, however, remains to be elucidated. Rat thoracic duct lymphocytes (TDLs) were transferred to a congeneic host that had undergone mesenteric lymphadenectomy. The migration pathway was investigated using newly developed four-color immunohistochemistry and immunofluorescence. Donor TDLs showed rapid transition in gut tissues from which they emerged in mesenteric lymph around 4 h after intravenous injection. Immunohistochemistry showed that donor TDLs predominantly transmigrated across high endothelial venules (HEVs) at the interfollicular area of the Peyer's patches (PPs), then exited into the LYVE-1+ efferent lymphatics, that were close to the venules. The rapid recirculation depended largely on the local expression of unsulfated sialyl-Lewis X on these venules where putative dendritic cells (DCs) were associated underneath. Recruited naive T cells briefly made contact with resident DCs before exiting to the lymphatics in the steady state. In some transplant settings, however, the T cells retained contact with DCs and were sensitized and differentiated into activated T cells. In conclusion, we directly demonstrated that lymphocyte recirculation within the gut is a very rapid process. The interfollicular area of PPs functions as a strategically central site for rapid immunosurveillance where HEVs, efferent lymphatics and resident DCs converge. PPs can, however, generate alloreactive T cells, leading to exacerbation of graft-versus-host disease or gut allograft rejection.
Collapse
Affiliation(s)
- Tomomi Uchida
- Department of Anatomy (Macro), Dokkyo Medical University, School of Medicine, Tochigi, Japan
| | - Hisashi Ueta
- Department of Anatomy (Macro), Dokkyo Medical University, School of Medicine, Tochigi, Japan
| | - Xue-Dong Xu
- Department of General Surgery, Dalian Medical University, 1st Affiliated Hospital, Dalian, China
| | - Jotaro Hirakawa
- Laboratory of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kazunori Tahara
- Division of Surgery, Department of Surgical Specialties, National Center for Child Health and Development, Tokyo, Japan
| | - Shu Zhou
- Department of Gynecology, Dalian Medical University, 1st Affiliated Hospital, Dalian, China
| | - Yasushi Sawanobori
- Department of Anatomy (Macro), Dokkyo Medical University, School of Medicine, Tochigi, Japan
| | - Szandor Simmons
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences and WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yusuke Kitazawa
- Department of Anatomy (Macro), Dokkyo Medical University, School of Medicine, Tochigi, Japan
| | - Hiroto Kawashima
- Laboratory of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kenjiro Matsuno
- Department of Anatomy (Macro), Dokkyo Medical University, School of Medicine, Tochigi, Japan
| |
Collapse
|
187
|
The role of mTOR-mediated signaling in the regulation of cellular migration. Immunol Lett 2018; 196:74-79. [PMID: 29408410 DOI: 10.1016/j.imlet.2018.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
Abstract
Mechanistic target for rapamycin (mTOR) is a serine/threonine protein kinase that forms two distinct complexes mTORC1 and mTORC2, integrating mitogen and nutrient signals to regulate cell survival and proliferation; processes which are commonly deregulated in human cancers. mTORC1 and mTORC2 have divergent molecular associations and cellular functions: mTORC1 regulates in mRNA translation and protein synthesis, while mTORC2 is involved in the regulation of cellular survival and metabolism. Through AKT phosphorylation/activation, mTORC2 has also been reported to regulate cell migration. Recent attention has focused on the aberrant activation of the PI3K/mTOR pathway in B cell malignancies and there is growing evidence for its involvement in disease pathogenesis, due to its location downstream of other established novel drug targets that intercept B cell receptor (BCR) signals. Shared pharmacological features of BCR signal inhibitors include a striking "lymphocyte redistribution" effect whereby patients experience a sharp increase in lymphocyte count on initiation of therapy followed by a steady decline. Chronic lymphocytic leukemia (CLL) serves as a paradigm for migration studies as lymphocytes are among the most widely travelled cells in the body, a product of their role in immunological surveillance. The subversion of normal lymphocyte movement in CLL is being elucidated; this review aims to describe the migration impairment which occurs as part of the wider context of cancer cell migration defects, with a focus on the role of mTOR in mediating migration effects downstream of BCR ligation and other microenvironmental signals.
Collapse
|
188
|
Zhang K, Liu Y, Zhao X, Tang Q, Dernedde J, Zhang J, Fan H. Anti-inflammatory properties of GLPss58, a sulfated polysaccharide from Ganoderma lucidum. Int J Biol Macromol 2018; 107:486-493. [DOI: 10.1016/j.ijbiomac.2017.09.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 01/13/2023]
|
189
|
Nassiri Asl M, Aali E. Review on the mesenchymal stem cells and their potential application in regenerative medicine. THE JOURNAL OF QAZVIN UNIVERSITY OF MEDICAL SCIENCES 2018. [DOI: 10.29252/qums.21.6.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
190
|
Riggi N, Aguet M, Stamenkovic I. Cancer Metastasis: A Reappraisal of Its Underlying Mechanisms and Their Relevance to Treatment. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 13:117-140. [DOI: 10.1146/annurev-pathol-020117-044127] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nicolo Riggi
- Experimental Pathology Service, Centre Hospitalier Universitaire Vaudois, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Michel Aguet
- Experimental Pathology Service, Centre Hospitalier Universitaire Vaudois, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Ivan Stamenkovic
- Experimental Pathology Service, Centre Hospitalier Universitaire Vaudois, University of Lausanne, CH-1005 Lausanne, Switzerland
| |
Collapse
|
191
|
Engelhard VH, Rodriguez AB, Mauldin IS, Woods AN, Peske JD, Slingluff CL. Immune Cell Infiltration and Tertiary Lymphoid Structures as Determinants of Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:432-442. [PMID: 29311385 PMCID: PMC5777336 DOI: 10.4049/jimmunol.1701269] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022]
Abstract
Limited representation of intratumoral immune cells is a major barrier to tumor control. However, simply enhancing immune responses in tumor-draining lymph nodes or through adoptive transfer may not overcome the limited ability of tumor vasculature to support effector infiltration. An alternative is to promote a sustained immune response intratumorally. This idea has gained traction with the observation that many tumors are associated with tertiary lymphoid structures (TLS), which organizationally resemble lymph nodes. These peri- and intratumoral structures are usually, but not always, associated with positive prognoses in patients. Preclinical and clinical data support a role for TLS in modulating immunity in the tumor microenvironment. However, there appear to be varied functions of TLS, potentially based on their structure or location in relation to the tumor or the origin or location of the tumor itself. Understanding more about TLS development, composition, and function may offer new therapeutic opportunities to modulate antitumor immunity.
Collapse
Affiliation(s)
- Victor H Engelhard
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908;
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; and
| | - Anthony B Rodriguez
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; and
| | - Ileana S Mauldin
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Amber N Woods
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; and
| | - J David Peske
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; and
| | - Craig L Slingluff
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
192
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function, and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:1-87. [DOI: 10.1016/b978-0-7020-6697-9.00001-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
193
|
Brummelman J, Pilipow K, Lugli E. The Single-Cell Phenotypic Identity of Human CD8+ and CD4+ T Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:63-124. [DOI: 10.1016/bs.ircmb.2018.05.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
194
|
T Lymphocytes and Autoimmunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:125-168. [DOI: 10.1016/bs.ircmb.2018.05.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
195
|
Park C, Hwang IY, Kehrl JH. The Use of Intravital Two-Photon and Thick Section Confocal Imaging to Analyze B Lymphocyte Trafficking in Lymph Nodes and Spleen. Methods Mol Biol 2018; 1707:193-205. [PMID: 29388109 DOI: 10.1007/978-1-4939-7474-0_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Intravital two-photon laser scanning microscopy (TP-LSM) has allowed the direct observation of immune cells in intact organs of living animals. In the B cell biology field TP-LSM has detailed the movement of B cells in high endothelial venules and during their transmigration into lymph organs; described the movement and positioning of B cells within lymphoid organs; outlined the mechanisms by which antigen is delivered to B cells; observed B cell interacting with T cells, other cell types, and even with pathogens; and delineated the egress of B cells from the lymph node (LN) parenchyma into the efferent lymphatics. As the quality of TP-LSM improves and as new fluorescent probes become available additional insights into B cell behavior and function await new investigations. Yet intravital TP-LSM has some disadvantages including a lower resolution than standard confocal microscopy, a narrow imaging window, and a shallow depth of imaging. We have found that supplementing intravital TP-LSM with conventional confocal microscopy using thick LN sections helps to overcome some of these shortcomings. Here, we describe procedures for visualizing the behavior and trafficking of fluorescently labeled, adoptively transferred antigen-activated B cells within the inguinal LN of live mice using two-photon microscopy. Also, we introduce procedures for fixed thick section imaging using standard confocal microscopy, which allows imaging of fluorescently labeled cells deep in the LN cortex and in the spleen with high resolution.
Collapse
Affiliation(s)
- Chung Park
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Il-Young Hwang
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John H Kehrl
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
196
|
Hartmann BM, Albrecht RA, Zaslavsky E, Nudelman G, Pincas H, Marjanovic N, Schotsaert M, Martínez-Romero C, Fenutria R, Ingram JP, Ramos I, Fernandez-Sesma A, Balachandran S, García-Sastre A, Sealfon SC. Pandemic H1N1 influenza A viruses suppress immunogenic RIPK3-driven dendritic cell death. Nat Commun 2017; 8:1931. [PMID: 29203926 PMCID: PMC5715119 DOI: 10.1038/s41467-017-02035-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/02/2017] [Indexed: 12/15/2022] Open
Abstract
The risk of emerging pandemic influenza A viruses (IAVs) that approach the devastating 1918 strain motivates finding strain-specific host–pathogen mechanisms. During infection, dendritic cells (DC) mature into antigen-presenting cells that activate T cells, linking innate to adaptive immunity. DC infection with seasonal IAVs, but not with the 1918 and 2009 pandemic strains, induces global RNA degradation. Here, we show that DC infection with seasonal IAV causes immunogenic RIPK3-mediated cell death. Pandemic IAV suppresses this immunogenic DC cell death. Only DC infected with seasonal IAV, but not with pandemic IAV, enhance maturation of uninfected DC and T cell proliferation. In vivo, circulating T cell levels are reduced after pandemic, but not seasonal, IAV infection. Using recombinant viruses, we identify the HA genomic segment as the mediator of cell death inhibition. These results show how pandemic influenza viruses subvert the immune response. The differences in virus-host interactions resulting in distinct pathogenicity of seasonal and pandemic influenza A viruses (IAV) are not well understood. Here, the authors show that the hemagglutinin segment from pandemic, but not seasonal, IAV suppresses RIPK3-mediated dendritic cell death, thereby reducing T cell activation.
Collapse
Affiliation(s)
- Boris M Hartmann
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Randy A Albrecht
- Department of Microbiology and Global Health & Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - German Nudelman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hanna Pincas
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nada Marjanovic
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael Schotsaert
- Department of Microbiology and Global Health & Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Carles Martínez-Romero
- Department of Microbiology and Global Health & Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rafael Fenutria
- Department of Microbiology and Global Health & Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Irene Ramos
- Department of Microbiology and Global Health & Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ana Fernandez-Sesma
- Department of Microbiology and Global Health & Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Adolfo García-Sastre
- Department of Microbiology and Global Health & Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
197
|
Alsughayyir J, Pettigrew GJ, Motallebzadeh R. Spoiling for a Fight: B Lymphocytes As Initiator and Effector Populations within Tertiary Lymphoid Organs in Autoimmunity and Transplantation. Front Immunol 2017; 8:1639. [PMID: 29218052 PMCID: PMC5703719 DOI: 10.3389/fimmu.2017.01639] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022] Open
Abstract
Tertiary lymphoid organs (TLOs) develop at ectopic sites within chronically inflamed tissues, such as in autoimmunity and rejecting organ allografts. TLOs differ structurally from canonical secondary lymphoid organs (SLOs), in that they lack a mantle zone and are not encapsulated, suggesting that they may provide unique immune function. A notable feature of TLOs is the frequent presence of structures typical of germinal centers (GCs). However, little is known about the role of such GCs, and in particular, it is not clear if the B cell response within is autonomous, or whether it synergizes with concurrent responses in SLOs. This review will discuss ectopic lymphoneogenesis and the role of the B cell in TLO formation and subsequent effector output in the context of autoimmunity and transplantation, with particular focus on the contribution of ectopic GCs to affinity maturation in humoral immune responses and to the potential breakdown of self-tolerance and development of humoral autoimmunity.
Collapse
Affiliation(s)
- Jawaher Alsughayyir
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gavin J Pettigrew
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Reza Motallebzadeh
- Division of Surgery and Interventional Science, University College London, London, United Kingdom.,Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Nephrology, Urology and Transplantation, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
198
|
Gukovskaya AS, Gukovsky I, Algül H, Habtezion A. Autophagy, Inflammation, and Immune Dysfunction in the Pathogenesis of Pancreatitis. Gastroenterology 2017; 153:1212-1226. [PMID: 28918190 PMCID: PMC6338477 DOI: 10.1053/j.gastro.2017.08.071] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
Abstract
Pancreatitis is a common disorder with significant morbidity and mortality, yet little is known about its pathogenesis, and there is no specific or effective treatment. Its development involves dysregulated autophagy and unresolved inflammation, demonstrated by studies in genetic and experimental mouse models. Disease severity depends on whether the inflammatory response resolves or amplifies, leading to multi-organ failure. Dysregulated autophagy might promote the inflammatory response in the pancreas. We discuss the roles of autophagy and inflammation in pancreatitis, mechanisms of deregulation, and connections among disordered pathways. We identify gaps in our knowledge and delineate perspective directions for research. Elucidation of pathogenic mechanisms could lead to new targets for treating or reducing the severity of pancreatitis.
Collapse
Affiliation(s)
- Anna S Gukovskaya
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, California; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California.
| | - Ilya Gukovsky
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, California; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| | - Hana Algül
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
199
|
Gut memories do not fade: epigenetic regulation of lasting gut homing receptor expression in CD4 + memory T cells. Mucosal Immunol 2017; 10:1443-1454. [PMID: 28198363 DOI: 10.1038/mi.2017.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/17/2017] [Indexed: 02/04/2023]
Abstract
The concept of a "topographical memory" in lymphocytes implies a stable expression of homing receptors mediating trafficking of lymphocytes back to the tissue of initial activation. However, a significant plasticity of the gut-homing receptor α4β7 was found in CD8+ T cells, questioning the concept. We now demonstrate that α4β7 expression in murine CD4+ memory T cells is, in contrast, imprinted and remains stable in the absence of the inducing factor retinoic acid (RA) or other stimuli from mucosal environments. Repetitive rounds of RA treatment enhanced the stability of de novo induced α4β7. A novel enhancer element in the murine Itga4 locus was identified that showed, correlating to stability, selective DNA demethylation in mucosa-seeking memory cells and methylation-dependent transcriptional activity in a reporter gene assay. This implies that epigenetic mechanisms contribute to the stabilization of α4β7 expression. Analogous DNA methylation patterns could be observed in the human ITGA4 locus, suggesting that its epigenetic regulation is conserved between mice and men. These data prove that mucosa-specific homing mediated by α4β7 is imprinted in CD4+ memory T cells, reinstating the validity of the concept of "topographical memory" for mucosal tissues, and imply a critical role of epigenetic mechanisms.
Collapse
|
200
|
Yan X, Wang L, Zhang R, Pu X, Wu S, Yu L, Meraz IM, Zhang X, Wang JF, Gibbons DL, Mehran RJ, Swisher SG, Roth JA, Fang B. Overcoming resistance to anti-PD immunotherapy in a syngeneic mouse lung cancer model using locoregional virotherapy. Oncoimmunology 2017; 7:e1376156. [PMID: 29296537 PMCID: PMC5739569 DOI: 10.1080/2162402x.2017.1376156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/10/2017] [Accepted: 08/30/2017] [Indexed: 02/03/2023] Open
Abstract
Anti-PD-1 and anti-PD-L1 immunotherapy has provided a new therapeutic opportunity for treatment of advanced-stage non-small cell lung cancer (NSCLC). However, overall objective response rates are approximately 15%-25% in all NSCLC patients who receive anti-PD therapy. Therefore, strategies to overcome primary resistance to anti-PD immunotherapy are urgently needed. We hypothesized that the barrier to the success of anti-PD therapy in most NSCLC patients can be overcome by stimulating the lymphocyte infiltration at cancer sites through locoregional virotherapy. To this end, in this study, we determined combination effects of anti-PD immunotherapy and oncolytic adenoviral vector-mediated tumor necrosis factor-α-related apoptosis-inducing ligand (TRAIL) gene therapy (Ad/E1-TRAIL) or adenoviral-mediated TP53 (Ad/CMV-TP53) gene therapy in syngeneic mice bearing subcutaneous tumors derived from M109 lung cancer cells. Both anti-PD-1 and anti-PD-L1 antibodies failed to elicit obvious therapeutic effects in the M109 tumors. Intratumoral administration of Ad/E1-TRAIL or Ad/CMV-TP53 alone suppressed tumor growth in animals preexposed to an adenovector and bearing subcutaneous tumors derived from M109 cells. However, combining either anti-PD-1 or anti-PD-L1 antibody with these two adenoviral vectors elicited the strongest anticancer activity in mice with existing immunity to adenoviral vectors. Dramatically enhanced intratumoral immune response was detected in this group of combination therapy based on infiltrations of CD4+ and CD8+ lymphocytes and macrophages in tumors. Our results demonstrate that resistance to anti-PD-1 immunotherapy in syngeneic mouse lung cancer can be overcome by locoregional virotherapy.
Collapse
Affiliation(s)
- Xiang Yan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Li Wang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ran Zhang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingxiang Pu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shuhong Wu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lili Yu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ismail M. Meraz
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoshan Zhang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jacqueline F. Wang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L. Gibbons
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Reza J. Mehran
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen G. Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jack A. Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,CONTACT Bingliang Fang Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|