151
|
Yao Y, Cai X, Chen C, Fang H, Zhao Y, Fei W, Chen F, Zheng C. The Role of Microbiomes in Pregnant Women and Offspring: Research Progress of Recent Years. Front Pharmacol 2020; 11:643. [PMID: 32457628 PMCID: PMC7225329 DOI: 10.3389/fphar.2020.00643] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnancy is a complicated and delicate process, the maternal body undergoes changes on hormones, immunity, and metabolism during pregnancy to support fetal development. Microbiomes in the human body mainly live in the intestine, and the human gut microbiomes are complex, which composed of more than 500 to 1500 different bacteria, archaea, fungi, and viruses. Studies have shown that these microbiomes are not only involved in the digestion and absorption of food but also indispensable in regulating host health. In recent years, there has been increasing evidence that microbiomes are important for pregnant women and fetuses. During pregnancy, there will be great changes in gut microbiomes. Regulating gut microbiomes is beneficial to the health of the mother and the fetus. In addition, many complications during pregnancy are related to gut microbiomes, such as gestational diabetes, obesity, preeclampsia, digestive disorders, and autoimmune diseases. Moreover, the microbiomes in mother's milk and vagina are closely related to the colonization of microbiomes in the early life of infants. In this review, we systematically review the role of maternal microbiomes in different gestational complications, and elucidate the function and mechanism of maternal microbiomes in the neural development and immune system of offspring. These will provide a clear knowledge framework or potential research direction for researchers in related fields.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Chunyan Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Fang
- Department of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yunchun Zhao
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fengying Chen
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
152
|
Mendez R, Watane A, Farhangi M, Cavuoto KM, Leith T, Budree S, Galor A, Banerjee S. Gut microbial dysbiosis in individuals with Sjögren's syndrome. Microb Cell Fact 2020; 19:90. [PMID: 32293464 PMCID: PMC7158097 DOI: 10.1186/s12934-020-01348-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Autoimmune diseases have been associated with changes in the gut microbiome. In this study, the gut microbiome was evaluated in individuals with dry eye and bacterial compositions were correlated to dry eye (DE) measures. We prospectively included 13 individuals with who met full criteria for Sjögren's (SDE) and 8 individuals with features of Sjögren's but who did not meet full criteria (NDE) for a total of 21 cases as compared to 21 healthy controls. Stool was analyzed by 16S pyrosequencing, and associations between bacterial classes and DE symptoms and signs were examined. RESULTS Results showed that Firmicutes was the dominant phylum in the gut, comprising 40-60% of all phyla. On a phyla level, subjects with DE (SDE and NDE) had depletion of Firmicutes (1.1-fold) and an expansion of Proteobacteria (3.0-fold), Actinobacteria (1.7-fold), and Bacteroidetes (1.3-fold) compared to controls. Shannon's diversity index showed no differences between groups with respect to the numbers of different operational taxonomic units (OTUs) encountered (diversity) and the instances these unique OTUs were sampled (evenness). On the other hand, Faith's phylogenetic diversity showed increased diversity in cases vs controls, which reached significance when comparing SDE and controls (13.57 ± 0.89 and 10.96 ± 0.76, p = 0.02). Using Principle Co-ordinate Analysis, qualitative differences in microbial composition were noted with differential clustering of cases and controls. Dimensionality reduction and clustering of complex microbial data further showed differences between the three groups, with regard to microbial composition, association and clustering. Finally, differences in certain classes of bacteria were associated with DE symptoms and signs. CONCLUSIONS In conclusion, individuals with DE had gut microbiome alterations as compared to healthy controls. Certain classes of bacteria were associated with DE measures.
Collapse
Affiliation(s)
- Roberto Mendez
- Department of Surgery, University of Miami, Miami, FL USA
| | - Arjun Watane
- Bascom Palmer Eye Institute, University of Miami, Miami, FL USA
| | - Monika Farhangi
- Bascom Palmer Eye Institute, University of Miami, Miami, FL USA
- Miami Veterans Administration Medical Center, Miami, FL USA
| | - Kara M. Cavuoto
- Bascom Palmer Eye Institute, University of Miami, Miami, FL USA
| | | | | | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami, Miami, FL USA
- Miami Veterans Administration Medical Center, Miami, FL USA
| | | |
Collapse
|
153
|
Zhang Y, Liu Q, Yu Y, Wang M, Wen C, He Z. Early and Short-Term Interventions in the Gut Microbiota Affects Lupus Severity, Progression, and Treatment in MRL/lpr Mice. Front Microbiol 2020; 11:628. [PMID: 32346376 PMCID: PMC7171286 DOI: 10.3389/fmicb.2020.00628] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
There have been attempts to reveal the possible associations between systemic lupus erythematosus (SLE) and gut microbiota. Using MRL/lpr mice, this study was performed to reveal whether early and short-term interventions in gut microbiota affect lupus. MRL/lpr mice were treated with antibiotics or fecal microbiota transplantation (FMT) before onset. Then, prednisone was used to treat the lupus mice with initially different gut microbiota compositions. The compositions of gut microbiota were assessed by the V3-V4 region of 16S rRNA gene sequence. Early and short-term antibiotics exposure aggravated lupus severity by depleting beneficial gut microbiota for lupus, such as Lactobacillus and Bifidobacterium, and enriching harmful gut microbiota for lupus, such as Klebsiella and Proteus. FMT alleviated lupus severity by renovating the antibiotic-induced dysbiosis of gut microbiota in the following 1 week after antibiotics exposure. Besides, short-term antibiotics exposure before onset imposed no significant effects on lupus progression, but the following one week of FMT suppressed lupus progression. Moreover, the short-term antibiotics or FMT before onset inhibited the therapeutic efficiency of prednisone on lupus from 9 to 13 weeks old of MRL/lpr mice. These data demonstrate that the gut microbiota before onset is important for lupus severity, progression and treatment.
Collapse
Affiliation(s)
- Yun Zhang
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiuping Liu
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiran Yu
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingzhu Wang
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengping Wen
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhixing He
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
154
|
Abdelhamid L, Cabana-Puig X, Swartwout B, Lee J, Li S, Sun S, Li Y, Ross AC, Cecere TE, LeRoith T, Werre SR, Wang H, Reilly CM, Luo XM. Retinoic Acid Exerts Disease Stage-Dependent Effects on Pristane-Induced Lupus. Front Immunol 2020; 11:408. [PMID: 32265909 PMCID: PMC7103630 DOI: 10.3389/fimmu.2020.00408] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
We previously showed that all-trans-retinoic acid (tRA), an active metabolite of vitamin A, exacerbated pre-existing autoimmunity in lupus; however, its effects before the development of autoimmunity are unknown. Here, using a pristane-induced model, we show that tRA exerts differential effects when given at the initiation vs. continuation phase of lupus. Unlike tRA treatment during active disease, pre-pristane treatment with tRA aggravated glomerulonephritis through increasing renal expression of pro-fibrotic protein laminin β1, activating bone marrow conventional dendritic cells (cDCs), and upregulating the interaction of ICAM-1 and LFA-1 in the spleen, indicating an active process of leukocyte activation and trafficking. Transcriptomic analysis revealed that prior to lupus induction, tRA significantly upregulated the expression of genes associated with cDC activation and migration. Post-pristane tRA treatment, on the other hand, did not significantly alter the severity of glomerulonephritis; rather, it exerted immunosuppressive functions of decreasing circulatory and renal deposition of autoantibodies as well as suppressing the renal expression of proinflammatory cytokines and chemokines. Together, these findings suggest that tRA differentially modulate lupus-associated kidney inflammation depending on the time of administration. Interestingly, both pre- and post-pristane treatments with tRA reversed pristane-induced leaky gut and modulated the gut microbiota in a similar fashion, suggesting a gut microbiota-independent mechanism by which tRA affects the initiation vs. continuation phase of lupus.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Brianna Swartwout
- Translational Biology, Medicine and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Jiyoung Lee
- Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Song Li
- Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Sha Sun
- Department of Development and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Yaqi Li
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - A Catharine Ross
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Thomas E Cecere
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Stephen R Werre
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Haifeng Wang
- College of Animal Science, Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Christopher M Reilly
- Department of Cell Biology and Physiology, Edward via College of Osteopathic Medicine, Blacksburg, VA, United States
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
155
|
Abstract
Over the last decade, the interplay between the gut microbiota, the consortium of intestinal microbes that colonizes intestinal mucosal barriers, and its host immune system has been increasingly better understood. Disruption of the delicate balance between beneficial and pathogenic commensals, known as dysbiosis, contributes to a variety of chronic immunologic and metabolic diseases. Complicating this paradigm are bacterial strains that can operate paradoxically both as instigators and attenuators of inflammatory responses, depending on host background. Here, we review the role of several strains in the genus Lactobacillus within the context of autoimmune and other chronic disorders with a predominant focus on L. reuteri. While strains within this species have been shown to provide immune health benefits, they have also been demonstrated to act as a pathobiont in autoimmune-prone hosts. Beneficial functions in healthy hosts include competing with pathogenic microbes, promoting regulatory T cell development, and protecting the integrity of the gut barrier. On the other hand, certain strains can also break through a dysfunctional gut barrier, colonize internal tissues such as the spleen or liver and promote inflammatory responses in host tissues that lead to autoimmune disease. This review summarizes the manifold roles that these commensals play in the context of health and disease.
Collapse
|
156
|
Teng X, Brown J, Choi SC, Li W, Morel L. Metabolic determinants of lupus pathogenesis. Immunol Rev 2020; 295:167-186. [PMID: 32162304 DOI: 10.1111/imr.12847] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
The metabolism of healthy murine and more recently human immune cells has been investigated with an increasing amount of details. These studies have revealed the challenges presented by immune cells to respond rapidly to a wide variety of triggers by adjusting the amount, type, and utilization of the nutrients they import. A concept has emerged that cellular metabolic programs regulate the size of the immune response and the plasticity of its effector functions. This has generated a lot of enthusiasm with the prediction that cellular metabolism could be manipulated to either enhance or limit an immune response. In support of this hypothesis, studies in animal models as well as human subjects have shown that the dysregulation of the immune system in autoimmune diseases is associated with a skewing of the immunometabolic programs. These studies have been mostly conducted on autoimmune CD4+ T cells, with the metabolism of other immune cells in autoimmune settings still being understudied. Here we discuss systemic metabolism as well as cellular immunometabolism as novel tools to decipher fundamental mechanisms of autoimmunity. We review the contribution of each major metabolic pathway to autoimmune diseases, with a focus on systemic lupus erythematosus (SLE), with the relevant translational opportunities, existing or predicted from results obtained with healthy immune cells. Finally, we review how targeting metabolic programs may present novel therapeutic venues.
Collapse
Affiliation(s)
- Xiangyu Teng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Josephine Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
157
|
Jiao Y, Wu L, Huntington ND, Zhang X. Crosstalk Between Gut Microbiota and Innate Immunity and Its Implication in Autoimmune Diseases. Front Immunol 2020; 11:282. [PMID: 32153586 PMCID: PMC7047319 DOI: 10.3389/fimmu.2020.00282] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
The emerging concept of microbiota contributing to local mucosal homeostasis has fueled investigation into its specific role in immunology. Gut microbiota is mostly responsible for maintaining the balance between host defense and immune tolerance. Dysbiosis of gut microbiota has been shown to be related to various alterations of the immune system. This review focuses on the reciprocal relationship between gut microbiota and innate immunity compartment, with emphasis on gut-associated lymphoid tissue, innate lymphoid cells, and phagocytes. From a clinical perspective, the review gives a possible explanation of how the “gut microbiota—innate immunity” axis might contribute to the pathogenesis of autoimmune diseases like rheumatoid arthritis, spondyloarthritis, and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Yuhao Jiao
- The Ministry of Education Key Laboratory, Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| | - Li Wu
- Institute for Immunology, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Centre for Life Sciences, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Nicholas D Huntington
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Xuan Zhang
- The Ministry of Education Key Laboratory, Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Immunology Centre, Medical Epigenetics Research Centre, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
158
|
Gut dysbiosis is prevailing in Sjögren's syndrome and is related to dry eye severity. PLoS One 2020; 15:e0229029. [PMID: 32059038 PMCID: PMC7021297 DOI: 10.1371/journal.pone.0229029] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/28/2020] [Indexed: 02/08/2023] Open
Abstract
Objective To investigate gut dysbiosis in patients with Sjögren’s syndrome (SS) or dry eye syndrome (DES) compared to normal subjects and to evaluate the association of dysbiosis with dry eye severity. Methods 10 subjects with SS, 14 subjects with DES and 12 controls were enrolled. Corneal staining, tear break up time (TBUT) and tear secretion were evaluated. Bacterial genomic 16s rRNA from stool samples were analyzed. Main outcomes were microbiome compositional differences among groups and their correlation to dry eye signs. Results Gut microbiome analysis revealed significant compositional differences in SS compared to controls and DES. In phylum, Bacteriodetes increased, while Firmicutes/Bacteroidetes ratio and Actinobacteria decreased (p<0.05). In genus, Bifidobacterium was reduced (vs controls; p = 0.025, vs DES; p = 0.026). Beta diversity of SS also showed significant distances from controls and DES (p = 0.007 and 0.019, respectively). SS showed decreased genus of Blautia (p = 0.041), Dorea (p = 0.025) and Agathobacter (p = 0.035) compared to controls and increased genus of Prevotella (p = 0.026), Odoribacter (p = 0.028) and Alistipes (p = 0.46) compared to DES. On the other hand, DES only had increased genus Veillonella (p = 0.045) and reduced Subdoligranulum (p = 0.035) compared to controls. Bacteroidetes, Actinobacteria and Bifidobacterium were significantly related with dry eye signs (p<0.05). After adjustment of age, gender and group classification, multivariate linear regression analysis revealed tear secretion was strongly affected by Prevotella (p = 0.025). With additional adjustment of hydroxychloroquine use, TBUT was markedly affected by Prevotella (p = 0.037) and Actinobacteria (p = 0.001). Conclusions Sjögren’s syndrome showed significant gut dysbiosis compared to controls and environmental dry eye syndrome, while dry eye patients showed compositional changes of gut microbiome somewhere in between Sjögren’s syndrome and controls. Dysbiosis of the gut microbiota was partly correlated to dry eye severity.
Collapse
|
159
|
Johnson BM, Gaudreau MC, Gudi R, Brown R, Gilkeson G, Vasu C. Gut microbiota differently contributes to intestinal immune phenotype and systemic autoimmune progression in female and male lupus-prone mice. J Autoimmun 2020; 108:102420. [PMID: 32019684 DOI: 10.1016/j.jaut.2020.102420] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 12/21/2022]
Abstract
The risk of developing systemic lupus erythematosus (SLE) is about 9 times higher in women as compared to men. Our recent report, which used (SWRxNZB) F1 (SNF1) mouse model of spontaneous lupus, showed a potential link between immune response initiated in the gut mucosa at juvenile age (sex hormone independent) and SLE susceptibility. Here, using this mouse model, we show that gut microbiota contributes differently to pro-inflammatory immune response in the intestine and autoimmune progression in lupus-prone males and females. We found that gut microbiota composition in male and female littermates are significantly different only at adult ages. However, depletion of gut microbes causes suppression of autoimmune progression only in females. In agreement, microbiota depletion suppressed the pro-inflammatory cytokine response of gut mucosa in juvenile and adult females. Nevertheless, microbiota from females and males showed, upon cross-transfer, contrasting abilities to modulate disease progression. Furthermore, orchidectomy (castration) not only caused changes in the composition of gut microbiota, but also a modest acceleration of autoimmune progression. Overall, our work shows that microbiota-dependent pro-inflammatory immune response in the gut mucosa of females initiated at juvenile ages and androgen-dependent protection of males contribute to gender differences in the intestinal immune phenotype and systemic autoimmune progression.
Collapse
Affiliation(s)
- Benjamin M Johnson
- Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Marie-Claude Gaudreau
- Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Radhika Gudi
- Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Robert Brown
- Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Gary Gilkeson
- Division of Rheumatology, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Chenthamarakshan Vasu
- Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
160
|
Yamamoto EA, Jørgensen TN. Relationships Between Vitamin D, Gut Microbiome, and Systemic Autoimmunity. Front Immunol 2020; 10:3141. [PMID: 32038645 PMCID: PMC6985452 DOI: 10.3389/fimmu.2019.03141] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
There is increasing recognition of the role the microbiome plays in states of health and disease. Microbiome studies in systemic autoimmune diseases demonstrate unique microbial patterns in Inflammatory Bowel Disease, Rheumatoid Arthritis, and Systemic Lupus Erythematosus to a lesser extent, whereas there is no single bug or pattern that characterizes Multiple Sclerosis. Autoimmune diseases tend to share a predisposition for vitamin D deficiency, which alters the microbiome and integrity of the gut epithelial barrier. In this review, we summarize the influence of intestinal bacteria on the immune system, explore the microbial patterns that have emerged from studies on autoimmune diseases, and discuss how vitamin D deficiency may contribute to autoimmunity via its effects on the intestinal barrier function, microbiome composition, and/or direct effects on immune responses.
Collapse
Affiliation(s)
- Erin A Yamamoto
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Trine N Jørgensen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
161
|
Khan MF, Wang H. Environmental Exposures and Autoimmune Diseases: Contribution of Gut Microbiome. Front Immunol 2020; 10:3094. [PMID: 31998327 PMCID: PMC6970196 DOI: 10.3389/fimmu.2019.03094] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Environmental agents have been gaining more attention in recent years for their role in the pathogenesis of autoimmune diseases (ADs). Increasing evidence has linked environmental exposures, including trichloroethene (TCE), silica, mercury, pristane, pesticides, and smoking to higher risk for ADs. However, potential mechanisms by which these environmental agents contribute to the disease pathogenesis remains largely unknown. Dysbiosis of the gut microbiome is another important environmental factor that has been linked to the onset of different ADs. Altered microbiota composition is associated with impaired intestinal barrier function and dysregulation of mucosal immune system, but it is unclear if gut dysbiosis is a causal factor or an outcome of ADs. In this review article, we first describe the recent epidemiological and mechanistic evidences linking environmental/occupational exposures with various ADs (especially SLE). Secondly, we discuss how changes in the gut microbiome composition (dysbiosis) could contribute to the disease pathogenesis, especially in response to exposure to environmental chemicals.
Collapse
Affiliation(s)
- M. Firoze Khan
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | | |
Collapse
|
162
|
|
163
|
Using Multiple Analytical Platforms to Investigate the Androgen Depletion Effects on Fecal Metabolites in a Mouse Model of Systemic Lupus Erythematosus. J Proteome Res 2019; 19:667-676. [PMID: 31820642 DOI: 10.1021/acs.jproteome.9b00558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by circulating autoantibodies that deposit in target organs (e.g., kidneys), resulting in chronic inflammation and eventual destruction of the organ. SLE is much more prevalent in females than males in both humans and spontaneous mouse models of lupus, such as NZBxNZW F1 (BWF1) mice. Depleting androgens by castration dramatically increases the susceptibility of BWF1 male to lupus. We compared fecal metabolite profiles of castrated BWF1 (androgen-depleted) male, intact (androgen-replete) male, and female mice. Four analytical platforms were employed to study the profiles of polar metabolites in mouse feces collected from adult BWF1 mice, and a total of 435 metabolites was identified. Of these, the abundance levels of 72 metabolites were significantly different between castrated and intact male groups, and 63 metabolites were different between female and male groups. Pathway analysis indicated that the pathway differences between castrated and intact male mice closely resembled the pathway differences between female and intact male mice, suggesting that low levels of androgens, whether due to depletion (castrated male) or endogenous (female), are associated with multiple fecal metabolomic alterations, which could potentially affect SLE progression. Our findings demonstrate that analyzing fecal metabolites using multiple analytical platforms holds great promise for detecting metabolomic alterations in complex disease model systems.
Collapse
|
164
|
Disordered cutaneous microbiota in systemic lupus erythematosus. J Autoimmun 2019; 108:102391. [PMID: 31883828 DOI: 10.1016/j.jaut.2019.102391] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022]
Abstract
The correlation between systemic lupus erythematosus (SLE) and microbiota colonization has been receiving much attention during recent years. Here, we screened the cutaneous bacterial spectrums of 69 SLE patients, 49 healthy controls and 20 dermatomyositis (DM) patients and identified the specific changes of cutaneous microbial composition and abundance in SLE patients. We observed the decreasing diversity in community richness and evenness and the greater heterogeneity in SLE patients compared to healthy controls, which were also different from the cutaneous microbiome of DM patients. The skin microbial community disorders in SLE patients were correlated with several clinical features such as serum low complement level, gender, renal involvement and myositis. According to the Kruskal-Wallis (KW) test, receiver operating characteristic (ROC) curve and LDA Effect Size (LEfSe) analysis, several bacterial taxa such as Staphylococcus, especially Staphylococcus aureus and Staphylococcus epidermidis, were identified to be potential markers for SLE skin lesions. Furthermore, Picrust analysis showed that Staphylococcus aureus infection pathway was significantly enriched and exhibited a strong correlation with genus Staphylococcus in SLE patients. The changes in the composition and abundance of cutaneous microbiota in SLE patients suggest that the microbial dysbiosis is associated with the pathogenesis of SLE, which may be potentially reliable biomarker or therapeutic target for SLE.
Collapse
|
165
|
Bains M, Laney C, Wolfe AE, Orr M, Waschek JA, Ericsson AC, Dorsam GP. Vasoactive Intestinal Peptide Deficiency Is Associated With Altered Gut Microbiota Communities in Male and Female C57BL/6 Mice. Front Microbiol 2019; 10:2689. [PMID: 31849864 PMCID: PMC6900961 DOI: 10.3389/fmicb.2019.02689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) is crucial for gastrointestinal tract (GIT) health. VIP sustains GIT homeostasis through maintenance of the intestinal epithelial barrier and acts as a potent anti-inflammatory mediator that contributes to gut bacterial tolerance. Based on these biological functions by VIP, we hypothesized that its deficiency would alter gut microbial ecology. To this end, fecal samples from male and female VIP+/+, VIP+/-, and VIP-/- littermates (n = 47) were collected and 16S rRNA sequencing was conducted. Our data revealed significant changes in bacterial composition, biodiversity, and weight loss from VIP-/- mice compared to VIP+/+ and VIP+/- littermates, irrespective of sex. The gut bacteria compositional changes observed in VIP-/- mice was consistent with gut microbial structure changes reported for certain inflammatory and autoimmune disorders. Moreover, predicted functional changes by PICRUSt software suggested an energy surplus within the altered microbiota from VIP-/- mice. These data support that VIP plays an important role in maintaining microbiota balance, biodiversity, and GIT function, and its genetic removal results in significant gut microbiota restructuring and weight loss.
Collapse
Affiliation(s)
- Manpreet Bains
- Department of Microbiological Sciences, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, ND, United States
| | - Caleb Laney
- Department of Microbiological Sciences, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, ND, United States
| | - Annie E. Wolfe
- Metagenomics Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Megan Orr
- Department of Statistics, College of Science and Math, North Dakota State University, Fargo, ND, United States
| | - James A. Waschek
- Intellectual and Developmental Disabilities Research Center, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aaron C. Ericsson
- Metagenomics Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Glenn P. Dorsam
- Department of Microbiological Sciences, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
166
|
Qiu CC, Caricchio R, Gallucci S. Triggers of Autoimmunity: The Role of Bacterial Infections in the Extracellular Exposure of Lupus Nuclear Autoantigens. Front Immunol 2019; 10:2608. [PMID: 31781110 PMCID: PMC6857005 DOI: 10.3389/fimmu.2019.02608] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Infections are considered important environmental triggers of autoimmunity and can contribute to autoimmune disease onset and severity. Nucleic acids and the complexes that they form with proteins—including chromatin and ribonucleoproteins—are the main autoantigens in the autoimmune disease systemic lupus erythematosus (SLE). How these nuclear molecules become available to the immune system for recognition, presentation, and targeting is an area of research where complexities remain to be disentangled. In this review, we discuss how bacterial infections participate in the exposure of nuclear autoantigens to the immune system in SLE. Infections can instigate pro-inflammatory cell death programs including pyroptosis and NETosis, induce extracellular release of host nuclear autoantigens, and promote their recognition in an immunogenic context by activating the innate and adaptive immune systems. Moreover, bacterial infections can release bacterial DNA associated with other bacterial molecules, complexes that can elicit autoimmunity by acting as innate stimuli of pattern recognition receptors and activating autoreactive B cells through molecular mimicry. Recent studies have highlighted SLE disease activity-associated alterations of the gut commensals and the expansion of pathobionts that can contribute to chronic exposure to extracellular nuclear autoantigens. A novel field in the study of autoimmunity is the contribution of bacterial biofilms to the pathogenesis of autoimmunity. Biofilms are multicellular communities of bacteria that promote colonization during chronic infections. We review the very recent literature highlighting a role for bacterial biofilms, and their major components, amyloid/DNA complexes, in the generation of anti-nuclear autoantibodies and their ability to stimulate the autoreactive immune response. The best studied bacterial amyloid is curli, produced by enteric bacteria that commonly cause infections in SLE patients, including Escherichia coli and Salmonella spps. Evidence suggests that curli/DNA complexes can trigger autoimmunity by acting as danger signals, molecular mimickers, and microbial chaperones of nucleic acids.
Collapse
Affiliation(s)
- Connie C Qiu
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Roberto Caricchio
- Division of Rheumatology, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
167
|
Protective Effects of Probiotic Consumption in Cardiovascular Disease in Systemic Lupus Erythematosus. Nutrients 2019; 11:nu11112676. [PMID: 31694260 PMCID: PMC6893408 DOI: 10.3390/nu11112676] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
The prevalence of renal and cardiovascular disease (CVD) in patients with systemic lupus erythematosus (SLE) is higher than in general populations. Recently, a causal role of gut microbiota on the development of immune responses in SLE has been described. Probiotic consumption changes the composition of gut microbiota, preventing SLE progression. The aim of this review is to explore the role of the gut microbiota in the development of renal and cardiovascular disease in SLE and how probiotics could be a therapeutic option. Despite strong evidence on the beneficial effects of probiotics in the development of autoimmunity and nephritis in SLE, only a few studies described the protective effects of Lactobacillus in important risk factors for CVD, such as endothelial dysfunction and hypertension in mice. The preventive effects of probiotics in renal and CVD in humans have not been established yet.
Collapse
|
168
|
Ogunrinde E, Zhou Z, Luo Z, Alekseyenko A, Li QZ, Macedo D, Kamen DL, Oates JC, Gilkeson GS, Jiang W. A Link Between Plasma Microbial Translocation, Microbiome, and Autoantibody Development in First-Degree Relatives of Systemic Lupus Erythematosus Patients. Arthritis Rheumatol 2019; 71:1858-1868. [PMID: 31106972 PMCID: PMC6817371 DOI: 10.1002/art.40935] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 05/16/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is characterized by the production of antibodies against self antigens. However, the events underlying autoantibody formation in SLE remain unclear. This study was undertaken to investigate the role of plasma autoantibody levels, microbial translocation, and the microbiome in SLE. METHODS Plasma samples from 2 cohorts, one with 18 unrelated healthy controls and 18 first-degree relatives and the other with 19 healthy controls and 21 SLE patients, were assessed for autoantibody levels by autoantigen microarray analysis, measurement of lipopolysaccharide (LPS) levels by Limulus amebocyte assay, and determination of microbiome composition by microbial 16S ribosomal DNA sequencing. RESULTS First-degree relatives and SLE patients exhibited increased plasma autoantibody levels compared to their control groups. Parents and children of lupus patients exhibited elevated plasma LPS levels compared to controls (P = 0.02). Plasma LPS levels positively correlated with plasma anti-double-stranded DNA IgG levels in first-degree relatives (r = 0.51, P = 0.03), but not in SLE patients. Circulating microbiome analysis revealed that first-degree relatives had significantly reduced microbiome diversity compared to their controls (observed species, P = 0.004; Chao1 index, P = 0.005), but this reduction was not observed in SLE patients. The majority of bacteria that were differentially abundant between unrelated healthy controls and first-degree relatives were in the Firmicutes phylum, while differences in bacteria from several phyla were identified between healthy controls and SLE patients. Bacteria in the Paenibacillus genus were the only overlapping differentially abundant bacteria in both cohorts, and were reduced in first-degree relatives (adjusted P [Padj ] = 2.13 × 10-12 ) and SLE patients (Padj = 0.008) but elevated in controls. CONCLUSIONS These results indicate a possible role of plasma microbial translocation and microbiome composition in influencing autoantibody development in SLE.
Collapse
Affiliation(s)
- Elizabeth Ogunrinde
- Department of Microbiology and Immunology, Medical
University of South Carolina, Charleston, SC, USA, 29425
| | - Zejun Zhou
- State Key Laboratory of Developmental Biology of Freshwater
Fish, College of Life Sciences, Hunan Normal University, Changsha, China,
410081
| | - Zhenwu Luo
- Department of Microbiology and Immunology, Medical
University of South Carolina, Charleston, SC, USA, 29425
| | - Alexander Alekseyenko
- Program for Human Microbiome Research, Biomedical
Informatics Center, Department of Public Health Sciences, Department of Oral Health
Sciences, Medical University of South Carolina, Charleston, SC, USA, 29425
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University
of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
75390
| | - Danielle Macedo
- Neuropharmacology Laboratory, Drug Research and Development
Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade
Federal do Ceará, Fortaleza, CE, Brazil
| | - Diane L. Kamen
- Division of Rheumatology, Department of Medicine, Medical
University of South Carolina, Charleston, SC, USA, 29425
| | - Jim C. Oates
- Division of Rheumatology, Department of Medicine, Medical
University of South Carolina, Charleston, SC, USA, 29425
- Ralph H. Johnson VA Medical Center, Medical Service,
Charleston, SC, USA 29401
| | - Gary S. Gilkeson
- Division of Rheumatology, Department of Medicine, Medical
University of South Carolina, Charleston, SC, USA, 29425
- Ralph H. Johnson VA Medical Center, Medical Service,
Charleston, SC, USA 29401
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical
University of South Carolina, Charleston, SC, USA, 29425
- Division of Infectious Diseases, Department of Medicine,
Medical University of South Carolina, Charleston, SC, USA, 29425
| |
Collapse
|
169
|
The Dynamic Interplay between the Gut Microbiota and Autoimmune Diseases. J Immunol Res 2019; 2019:7546047. [PMID: 31772949 PMCID: PMC6854958 DOI: 10.1155/2019/7546047] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/14/2019] [Indexed: 12/11/2022] Open
Abstract
The human gut-resident commensal microbiota is a unique ecosystem associated with various bodily functions, especially immunity. Gut microbiota dysbiosis plays a crucial role in autoimmune disease pathogenesis as well as in bowel-related diseases. However, the role of the gut microbiota, which causes or influences systemic immunity in autoimmune diseases, remains elusive. Aryl hydrocarbon receptor, a ligand-activated transcription factor, is a master moderator of host-microbiota interactions because it shapes the immune system and impacts host metabolism. In addition, treatment optimization while minimizing potential adverse effects in autoimmune diseases remains essential, and modulation of the gut microbiota constitutes a potential clinical therapy. Here, we present evidence linking gut microbiota dysbiosis with autoimmune mechanisms involved in disease development to identify future effective approaches based on the gut microbiota for preventing autoimmune diseases.
Collapse
|
170
|
Abstract
The human gut-resident commensal microbiota is a unique ecosystem associated with various bodily functions, especially immunity. Gut microbiota dysbiosis plays a crucial role in autoimmune disease pathogenesis as well as in bowel-related diseases. However, the role of the gut microbiota, which causes or influences systemic immunity in autoimmune diseases, remains elusive. Aryl hydrocarbon receptor, a ligand-activated transcription factor, is a master moderator of host-microbiota interactions because it shapes the immune system and impacts host metabolism. In addition, treatment optimization while minimizing potential adverse effects in autoimmune diseases remains essential, and modulation of the gut microbiota constitutes a potential clinical therapy. Here, we present evidence linking gut microbiota dysbiosis with autoimmune mechanisms involved in disease development to identify future effective approaches based on the gut microbiota for preventing autoimmune diseases.
Collapse
|
171
|
Silverman GJ, Azzouz DF, Alekseyenko AV. Systemic Lupus Erythematosus and dysbiosis in the microbiome: cause or effect or both? Curr Opin Immunol 2019; 61:80-85. [PMID: 31590039 DOI: 10.1016/j.coi.2019.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/02/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
Throughout our lives we are immersed in, and colonized by, immense and complex microbial communities. These microbiota serve as activators and early sparring partners for the progressive construction of the layers within our immune defenses and are essential to immune homeostasis. Yet, at times imbalances within the microbiota may contribute to metabolic and immune regulatory abnormalities that underlie the development of inflammatory and autoimmune diseases. Here, we review recent progress in investigations of the microbiome, with emphasis on the gut microbiota associated with systemic autoimmunity. In particular, these studies are beginning to illuminate aspects of the pathogenesis of Systemic Lupus Erythematosus, and may suggest that interconnections with specific disease-associated patterns of dysbiosis within gut communities are bidirectional and mutually reinforcing.
Collapse
Affiliation(s)
- Gregg J Silverman
- Laboratory of B cell Immunobiology, Division of Rheumatology, Department of Medicine, NYU School of Medicine, New York, NY 10016, USA.
| | - Doua F Azzouz
- Laboratory of B cell Immunobiology, Division of Rheumatology, Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Alexander V Alekseyenko
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
172
|
Recent Advances in Our Understanding of the Link between the Intestinal Microbiota and Systemic Lupus Erythematosus. Int J Mol Sci 2019; 20:ijms20194871. [PMID: 31575045 PMCID: PMC6801612 DOI: 10.3390/ijms20194871] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/13/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease featuring enhanced expression of type I interferon (IFN) and autoantibody production triggering inflammation of, and damage to, multiple organs. Continuing research efforts focus on how gut microbes trigger systemic autoimmunity and SLE. The gut microbial communities of mice and humans with lupus have been investigated via high-throughput sequencing. The Firmicutes-to-Bacteroidetes ratio is consistently reduced in SLE patients, regardless of ethnicity. The relative abundance of Lactobacillus differs from the animal model used (MRL/lpr mice or NZB/W F1 mice). This may indicate that interactions between gut microbes and the host, rather than the enrichment of certain gut microbes, are especially significant in terms of SLE development. Enterococcus gallinarum and Lactobacillus reuteri, both of which are possible gut pathobionts, become translocated into systemic tissue if the gut epithelial barrier is impaired. The microbes then interact with the host immune systems, activating the type I IFN pathway and inducing autoantibody production. In addition, molecular mimicry may critically link the gut microbiome to SLE. Gut commensals of SLE patients share protein epitopes with the Ro60 autoantigen. Ruminococcus gnavus strain cross-reacted with native DNA, triggering an anti-double-stranded DNA antibody response. Expansion of R. gnavus in SLE patients paralleled an increase in disease activity and lupus nephritis. Such insights into the link between the gut microbiota and SLE enhance our understanding of SLE pathogenesis and will identify biomarkers predicting active disease.
Collapse
|
173
|
Ma Y, Xu X, Li M, Cai J, Wei Q, Niu H. Gut microbiota promote the inflammatory response in the pathogenesis of systemic lupus erythematosus. Mol Med 2019; 25:35. [PMID: 31370803 PMCID: PMC6676588 DOI: 10.1186/s10020-019-0102-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/25/2019] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE) is a chronic autoimmune disease whose onset and progression are affected by genetic and environmental factors. The purpose of this study is to identify the influence of gut microbiota in the pathogenesis of SLE, and to investigate the mechanism involved. METHODS Fecal microbiota from C57/BL6 mice and SLE prone mice were examined using next-generation sequencing (NGS). Germ free mice were given fecal microbiota transplantation (FMT), and their gut microbiome and gene expression in recipients' colons were examined by NGS. The anti-double stranded DNA (anti-dsDNA) antibodies in recipients were determined using an enzyme-linked immunosorbent assay (ELISA). The immune cell profiles of mice were analyzed by flow cytometry at the 3rd week after FMT, and the expression of genes associated with SLE after FMT was determined using quantitative real-time PCR (qRT-PCR). RESULTS The fecal microbiota of SLE mice had lower community richness and diversity than healthy mice. Fecal microbiota of recipient mice were similar to their donors. Fecal microbiome from SLE mice could lead to a significant increase of anti-dsDNA antibodies and promote the immune response in recipient mice. Our results also indicated that fecal microbiome from SLE mice resulted in significant changes in the distribution of immune cells and upregulated expression of certain lupus susceptibility genes. CONCLUSIONS SLE is associated with alterations of gut microbiota. Fecal microbiome from SLE mice can induce the production of anti-dsDNA antibodies in germ free mice and stimulate the inflammatory response, and alter the expression of SLE susceptibility genes in these mice.
Collapse
Affiliation(s)
- Yiyangzi Ma
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College; Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaoxue Xu
- Department of Core Facility Center, Capital Medical University, Beijing, China
| | - Mengtao Li
- Division of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Cai
- Hypertension Center, Fuwai hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Disease of China, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Qiang Wei
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College; Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China.
| | - Haitao Niu
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College; Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China.
| |
Collapse
|
174
|
Mu Q, Cabana-Puig X, Mao J, Swartwout B, Abdelhamid L, Cecere TE, Wang H, Reilly CM, Luo XM. Pregnancy and lactation interfere with the response of autoimmunity to modulation of gut microbiota. MICROBIOME 2019; 7:105. [PMID: 31311609 PMCID: PMC6635999 DOI: 10.1186/s40168-019-0720-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Dysbiosis of gut microbiota exists in the pathogenesis of many autoimmune diseases, including systemic lupus erythematosus (lupus). Lupus patients who experienced pregnancy usually had more severe disease flares post-delivery. However, the possible role of gut microbiota in the link between pregnancy and exacerbation of lupus remains to be explored. RESULTS In the classical lupus mouse model MRL/lpr, we compared the structures of gut microbiota in pregnant and lactating individuals vs. age-matched naïve mice. Consistent with studies on non-lupus mice, both pregnancy and lactation significantly changed the composition and diversity of gut microbiota. Strikingly, modulation of gut microbiota using the same strategy resulted in different disease outcomes in postpartum (abbreviated as "PP," meaning that the mice had undergone pregnancy and lactation) vs. control (naïve; i.e., without pregnancy or lactation) MRL/lpr females; while vancomycin treatment attenuated lupus in naïve mice, it did not do so, or even exacerbated lupus, in PP mice. Lactobacillus animalis flourished in the gut upon vancomycin treatment, and direct administration of L. animalis via oral gavage recapitulated the differential effects of vancomycin in PP vs. control mice. An enzyme called indoleamine 2,3-dioxygenase was significantly inhibited by L. animalis; however, this inhibition was only apparent in PP mice, which explained, at least partially, the lack of beneficial response to vancomycin in these mice. The differential production of immunosuppressive IL-10 and proinflammatory IFNγ in PP vs. control mice further explained why the disease phenotypes varied between the two types of mice bearing the same gut microbiota remodeling strategy. CONCLUSIONS These results suggest that pregnancy and lactation interfere with the response of autoimmunity to modulation of gut microbiota. Further studies are necessary to better understand the complex relationship between pregnancy and lupus.
Collapse
Affiliation(s)
- Qinghui Mu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Jiangdi Mao
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Brianna Swartwout
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, USA
| | - Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Thomas E Cecere
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Haifeng Wang
- College of Animal Science, Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Christopher M Reilly
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
175
|
The Gut Microbiome in Inflammatory Bowel Disease: Lessons Learned From Other Immune-Mediated Inflammatory Diseases. Am J Gastroenterol 2019; 114:1051-1070. [PMID: 31232832 DOI: 10.14309/ajg.0000000000000305] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a growing appreciation for the role of the gut microbiome in human health and disease. Aided by advances in sequencing technologies and analytical methods, recent research has shown the healthy gut microbiome to possess considerable diversity and functional capacity. Dysbiosis of the gut microbiota is believed to be involved in the pathogenesis of not only diseases that primarily affect the gastrointestinal tract but also other less obvious diseases, including neurologic, rheumatologic, metabolic, hepatic, and other illnesses. Chronic immune-mediated inflammatory diseases (IMIDs) represent a group of diseases that share many underlying etiological factors including genetics, aberrant immunological responses, and environmental factors. Gut dysbiosis has been reported to be common to IMIDs as a whole, and much effort is currently being directed toward elucidating microbiome-mediated disease mechanisms and their implications for causality. In this review, we discuss gut microbiome studies in several IMIDs and show how these studies can inform our understanding of the role of the gut microbiome in inflammatory bowel disease.
Collapse
|
176
|
Azzouz D, Omarbekova A, Heguy A, Schwudke D, Gisch N, Rovin BH, Caricchio R, Buyon JP, Alekseyenko AV, Silverman GJ. Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Ann Rheum Dis 2019; 78:947-956. [PMID: 30782585 PMCID: PMC6585303 DOI: 10.1136/annrheumdis-2018-214856] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND/PURPOSE To search for a transmissible agent involved in lupus pathogenesis, we investigated the faecal microbiota of patients with systemic lupus erythematosus (SLE) for candidate pathobiont(s) and evaluated them for special relationships with host immunity. METHODS In a cross-sectional discovery cohort, matched blood and faecal samples from 61 female patients with SLE were obtained. Faecal 16 S rRNA analyses were performed, and sera profiled for antibacterial and autoantibody responses, with findings validated in two independent lupus cohorts. RESULTS Compared with controls, the microbiome in patients with SLE showed decreased species richness diversity, with reductions in taxonomic complexity most pronounced in those with high SLE disease activity index (SLEDAI). Notably, patients with SLE had an overall 5-fold greater representation of Ruminococcus gnavus (RG) of the Lachnospiraceae family, and individual communities also displayed reciprocal contractions of a species with putative protective properties. Gut RG abundance correlated with serum antibodies to only 1/8 RG strains tested. Anti-RG antibodies correlated directly with SLEDAI score and antinative DNA levels, but inversely with C3 and C4. These antibodies were primarily against antigen(s) in an RG strain-restricted pool of cell wall lipoglycans. Novel structural features of these purified lipoglycans were characterised by mass spectrometry and NMR. Highest levels of serum anti-RG strain-restricted antibodies were detected in those with active nephritis (including Class III and IV) in the discovery cohort, with findings validated in two independent cohorts. CONCLUSION These findings suggest a novel paradigm in which specific strains of a gut commensal may contribute to the immune pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Doua Azzouz
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Aidana Omarbekova
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Adriana Heguy
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Dominik Schwudke
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Borstel, Germany
| | - Nicolas Gisch
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Borstel, Germany
| | | | | | - Jill P Buyon
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Alexander V Alekseyenko
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gregg J Silverman
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
177
|
Interactions between microbiota, diet/nutrients and immune/inflammatory response in rheumatic diseases: focus on rheumatoid arthritis. Reumatologia 2019; 57:151-157. [PMID: 31462830 PMCID: PMC6710844 DOI: 10.5114/reum.2019.86425] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/28/2019] [Indexed: 12/27/2022] Open
Abstract
Rheumatic and musculoskeletal diseases (RMDs) are chronic systemic immune/inflammatory conditions characterized by the interaction between gene predisposition, autoimmunity and environmental factors. A growing scientific interest has focused on the role of diet in RMDs, suggesting its significant contribution to the pathogenesis and prognosis of these diseases. It is now clear that diet can directly modulate the immune response by providing a wide range of nutrients, which interfere with multiple pathways at both the gastro-intestinal and systemic level. Moreover, diet critically shapes the human gut microbiota, which is recognized to have a central role in the modulation of the immune response and in RMD pathogenesis. We hereby provide an in-depth analysis on the role of the microbiota in RMDs and on nutritional intervention as an integral part of a multidisciplinary approach. Particular attention will be given to the Mediterranean diet, as the only diet proven to support substantial benefits in RMD management.
Collapse
|
178
|
He Z, Kong X, Shao T, Zhang Y, Wen C. Alterations of the Gut Microbiota Associated With Promoting Efficacy of Prednisone by Bromofuranone in MRL/lpr Mice. Front Microbiol 2019; 10:978. [PMID: 31118928 PMCID: PMC6504707 DOI: 10.3389/fmicb.2019.00978] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 04/18/2019] [Indexed: 12/16/2022] Open
Abstract
Gut microbiota played an important role in systemic lupus erythematosus (SLE) and glucocorticoids were prone to cause alterations in gut microbiota. This study addressed the effect of bromofuranone on the treatment of SLE with prednisone, since bromofuranone could regulate gut microbiota by inhibiting the AI-2/LuxS quorum-sensing. Remarkably, bromofuranone did not alleviate lupus but promoted the efficacy of prednisone in the treatment of lupus. The alterations in the gut microbiota, including decreased Mucispirillum, Oscillospira, Bilophila and Rikenella, and increased Anaerostipes, were associated with prednisone treatment for SLE. In addition, the increase of Lactobacillus, Allobaculum, Sutterella, and Adlercreutzia was positively associated with the bromofuranone-mediated promotion for the treatment of lupus. This was the first study demonstrating that the efficacy of glucocorticoids could be affected by the interventions in gut microbiota.
Collapse
Affiliation(s)
| | | | | | - Yun Zhang
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengping Wen
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
179
|
Ayyappan P, Harms RZ, Buckner JH, Sarvetnick NE. Coordinated Induction of Antimicrobial Response Factors in Systemic Lupus Erythematosus. Front Immunol 2019; 10:658. [PMID: 31019506 PMCID: PMC6458289 DOI: 10.3389/fimmu.2019.00658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by dysregulated autoantibody production and complement activation leading to multi-organ damage. The disease is associated with increased intestinal permeability. In this study, we tested the hypothesis that SLE subjects have increased systemic exposure to bacteria. Since bacteria induce the expression of antimicrobial response factors (ARFs), we measured the levels of a series of clinically relevant ARFs in the plasma of SLE subjects. We found that levels of sCD14, lysozyme, and CXCL16 were significantly elevated in SLE subjects. A strong positive correlation was also observed between sCD14 and SELENA-SLEDAI score. Interestingly, the ratio of EndoCAb IgM:total IgM was significantly decreased in SLE and this ratio was negatively correlated with sCD14 levels. Although, there were no significant differences in the levels of lipopolysaccharide binding protein (LBP) and fatty acid binding protein 2 (FABP2), we observed significant positive correlations between lysozyme levels and sCD14, LBP, and FABP2. Moreover, galectin-3 levels also positively correlate with lysozyme, sCD14, and LBP. Since our SLE cohort comprised 43.33% males, we were able to identify gender-specific changes in the levels of ARFs. Overall, these changes in the levels and relationships between ARFs link microbial exposure and SLE. Approaches to reduce microbial exposure or to improve barrier function may provide therapeutic strategies for SLE patients.
Collapse
Affiliation(s)
- Prathapan Ayyappan
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
| | - Robert Z. Harms
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jane H. Buckner
- Translational Research Program, Benaroya Research Institute, Seattle, WA, United States
| | - Nora E. Sarvetnick
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
180
|
Disordered intestinal microbes are associated with the activity of Systemic Lupus Erythematosus. Clin Sci (Lond) 2019; 133:821-838. [PMID: 30872359 DOI: 10.1042/cs20180841] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/09/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022]
Abstract
Abstract
Intestinal dysbiosis is implicated in Systemic Lupus Erythematosus (SLE). However, the evidence of gut microbiome changes in SLE is limited, and the association of changed gut microbiome with the activity of SLE, as well as its functional relevance with SLE still remains unknown. Here, we sequenced 16S rRNA amplicon on fecal samples from 40 SLE patients (19 active patients, 21 remissive patients), 20 disease controls (Rheumatoid Arthritis (RA) patients), and 22 healthy controls (HCs), and investigated the association of functional categories with taxonomic composition by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). We demonstrated SLE patients, particularly the active patients, had significant dysbiosis in gut microbiota with reduced bacterial diversity and biased community constitutions. Amongst the disordered microbiota, the genera Streptococcus, Campylobacter, Veillonella, the species anginosus and dispar, were positively correlated with lupus activity, while the genus Bifidobacterium was negatively associated with the disease activity. PICRUSt analysis showed metabolic pathways were different between SLE and HCs, and also between active and remissive SLE patients. Moreover, we revealed that a random forest model could distinguish SLE from RA and HCs (area under the curve (AUC) = 0.792), and another random forest model could well predict the activity of SLE patients (AUC = 0.811). In summary, SLE patients, especially the active patients, show an apparent dysbiosis in gut microbiota and its related metabolic pathways. Amongst the disordered microflora, four genera and two species are associated with lupus activity. Furthermore, the random forest models are able to diagnose SLE and predict disease activity.
Collapse
|
181
|
Perz AI, Giles CB, Brown CA, Porter H, Roopnarinesingh X, Wren JD. MNEMONIC: MetageNomic Experiment Mining to create an OTU Network of Inhabitant Correlations. BMC Bioinformatics 2019; 20:96. [PMID: 30871469 PMCID: PMC6419333 DOI: 10.1186/s12859-019-2623-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background The number of publicly available metagenomic experiments in various environments has been rapidly growing, empowering the potential to identify similar shifts in species abundance between different experiments. This could be a potentially powerful way to interpret new experiments, by identifying common themes and causes behind changes in species abundance. Results We propose a novel framework for comparing microbial shifts between conditions. Using data from one of the largest human metagenome projects to date, the American Gut Project (AGP), we obtain differential abundance vectors for microbes using experimental condition information provided with the AGP metadata, such as patient age, dietary habits, or health status. We show it can be used to identify similar and opposing shifts in microbial species, and infer putative interactions between microbes. Our results show that groups of shifts with similar effects on microbiome can be identified and that similar dietary interventions display similar microbial abundance shifts. Conclusions Without comparison to prior data, it is difficult for experimentalists to know if their observed changes in species abundance have been observed by others, both in their conditions and in others they would never consider comparable. Yet, this can be a very important contextual factor in interpreting the significance of a shift. We’ve proposed and tested an algorithmic solution to this problem, which also allows for comparing the metagenomic signature shifts between conditions in the existing body of data. Electronic supplementary material The online version of this article (10.1186/s12859-019-2623-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aleksandra I Perz
- Arthritis and Clinical Immunology Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104-5005, USA.
| | - Cory B Giles
- Arthritis and Clinical Immunology Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104-5005, USA.,Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Chase A Brown
- Arthritis and Clinical Immunology Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104-5005, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hunter Porter
- Arthritis and Clinical Immunology Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104-5005, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xiavan Roopnarinesingh
- Arthritis and Clinical Immunology Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104-5005, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104-5005, USA. .,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
182
|
Uchiyama K, Naito Y, Takagi T. Intestinal microbiome as a novel therapeutic target for local and systemic inflammation. Pharmacol Ther 2019; 199:164-172. [PMID: 30877020 DOI: 10.1016/j.pharmthera.2019.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/06/2019] [Indexed: 12/19/2022]
Abstract
Recently, the pathogenesis of systemic inflammatory disease such as inflammatory bowel disease (IBD), multiple sclerosis (MS), systemic inflammatory arthritis, asthma, and non-alcoholic fatty liver disease has been reported to be related to the dysbiosis of gut microbiota. The contribution of special bacteria for the development of those diseases has been elucidated by disease animal models such as germ-free mice. Besides, the contribution by several bacteria for the pathogenesis of those diseases has been suggested by detailed analysis of the 16 small ribosomal subunit RNA (16S rRNA) from stool samples of the patients. Gut microbiota-targeted treatment for systemic inflammatory diseases such as fecal microbiota transplant (FMT), and probiotics has been now reported. Though there are several issues to be understood, these treatments have been highlighted as an innovative approach to intractable systemic inflammatory disease. In the present review, recent reports regarding the relation between gut microbiota and systemic inflammatory diseases are discussed with treatments to target gut microbiota.
Collapse
Affiliation(s)
- Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; Department for Medical Innovation and Translational Medical Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
183
|
Meng X, Zhou HY, Shen HH, Lufumpa E, Li XM, Guo B, Li BZ. Microbe-metabolite-host axis, two-way action in the pathogenesis and treatment of human autoimmunity. Autoimmun Rev 2019; 18:455-475. [PMID: 30844549 DOI: 10.1016/j.autrev.2019.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
The role of microorganism in human diseases cannot be ignored. These microorganisms have evolved together with humans and worked together with body's mechanism to maintain immune and metabolic function. Emerging evidence shows that gut microbe and their metabolites open up new doors for the study of human response mechanism. The complexity and interdependence of these microbe-metabolite-host interactions are rapidly being elucidated. There are various changes of microbial levels in models or in patients of various autoimmune diseases (AIDs). In addition, the relevant metabolites involved in mechanism mainly include short-chain fatty acids (SCFAs), bile acids (BAs), and polysaccharide A (PSA). Meanwhile, the interaction between microbes and host genes is also a factor that must be considered. It has been demonstrated that human microbes are involved in the development of a variety of AIDs, including organ-specific AIDs and systemic AIDs. At the same time, microbes or related products can be used to remodel body's response to alleviate or cure diseases. This review summarizes the latest research of microbes and their related metabolites in AIDs. More importantly, it highlights novel and potential therapeutics, including fecal microbial transplantation, probiotics, prebiotics, and synbiotics. Nonetheless, exact mechanisms still remain elusive, and future research will focus on finding a specific strain that can act as a biomarker of an autoimmune disease.
Collapse
Affiliation(s)
- Xiang Meng
- School of Stomatology, Anhui Medical University, Hefei, Anhui, China
| | - Hao-Yue Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Hui-Hui Shen
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, Anhui, Hefei, China
| | - Eniya Lufumpa
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Xiao-Mei Li
- Department of Rheumatology & Immunology, Anhui Provincial Hospital, Anhui, Hefei, China
| | - Biao Guo
- The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
184
|
Sprouse ML, Bates NA, Felix KM, Wu HJJ. Impact of gut microbiota on gut-distal autoimmunity: a focus on T cells. Immunology 2019; 156:305-318. [PMID: 30560993 DOI: 10.1111/imm.13037] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/07/2018] [Accepted: 11/25/2018] [Indexed: 12/14/2022] Open
Abstract
The immune system is essential for maintaining a delicate balance between eliminating pathogens and maintaining tolerance to self-tissues to avoid autoimmunity. An enormous and complex community of gut microbiota provides essential health benefits to the host, particularly by regulating immune homeostasis. Many of the metabolites derived from commensals can impact host health by directly regulating the immune system. Many autoimmune diseases arise from an imbalance between pathogenic effector T cells and regulatory T (Treg) cells. Recent interest has emerged in understanding how cross-talk between gut microbiota and the host immune system promotes autoimmune development by controlling the differentiation and plasticity of T helper and Treg cells. At the molecular level, our recent study, along with others, demonstrates that asymptomatic colonization by commensal bacteria in the gut is capable of triggering autoimmune disease by molecular mimicking self-antigen and skewing the expression of dual T-cell receptors on T cells. Dysbiosis, an imbalance of the gut microbiota, is involved in autoimmune development in both mice and humans. Although it is well known that dysbiosis can impact diseases occurring within the gut, growing literature suggests that dysbiosis also causes the development of gut-distal/non-gut autoimmunity. In this review, we discuss recent advances in understanding the potential molecular mechanisms whereby gut microbiota induces autoimmunity, and the evidence that the gut microbiota triggers gut-distal autoimmune diseases.
Collapse
Affiliation(s)
- Maran L Sprouse
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Nicholas A Bates
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Krysta M Felix
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Hsin-Jung Joyce Wu
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA.,Arizona Arthritis Center, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
185
|
Zegarra-Ruiz DF, El Beidaq A, Iñiguez AJ, Lubrano Di Ricco M, Manfredo Vieira S, Ruff WE, Mubiru D, Fine RL, Sterpka J, Greiling TM, Dehner C, Kriegel MA. A Diet-Sensitive Commensal Lactobacillus Strain Mediates TLR7-Dependent Systemic Autoimmunity. Cell Host Microbe 2018; 25:113-127.e6. [PMID: 30581114 DOI: 10.1016/j.chom.2018.11.009] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/27/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022]
Abstract
Western lifestyle is linked to autoimmune and metabolic diseases, driven by changes in diet and gut microbiota composition. Using Toll-like receptor 7 (TLR7)-dependent mouse models of systemic lupus erythematosus (SLE), we dissect dietary effects on the gut microbiota and find that Lactobacillus reuteri can drive autoimmunity but is ameliorated by dietary resistant starch (RS). Culture of internal organs and 16S rDNA sequencing revealed TLR7-dependent translocation of L. reuteri in mice and fecal enrichment of Lactobacillus in a subset of SLE patients. L. reuteri colonization worsened autoimmune manifestations under specific-pathogen-free and gnotobiotic conditions, notably increasing plasmacytoid dendritic cells (pDCs) and interferon signaling. However, RS suppressed the abundance and translocation of L. reuteri via short-chain fatty acids, which inhibited its growth. Additionally, RS decreased pDCs, interferon pathways, organ involvement, and mortality. Thus, RS exerts beneficial effects in lupus-prone hosts through suppressing a pathobiont that promotes interferon pathways implicated in the pathogenesis of human autoimmunity.
Collapse
MESH Headings
- Animals
- Autoimmunity
- Clostridiaceae
- DNA, Ribosomal/genetics
- Dendritic Cells/metabolism
- Diet
- Diet Therapy
- Disease Models, Animal
- Fatty Acids, Volatile/antagonists & inhibitors
- Fatty Acids, Volatile/metabolism
- Feces/microbiology
- Female
- Gastrointestinal Microbiome
- Germ-Free Life
- Glomerulonephritis/pathology
- Humans
- Hypersensitivity
- Interferon Type I/metabolism
- Kidney/pathology
- Lactobacillus/drug effects
- Lactobacillus/genetics
- Lactobacillus/pathogenicity
- Limosilactobacillus reuteri
- Lupus Erythematosus, Systemic/microbiology
- Lupus Erythematosus, Systemic/mortality
- Lupus Erythematosus, Systemic/pathology
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- RNA, Ribosomal, 16S/genetics
- Starch
- Survival Rate
- Toll-Like Receptor 7/metabolism
Collapse
Affiliation(s)
- Daniel F Zegarra-Ruiz
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Asmaa El Beidaq
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Alonso J Iñiguez
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | - Silvio Manfredo Vieira
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - William E Ruff
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Derek Mubiru
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Rebecca L Fine
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - John Sterpka
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Teri M Greiling
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Carina Dehner
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Martin A Kriegel
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
186
|
Eshraghi RS, Deth RC, Mittal R, Aranke M, Kay SIS, Moshiree B, Eshraghi AA. Early Disruption of the Microbiome Leading to Decreased Antioxidant Capacity and Epigenetic Changes: Implications for the Rise in Autism. Front Cell Neurosci 2018; 12:256. [PMID: 30158857 PMCID: PMC6104136 DOI: 10.3389/fncel.2018.00256] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
Currently, 1 out of every 59 children in the United States is diagnosed with autism. While initial research to find the possible causes for autism were mostly focused on the genome, more recent studies indicate a significant role for epigenetic regulation of gene expression and the microbiome. In this review article, we examine the connections between early disruption of the developing microbiome and gastrointestinal tract function, with particular regard to susceptibility to autism. The biological mechanisms that accompany individuals with autism are reviewed in this manuscript including immune system dysregulation, inflammation, oxidative stress, metabolic and methylation abnormalities as well as gastrointestinal distress. We propose that these autism-associated biological mechanisms may be caused and/or sustained by dysbiosis, an alteration to the composition of resident commensal communities relative to the community found in healthy individuals and its redox and epigenetic consequences, changes that in part can be due to early use and over-use of antibiotics across generations. Further studies are warranted to clarify the contribution of oxidative stress and gut microbiome in the pathophysiology of autism. A better understanding of the microbiome and gastrointestinal tract in relation to autism will provide promising new opportunities to develop novel treatment modalities.
Collapse
Affiliation(s)
- Rebecca S. Eshraghi
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Richard C. Deth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Rahul Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Mayank Aranke
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sae-In S. Kay
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Baharak Moshiree
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Adrien A. Eshraghi
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
187
|
Kho ZY, Lal SK. The Human Gut Microbiome - A Potential Controller of Wellness and Disease. Front Microbiol 2018; 9:1835. [PMID: 30154767 PMCID: PMC6102370 DOI: 10.3389/fmicb.2018.01835] [Citation(s) in RCA: 554] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Interest toward the human microbiome, particularly gut microbiome has flourished in recent decades owing to the rapidly advancing sequence-based screening and humanized gnotobiotic model in interrogating the dynamic operations of commensal microbiota. Although this field is still at a very preliminary stage, whereby the functional properties of the complex gut microbiome remain less understood, several promising findings have been documented and exhibit great potential toward revolutionizing disease etiology and medical treatments. In this review, the interactions between gut microbiota and the host have been focused on, to provide an overview of the role of gut microbiota and their unique metabolites in conferring host protection against invading pathogen, regulation of diverse host physiological functions including metabolism, development and homeostasis of immunity and the nervous system. We elaborate on how gut microbial imbalance (dysbiosis) may lead to dysfunction of host machineries, thereby contributing to pathogenesis and/or progression toward a broad spectrum of diseases. Some of the most notable diseases namely Clostridium difficile infection (infectious disease), inflammatory bowel disease (intestinal immune-mediated disease), celiac disease (multisystemic autoimmune disorder), obesity (metabolic disease), colorectal cancer, and autism spectrum disorder (neuropsychiatric disorder) have been discussed and delineated along with recent findings. Novel therapies derived from microbiome studies such as fecal microbiota transplantation, probiotic and prebiotics to target associated diseases have been reviewed to introduce the idea of how certain disease symptoms can be ameliorated through dysbiosis correction, thus revealing a new scientific approach toward disease treatment. Toward the end of this review, several research gaps and limitations have been described along with suggested future studies to overcome the current research lacunae. Despite the ongoing debate on whether gut microbiome plays a role in the above-mentioned diseases, we have in this review, gathered evidence showing a potentially far more complex link beyond the unidirectional cause-and-effect relationship between them.
Collapse
Affiliation(s)
- Zhi Y Kho
- School of Science, Tropical Medicine and Biology Platform, Monash University, Subang Jaya, Malaysia
| | - Sunil K Lal
- School of Science, Tropical Medicine and Biology Platform, Monash University, Subang Jaya, Malaysia
| |
Collapse
|
188
|
Abdelhamid L, Luo XM. Retinoic Acid, Leaky Gut, and Autoimmune Diseases. Nutrients 2018; 10:E1016. [PMID: 30081517 PMCID: PMC6115935 DOI: 10.3390/nu10081016] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
A leaky gut has been observed in a number of autoimmune diseases including type 1 diabetes, multiple sclerosis, inflammatory bowel disease, and systemic lupus erythematosus. Previous studies from our laboratory have shown that lupus mice also bear a leaky gut and that the intestinal barrier function can be enhanced by gut colonization of probiotics such as Lactobacillus spp. Retinoic acid (RA) can increase the relative abundance of Lactobacillus spp. in the gut. Interestingly, RA has also been shown to strengthen the barrier function of epithelial cells in vitro and in the absence of probiotic bacteria. These reports bring up an interesting question of whether RA exerts protective effects on the intestinal barrier directly or through regulating the microbiota colonization. In this review, we will discuss the roles of RA in immunomodulation, recent literature on the involvement of a leaky gut in different autoimmune diseases, and how RA shapes the outcomes of these diseases.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
189
|
Abstract
PURPOSE OF REVIEW Accumulating evidence suggests that gut microbiota affect the development and function of the immune system and may play a role in the pathogenesis of autoimmune diseases. The purpose of this review is to summarize recent studies reporting gastrointestinal microbiota aberrations associated with the systemic sclerosis disease state. RECENT FINDINGS The studies described herein have identified common changes in gut microbial composition. Specifically, patients with SSc have decreased abundance of beneficial commensal genera (e.g., Faecalibacterium, Clostridium, and Bacteroides) and increased abundance of pathobiont genera (e.g., Fusobacterium, Prevotella, Erwinia). In addition, some studies have linked specific genera with the severity of gastrointestinal symptoms in systemic sclerosis. More research is needed to further characterize the gastrointestinal microbiota in systemic sclerosis and understand how microbiota perturbations can affect inflammation, fibrosis, and clinical outcomes. Interventional studies aimed at addressing/correcting these perturbations, either through dietary modification, pro/pre-biotic supplementation, or fecal transplantation, may lead to improved outcomes for patients with systemic sclerosis.
Collapse
Affiliation(s)
- Chiara Bellocchi
- Scleroderma Unit, Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, University of Milan, Milan, Italy
| | - Elizabeth R Volkmann
- Division of Rheumatology, Department of Medicine, David Geffen School of Medicine, University of California, 1000 Veteran Avenue, Ste 32-59, Los Angeles, CA, 90095, USA.
| |
Collapse
|
190
|
Edwards M, Dai R, Ahmed SA. Our Environment Shapes Us: The Importance of Environment and Sex Differences in Regulation of Autoantibody Production. Front Immunol 2018; 9:478. [PMID: 29662485 PMCID: PMC5890161 DOI: 10.3389/fimmu.2018.00478] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/22/2018] [Indexed: 01/17/2023] Open
Abstract
Consequential differences exist between the male and female immune systems’ ability to respond to pathogens, environmental insults or self-antigens, and subsequent effects on immunoregulation. In general, females when compared with their male counterparts, respond to pathogenic stimuli and vaccines more robustly, with heightened production of antibodies, pro-inflammatory cytokines, and chemokines. While the precise reasons for sex differences in immune response to different stimuli are not yet well understood, females are more resistant to infectious diseases and much more likely to develop autoimmune diseases. Intrinsic (i.e., sex hormones, sex chromosomes, etc.) and extrinsic (microbiome composition, external triggers, and immune modulators) factors appear to impact the overall outcome of immune responses between sexes. Evidence suggests that interactions between environmental contaminants [e.g., endocrine disrupting chemicals (EDCs)] and host leukocytes affect the ability of the immune system to mount a response to exogenous and endogenous insults, and/or return to normal activity following clearance of the threat. Inherently, males and females have differential immune response to external triggers. In this review, we describe how environmental chemicals, including EDCs, may have sex differential influence on the outcome of immune responses through alterations in epigenetic status (such as modulation of microRNA expression, gene methylation, or histone modification status), direct and indirect activation of the estrogen receptors to drive hormonal effects, and differential modulation of microbial sensing and composition of host microbiota. Taken together, an intriguing question develops as to how an individual’s environment directly and indirectly contributes to an altered immune response, dysregulation of autoantibody production, and influence autoimmune disease development. Few studies exist utilizing well-controlled cohorts of both sexes to explore the sex differences in response to EDC exposure and the effects on autoimmune disease development. Translational studies incorporating multiple environmental factors in animal models of autoimmune disease are necessary to determine the interrelationships that occur between potential etiopathological factors. The presence or absence of autoantibodies is not a reliable predictor of disease. Therefore, future studies should incorporate all the susceptibility/influencing factors, coupled with individual genomics, epigenomics, and proteomics, to develop a model that better predicts, diagnoses, and treats autoimmune diseases in a personalized-medicine fashion.
Collapse
Affiliation(s)
- Michael Edwards
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|