151
|
Mazzoli R. Development of microorganisms for cellulose-biofuel consolidated bioprocessings: metabolic engineers' tricks. Comput Struct Biotechnol J 2012; 3:e201210007. [PMID: 24688667 PMCID: PMC3962139 DOI: 10.5936/csbj.201210007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 10/22/2012] [Accepted: 10/24/2012] [Indexed: 01/04/2023] Open
Abstract
Cellulose waste biomass is the most abundant and attractive substrate for "biorefinery strategies" that are aimed to produce high-value products (e.g. solvents, fuels, building blocks) by economically and environmentally sustainable fermentation processes. However, cellulose is highly recalcitrant to biodegradation and its conversion by biotechnological strategies currently requires economically inefficient multistep industrial processes. The need for dedicated cellulase production continues to be a major constraint to cost-effective processing of cellulosic biomass. Research efforts have been aimed at developing recombinant microorganisms with suitable characteristics for single step biomass fermentation (consolidated bioprocessing, CBP). Two paradigms have been applied for such, so far unsuccessful, attempts: a) "native cellulolytic strategies", aimed at conferring high-value product properties to natural cellulolytic microorganisms; b) "recombinant cellulolytic strategies", aimed to confer cellulolytic ability to microorganisms exhibiting high product yields and titers. By starting from the description of natural enzyme systems for plant biomass degradation and natural metabolic pathways for some of the most valuable product (i.e. butanol, ethanol, and hydrogen) biosynthesis, this review describes state-of-the-art bottlenecks and solutions for the development of recombinant microbial strains for cellulosic biofuel CBP by metabolic engineering. Complexed cellulases (i.e. cellulosomes) benefit from stronger proximity effects and show enhanced synergy on insoluble substrates (i.e. crystalline cellulose) with respect to free enzymes. For this reason, special attention was held on strategies involving cellulosome/designer cellulosome-bearing recombinant microorganisms.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy
| |
Collapse
|
152
|
Use of proteomic analysis to elucidate the role of calcium in acetone-butanol-ethanol fermentation by Clostridium beijerinckii NCIMB 8052. Appl Environ Microbiol 2012; 79:282-93. [PMID: 23104411 DOI: 10.1128/aem.02969-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Calcium carbonate increases growth, substrate utilization, and acetone-butanol-ethanol (ABE) fermentation by Clostridium beijerinckii NCIMB 8052. Toward an understanding of the basis for these pleiotropic effects, we profiled changes in the C. beijerinckii NCIMB 8052 proteome that occur in response to the addition of CaCO(3). We observed increases in the levels of different heat shock proteins (GrpE and DnaK), sugar transporters, and proteins involved in DNA synthesis, repair, recombination, and replication. We also noted significant decreases in the levels of proteins involved in metabolism, nucleic acid stabilization, sporulation, oxidative and antibiotic stress responses, and signal transduction. We determined that CaCO(3) enhances ABE fermentation due to both its buffering effects and its ability to influence key cellular processes, such as sugar transport, butanol tolerance, and solventogenesis. Moreover, activity assays in vitro for select solventogenic enzymes revealed that part of the underpinning for the CaCO(3)-mediated increase in the level of ABE fermentation stems from the enhanced activity of these catalysts in the presence of Ca(2+). Collectively, these proteomic and biochemical studies provide new insights into the multifactorial basis for the stimulation of ABE fermentation and butanol tolerance in the presence of CaCO(3).
Collapse
|
153
|
|
154
|
Qiao J, Wang J, Chen L, Tian X, Huang S, Ren X, Zhang W. Quantitative iTRAQ LC-MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial Synechocystis sp. PCC 6803. J Proteome Res 2012; 11:5286-300. [PMID: 23062023 DOI: 10.1021/pr300504w] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent progress in metabolic engineering has led to autotrophic production of ethanol in various cyanobacterial hosts. However, cyanobacteria are known to be sensitive to ethanol, which restricts further efforts to increase ethanol production levels in these renewable host systems. To understand the mechanisms of ethanol tolerance so that engineering more robust cyanobacterial hosts can be possible, in this study, the responses of model cyanobacterial Synechocystis sp. PCC 6803 to ethanol were determined using a quantitative proteomics approach with iTRAQ LC-MS/MS technologies. The resulting high-quality proteomic data set consisted of 24,887 unique peptides corresponding to 1509 identified proteins, a coverage of approximately 42% of the predicted proteins in the Synechocystis genome. Using a cutoff of 1.5-fold change and a p-value less than 0.05, 135 and 293 unique proteins with differential abundance levels were identified between control and ethanol-treated samples at 24 and 48 h, respectively. Functional analysis showed that the Synechocystis cells employed a combination of induced common stress response, modifications of cell membrane and envelope, and induction of multiple transporters and cell mobility-related proteins as protection mechanisms against ethanol toxicity. Interestingly, our proteomic analysis revealed that proteins related to multiple aspects of photosynthesis were up-regulated in the ethanol-treated Synechocystis cells, consistent with increased chlorophyll a concentration in the cells upon ethanol exposure. The study provided the first comprehensive view of the complicated molecular mechanisms against ethanol stress and also provided a list of potential gene targets for further engineering ethanol tolerance in Synechocystis PCC 6803.
Collapse
Affiliation(s)
- Jianjun Qiao
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
| | | | | | | | | | | | | |
Collapse
|
155
|
Abstract
Strain tolerance to toxic metabolites is an important trait for many biotechnological applications, such as the production of solvents as biofuels or commodity chemicals. Engineering a complex cellular phenotype, such as solvent tolerance, requires the coordinated and tuned expression of several genes. Using combinations of heat shock proteins (HSPs), we engineered a semisynthetic stress response system in Escherichia coli capable of tolerating high levels of toxic solvents. Simultaneous overexpression of the HSPs GrpE and GroESL resulted in a 2-fold increase in viable cells (CFU) after exposure to 5% (vol/vol) ethanol for 24 h. Co-overexpression of GroESL and ClpB on coexisting plasmids resulted in 1,130%, 78%, and 25% increases in CFU after 24 h in 5% ethanol, 1% n-butanol, and 1% i-butanol, respectively. Co-overexpression of GrpE, GroESL, and ClpB on a single plasmid produced 200%, 390%, and 78% increases in CFU after 24 h in 7% ethanol, 1% n-butanol, or 25% 1,2,4-butanetriol, respectively. Overexpression of other autologous HSPs (DnaK, DnaJ, IbpA, and IbpB) alone or in combinations failed to improve tolerance. Expression levels of HSP genes, tuned through inducible promoters and the plasmid copy number, affected the effectiveness of the engineered stress response system. Taken together, these data demonstrate that tuned co-overexpression of GroES, GroEL, ClpB, and GrpE can be engaged to engineer a semisynthetic stress response system capable of greatly increasing the tolerance of E. coli to solvents and provides a starting platform for engineering customized tolerance to a wide variety of toxic chemicals. Microbial production of useful chemicals is often limited by the toxicity of desired products, feedstock impurities, and undesired side products. Improving tolerance is an essential step in the development of practical platform organisms for production of a wide range of chemicals. By overexpressing autologous heat shock proteins in Escherichia coli, we have developed a modular semisynthetic stress response system capable of improving tolerance to ethanol, n-butanol, and potentially other toxic solvents. Using this system, we demonstrate that a practical stress response system requires both tuning of individual gene components and a reliable framework for gene expression. This system can be used to seek out new interacting partners to improve the tolerance phenotype and can be used in the development of more robust solvent production strains.
Collapse
|
156
|
Janssen H, Grimmler C, Ehrenreich A, Bahl H, Fischer RJ. A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicum—Solvent stress caused by a transient n-butanol pulse. J Biotechnol 2012; 161:354-65. [DOI: 10.1016/j.jbiotec.2012.03.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 12/30/2022]
|
157
|
Parallel labeling experiments with [U-13C]glucose validate E. coli metabolic network model for 13C metabolic flux analysis. Metab Eng 2012; 14:533-41. [DOI: 10.1016/j.ymben.2012.06.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/25/2012] [Accepted: 06/26/2012] [Indexed: 12/30/2022]
|
158
|
Zingaro KA, Terry Papoutsakis E. GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns. Metab Eng 2012; 15:196-205. [PMID: 22898718 DOI: 10.1016/j.ymben.2012.07.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/28/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
Strain tolerance to toxic metabolites remains a limiting issue in the production of chemicals and biofuels using biological processes. Here we examined the impact of overexpressing the autologous GroESL chaperone system with its natural promoter on the tolerance of Escherichia coli to several toxic alcohols. Strain tolerance was examined using both a growth assay as well as viable cell counts employing a CFU (colony-forming unit) assay. GroESL over expression enhanced cell growth to all alcohols tested, including a 12-fold increase in total growth in 48-h cultures under 4% (v/v) ethanol, a 2.8-fold increase under 0.75% (v/v) n-butanol, a 3-fold increase under 1.25% (v/v) 2-butanol, and a 4-fold increase under 20% (v/v) 1,2,4-butanetriol. GroESL overexpression resulted in a 9-fold increase in CFU numbers compared to a plasmid control strain after 24h of culture under 6% (v/v) ethanol, and a 3.5-fold and 9-fold increase for culture under 1% (v/v) n-butanol and i-butanol, respectively. The toxicity of the alcohols was examined against their octanol-water partition coefficient, a measure commonly used to predict solvent toxicity. For both the control and the GroESL overexpressing strains, the calculated membrane concentration of each alcohol based on the octanol-water partition coefficient could be correlated, but with different patterns, to the impact of the various alcohols on cell growth, but not on cell viability (CFUs). Our data suggest a complex pattern of growth inhibition and differential protection by GroESL overexpression depending on the specific alcohol molecule. Overall, however, GroESL overexpression appears to provide molecule-agnostic tolerance to toxic chemicals.
Collapse
Affiliation(s)
- Kyle A Zingaro
- Department of Chemical Engineering & Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| | | |
Collapse
|
159
|
Jia K, Zhang Y, Li Y. Identification and characterization of two functionally unknown genes involved in butanol tolerance of Clostridium acetobutylicum. PLoS One 2012; 7:e38815. [PMID: 22768047 PMCID: PMC3387226 DOI: 10.1371/journal.pone.0038815] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 05/11/2012] [Indexed: 01/07/2023] Open
Abstract
Solvents toxicity is a major limiting factor hampering the cost-effective biotechnological production of chemicals. In Clostridium acetobutylicum, a functionally unknown protein (encoded by SMB_G1518) with a hypothetical alcohol interacting domain was identified. Disruption of SMB_G1518 and/or its downstream gene SMB_G1519 resulted in increased butanol tolerance, while overexpression of SMB_G1518-1519 decreased butanol tolerance. In addition, SMB_G1518-1519 also influences the production of pyruvate:ferredoxin oxidoreductase (PFOR) and flagellar protein hag, the maintenance of cell motility. We conclude that the system of SMB_G1518-1519 protein plays a role in the butanol sensitivity/tolerance phenotype of C. acetobutylicum, and can be considered as potential targets for engineering alcohol tolerance.
Collapse
Affiliation(s)
- Kaizhi Jia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanping Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yin Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
160
|
Dai Z, Dong H, Zhu Y, Zhang Y, Li Y, Ma Y. Introducing a single secondary alcohol dehydrogenase into butanol-tolerant Clostridium acetobutylicum Rh8 switches ABE fermentation to high level IBE fermentation. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:44. [PMID: 22742819 PMCID: PMC3674747 DOI: 10.1186/1754-6834-5-44] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 06/28/2012] [Indexed: 05/07/2023]
Abstract
BACKGROUND Previously we have developed a butanol tolerant mutant of Clostridium acetobutylicum Rh8, from the wild type strain DSM 1731. Strain Rh8 can tolerate up to 19 g/L butanol, with solvent titer improved accordingly, thus exhibiting industrial application potential. To test if strain Rh8 can be used for production of high level mixed alcohols, a single secondary alcohol dehydrogenase from Clostridium beijerinckii NRRL B593 was overexpressed in strain Rh8 under the control of thl promoter. RESULTS The heterogenous gene sADH was functionally expressed in C. acetobutylicum Rh8. This simple, one-step engineering approach switched the traditional ABE (acetone-butanol-ethanol) fermentation to IBE (isopropanol-butanol-ethanol) fermentation. The total alcohol titer reached 23.88 g/l (7.6 g/l isopropanol, 15 g/l butanol, and 1.28 g/l ethanol) with a yield to glucose of 31.42%. The acid (butyrate and acetate) assimilation rate in isopropanol producing strain Rh8(psADH) was increased. CONCLUSIONS The improved butanol tolerance and the enhanced solvent biosynthesis machinery in strain Rh8 is beneficial for production of high concentration of mixed alcohols. Strain Rh8 can thus be considered as a good host for further engineering of solvent/alcohol production.
Collapse
Affiliation(s)
- Zongjie Dai
- Department of Biochemistry and Molecular Biology, University of Science and
Technology of China, Hefei, China
- Institute of Microbiology, Chinese Academy of Sciences, No.1 West Beichen
Road, Chaoyang District, Beijing, 100101, China
| | - Hongjun Dong
- Institute of Microbiology, Chinese Academy of Sciences, No.1 West Beichen
Road, Chaoyang District, Beijing, 100101, China
| | - Yan Zhu
- Institute of Microbiology, Chinese Academy of Sciences, No.1 West Beichen
Road, Chaoyang District, Beijing, 100101, China
- Graduate School of the Chinese Academy of Sciences, Beijing China
| | - Yanping Zhang
- Institute of Microbiology, Chinese Academy of Sciences, No.1 West Beichen
Road, Chaoyang District, Beijing, 100101, China
| | - Yin Li
- Institute of Microbiology, Chinese Academy of Sciences, No.1 West Beichen
Road, Chaoyang District, Beijing, 100101, China
| | - Yanhe Ma
- Institute of Microbiology, Chinese Academy of Sciences, No.1 West Beichen
Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
161
|
Xiao H, Li Z, Jiang Y, Yang Y, Jiang W, Gu Y, Yang S. Metabolic engineering of D-xylose pathway in Clostridium beijerinckii to optimize solvent production from xylose mother liquid. Metab Eng 2012; 14:569-78. [PMID: 22677452 DOI: 10.1016/j.ymben.2012.05.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/29/2012] [Accepted: 05/22/2012] [Indexed: 11/18/2022]
Abstract
Clostridium beijerinckii is an attractive butanol-producing microbe for its advantage in co-fermenting hexose and pentose sugars. However, this Clostridium strain exhibits undesired efficiency in utilizing D-xylose, one of the major building blocks contained in lignocellulosic materials. Here, we reported a useful metabolic engineering strategy to improve D-xylose consumption by C. beijerinckii. Gene cbei2385, encoding a putative D-xylose repressor XylR, was first disrupted in the C. beijerinckii NCIMB 8052, resulting in a significant increase in D-xylose consumption. A D-xylose proton-symporter (encoded by gene cbei0109) was identified and then overexpressed to further optimize D-xylose utilization, yielding an engineered strain 8052xylR-xylT(ptb) (xylR inactivation plus xylT overexpression driven by ptb promoter). We investigated the strain 8052xylR-xylT(ptb) in fermenting xylose mother liquid, an abundant by-product from industrial-scale xylose preparation from corncob and rich in D-xylose, finally achieving a 35% higher Acetone, Butanol and Ethanol (ABE) solvent titer (16.91 g/L) and a 38% higher yield (0.29 g/g) over those of the wild-type strain. The strategy used in this study enables C. beijerinckii more suitable for butanol production from lignocellulosic materials.
Collapse
Affiliation(s)
- Han Xiao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
162
|
Cheng CL, Che PY, Chen BY, Lee WJ, Chien LJ, Chang JS. High yield bio-butanol production by solvent-producing bacterial microflora. BIORESOURCE TECHNOLOGY 2012; 113:58-64. [PMID: 22244959 DOI: 10.1016/j.biortech.2011.12.133] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 12/25/2011] [Accepted: 12/26/2011] [Indexed: 05/28/2023]
Abstract
Highly efficient butanol-producing bacterial microflora were isolated from hydrogen-producing sludge of a sewage treatment plant. Based on denaturing gradient gel electrophoresis (DGGE) analysis and 16s rDNA comparison, four strains from the butanol-producing microflora were identified as Clostridium saccharoperbutylacetonicum, Clostridium butylicum, Clostridium beijernckii, and Clostridium acetobutylicum. The effects of glucose, FeSO(4) · 7H(2)O and yeast extract concentrations on the butanol production by the mixture culture were investigated on batch mode. The medium composition for bio-butanol production was optimized using the Box-Behnken design and response surface methodology (RSM). The maximum butanol production rate (0.25 ± 0.02 g/L-h) and concentration (12.4 g/L) were obtained under the condition of glucose concentration, 60 g/L; FeSO(4) · 7H(2)O, 0.516 g/L; yeast extract concentration, 5.13 g/L. Addition of 6.0 g/L butyric acid significantly increased the butanol titer to 17.51 ± 0.49 g/L. Pressurized fermentation strategy (employed with a 5L fermentor) further enhanced the butanol concentration to 21.35 g/L, along with a maximum butanol rate of 1.25 g/L-h.
Collapse
Affiliation(s)
- Chieh-Lun Cheng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
163
|
Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET. Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 2012; 23:364-81. [DOI: 10.1016/j.copbio.2011.10.008] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/06/2011] [Accepted: 10/20/2011] [Indexed: 12/19/2022]
|
164
|
Over-expression of stress protein-encoding genes helps Clostridium acetobutylicum to rapidly adapt to butanol stress. Biotechnol Lett 2012; 34:1643-9. [PMID: 22618238 DOI: 10.1007/s10529-012-0951-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/05/2012] [Indexed: 10/28/2022]
Abstract
The toxicity of n-butanol in microbial fermentations limits its formation. The stress response of Clostridium acetobutylicum involves various stress proteins and therefore, over-expression of genes encoding stress proteins constitutes an option to improve solvent tolerance. Over-expression of groESL, grpE and htpG, significantly improved butanol tolerance of C. acetobutylicum. Whereas the wild type and vector control strain did not survive 2 % (v/v) butanol for 2 h, the recombinant strains showed 45 % (groESL), 25 % (grpE) and 56 % (htpG), respectively, of the initial c.f.u. after 2 h of butanol exposure. As previously, over-expression of groESL led to higher butanol production rates, but the novel strains over-expressing grpE or htpG produced only 51 and 68 %, respectively, of the wild type butanol concentrations after 72 h clearly differentiating butanol tolerance and production. Not only butanol tolerance but also the adaptation to butanol in successive stress experiments was significantly facilitated by increased levels of GroESL, GrpE and HtpG. Re-transformation and sequence analyses of the plasmids confirmed that not the plasmids, but the host cells evolved to a more robust phenotype.
Collapse
|
165
|
Jurgens G, Survase S, Berezina O, Sklavounos E, Linnekoski J, Kurkijärvi A, Väkevä M, van Heiningen A, Granström T. Butanol production from lignocellulosics. Biotechnol Lett 2012; 34:1415-34. [PMID: 22526420 DOI: 10.1007/s10529-012-0926-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/27/2012] [Indexed: 12/20/2022]
Abstract
Clostridium spp. produce n-butanol in the acetone/butanol/ethanol process. For sustainable industrial scale butanol production, a number of obstacles need to be addressed including choice of feedstock, the low product yield, toxicity to production strain, multiple-end products and downstream processing of alcohol mixtures. This review describes the use of lignocellulosic feedstocks, bioprocess and metabolic engineering, downstream processing and catalytic refining of n-butanol.
Collapse
Affiliation(s)
- German Jurgens
- Department of Biotechnology and Chemical Technology, Aalto University, 00076, Espoo, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Zhang H, Chong H, Ching CB, Song H, Jiang R. Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance. Appl Microbiol Biotechnol 2012; 94:1107-17. [DOI: 10.1007/s00253-012-4012-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/02/2012] [Accepted: 03/06/2012] [Indexed: 11/28/2022]
|
167
|
Schwarz KM, Kuit W, Grimmler C, Ehrenreich A, Kengen SWM. A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicum--cellular behavior in adaptation to n-butanol. J Biotechnol 2012; 161:366-77. [PMID: 22484128 DOI: 10.1016/j.jbiotec.2012.03.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/05/2012] [Accepted: 03/21/2012] [Indexed: 12/18/2022]
Abstract
To gain more insight into the butanol stress response of Clostridium acetobutylicum the transcriptional response of a steady state acidogenic culture to different levels of n-butanol (0.25-1%) was investigated. No effect was observed on the fermentation pattern and expression of typical solvent genes (aad, ctfA/B, adc, bdhA/B, ptb, buk). Elevated levels of butanol mainly affected class I heat-shock genes (hrcA, grpE, dnaK, dnaJ, groES, groEL, hsp90), which were upregulated in a dose- and time-dependent manner, and genes encoding proteins involved in the membrane composition (fab and fad or glycerophospholipid related genes) and various ABC-transporters of unknown specificity. Interestingly, fab and fad genes were embedded in a large, entirely repressed cluster (CAC1988-CAC2019), which inter alia encoded an iron-specific ABC-transporter and molybdenum-cofactor synthesis proteins. Of the glycerophospholipid metabolism, the glycerol-3-phosphate dehydrogenase (glpA) gene was highly upregulated, whereas a glycerophosphodiester ABC-transporter (ugpAEBC) and a phosphodiesterase (ugpC) were repressed. On the megaplasmid, only a few genes showed differential expression, e.g. a rare lipoprotein (CAP0058, repressed) and a membrane protein (CAP0102, upregulated) gene. Observed transcriptional responses suggest that C. acetobutylicum reacts to butanol stress by induction of the general stress response and changing its cell envelope and transporter composition, but leaving the central catabolism unaffected.
Collapse
Affiliation(s)
- Katrin M Schwarz
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
168
|
Taylor MP, Mulako I, Tuffin M, Cowan D. Understanding physiological responses to pre-treatment inhibitors in ethanologenic fermentations. Biotechnol J 2012; 7:1169-81. [PMID: 22331581 DOI: 10.1002/biot.201100335] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 12/15/2011] [Accepted: 01/17/2012] [Indexed: 11/10/2022]
Abstract
Alcohol-based liquid fuels feature significantly in the political and social agendas of many countries, seeking energy sustainability. It is certain that ethanol will be the entry point for many sustainable processes. Conventional ethanol production using maize- and sugarcane-based carbohydrates with Saccharomyces cerevisiae is well established, while lignocellulose-based processes are receiving growing interest despite posing greater technical and scientific challenges. A significant challenge that arises from the chemical hydrolysis of lignocellulose is the generation of toxic compounds in parallel with the release of sugars. These compounds, collectively termed pre-treatment inhibitors, impair metabolic functionality and growth. Their removal, pre-fermentation or their abatement, via milder hydrolysis, are currently uneconomic options. It is widely acknowledged that a more cost effective strategy is to develop resistant process strains. Here we describe and classify common inhibitors and describe in detail the reported physiological responses that occur in second-generation strains, which include engineered yeast and mesophilic and thermophilic prokaryotes. It is suggested that a thorough understanding of tolerance to common pre-treatment inhibitors should be a major focus in ongoing strain engineering. This review is a useful resource for future metabolic engineering strategies.
Collapse
Affiliation(s)
- Mark P Taylor
- TMO Renewables Ltd., The Surrey Research Park, Guildford, UK
| | | | | | | |
Collapse
|
169
|
Gu Y, Jiang Y, Wu H, Liu X, Li Z, Li J, Xiao H, Shen Z, Dong H, Yang Y, Li Y, Jiang W, Yang S. Economical challenges to microbial producers of butanol: Feedstock, butanol ratio and titer. Biotechnol J 2011; 6:1348-57. [DOI: 10.1002/biot.201100046] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
170
|
Wang Y, Li X, Mao Y, Blaschek HP. Single-nucleotide resolution analysis of the transcriptome structure of Clostridium beijerinckii NCIMB 8052 using RNA-Seq. BMC Genomics 2011; 12:479. [PMID: 21962126 PMCID: PMC3271303 DOI: 10.1186/1471-2164-12-479] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 09/30/2011] [Indexed: 12/02/2022] Open
Abstract
Background Clostridium beijerinckii is an important solvent producing microorganism. The genome of C. beijerinckii NCIMB 8052 has recently been sequenced. Although transcriptome structure is important in order to reveal the functional and regulatory architecture of the genome, the physical structure of transcriptome for this strain, such as the operon linkages and transcript boundaries are not well understood. Results In this study, we conducted a single-nucleotide resolution analysis of the C. beijerinckii NCIMB 8052 transcriptome using high-throughput RNA-Seq technology. We identified the transcription start sites and operon structure throughout the genome. We confirmed the structure of important gene operons involved in metabolic pathways for acid and solvent production in C. beijerinckii 8052, including pta-ack, ptb-buk, hbd-etfA-etfB-crt (bcs) and ald-ctfA-ctfB-adc (sol) operons; we also defined important operons related to chemotaxis/motility, transcriptional regulation, stress response and fatty acids biosynthesis along with others. We discovered 20 previously non-annotated regions with significant transcriptional activities and 15 genes whose translation start codons were likely mis-annotated. As a consequence, the accuracy of existing genome annotation was significantly enhanced. Furthermore, we identified 78 putative silent genes and 177 putative housekeeping genes based on normalized transcription measurement with the sequence data. We also observed that more than 30% of pseudogenes had significant transcriptional activities during the fermentation process. Strong correlations exist between the expression values derived from RNA-Seq analysis and microarray data or qRT-PCR results. Conclusions Transcriptome structural profiling in this research provided important supplemental information on the accuracy of genome annotation, and revealed additional gene functions and regulation in C. beijerinckii.
Collapse
Affiliation(s)
- Yi Wang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
171
|
Dunlop MJ. Engineering microbes for tolerance to next-generation biofuels. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:32. [PMID: 21936941 PMCID: PMC3189103 DOI: 10.1186/1754-6834-4-32] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/21/2011] [Indexed: 05/02/2023]
Abstract
A major challenge when using microorganisms to produce bulk chemicals such as biofuels is that the production targets are often toxic to cells. Many biofuels are known to reduce cell viability through damage to the cell membrane and interference with essential physiological processes. Therefore, cells must trade off biofuel production and survival, reducing potential yields. Recently, there have been several efforts towards engineering strains for biofuel tolerance. Promising methods include engineering biofuel export systems, heat shock proteins, membrane modifications, more general stress responses, and approaches that integrate multiple tolerance strategies. In addition, in situ recovery methods and media supplements can help to ease the burden of end-product toxicity and may be used in combination with genetic approaches. Recent advances in systems and synthetic biology provide a framework for tolerance engineering. This review highlights recent targeted approaches towards improving microbial tolerance to next-generation biofuels with a particular emphasis on strategies that will improve production.
Collapse
Affiliation(s)
- Mary J Dunlop
- University of Vermont, School of Engineering, 33 Colchester Ave, Burlington, VT 05405, USA.
| |
Collapse
|
172
|
Controlling the oxidoreduction potential of the culture of Clostridium acetobutylicum leads to an earlier initiation of solventogenesis, thus increasing solvent productivity. Appl Microbiol Biotechnol 2011; 93:1021-30. [DOI: 10.1007/s00253-011-3570-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/11/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
|
173
|
Jang YS, Park JM, Choi S, Choi YJ, Seung DY, Cho JH, Lee SY. Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnol Adv 2011; 30:989-1000. [PMID: 21889585 DOI: 10.1016/j.biotechadv.2011.08.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 08/06/2011] [Accepted: 08/17/2011] [Indexed: 12/30/2022]
Abstract
The increasing oil price and environmental concerns caused by the use of fossil fuel have renewed our interest in utilizing biomass as a sustainable resource for the production of biofuel. It is however essential to develop high performance microbes that are capable of producing biofuels with very high efficiency in order to compete with the fossil fuel. Recently, the strategies for developing microbial strains by systems metabolic engineering, which can be considered as metabolic engineering integrated with systems biology and synthetic biology, have been developed. Systems metabolic engineering allows successful development of microbes that are capable of producing several different biofuels including bioethanol, biobutanol, alkane, and biodiesel, and even hydrogen. In this review, the approaches employed to develop efficient biofuel producers by metabolic engineering and systems metabolic engineering approaches are reviewed with relevant example cases. It is expected that systems metabolic engineering will be employed as an essential strategy for the development of microbial strains for industrial applications.
Collapse
Affiliation(s)
- Yu-Sin Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
174
|
Jang YS, Lee J, Malaviya A, Seung DY, Cho JH, Lee SY. Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering. Biotechnol J 2011; 7:186-98. [PMID: 21818859 DOI: 10.1002/biot.201100059] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/21/2011] [Accepted: 07/04/2011] [Indexed: 11/07/2022]
Abstract
Biofuel from renewable biomass is one of the answers to help solve the problems associated with limited fossil resources and climate change. Butanol has superior liquid-fuel characteristics, with similar properties to gasoline, and thus, has the potential to be used as a substitute for gasoline. Clostridia are recognized as a good butanol producers and are employed in the industrial-scale production of solvents. Due to the difficulty of performing genetic manipulations on clostridia, however, strain improvement has been rather slow. Furthermore, complex metabolic characteristics of acidogenesis followed by solventogenesis in this strain have hampered the development of engineered clostridia strains with highly efficient and selective butanol-production capabilities. In recent years, the butanol-producing characteristics in clostridia have been further characterized and alternative pathways discovered. More recently, systems-level metabolic engineering approaches were taken to develop superior strains. Herein, we review recent discoveries of metabolic pathways for butanol production and the metabolic engineering strategies being developed.
Collapse
Affiliation(s)
- Yu-Sin Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Republic of Korea
| | | | | | | | | | | |
Collapse
|
175
|
Winkler J, Kao KC. Transcriptional analysis of Lactobacillus brevis to N-butanol and ferulic acid stress responses. PLoS One 2011; 6:e21438. [PMID: 21829598 PMCID: PMC3149049 DOI: 10.1371/journal.pone.0021438] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/27/2011] [Indexed: 11/19/2022] Open
Abstract
Background The presence of anti-microbial phenolic compounds, such as the model compound ferulic acid, in biomass hydrolysates pose significant challenges to the widespread use of biomass in conjunction with whole cell biocatalysis or fermentation. Currently, these inhibitory compounds must be removed through additional downstream processing or sufficiently diluted to create environments suitable for most industrially important microbial strains. Simultaneously, product toxicity must also be overcome to allow for efficient production of next generation biofuels such as n-butanol, isopropanol, and others from these low cost feedstocks. Methodology and Principal Findings This study explores the high ferulic acid and n-butanol tolerance in Lactobacillus brevis, a lactic acid bacterium often found in fermentation processes, by global transcriptional response analysis. The transcriptional profile of L. brevis reveals that the presence of ferulic acid triggers the expression of currently uncharacterized membrane proteins, possibly in an effort to counteract ferulic acid induced changes in membrane fluidity and ion leakage. In contrast to the ferulic acid stress response, n-butanol challenges to growing cultures primarily induce genes within the fatty acid synthesis pathway and reduced the proportion of 19∶1 cyclopropane fatty acid within the L. brevis membrane. Both inhibitors also triggered generalized stress responses. Separate attempts to alter flux through the Escherichia coli fatty acid synthesis by overexpressing acetyl-CoA carboxylase subunits and deleting cyclopropane fatty acid synthase (cfa) both failed to improve n-butanol tolerance in E. coli, indicating that additional components of the stress response are required to confer n-butanol resistance. Conclusions Several promising routes for understanding both ferulic acid and n-butanol tolerance have been identified from L. brevis gene expression data. These insights may be used to guide further engineering of model industrial organisms to better tolerate both classes of inhibitors to enable facile production of biofuels from lignocellulosic biomass.
Collapse
Affiliation(s)
- James Winkler
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Katy C. Kao
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
176
|
SpoIIE is necessary for asymmetric division, sporulation, and expression of sigmaF, sigmaE, and sigmaG but does not control solvent production in Clostridium acetobutylicum ATCC 824. J Bacteriol 2011; 193:5130-7. [PMID: 21784928 DOI: 10.1128/jb.05474-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to better characterize the initial stages of sporulation past Spo0A activation and the associated solventogenesis in the important industrial and model organism Clostridium acetobutylicum, the spoIIE gene was successfully disrupted and its expression was silenced. By silencing spoIIE, sporulation was blocked prior to asymmetric division, and no mature spores or any distinguishable morphogenetic changes developed. Upon plasmid-based complementation of spoIIE, sporulation was restored, although the number of spores formed was below that of the plasmid control strain. To investigate the impact of silencing spoIIE on the regulation of sporulation, transcript levels of sigF, sigE, and sigG were examined by semiquantitative reverse transcription-PCR, and the corresponding σF, σE, and σG protein levels were determined by Western analysis. Expression of sigF was significantly reduced in the inactivation strain, and this resulted in very low σF protein levels. Expression of sigE was barely detected, and no sigG transcript was detected at all; consequently, no σE or σG proteins were detected. These data suggest an autostimulatory role for σF in C. acetobutylicum, in contrast to the model organism for endospore formation, Bacillus subtilis, and confirm that high-level expression of σF is required for expression of σE and σG. Unlike the σF and σE inactivation strains, the SpoIIE inactivation strain did not exhibit inoculum-dependent solvent formation and produced good levels of solvents from both exponential- and stationary-phase inocula. Thus, we concluded that SpoIIE does not control solvent formation.
Collapse
|
177
|
Complete genome sequence of Clostridium acetobutylicum DSM 1731, a solvent-producing strain with multireplicon genome architecture. J Bacteriol 2011; 193:5007-8. [PMID: 21742891 DOI: 10.1128/jb.05596-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Clostridium acetobutylicum is an important microorganism for solvent production. We report the complete genome sequence of C. acetobutylicum DSM 1731, a genome with multireplicon architecture. Comparison with the sequenced type strain C. acetobutylicum ATCC 824, the genome of strain DSM1731 harbors a 1.7-kb insertion and a novel 11.1-kb plasmid, which might have been acquired during evolution.
Collapse
|
178
|
Yu M, Zhang Y, Tang IC, Yang ST. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab Eng 2011; 13:373-82. [DOI: 10.1016/j.ymben.2011.04.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/23/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
|
179
|
Heluane H, Evans MR, Dagher SF, Bruno-Bárcena JM. Meta-analysis and functional validation of nutritional requirements of solventogenic Clostridia growing under butanol stress conditions and coutilization of D-glucose and D-xylose. Appl Environ Microbiol 2011; 77:4473-85. [PMID: 21602379 PMCID: PMC3127714 DOI: 10.1128/aem.00116-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/07/2011] [Indexed: 01/22/2023] Open
Abstract
Recent advances in systems biology, omics, and computational studies allow us to carry out data mining for improving biofuel production bioprocesses. Of particular interest are bioprocesses that center on microbial capabilities to biotransform both the hexose and pentose fractions present in crop residues. This called for a systematic exploration of the components of the media to obtain higher-density cultures and more-productive fermentation operations than are currently found. By using a meta-analysis approach of the transcriptional responses to butanol stress, we identified the nutritional requirements of solvent-tolerant strain Clostridium beijerinckii SA-1 (ATCC 35702). The nutritional requirements identified were later validated using the chemostat pulse-and-shift technique. C. beijerinckii SA-1 was cultivated in a two-stage single-feed-stream continuous production system to test the proposed validated medium formulation, and the coutilization of D-glucose and D-xylose was evaluated by taking advantage of the well-known ability of solventogenic clostridia to utilize a large variety of carbon sources such as mono-, oligo-, and polysaccharides containing pentose and hexose sugars. Our results indicated that C. beijerinckii SA-1 was able to coferment hexose/pentose sugar mixtures in the absence of a glucose repression effect. In addition, our analysis suggests that the solvent and acid resistance mechanisms found in this strain are differentially regulated compared to strain NRRL B-527 and are outlined as the basis of the analysis toward optimizing butanol production.
Collapse
Affiliation(s)
- Humberto Heluane
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina
| | | | - Sue F. Dagher
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina
| | - José M. Bruno-Bárcena
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
180
|
Dürre P. Fermentative production of butanol—the academic perspective. Curr Opin Biotechnol 2011; 22:331-6. [DOI: 10.1016/j.copbio.2011.04.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/16/2011] [Accepted: 04/18/2011] [Indexed: 12/18/2022]
|
181
|
Continuous production of isopropanol and butanol using Clostridium beijerinckii DSM 6423. Appl Microbiol Biotechnol 2011; 91:1305-13. [DOI: 10.1007/s00253-011-3322-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
|
182
|
Atsumi S, Wu TY, Machado IMP, Huang WC, Chen PY, Pellegrini M, Liao JC. Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol Syst Biol 2011; 6:449. [PMID: 21179021 PMCID: PMC3018172 DOI: 10.1038/msb.2010.98] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 10/25/2010] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli has been engineered to produce isobutanol, with titers reaching greater than the toxicity level. However, the specific effects of isobutanol on the cell have never been fully understood. Here, we aim to identify genotype–phenotype relationships in isobutanol response. An isobutanol-tolerant mutant was isolated with serial transfers. Using whole-genome sequencing followed by gene repair and knockout, we identified five mutations (acrA, gatY, tnaA, yhbJ, and marCRAB) that were primarily responsible for the increased isobutanol tolerance. We successfully reconstructed the tolerance phenotype by combining deletions of these five loci, and identified glucosamine-6-phosphate as an important metabolite for isobutanol tolerance, which presumably enhanced membrane synthesis. The isobutanol-tolerant mutants also show increased tolerance to n-butanol and 2-methyl-1-butanol, but showed no improvement in ethanol tolerance and higher sensitivity to hexane and chloramphenicol than the parental strain. These results suggest that C4, C5 alcohol stress impacts the cell differently compared with the general solvent or antibiotic stresses. Interestingly, improved isobutanol tolerance did not increase the final titer of isobutanol production.
Collapse
Affiliation(s)
- Shota Atsumi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
183
|
Inactivation of σF in Clostridium acetobutylicum ATCC 824 blocks sporulation prior to asymmetric division and abolishes σE and σG protein expression but does not block solvent formation. J Bacteriol 2011; 193:2429-40. [PMID: 21421765 DOI: 10.1128/jb.00088-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium acetobutylicum is both a model organism for the understanding of sporulation in solventogenic clostridia and its relationship to solvent formation and an industrial organism for anaerobic acetone-butanol-ethanol (ABE) fermentation. How solvent production is coupled to endospore formation--both stationary-phase events--remains incompletely understood at the molecular level. Specifically, it is unclear how sporulation-specific sigma factors affect solvent formation. Here the sigF gene in C. acetobutylicum was successfully disrupted and silenced. Not only σ(F) but also the sigma factors σ(E) and σ(G) were not detected in the sigF mutant (FKO1), and differentiation was stopped prior to asymmetric division. Since plasmid expression of the spoIIA operon (spoIIAA-spoIIAB-sigF) failed to complement FKO1, the operon was integrated into the FKO1 chromosome to generate strain FKO1-C. In FKO1-C, σ(F) expression was restored along with sporulation and σ(E) and σ(G) protein expression. Quantitative reverse transcription-PCR (RT-PCR) analysis of a select set of genes (csfB, gpr, spoIIP, sigG, lonB, and spoIIR) that could be controlled by σ(F), based on the Bacillus subtilis model, indicated that sigG may be under the control of σ(F), but spoIIR, an important activator of σ(E) in B. subtilis, is not, and neither are the rest of the genes investigated. FKO1 produced solvents at a level similar to that of the parent strain, but solvent levels were dependent on the physiological state of the inoculum. Finally, the complementation strain FKO1-C is the first reported instance of purposeful integration of multiple functional genes into a clostridial chromosome--here, the C. acetobutylicum chromosome--with the aim of altering cell metabolism and differentiation.
Collapse
|
184
|
The issue of secretion in heterologous expression of Clostridium cellulolyticum cellulase-encoding genes in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 2011; 77:2831-8. [PMID: 21378034 DOI: 10.1128/aem.03012-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The genes encoding the cellulases Cel5A, Cel8C, Cel9E, Cel48F, Cel9G, and Cel9M from Clostridium cellulolyticum were cloned in the C. acetobutylicum expression vector pSOS952 under the control of a Gram-positive constitutive promoter. The DNA encoding the native leader peptide of the heterologous cellulases was maintained. The transformation of the solventogenic bacterium with the corresponding vectors generated clones in the cases of Cel5A, Cel8C, and Cel9M. Analyses of the recombinant strains indicated that the three cellulases are secreted in an active form to the medium. A large fraction of the secreted cellulases, however, lost the C-terminal dockerin module. In contrast, with the plasmids pSOS952-cel9E, pSOS952-cel48F, and pSOS952-cel9G no colonies were obtained, suggesting that the expression of these genes has an inhibitory effect on growth. The deletion of the DNA encoding the leader peptide of Cel48F in pSOS952-cel48F, however, generated strains of C. acetobutylicum in which mature Cel48F accumulates in the cytoplasm. Thus, the growth inhibition observed when the wild-type cel48F gene is expressed seems related to the secretion of the cellulase. The weakening of the promoter, the coexpression of miniscaffoldin-encoding genes, or the replacement of the native signal sequence of Cel48F by that of secreted heterologous or endogenous proteins failed to generate strains secreting Cel48F. Taken together, our data suggest that a specific chaperone(s) involved in the secretion of the key family 48 cellulase, and probably Cel9G and Cel9E, is missing or insufficiently synthesized in C. acetobutylicum.
Collapse
|
185
|
D-2,3-butanediol production due to heterologous expression of an acetoin reductase in Clostridium acetobutylicum. Appl Environ Microbiol 2011; 77:2582-8. [PMID: 21335380 DOI: 10.1128/aem.01616-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acetoin reductase (ACR) catalyzes the conversion of acetoin to 2,3-butanediol. Under certain conditions, Clostridium acetobutylicum ATCC 824 (and strains derived from it) generates both d- and l-stereoisomers of acetoin, but because of the absence of an ACR enzyme, it does not produce 2,3-butanediol. A gene encoding ACR from Clostridium beijerinckii NCIMB 8052 was functionally expressed in C. acetobutylicum under the control of two strong promoters, the constitutive thl promoter and the late exponential adc promoter. Both ACR-overproducing strains were grown in batch cultures, during which 89 to 90% of the natively produced acetoin was converted to 20 to 22 mM d-2,3-butanediol. The addition of a racemic mixture of acetoin led to the production of both d-2,3-butanediol and meso-2,3-butanediol. A metabolic network that is in agreement with the experimental data is proposed. Native 2,3-butanediol production is a first step toward a potential homofermentative 2-butanol-producing strain of C. acetobutylicum.
Collapse
|
186
|
Jia K, Zhu Y, Zhang Y, Li Y. Group II intron-anchored gene deletion in Clostridium. PLoS One 2011; 6:e16693. [PMID: 21304965 PMCID: PMC3031624 DOI: 10.1371/journal.pone.0016693] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 01/10/2011] [Indexed: 11/18/2022] Open
Abstract
Clostridium plays an important role in commercial and medical use, for which targeted gene deletion is difficult. We proposed an intron-anchored gene deletion approach for Clostridium, which combines the advantage of the group II intron "ClosTron" system and homologous recombination. In this approach, an intron carrying a fragment homologous to upstream or downstream of the target site was first inserted into the genome by retrotransposition, followed by homologous recombination, resulting in gene deletion. A functional unknown operon CAC1493-1494 located in the chromosome, and an operon ctfAB located in the megaplasmid of C. acetobutylicum DSM1731 were successfully deleted by using this approach, without leaving antibiotic marker in the genome. We therefore propose this approach can be used for targeted gene deletion in Clostridium. This approach might also be applicable for gene deletion in other bacterial species if group II intron retrotransposition system is established.
Collapse
Affiliation(s)
- Kaizhi Jia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
187
|
Molecular breeding of advanced microorganisms for biofuel production. J Biomed Biotechnol 2011; 2011:416931. [PMID: 21318120 PMCID: PMC3035169 DOI: 10.1155/2011/416931] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/29/2010] [Accepted: 12/01/2010] [Indexed: 11/18/2022] Open
Abstract
Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain biomass. For this purpose, cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this method has many limitations such as low productivity and low solvent tolerance of microorganisms. Despite these problems, biofuels such as bioethanol, biobutanol, and biodiesel are potential energy sources that can help establish a sustainable society.
Collapse
|
188
|
Li SY, Srivastava R, Parnas RS. Study of in situ 1-butanol pervaporation from A-B-E fermentation using a PDMS composite membrane: Validity of solution-diffusion model for pervaporative A-B-E fermentation. Biotechnol Prog 2011; 27:111-20. [DOI: 10.1002/btpr.535] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 08/24/2010] [Indexed: 12/18/2022]
|
189
|
Formic acid triggers the "Acid Crash" of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Appl Environ Microbiol 2011; 77:1674-80. [PMID: 21216898 DOI: 10.1128/aem.01835-10] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Solvent production by Clostridium acetobutylicum collapses when cells are grown in pH-uncontrolled glucose medium, the so-called "acid crash" phenomenon. It is generally accepted that the fast accumulation of acetic acid and butyric acid triggers the acid crash. We found that addition of 1 mM formic acid into corn mash medium could trigger acid crash, suggesting that formic acid might be related to acid crash. When it was grown in pH-uncontrolled glucose medium or glucose-rich medium, C. acetobutylicum DSM 1731 containing the empty plasmid pIMP1 failed to produce solvents and was found to accumulate 0.5 to 1.24 mM formic acid intracellularly. In contrast, recombinant strain DSM 1731 with formate dehydrogenase activity did not accumulate formic acid intracellularly and could produce solvent as usual. We therefore conclude that the accumulation of formic acid, rather than acetic acid and butyric acid, is responsible for the acid crash of acetone-butanol-ethanol fermentation.
Collapse
|
190
|
Inactivation of σE and σG in Clostridium acetobutylicum illuminates their roles in clostridial-cell-form biogenesis, granulose synthesis, solventogenesis, and spore morphogenesis. J Bacteriol 2011; 193:1414-26. [PMID: 21217008 DOI: 10.1128/jb.01380-10] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Central to all clostridia is the orchestration of endospore formation (i.e., sporulation) and, specifically, the roles of differentiation-associated sigma factors. Moreover, there is considerable applied interest in understanding the roles of these sigma factors in other stationary-phase phenomena, such as solvent production (i.e., solventogenesis). Here we separately inactivated by gene disruption the major sporulation-specific sigma factors, σ(E) and σ(G), and performed an initial analysis to elucidate their roles in sporulation-related morphogenesis and solventogenesis in Clostridium acetobutylicum. The terminal differentiation phenotype for the sigE inactivation mutant stalled in sporulation prior to asymmetric septum formation, appeared vegetative-like often with an accumulation of DNA at both poles, frequently exhibited two longitudinal internal membranes, and did not synthesize granulose. The sigE inactivation mutant did produce the characteristic solvents (i.e., butanol and acetone), but the extent of solventogenesis was dependent on the physiological state of the inoculum. The sigG inactivation mutant stalled in sporulation during endospore maturation, exhibiting engulfment and partial cortex and spore coat formation. Lastly, the sigG inactivation mutant did produce granulose and exhibited wild-type-like solventogenesis.
Collapse
|
191
|
Mao S, Luo Y, Bao G, Zhang Y, Li Y, Ma Y. Comparative analysis on the membrane proteome of Clostridium acetobutylicum wild type strain and its butanol-tolerant mutant. MOLECULAR BIOSYSTEMS 2011; 7:1660-77. [DOI: 10.1039/c0mb00330a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
192
|
Mainguet SE, Liao JC. Bioengineering of microorganisms for C3 to C5 alcohols production. Biotechnol J 2010; 5:1297-308. [DOI: 10.1002/biot.201000276] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
193
|
Kobayashi Y, Ohtsu I, Fujimura M, Fukumori F. A mutation in dnaK causes stabilization of the heat shock sigma factor σ32, accumulation of heat shock proteins and increase in toluene-resistance in Pseudomonas putida. Environ Microbiol 2010; 13:2007-17. [PMID: 20880327 DOI: 10.1111/j.1462-2920.2010.02344.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Heat shock gene expression is regulated by the cellular level and activity of the stress sigma factor σ(32) in Gram-negative bacteria. A toluene-resistant, temperature-sensitive derivative strain of Pseudomonas putida KT2442, designated KT2442-R2 (R2), accumulated several heat shock proteins (HSPs) under non-stress conditions. Genome sequencing of strain R2 revealed that its genome contains a number of point mutations, including a CGT to CCT change in dnaK resulting in an Arg445 to Pro substitution in DnaK. DNA microarray and real-time reverse transcription polymerase chain reaction analyses revealed that the mRNA levels of representative hsp genes (e.g. dnaK, htpG and groEL) were upregulated in R2 cells in the stationary phase. Wild-type and R2 cells showed similar heat shock responses at hsp mRNA and HSP levels; however, the σ(32) level in the mutant was not downregulated in the shut-off stage. Strain R2 harbouring plasmid-borne dnaK grew at 37°C, did not accumulate HSPs, and was more sensitive to toluene than strain R2. It is worth to note that that revertant of R2 able to grow at 37°C were isolated and exhibited a replacement of Pro445 by Ser or Leu in DnaK. Thus, the mutation in dnaK causes the temperature-sensitive phenotype, improper stabilization of σ(32) leading to HSP accumulation and increased toluene resistance in strain R2.
Collapse
Affiliation(s)
- Yuka Kobayashi
- Graduate School of Life Sciences, Toyo University, Gunma, Japan
| | | | | | | |
Collapse
|
194
|
Huang H, Liu H, Gan YR. Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnol Adv 2010; 28:651-7. [DOI: 10.1016/j.biotechadv.2010.05.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
195
|
Jia K, Zhang Y, Li Y. Systematic engineering of microorganisms to improve alcohol tolerance. Eng Life Sci 2010. [DOI: 10.1002/elsc.201000076] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
196
|
Barnard D, Casanueva A, Tuffin M, Cowan D. Extremophiles in biofuel synthesis. ENVIRONMENTAL TECHNOLOGY 2010; 31:871-888. [PMID: 20662378 DOI: 10.1080/09593331003710236] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The current global energy situation has demonstrated an urgent need for the development of alternative fuel sources to the continually diminishing fossil fuel reserves. Much research to address this issue focuses on the development of financially viable technologies for the production of biofuels. The current market for biofuels, defined as fuel products obtained from organic substrates, is dominated by bioethanol, biodiesel, biobutanol and biogas, relying on the use of substrates such as sugars, starch and oil crops, agricultural and animal wastes, and lignocellulosic biomass. This conversion from biomass to biofuel through microbial catalysis has gained much momentum as biotechnology has evolved to its current status. Extremophiles are a robust group of organisms producing stable enzymes, which are often capable of tolerating changes in environmental conditions such as pH and temperature. The potential application of such organisms and their enzymes in biotechnology is enormous, and a particular application is in biofuel production. In this review an overview of the different biofuels is given, covering those already produced commercially as well as those under development. The past and present trends in biofuel production are discussed, and future prospects for the industry are highlighted. The focus is on the current and future application of extremophilic organisms and enzymes in technologies to develop and improve the biotechnological production of biofuels.
Collapse
Affiliation(s)
- Desire Barnard
- Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, Cape Town, South Africa
| | | | | | | |
Collapse
|
197
|
Mao S, Luo Y, Zhang T, Li J, Bao G, Zhu Y, Chen Z, Zhang Y, Li Y, Ma Y. Proteome Reference Map and Comparative Proteomic Analysis between a Wild Type Clostridium acetobutylicum DSM 1731 and its Mutant with Enhanced Butanol Tolerance and Butanol Yield. J Proteome Res 2010; 9:3046-61. [DOI: 10.1021/pr9012078] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shaoming Mao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, Graduate School of Chinese Academy of Sciences, Beijing, China, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, and Department of Human Genetics, School of Medicine, University of California, Los Angeles, California 90095
| | - Yuanming Luo
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, Graduate School of Chinese Academy of Sciences, Beijing, China, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, and Department of Human Genetics, School of Medicine, University of California, Los Angeles, California 90095
| | - Tianrui Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, Graduate School of Chinese Academy of Sciences, Beijing, China, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, and Department of Human Genetics, School of Medicine, University of California, Los Angeles, California 90095
| | - Jinshan Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, Graduate School of Chinese Academy of Sciences, Beijing, China, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, and Department of Human Genetics, School of Medicine, University of California, Los Angeles, California 90095
| | - Guanhui Bao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, Graduate School of Chinese Academy of Sciences, Beijing, China, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, and Department of Human Genetics, School of Medicine, University of California, Los Angeles, California 90095
| | - Yan Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, Graduate School of Chinese Academy of Sciences, Beijing, China, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, and Department of Human Genetics, School of Medicine, University of California, Los Angeles, California 90095
| | - Zugen Chen
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, Graduate School of Chinese Academy of Sciences, Beijing, China, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, and Department of Human Genetics, School of Medicine, University of California, Los Angeles, California 90095
| | - Yanping Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, Graduate School of Chinese Academy of Sciences, Beijing, China, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, and Department of Human Genetics, School of Medicine, University of California, Los Angeles, California 90095
| | - Yin Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, Graduate School of Chinese Academy of Sciences, Beijing, China, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, and Department of Human Genetics, School of Medicine, University of California, Los Angeles, California 90095
| | - Yanhe Ma
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, Graduate School of Chinese Academy of Sciences, Beijing, China, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, and Department of Human Genetics, School of Medicine, University of California, Los Angeles, California 90095
| |
Collapse
|
198
|
Regulation of neurotoxin production and sporulation by a Putative agrBD signaling system in proteolytic Clostridium botulinum. Appl Environ Microbiol 2010; 76:4448-60. [PMID: 20453132 DOI: 10.1128/aem.03038-09] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A significant number of genome sequences of Clostridium botulinum and related species have now been determined. In silico analysis of these data revealed the presence of two distinct agr loci (agr-1 and agr-2) in all group I strains, each encoding putative proteins with similarity to AgrB and AgrD of the well-studied Staphylococcus aureus agr quorum sensing system. In S. aureus, a small diffusible autoinducing peptide is generated from AgrD in a membrane-located processing event that requires AgrB. Here the characterization of both agr loci in the group I strain C. botulinum ATCC 3502 and of their homologues in a close relative, Clostridium sporogenes NCIMB 10696, is reported. In C. sporogenes NCIMB 10696, agr-1 and agr-2 appear to form transcriptional units that consist of agrB, agrD, and flanking genes of unknown function. Several of these flanking genes are conserved in Clostridium perfringens. In agreement with their proposed role in quorum sensing, both loci were maximally expressed during late-exponential-phase growth. Modulation of agrB expression in C. sporogenes was achieved using antisense RNA, whereas in C. botulinum, insertional agrD mutants were generated using ClosTron technology. In comparison to the wild-type strains, these strains exhibited drastically reduced sporulation and, for C. botulinum, also reduced production of neurotoxin, suggesting that both phenotypes are controlled by quorum sensing. Interestingly, while agr-1 appeared to control sporulation, agr-2 appeared to regulate neurotoxin formation.
Collapse
|
199
|
Improvement of multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli DnaK. Appl Environ Microbiol 2010; 76:4277-85. [PMID: 20453133 DOI: 10.1128/aem.02878-09] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of nisin-induced dnaK expression in Lactococcus lactis were examined, and this expression was shown to improve stress tolerance and lactic acid fermentation efficiency. Using a nisin-inducible expression system, DnaK proteins from L. lactis (DnaK(Lla)) and Escherichia coli (DnaK(Eco)) were produced in L. lactis NZ9000. In comparison to a strain harboring the empty vector pNZ8048 (designated NZ-Vector) and one expressing dnaK(Lla) (designated NZ-LDnaK), the dnaK(Eco)-expressing strain, named NZ-EDnaK, exhibited more tolerance to heat stress at 40 degrees C in GM17 liquid medium. The cell viability of NZ-Vector was reduced 4.6-fold after 6 h of heat treatment. However, NZ-EDnaK showed 13.5-fold increased viability under these conditions, with a very low concentration of DnaK(Eco) production. Although the heterologous expression of dnaK(Eco) did not effect DnaK(Lla) production, heat treatment increased the DnaK(Lla) level 3.5- and 3.6-fold in NZ-Vector and NZ-EDnaK, respectively. Moreover, NZ-EDnaK showed tolerance to multiple stresses, including 3% NaCl, 5% ethanol, and 0.5% lactic acid (pH 5.47). In CMG medium, the lactate yield and the maximum lactate productivity of NZ-EDnaK were higher than the corresponding values for NZ-Vector at 30 degrees C. Interestingly, at 40 degrees C, these values of NZ-EDnaK were not significantly different from the corresponding values for the control strain at 30 degrees C. Lactate dehydrogenase (LDH) activity was also found to be stable at 40 degrees C in the presence of DnaK(Eco). These findings suggest that the heterologous expression of dnaK(Eco) enhances the quality control of proteins and enzymes, resulting in improved growth and lactic acid fermentation at high temperature.
Collapse
|
200
|
Liu S, Bischoff KM, Qureshi N, Hughes SR, Rich JO. Functional expression of the thiolase gene thl from Clostridium beijerinckii P260 in Lactococcus lactis and Lactobacillus buchneri. N Biotechnol 2010; 27:283-8. [PMID: 20371307 DOI: 10.1016/j.nbt.2010.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/17/2010] [Accepted: 03/26/2010] [Indexed: 11/29/2022]
Abstract
The first step of the butanol pathway involves an acetyl-CoA acetyltransferase (ACoAAT), which controls the key branching point from acetyl-CoA to butanol. ACoAAT, also known as thiolase (EC 2.3.1.9), is encoded by the thl gene and catalyzes ligation of two acetyl-CoA into acetoacetyl-CoA. Bioinformatics analyses suggest there are no thl in the genomes of lactic acid bacteria (LAB), in this study we aimed to introduce the thl gene into selected LAB strains and analyze the fermentation products. The thl gene from Clostridium beijerinckii P260 was amplified by genomic PCR using gene-specific primers designed from the published genome sequences of C. beijerinckii NCIMB 8025. The 1.2 kb thl gene was cloned into the pETBlue vector and overexpressed in Escherichia coli Tuner (DE3) pLacI cells. Functional enzyme activity was detected spectrophotometrically by measuring the decrease in absorbance at 303 nm, which reflects the change in acetoacetyl-CoA concentrations. The thl gene was subsequently introduced into Lactococcus lactis and Lactobacillus buchneri strains, and GC analysis indicated about 28 mg/L and 66 mg/L of butanol was produced in the recombinant strains, respectively. This study reports the first step toward developing a butanolgenic LAB through the introduction of the butanol pathway into butanol-tolerant strains of LAB.
Collapse
Affiliation(s)
- Siqing Liu
- Bioproducts and Biocatalysis Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture(3), 1815 N. University St., Peoria, IL 61604, USA.
| | | | | | | | | |
Collapse
|