151
|
Mahros MA, Abd-Elghany SM, Sallam KI. Multidrug-, methicillin-, and vancomycin-resistant Staphylococcus aureus isolated from ready-to-eat meat sandwiches: An ongoing food and public health concern. Int J Food Microbiol 2021; 346:109165. [PMID: 33770679 DOI: 10.1016/j.ijfoodmicro.2021.109165] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 11/25/2022]
Abstract
Methicillin-resistant S. aureus (MRSA) and their antimicrobial resistance pose exacerbating global health threats and endangering everyone. Thus, the prevalence, molecular characterization of virulence genes, and antimicrobial resistance patterns of strains isolated from 225 beef burger and hot dog sandwiches vended in Mansoura city, Egypt were determined. 83.1% of the sandwiches tested were contaminated with coagulase-positive S. aureus, with a mean count of 4 × 103 CFU/g. Genes encoding mecA, α-hemolysin, staphylococcal enterotoxins, and toxic shock syndrome toxin-1 were detected in 22.6%, 96.3%, 61.1%, and 0% of the strains isolated, respectively. Of the 190 coagulase-positive strains, 43 (22.6%) were confirmed as MRSA. Among them, 4 strains (2.1%) were vancomycin-resistant S. aureus (VRSA) and resistant to all antimicrobials tested. Interestingly, all isolates were resistant to at least one of the antimicrobials tested, with 75.2% being multi-drug resistant (MDR) and an average multiple antimicrobial resistance (MAR) index of 0.503. Not less important, 100%, 96.3%, 90.5%, 79.5%, 73.7%, 62.6%, and 48.9% of isolates were resistant to Kanamycin, Nalidixic acid, Cefotaxime, Sulphamethoxazole-Trimethoprim, Penicillin G, Tetracycline, and Cephalothin, respectively. The potential hazard of MDR-, MRSA-, and VRSA-contaminated sandwiches may be an indication of the presence of what is more dangerous. Hence, strict hygienic measures and good standards of food handler's personal hygiene to prevent transmission of these pathogens to consumers are imperative.
Collapse
Affiliation(s)
- Mahmoud Ahmed Mahros
- Food Hygiene and Control Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Samir Mohammed Abd-Elghany
- Food Hygiene and Control Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Khalid Ibrahim Sallam
- Food Hygiene and Control Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
152
|
Heo S, Kim JH, Kwak MS, Sung MH, Jeong DW. Functional Annotation Genome Unravels Potential Probiotic Bacillus velezensis Strain KMU01 from Traditional Korean Fermented Kimchi. Foods 2021; 10:foods10030563. [PMID: 33803098 PMCID: PMC7998376 DOI: 10.3390/foods10030563] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/01/2022] Open
Abstract
Bacillus velezensis strain KMU01 showing γ-glutamyltransferase activity as a probiotic candidate was isolated from kimchi. However, the genetic information on strain KMU01 was not clear. Therefore, the current investigation was undertaken to prove the probiotic traits of B. velezensis strain KMU01 through genomic analysis. Genomic analysis revealed that strain KMU01 did not encode enterotoxin genes and acquired antibiotic resistance genes. Strain KMU01 genome possessed survivability traits under extreme conditions such as in the presence of gastric acid, as well as several probiotic traits such as intestinal epithelium adhesion and the production of thiamine and essential amino acids. Potential genes for human health enhancement such as those for γ-glutamyltransferase, nattokinase, and bacteriocin production were also identified in the genome. As a starter candidate for food fermentation, the genome of KMU01 encoded for protease, amylase, and lipase genes. The complete genomic sequence of KMU01 will contribute to our understanding of the genetic basis of probiotic properties and allow for the assessment of the effectiveness of this strain as a starter or probiotic for use in the food industry.
Collapse
Affiliation(s)
- Sojeong Heo
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Korea;
| | - Jong-Hoon Kim
- The Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea; (J.-H.K.); (M.-S.K.)
| | - Mi-Sun Kwak
- The Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea; (J.-H.K.); (M.-S.K.)
| | - Moon-Hee Sung
- The Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea; (J.-H.K.); (M.-S.K.)
- KookminBio Corporation, Seoul 02826, Korea
- Correspondence: or (M.-H.S.); (D.-W.J.); Tel.: +82-2-910-4808 (M.-H.S.); +82-2-940-4463 (D.-W.J.)
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Korea;
- Correspondence: or (M.-H.S.); (D.-W.J.); Tel.: +82-2-910-4808 (M.-H.S.); +82-2-940-4463 (D.-W.J.)
| |
Collapse
|
153
|
Tang Y, Qiao Z, Wang Z, Li Y, Ren J, Wen L, Xu X, Yang J, Yu C, Meng C, Ingmer H, Li Q, Jiao X. The Prevalence of Staphylococcus aureus and the Occurrence of MRSA CC398 in Monkey Feces in a Zoo Park in Eastern China. Animals (Basel) 2021; 11:ani11030732. [PMID: 33800204 PMCID: PMC7998827 DOI: 10.3390/ani11030732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 12/30/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the important antibiotic resistant pathogens causing infections in humans and animals. The increasing observation of MRSA in wildlife species has raised the concern of its impact on animal health and the potential of zoonotic transmission. This study investigated the prevalence of S. aureus in fecal samples from non-human primates in a zoo located in Jiangsu, China, in which 6 out of 31 (19.4%) fecal samples, and 2 out of 14 (14.3%) indoor room floor swab samples were S. aureus-positive. The antibiotic susceptibility tests of the eight isolates showed that the two isolates were resistant to both penicillin and cefoxitin, the three isolates were resistant only to penicillin, while three isolates were susceptible to all detected antibiotics. The two isolates resistant to cefoxitin were further identified as MRSA by the presence of mecA. Five different spa types were identified including t034 of two MRSA isolates from Trachypithecus francoisi, t189 of two methicillin-susceptible S. aureus (MSSA) isolates from Rhinopithecus roxellana, t377 of two MSSA isolates from Colobus guereza, and two novel spa types t19488 and t19499 from Papio anubis. Whole genome sequencing analysis showed that MRSA t034 isolates belonged to ST398 clustered in clonal complex 398 (CC398) and carried the type B ΦSa3 prophage. The phylogenetic analysis showed that the two MRSA t034/ST398 isolates were closely related to the human-associated MSSA in China. Moreover, two MRSA isolates contained the virulence genes relating to the cell adherence, biofilm formation, toxins, and the human-associated immune evasion cluster, which indicated the potential of bidirectional transfer of MRSA between monkeys and humans. This study is the first to report MRSA CC398 from monkey feces in China, indicating that MRSA CC398 could colonize in monkey and have the risk of transmission between humans and monkeys.
Collapse
Affiliation(s)
- Yuanyue Tang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China; (Y.T.); (Z.Q.); (Z.W.); (Y.L.); (J.R.); (C.M.)
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
| | - Zhuang Qiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China; (Y.T.); (Z.Q.); (Z.W.); (Y.L.); (J.R.); (C.M.)
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
| | - Zhenyu Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China; (Y.T.); (Z.Q.); (Z.W.); (Y.L.); (J.R.); (C.M.)
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
| | - Yang Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China; (Y.T.); (Z.Q.); (Z.W.); (Y.L.); (J.R.); (C.M.)
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
| | - Jingwei Ren
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China; (Y.T.); (Z.Q.); (Z.W.); (Y.L.); (J.R.); (C.M.)
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
| | - Liang Wen
- Yangzhou Ecological Zoo, Zhu Yu Wan Road 888, Yangzhou 225009, China; (L.W.); (X.X.); (J.Y.); (C.Y.)
| | - Xun Xu
- Yangzhou Ecological Zoo, Zhu Yu Wan Road 888, Yangzhou 225009, China; (L.W.); (X.X.); (J.Y.); (C.Y.)
| | - Jun Yang
- Yangzhou Ecological Zoo, Zhu Yu Wan Road 888, Yangzhou 225009, China; (L.W.); (X.X.); (J.Y.); (C.Y.)
| | - Chenyi Yu
- Yangzhou Ecological Zoo, Zhu Yu Wan Road 888, Yangzhou 225009, China; (L.W.); (X.X.); (J.Y.); (C.Y.)
| | - Chuang Meng
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China; (Y.T.); (Z.Q.); (Z.W.); (Y.L.); (J.R.); (C.M.)
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
| | - Hanne Ingmer
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark;
| | - Qiuchun Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China; (Y.T.); (Z.Q.); (Z.W.); (Y.L.); (J.R.); (C.M.)
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
- Correspondence: (Q.L.); (X.J.); Tel.: +86-514-87997217 (Q.L.); +86-514-87971136 (X.J.)
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China; (Y.T.); (Z.Q.); (Z.W.); (Y.L.); (J.R.); (C.M.)
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
- Correspondence: (Q.L.); (X.J.); Tel.: +86-514-87997217 (Q.L.); +86-514-87971136 (X.J.)
| |
Collapse
|
154
|
Venkatasubramaniam A, Liao G, Cho E, Adhikari RP, Kort T, Holtsberg FW, Elsass KE, Kobs DJ, Rudge TL, Kauffman KD, Lora NE, Barber DL, Aman MJ, Karauzum H. Safety and Immunogenicity of a 4-Component Toxoid-Based Staphylococcus aureus Vaccine in Rhesus Macaques. Front Immunol 2021; 12:621754. [PMID: 33717122 PMCID: PMC7947289 DOI: 10.3389/fimmu.2021.621754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is a leading cause of significant morbidity and mortality and an enormous economic burden to public health worldwide. Infections caused by methicillin-resistant S. aureus (MRSA) pose a major threat as MRSA strains are becoming increasingly prevalent and multi-drug resistant. To this date, vaccines targeting surface-bound antigens demonstrated promising results in preclinical testing but have failed in clinical trials. S. aureus pathogenesis is in large part driven by immune destructive and immune modulating toxins and thus represent promising vaccine targets. Hence, the objective of this study was to evaluate the safety and immunogenicity of a staphylococcal 4-component vaccine targeting secreted bi-component pore-forming toxins (BCPFTs) and superantigens (SAgs) in non-human primates (NHPs). The 4-component vaccine proved to be safe, even when repeated vaccinations were given at a dose that is 5 to 10- fold higher than the proposed human dose. Vaccinated rhesus macaques did not exhibit clinical signs, weight loss, or changes in hematology or serum chemistry parameters related to the administration of the vaccine. No acute, vaccine-related elevation of serum cytokine levels was observed after vaccine administration, confirming the toxoid components lacked superantigenicity. Immunized animals demonstrated high level of toxin-specific total and neutralizing antibodies toward target antigens of the 4-component vaccine as well as cross-neutralizing activity toward staphylococcal BCPFTs and SAgs that are not direct targets of the vaccine. Cross-neutralization was also observed toward the heterologous streptococcal pyogenic exotoxin B. Ex vivo stimulation of PBMCs with individual vaccine components demonstrated an overall increase in several T cell cytokines measured in supernatants. Immunophenotyping of CD4 T cells ex vivo showed an increase in Ag-specific polyfunctional CD4 T cells in response to antigen stimulation. Taken together, we demonstrate that the 4-component vaccine is well-tolerated and immunogenic in NHPs generating both humoral and cellular immune responses. Targeting secreted toxin antigens could be the next-generation vaccine approach for staphylococcal vaccines if also proven to provide efficacy in humans.
Collapse
Affiliation(s)
| | - Grant Liao
- Integrated BioTherapeutics, Rockville, MD, United States
| | - Eunice Cho
- Integrated BioTherapeutics, Rockville, MD, United States
| | | | - Tom Kort
- Integrated BioTherapeutics, Rockville, MD, United States
| | | | | | - Dean J. Kobs
- Batelle - West Jefferson, West Jefferson, OH, United States
| | | | - Keith D. Kauffman
- Laboratory of Parasitic Diseases, T Lymphocyte Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Nickiana E. Lora
- Laboratory of Parasitic Diseases, T Lymphocyte Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Daniel L. Barber
- Laboratory of Parasitic Diseases, T Lymphocyte Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - M. Javad Aman
- Integrated BioTherapeutics, Rockville, MD, United States
| | | |
Collapse
|
155
|
Abstract
Staphylococcus aureus controls the progression of infection through the coordinated production of extracellular proteases, which selectively modulate virulence determinant stability. This is evidenced by our previous finding that a protease-null strain has a hypervirulent phenotype in a murine model of sepsis, resulting from the unchecked accumulation of virulence factors. Here, we dissect the individual roles of these proteases by constructing and assessing the pathogenic potential of a combinatorial protease mutant library. When strains were constructed bearing increasing numbers of secreted proteases, we observed a variable impact on infectious capacity, where some exhibited hypervirulence, while others phenocopied the wild-type. The common thread for hypervirulent strains was that each lacked both aureolysin and staphopain A. Upon assessment, we found that the combined loss of these two enzymes alone was necessary and sufficient to engender hypervirulence. Using proteomics, we identified a number of important secreted factors, including SPIN, LukA, Sbi, SEK, and PSMα4, as well as an uncharacterized chitinase-related protein (SAUSA300_0964), to be overrepresented in both the aur scpA and the protease-null mutants. When assessing the virulence of aur scpA SAUSA300_0964 and aur scpA lukA mutants, we found that hypervirulence was completely eliminated, whereas aur scpA spn and aur scpA sek strains elicited aggressive infections akin to the protease double mutant. Collectively, our findings shed light on the influence of extracellular proteases in controlling the infectious process and identifies SAUSA300_0964 as an important new component of the S. aureus virulence factor arsenal.IMPORTANCE A key feature of the pathogenic success of S. aureus is the myriad virulence factors encoded within its genome. These are subject to multifactorial control, ensuring their timely production only within an intended infectious niche. A key node in this network of control is the secreted proteases of S. aureus, who specifically and selectively modulate virulence factor stability. In our previous work we demonstrated that deletion of all 10 secreted proteases results in hypervirulence, since virulence factors exist unchecked, leading to overly aggressive infections. Here, using a combinatorial collection of protease mutants, we reveal that deletion of aureolysin and staphopain A is necessary and sufficient to elicit hypervirulence. Using proteomic techniques, we identify the collection of virulence factors that accumulate in hypervirulent protease mutants, and demonstrate that a well-known toxin (LukA) and an entirely novel secreted element (SAUSA300_0964) are the leading contributors to deadly infections observed in protease-lacking strains.
Collapse
|
156
|
|
157
|
McGuire MK, Randall AZ, Seppo AE, Järvinen KM, Meehan CL, Gindola D, Williams JE, Sellen DW, Kamau-Mbuthia EW, Kamundia EW, Mbugua S, Moore SE, Prentice AM, Foster JA, Otoo GE, Rodríguez JM, Pareja RG, Bode L, McGuire MA, Campo JJ. Multipathogen Analysis of IgA and IgG Antigen Specificity for Selected Pathogens in Milk Produced by Women From Diverse Geographical Regions: The INSPIRE Study. Front Immunol 2021; 11:614372. [PMID: 33643297 PMCID: PMC7905217 DOI: 10.3389/fimmu.2020.614372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
Breastfeeding provides defense against infectious disease during early life. The mechanisms underlying this protection are complex but likely include the vast array of immune cells and components, such as immunoglobulins, in milk. Simply characterizing the concentrations of these bioactives, however, provides only limited information regarding their potential relationships with disease risk in the recipient infant. Rather, understanding pathogen and antigen specificity profiles of milk-borne immunoglobulins might lead to a more complete understanding of how maternal immunity impacts infant health and wellbeing. Milk produced by women living in 11 geographically dispersed populations was applied to a protein microarray containing antigens from 16 pathogens, including diarrheagenic E. coli, Shigella spp., Salmonella enterica serovar Typhi, Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium tuberculosis and other pathogens of global health concern, and specific IgA and IgG binding was measured. Our analysis identified novel disease-specific antigen responses and suggests that some IgA and IgG responses vary substantially within and among populations. Patterns of antibody reactivity analyzed by principal component analysis and differential reactivity analysis were associated with either lower-to-middle-income countries (LMICs) or high-income countries (HICs). Antibody levels were generally higher in LMICs than HICs, particularly for Shigella and diarrheagenic E. coli antigens, although sets of S. aureus, S. pneumoniae, and some M. tuberculosis antigens were more reactive in HICs. Differential responses were typically specific to canonical immunodominant antigens, but a set of nondifferential but highly reactive antibodies were specific to antigens possibly universally recognized by antibodies in human milk. This approach provides a promising means to understand how breastfeeding and human milk protect (or do not protect) infants from environmentally relevant pathogens. Furthermore, this approach might lead to interventions to boost population-specific immunity in at-risk breastfeeding mothers and their infants.
Collapse
Affiliation(s)
- Michelle K McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Arlo Z Randall
- Antigen Discovery Incorporated, Irvine, CA, United States
| | - Antti E Seppo
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Kirsi M Järvinen
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Courtney L Meehan
- Department of Anthropology, Washington State University, Pullman, WA, United States
| | - Debela Gindola
- Department of Anthropology, Hawassa University, Awasa, Ethiopia
| | - Janet E Williams
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, United States
| | - Daniel W Sellen
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | | | | | - Samwel Mbugua
- Department of Human Nutrition, Egerton University, Nakuru, Kenya
| | - Sophie E Moore
- Department of Women and Children's Health, King's College London, London, United Kingdom.,MRC Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Andrew M Prentice
- MRC Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - James A Foster
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Gloria E Otoo
- Department of Nutrition and Food Science, University of Ghana, Accra, Ghana
| | - Juan M Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | | | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, La Jolla, CA, United States.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Mark A McGuire
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, United States
| | - Joseph J Campo
- Antigen Discovery Incorporated, Irvine, CA, United States
| |
Collapse
|
158
|
França A, Gaio V, Lopes N, Melo LDR. Virulence Factors in Coagulase-Negative Staphylococci. Pathogens 2021; 10:170. [PMID: 33557202 PMCID: PMC7913919 DOI: 10.3390/pathogens10020170] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) have emerged as major pathogens in healthcare-associated facilities, being S. epidermidis, S. haemolyticus and, more recently, S. lugdunensis, the most clinically relevant species. Despite being less virulent than the well-studied pathogen S. aureus, the number of CoNS strains sequenced is constantly increasing and, with that, the number of virulence factors identified in those strains. In this regard, biofilm formation is considered the most important. Besides virulence factors, the presence of several antibiotic-resistance genes identified in CoNS is worrisome and makes treatment very challenging. In this review, we analyzed the different aspects involved in CoNS virulence and their impact on health and food.
Collapse
Affiliation(s)
- Angela França
- Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (V.G.); (N.L.)
| | | | | | - Luís D. R. Melo
- Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (V.G.); (N.L.)
| |
Collapse
|
159
|
Bacteria and Host Interplay in Staphylococcus aureus Septic Arthritis and Sepsis. Pathogens 2021; 10:pathogens10020158. [PMID: 33546401 PMCID: PMC7913561 DOI: 10.3390/pathogens10020158] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus (S. aureus) infections are a major healthcare challenge and new treatment alternatives are needed. S. aureus septic arthritis, a debilitating joint disease, causes permanent joint dysfunction in almost 50% of the patients. S. aureus bacteremia is associated with higher mortalities than bacteremia caused by most other microbes and can develop to severe sepsis and death. The key to new therapies is understanding the interplay between bacterial virulence factors and host immune response, which decides the disease outcome. S. aureus produces numerous virulence factors that facilitate bacterial dissemination, invasion into joint cavity, and cause septic arthritis. Monocytes, activated by several components of S. aureus such as lipoproteins, are responsible for bone destructions. In S. aureus sepsis, cytokine storm induced by S. aureus components leads to the hyperinflammatory status, DIC, multiple organ failure, and later death. The immune suppressive therapies at the very early time point might be protective. However, the timing of treatment is crucial, as late treatment may aggravate the immune paralysis and lead to uncontrolled infection and death.
Collapse
|
160
|
Kim YS, Lee J, Heo S, Lee JH, Jeong DW. Technology and safety evaluation of Bacillus coagulans exhibiting antimicrobial activity for starter development. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
161
|
Staphylococcal Enterotoxin C Subtypes Are Differentially Associated with Human Infections and Immunobiological Activities. mSphere 2021; 6:6/1/e01153-20. [PMID: 33504664 PMCID: PMC7885323 DOI: 10.1128/msphere.01153-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcal enterotoxin C has four subtypes that cause human diseases, designated SEC-1 to -4. This study shows that SEC-2 and SEC-3 are the most toxic subtypes in a rabbit model and are associated with human vaginal infections or colonization in association with another superantigen, toxic shock syndrome toxin 1. Staphylococcus aureus causes significant infections, responsible for toxic shock syndrome (TSS), hemorrhagic pneumonia, and many other infections. S. aureus secretes virulence factors, which include superantigens such as staphylococcal enterotoxins (SEs). We examined differences in immunobiological activities and disease associations among the four human SEC subtypes. We sequenced the sec gene from 35 human isolates to determine SEC subtypes. Upon finding differences in disease association, we used a [3H]thymidine uptake assay to examine SEC-induced superantigenicity. We also employed a rabbit model of SEC-induced TSS. SEC-2 and SEC-3 were associated with menstrual TSS and vaginal isolates from healthy women, whereas SEC-4 was produced by USA400 isolates causing purpura fulminans and hemorrhagic pneumonia. SEC subtypes differed in potency in a TSS rabbit model and in superantigenicity. There was no difference in superantigenicity when tested on human peripheral blood mononuclear cells. Despite differences, all SECs reacted with polyclonal antibodies raised against the other SEC subtypes. The associations of SEC subtypes with different infections suggest that S. aureus produces virulence factors according to host niches. IMPORTANCE Staphylococcal enterotoxin C has four subtypes that cause human diseases, designated SEC-1 to -4. This study shows that SEC-2 and SEC-3 are the most toxic subtypes in a rabbit model and are associated with human vaginal infections or colonization in association with another superantigen, toxic shock syndrome toxin 1. SEC-4 is associated with purpura fulminans and hemorrhagic pneumonia. SEC-1 is uncommon. The data suggest that there is some selective pressure for the SEC subtypes to be associated with certain human niches.
Collapse
|
162
|
Wang X, Koffi PF, English OF, Lee JC. Staphylococcus aureus Extracellular Vesicles: A Story of Toxicity and the Stress of 2020. Toxins (Basel) 2021; 13:toxins13020075. [PMID: 33498438 PMCID: PMC7909408 DOI: 10.3390/toxins13020075] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus generates and releases extracellular vesicles (EVs) that package cytosolic, cell-wall associated, and membrane proteins, as well as glycopolymers and exoproteins, including alpha hemolysin, leukocidins, phenol-soluble modulins, superantigens, and enzymes. S. aureus EVs, but not EVs from pore-forming toxin-deficient strains, were cytolytic for a variety of mammalian cell types, but EV internalization was not essential for cytotoxicity. Because S. aureus is subject to various environmental stresses during its encounters with the host during infection, we assessed how these exposures affected EV production in vitro. Staphylococci grown at 37 °C or 40 °C did not differ in EV production, but cultures incubated at 30 °C yielded more EVs when grown to the same optical density. S. aureus cultivated in the presence of oxidative stress, in iron-limited media, or with subinhibitory concentrations of ethanol, showed greater EV production as determined by protein yield and quantitative immunoblots. In contrast, hyperosmotic stress or subinhibitory concentrations of erythromycin reduced S. aureus EV yield. EVs represent a novel S. aureus secretory system that is affected by a variety of stress responses and allows the delivery of biologically active pore-forming toxins and other virulence determinants to host cells.
Collapse
|
163
|
Verma C, Ankush KR, Anang V, Tiwari BK, Singh A, Surender Kumar Saraswati S, Shariff M, Natarajan K. Calcium Dynamics Regulate Protective Responses and Growth of Staphylococcus aureus in Macrophages. Biomol Concepts 2020; 11:230-239. [PMID: 33726488 DOI: 10.1515/bmc-2020-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a gram-positive bacteria, which causes various fatal respiratory infections including pneumonia. The emergence of Methicillin-Resistance Staphylococcus aureus (MRSA) demands a thorough understanding of host-pathogen interactions. Here we report the role of calcium in regulating defence responses of S. aureus in macrophages. Regulating calcium fluxes in cells by different routes differentially governs the expression of T cell costimulatory molecule CD80 and Th1 promoting IL-12 receptor. Inhibiting calcium influx from extracellular medium increased expression of IFN-γ and IL-10 while blocking calcium release from the intracellular stores inhibited TGF-β levels. Blocking voltage-gated calcium channels (VGCC) inhibited the expression of multiple cytokines. While VGCC regulated the expression of apoptosis protein Bax, extracellular calcium-regulated the expression of Cytochrome-C. Similarly, VGCC regulated the expression of autophagy initiator Beclin-1. Blocking VGCC or calcium release from intracellular stores promoted phagosome-lysosome fusion, while activating VGCC inhibited phagosomelysosome fusion. Finally, calcium homeostasis regulated intracellular growth of Staphylococcus, although using different mechanisms. While blocking extracellular calcium influx seems to rely on IFN-γ and IL-12Rβ receptor mediated reduction in bacterial survival, blocking either intracellular calcium release or via VGCC route seem to rely on enhanced autophagy mediated reduction of intracellular bacterial survival. These results point to fine-tuning of defence responses by routes of calcium homeostasis.
Collapse
Affiliation(s)
- Chaitenya Verma
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.,Department of Pathology, Wexner Medical Center,The Ohio State University, OH-43210, USA
| | - Kumar Rana Ankush
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Vandana Anang
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Brijendra K Tiwari
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Aayushi Singh
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | | | - Malini Shariff
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| | - Krishnamurthy Natarajan
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| |
Collapse
|
164
|
Gurnee EA, Xu M, Risener CJ, Lehman K, Nelson K, Swerlick RA, Quave CL. Staphylococcal Hemolytic Potential Is Correlated with Increased Severity of Atopic Dermatitis in Children and Young Adults. J Invest Dermatol 2020; 141:1588-1591. [PMID: 33359627 DOI: 10.1016/j.jid.2020.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/02/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Emily A Gurnee
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mengqing Xu
- Center for the Study of Human Health, Emory University, Atlanta, Georgia, USA
| | - Caitlin J Risener
- Molecular and Systems Pharmacology Graduate Program, Emory University, Atlanta, Georgia, USA
| | - Kelly Lehman
- Microbiology and Molecular Genetics Graduate Program, Emory University, Atlanta, Georgia, USA
| | - Kate Nelson
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert A Swerlick
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Cassandra L Quave
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
165
|
Lee U, Kim YH, Yoon KS, Kim Y. Selective Butyrate Esterase Probe for the Rapid Colorimetric and Fluorogenic Identification of Moraxella catarrhalis. Anal Chem 2020; 92:16051-16057. [PMID: 33211958 DOI: 10.1021/acs.analchem.0c03671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clinical identification of the pathogenic bacterium Moraxella catarrhalis in cultures relies on the detection of bacterial butyrate esterase (C4-esterase) using a coumarin-based fluorogenic substrate, 4-methylumbelliferyl butyrate. However, this classical probe may give false-positive responses because of its poor stability and lack of specificity. Here, we report a new colorimetric and fluorogenic probe design employing a meso-ester-substituted boron dipyrromethene (BODIPY) dye for the specific detection of C4-esterase activity expressed by M. catarrhalis. This new probe has resistance to nonspecific hydrolysis that is far superior to the classical probe and also selectively responds to esterase with rapid colorimetric and fluorescence signal changes and large "turn-on" ratios. The probe was successfully applied to the specific detection of M. catarrhalis with high sensitivity.
Collapse
Affiliation(s)
- Uisung Lee
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Yeon Ho Kim
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Ki Sun Yoon
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Youngmi Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
166
|
Ahmed HA, Awad NFS, Abd El-Hamid MI, Shaker A, Mohamed RE, Elsohaby I. Pet birds as potential reservoirs of virulent and antibiotic resistant zoonotic bacteria. Comp Immunol Microbiol Infect Dis 2020; 75:101606. [PMID: 33373939 DOI: 10.1016/j.cimid.2020.101606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 11/30/2022]
Abstract
Bacterial pathogens carried by pet birds are considered a risk for birds, workers, and pet owners. This study investigated the potential of pet birds as reservoirs for virulent multidrug-resistant (MDR) zoonotic bacteria and assessed the genetic relatedness and diversity of bacterial isolates from pet birds and human contacts. Cloacal and tracheal swabs from 125 pet birds and 70 hand swabs from human contacts were collected. The results revealed that the pet birds were reservoirs for Escherichia coli, Klebsiella pneumoniae (17.6 %, each), and Staphylococcus aureus (15.2 %). These isolates were also identified in their human contacts, at percentages of 14.3 %, 12.9 %, and 24.3 %, respectively. Virulence associated genes were identified from E. coli (stx2, stx2f, eaeA, and hlyA), K. pneumoniae (fimH, TraT, and magA), and S. aureus (PVL, hly, sea, sed genes) isolates. Multidrug-resistant E. coli, K. pneumoniae, and S. aureus were highly prevalent (81.3 %, 90.3 %, and 61.1 %, respectively). The genetic relationship between the E. coli and K. pneumoniae isolates from the pet birds and human contacts were determined by ERIC-PCR, while, RAPD-PCR was used for the S. aureus isolates. ERIC-PCR was found to have the highest discriminatory power. The clustering of the isolates from the pet birds and human contacts indicated potential transmission between the birds and workers. In conclusion, pet birds could act as potential reservoirs for zoonotic bacterial pathogens; thus, posing a risk to their human contacts.
Collapse
Affiliation(s)
- Heba A Ahmed
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig City 44511, Sharkia Governorate, Egypt.
| | - Naglaa F S Awad
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig City 44511, Sharkia Governorate, Egypt
| | - Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, 44511, Sharkia Governorate, Egypt
| | - Asmaa Shaker
- Veterinary Hospital, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Rehab E Mohamed
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig City 44511, Sharkia Governorate, Egypt
| | - Ibrahim Elsohaby
- Department of Animal Medicine, Division of Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig City 44511, Sharkia Governorate, Egypt; Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, C1A 4P3, Canada
| |
Collapse
|
167
|
Zhao X, Chlebowicz-Flissikowska MA, Wang M, Vera Murguia E, de Jong A, Becher D, Maaß S, Buist G, van Dijl JM. Exoproteomic profiling uncovers critical determinants for virulence of livestock-associated and human-originated Staphylococcus aureus ST398 strains. Virulence 2020; 11:947-963. [PMID: 32726182 PMCID: PMC7550020 DOI: 10.1080/21505594.2020.1793525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus: with the sequence type (ST) 398 was previously associated with livestock carriage. However, in recent years livestock-independent S. aureus ST398 has emerged, representing a potential health risk for humans especially in nosocomial settings. Judged by whole-genome sequencing analyses, the livestock- and human originated strains belong to two different S. aureus ST398 clades but, to date, it was not known to what extent these clades differ in terms of actual virulence. Therefore, the objective of this study was to profile the exoproteomes of 30 representative S. aureus ST398 strains by mass spectrometry, to assess clade-specific differences in virulence factor secretion, and to correlate the identified proteins and their relative abundance to the strains' actual virulence. Although the human-originated strains are more heterogeneous at the genome level, our observations show that they are more homogeneous in terms of virulence factor production than the livestock-associated strains. To assess differences in virulence, infection models based on larvae of the wax moth Galleria mellonella and the human HeLa cell line were applied. Correlation of the exoproteome data to larval killing and toxicity toward HeLa cells uncovered critical roles of the staphylococcal Sbi, SpA, SCIN and CHIPS proteins in virulence. These findings were validated by showing that sbi or spa mutant bacteria are attenuated in G. mellonella and that the purified SCIN and CHIPS proteins are toxic for HeLa cells. Altogether, we show that exoproteome profiling allows the identification of critical determinants for virulence of livestock-associated and human-originated S. aureus ST398 strains.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elias Vera Murguia
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sandra Maaß
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
168
|
Algharib SA, Dawood A, Xie S. Nanoparticles for treatment of bovine Staphylococcus aureus mastitis. Drug Deliv 2020; 27:292-308. [PMID: 32036717 PMCID: PMC7034104 DOI: 10.1080/10717544.2020.1724209] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the most important zoonotic bacterial pathogens, infecting human beings and a wide range of animals, in particular, dairy cattle. Globally. S. aureus causing bovine mastitis is one of the biggest problems and an economic burden facing the dairy industry with a strong negative impact on animal welfare, productivity, and food safety. Furthermore, its smart pathogenesis, including facultative intracellular parasitism, increasingly serious antimicrobial resistance, and biofilm formation, make it challenging to be treated by conventional therapy. Therefore, the development of nanoparticles, especially liposomes, polymeric nanoparticles, solid lipid nanoparticles, nanogels, and inorganic nanoparticles, are gaining traction and excellent tools for overcoming the therapeutic difficulty accompanied by S. aureus mastitis. Therefore, in this review, the current progress and challenges of nanoparticles in enhancing the S. aureus mastitis therapy are focused stepwise. Firstly, the S. aureus treatment difficulties by the antimicrobial drugs are analyzed. Secondly, the advantages of nanoparticles in the treatment of S. aureus mastitis, including improving the penetration and accumulation of their payload drugs intracellular, decreasing the antimicrobial resistance, and preventing the biofilm formation, are also summarized. Thirdly, the progression of different types from the nanoparticles for controlling the S. aureus mastitis are provided. Finally, the difficulties that need to be solved, and future prospects of nanoparticles for S. aureus mastitis treatment are highlighted. This review will provide the readers with enough information about the challenges of the nanosystem to help them to design and fabricate more efficient nanoformulations against S. aureus infections.
Collapse
Affiliation(s)
- Samah Attia Algharib
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
169
|
Andreeva NV, Gabbasova RR, Grivennikov SI. Microbiome in cancer progression and therapy. Curr Opin Microbiol 2020; 56:118-126. [PMID: 33147555 DOI: 10.1016/j.mib.2020.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
A myriad of microbes living together with the host constitute microbiota, which possesses very diverse functions in regulation of host physiology. Recently, it has been unequivocally demonstrated that microbiota regulates cancer initiation, progression and responses to therapy. Here we review known pro-tumorigenic and anti-tumorigenic function of microbiota and mechanisms how microbes can regulate cancer cells and immune and stromal cells within the tumor microenvironment.
Collapse
Affiliation(s)
- Natalia V Andreeva
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA; Samuel Oschin Comprehensive Cancer Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Railia R Gabbasova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA; Samuel Oschin Comprehensive Cancer Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Sergei I Grivennikov
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA; Samuel Oschin Comprehensive Cancer Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
170
|
Nichols JM, Kaplan BLF. The CB 1 Receptor Differentially Regulates IFN-γ Production In Vitro and in Experimental Autoimmune Encephalomyelitis. Cannabis Cannabinoid Res 2020; 6:300-314. [PMID: 33998867 DOI: 10.1089/can.2020.0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Activation of the peripheral immune system and the infiltration of immune cells into the central nervous system are both key features of the experimental autoimmune encephalomyelitis (EAE) model. By exploring how the endocannabinoid system works to modulate this response, we can better understand how exogenous cannabinoids, such as THC, might be used to modulate the immune responses of multiple sclerosis patients. Materials and Methods: In this study, we examined the role of the CB1 receptor in IFN-γ and IL-17A production in the EAE model and in vitro stimulations of naive splenocytes using Cnr1-/- mice and wild-type (WT) littermates. We also introduce a novel method of scoring spinal cord histological sections to show the differences in disease severity between Cnr1-/- and WT mice with EAE. Results: Clinical scores of Cnr1-/-/EAE and WT/EAE mice showed more severe disease progression in Cnr1-/- mice, which was confirmed using our new histological scoring method. In the peripheral immune system, IFN-γ production by restimulated splenocytes from Cnr1-/-/EAE mice, compared with WT/EAE mice, was increased and the primary source of IFN-γ was a CD3- cell population; however, IFN-γ production by Cnr1-/- splenocytes was decreased compared with WT splenocytes when the primary source of IFN-γ was CD3+ T cells in cultures from naive mice stimulated by either anti-CD3/anti-CD28 antibodies or Staphylococcal superantigens. Conclusion: These findings suggest a duality to the CB1 receptor's effects on the peripheral immune response, which varies based on the specific cell types stimulated. Knowledge of the complex nature of a receptor is an important part of determining its potential usefulness as a therapeutic target, and these findings further define the role of CB1 in IFN-γ responses.
Collapse
Affiliation(s)
- James M Nichols
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Barbara L F Kaplan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
171
|
High Titer Persistent Neutralizing Antibodies Induced by TSST-1 Variant Vaccine Against Toxic Shock Cytokine Storm. Toxins (Basel) 2020; 12:toxins12100640. [PMID: 33023185 PMCID: PMC7601046 DOI: 10.3390/toxins12100640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 12/25/2022] Open
Abstract
Staphylococcal superantigen toxins lead to a devastating cytokine storm resulting in shock and multi-organ failure. We have previously assessed the safety and immunogenicity of a recombinant toxic shock syndrome toxin 1 variant vaccine (rTSST-1v) in clinical trials (NCT02971670 and NCT02340338). The current study assessed neutralizing antibody titers after repeated vaccination with escalating doses of rTSST-1v. At study entry, 23 out of 34 subjects (67.6%) had neutralizing antibody titers inhibiting T cell activation as determined by 3H-thymidine incorporation at a serum dilution of ≤1:100 with similar figures for inhibition of IL-2 activation (19 of 34 subjects, 55.9%) as assessed by quantitative PCR. After the first vaccination, numbers of subjects with neutralization titers inhibiting T cell activation (61.7% ≥ 1:1000) and inhibiting IL-2 gene induction (88.2% ≥ 1:1000) increased. The immune response was augmented after the second vaccination (inhibiting T cell activation: 78.8% ≥ 1:1000; inhibiting IL-2 induction: 93.9% ≥ 1:1000) corroborated with a third immunization months later in a small subgroup of subjects. Assessment of IFNγ, TNFα and IL-6 inhibition revealed similar results, whereas neutralization titers did not change in placebo participants. Antibody titer studies show that vaccination with rTSST-1v in subjects with no/low neutralizing antibodies can rapidly induce high titer neutralizing antibodies persisting over months.
Collapse
|
172
|
Antibacterial and Antivirulence Activity of Manuka Honey against Genetically Diverse Staphylococcus pseudintermedius Strains. Appl Environ Microbiol 2020; 86:AEM.01768-20. [PMID: 32801179 PMCID: PMC7531947 DOI: 10.1128/aem.01768-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus pseudintermedius is an important member of the skin microbial community in animals and can cause opportunistic infections in both pets and their owners. The high incidence of antimicrobial resistance in S. pseudintermedius highlights that this opportunistic zoonotic pathogen can cause infections which require prolonged and intensive treatment to resolve. Manuka honey has proven efficacy against many bacterial pathogens and is an accepted topical treatment for infections in both veterinary and clinical practice, and so it is a particularly appropriate antimicrobial for use with zoonotic pathogens such as S. pseudintermedius. Here, we demonstrate that not only is manuka honey highly potent against novel multidrug-resistant S. pseudintermedius isolates, it also acts synergistically with clinically relevant antibiotics. In addition, manuka honey modulates S. pseudintermedius virulence activity, even at subinhibitory concentrations. In a clinical setting, these attributes may assist in controlling infection, allowing a more rapid resolution and reducing antibiotic use. Staphylococcus pseudintermedius causes opportunistic infections in dogs. It also has significant zoonotic potential, with the emergence of multidrug resistance leading to difficulty treating both animal and human infections. Manuka honey has previously been reported to inhibit many bacterial pathogens, including methicillin-resistant Staphylococcus aureus, and is successfully utilized in both clinical and veterinary practice. Here, we evaluated the ability of manuka honey to inhibit strains of S. pseudintermedius grown alone and in combination with antibiotics, as well as its capacity to modulate virulence within multiple S. pseudintermedius isolates. All 18 of the genetically diverse S. pseudintermedius strains sequenced and tested were inhibited by ≤12% (wt/vol) medical-grade manuka honey, although tolerance to five clinically relevant antibiotics was observed. The susceptibility of the isolates to four of these antibiotics was significantly increased (P ≤ 0.05) when combined with sublethal concentrations of honey, although sensitivity to oxacillin was decreased. Virulence factor (DNase, protease, and hemolysin) activity was also significantly reduced (P ≤ 0.05) in over half of isolates when cultured with sublethal concentrations of honey (13, 9, and 10 isolates, respectively). These findings highlight the potential for manuka honey to be utilized against S. pseudintermedius infections. IMPORTANCEStaphylococcus pseudintermedius is an important member of the skin microbial community in animals and can cause opportunistic infections in both pets and their owners. The high incidence of antimicrobial resistance in S. pseudintermedius highlights that this opportunistic zoonotic pathogen can cause infections which require prolonged and intensive treatment to resolve. Manuka honey has proven efficacy against many bacterial pathogens and is an accepted topical treatment for infections in both veterinary and clinical practice, and so it is a particularly appropriate antimicrobial for use with zoonotic pathogens such as S. pseudintermedius. Here, we demonstrate that not only is manuka honey highly potent against novel multidrug-resistant S. pseudintermedius isolates, it also acts synergistically with clinically relevant antibiotics. In addition, manuka honey modulates S. pseudintermedius virulence activity, even at subinhibitory concentrations. In a clinical setting, these attributes may assist in controlling infection, allowing a more rapid resolution and reducing antibiotic use.
Collapse
|
173
|
Liu CLS, Hall AC. Optimizing the Composition of Irrigation Fluid to Reduce the Potency of Staphylococcus aureus α-Toxin: Potential Role in the Treatment of Septic Arthritis. Cartilage 2020; 11:500-511. [PMID: 30188175 PMCID: PMC7488945 DOI: 10.1177/1947603518798888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Septic arthritis is commonly caused by Staphylococcus aureus and is a medical emergency requiring antibiotics and joint irrigation. The bacteria produce α-toxin causing rapid cartilage cell (chondrocyte) death. Saline (0.9%NaCl) lavage is normally used to remove bacteria and toxins, however, its composition might be suboptimal to suppress the lethal effects of α-toxin. We utilized rabbit erythrocyte hemolysis as a sensitive, biologically relevant assay of α-toxin levels to determine if changes to osmolarity, temperature, pH, and divalent cation (Mg2+, Ca2+) concentration were protective. DESIGN Erythrocytes were incubated in the various conditions and then exposed to α-toxin ("chronic" challenge) or incubated with α-toxin and then exposed to experimental conditions ("acute" challenge). RESULTS Raising osmolarity from 300 mOsm (0.9%NaCl) to 400, 600, or 900 mOsm (sucrose addition) when applied chronically, significantly reduced hemolysis linearly. As an acute challenge, osmotic protection was significant and similar over 400 to 900 mOsm. Reducing temperature chronically from 37°C to 25°C and 4°C significantly reduced hemolysis, however, when applied as an acute challenge although significant, was less marked. Divalent cations (Mg2+, Ca2+ at 5mM) reduced hemolysis. Varying pH (6.5, 7.2, 8.0) applied chronically marginally reduced hemolysis. The optimized saline (0.9% NaCl; 900 mOsm with sucrose, 5 mM MgCl2 (37°C)) rapidly and significantly reduced hemolysis compared with saline and Hank's buffered saline solution applied either chronically or acutely. CONCLUSIONS These results on the effect of S. aureus α-toxin on erythrocytes showed that optimizing saline could markedly reduce the potency of S. aureus α-toxin. Such modifications to saline could be of benefit during joint irrigation for septic arthritis.
Collapse
Affiliation(s)
- Cheryl L. S. Liu
- Centre for Integrative Physiology, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrew C. Hall
- Centre for Integrative Physiology, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK,Andrew C. Hall, Centre for Integrative Physiology, Deanery of Biomedical Sciences, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, UK.
| |
Collapse
|
174
|
Kang S, Lee S, Park S. iRGD Peptide as a Tumor-Penetrating Enhancer for Tumor-Targeted Drug Delivery. Polymers (Basel) 2020; 12:E1906. [PMID: 32847045 PMCID: PMC7563641 DOI: 10.3390/polym12091906] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
The unique structure and physiology of a tumor microenvironment impede intra-tumoral penetration of chemotherapeutic agents. A novel iRGD peptide that exploits the tumor microenvironment can activate integrin-dependent binding to tumor vasculatures and neuropilin-1 (NRP-1)-dependent transport to tumor tissues. Recent studies have focused on its dual-targeting ability to achieve enhanced penetration of chemotherapeutics for the efficient eradication of cancer cells. Both the covalent conjugation and the co-administration of iRGD with chemotherapeutic agents and engineered delivery vehicles have been explored. Interestingly, the iRGD-mediated drug delivery also enhances penetration through the blood-brain barrier (BBB). Recent studies have shown its synergistic effect with BBB disruptive techniques. The efficacy of immunotherapy involving immune checkpoint blockades has also been amplified by using iRGD as a targeting moiety. In this review, we presented the recent advances in iRGD technology, focusing on cancer treatment modalities, including the current clinical trials using iRGD. The iRGD-mediated nano-carrier system could serve as a promising strategy in drug delivery to the deeper tumor regions, and be combined with various therapeutic interventions due to its novel targeting ability.
Collapse
Affiliation(s)
| | | | - Soyeun Park
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea; (S.K.); (S.L.)
| |
Collapse
|
175
|
Molecular characterization of methicillin-resistant and methicillin-sensitive Staphylococcus aureus isolates from human milk samples in Brazil. Braz J Microbiol 2020; 51:1813-1817. [PMID: 32822004 DOI: 10.1007/s42770-020-00367-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Human milk is the best nutrient for infants. The donor human milk is stored in a milk bank before pasteurization. However, the human milk is not sterile and could be colonized with different types of bacteria. Many studies have shown S. aureus to be the most prevalent potential pathogen detected in human milk. This study characterized 22 methicillin-resistant and methicillin-sensitive Staphylococcus aureus isolates from raw human milk for the presence of virulence genes and agr type. Moreover, the genotypic as identified characterization was realized. The presence of virulence genes sei, seg, sec, seh, and etb was identified in resistant and sensitive strains. We observed the predominance of agr type II. The presence of SCCmec IV (67%, 4/6) and V (33%, 2/6) characterized resistant strains as CA-MRSA. Endemic lineages detected (ST1635/CC5-t002, ST5/CC5-t002, ST72/CC5-t126, ST1/CC1-t127, ST45/CC45-t065, and ST398/t1451) could be related to epidemic clones, such as USA800/ST5, USA700/ST72, USA400/ST1, USA600/ST45, and ST398. This study made it possible to understand the characteristics of virulence and clonality of some strains that circulate in breast milk in our region. The discovery of human milk colonization by MSSA and MRSA strains with molecular characteristics similar to infectious clones spread globally demonstrates the importance of monitoring strains that can spread and cause serious infections.
Collapse
|
176
|
CRISPR-Cas13a based bacterial detection platform: Sensing pathogen Staphylococcus aureus in food samples. Anal Chim Acta 2020; 1127:225-233. [DOI: 10.1016/j.aca.2020.06.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022]
|
177
|
Nakaminami H, Ozawa K, Sasai N, Ikeda M, Nemoto O, Baba N, Matsuzaki Y, Sawamura D, Shimoe F, Inaba Y, Kobayashi Y, Kawasaki S, Ueki T, Funatsu S, Shirahama S, Noguchi N. Current status of Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus isolated from patients with skin and soft tissue infections in Japan. J Dermatol 2020; 47:1280-1286. [PMID: 32696497 DOI: 10.1111/1346-8138.15506] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 11/30/2022]
Abstract
The USA300 clone, which produces Panton-Valentine leukocidin (PVL), is a major pathogenic community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) clone that causes intractable skin infections. Recently, PVL-positive CA-MRSA, including USA300 clones, have emerged in both communities and hospitals in Japan. To prevent an outbreak of PVL-positive MRSA, infected patients should be treated with effective antimicrobial agents at community clinics. Herein, we investigate molecular epidemiological characteristics of PVL-positive MRSA isolated from outpatients with skin and soft tissue infections (SSTI), which are common community-onset infectious diseases. The detection rate of MRSA was 24.9% (362 strains) out of 1455 S. aureus strains isolated between 2013 and 2017. Among the MRSA strains, 15.5% (56 strains) were PVL-positive strains and associated with deep-seated skin infections. Molecular epidemiological analyses of PVL-positive MRSA showed that USA300 was the predominant clone (53.6%, 30 strains) and was identified in Kanto (18 strains), Kagawa (nine strains), Tohoku (two strains) and Hokkaido (one strain). Notably, minocycline and fusidic acid were effective against all PVL-positive MRSA strains. Hence, our data reveals the current status of PVL-positive MRSA isolated from patients with SSTI in Japan. Continuous surveillance of CA-MRSA is necessary to monitor latest prevalence rates and identify effective antimicrobial agents for PVL-positive MRSA strains.
Collapse
Affiliation(s)
- Hidemasa Nakaminami
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kazuya Ozawa
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Nao Sasai
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masami Ikeda
- Department of Dermatology, Takamatsu Red Cross Hospital, Kagawa, Japan
| | | | - Naoko Baba
- Department of Dermatology, Kanagawa Children's Medical Center, Kanagawa, Japan
| | - Yasushi Matsuzaki
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Daisuke Sawamura
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | | | | | | | | | - Toru Ueki
- Ueki Dermatology Plastic Surgery, Tokyo, Japan
| | | | - Shigeho Shirahama
- Department of Dermatology, Seirei Mikatahara General Hospital, Shizuoka, Japan
| | - Norihisa Noguchi
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
178
|
Safarpour-Dehkordi M, Doosti A, Jami MS. Integrative Analysis of lncRNAs in Kidney Cancer to Discover A New lncRNA ( LINC00847) as A Therapeutic Target for Staphylococcal Enterotoxin tst Gene. CELL JOURNAL 2020; 22:101-109. [PMID: 32779439 PMCID: PMC7481890 DOI: 10.22074/cellj.2020.6996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/28/2019] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Bacterial toxin can cause cell death through induction of apoptosis in cancer cell lines as well as changes in the expression patterns of long non-coding RNAs (lncRNAs) and genes. In the present study, the effect of tst gene on ACHN cell lines was reported along with proposing a novel pathway of apoptosis in kidney cancer. MATERIALS AND METHODS In this experimental study, effective lncRNAs and genes were predicted from different criteria for renal cell carcinoma (RCC) by bioinformatics methods and lncRNA-miRNA-mRNA interaction was constructed; then the effect of Staphylococcus aureus tst gene on induction of apoptosis pathways on ACHN and HDF cell lines was investigated. RESULTS After creation of lncRNA-miRNA-mRNA interaction, changes in expression levels of lncRNA LINC00847 (P=0.0024) and PTEN gene (P=0.0027) were identified, as potential apoptosis biomarkers for kidney cancer, after treating ACHN cell line by pCDNA3.1 (+)-tst compared to the empty vector. In contrast, there was no statistically significant difference in DICER1 expression levels in ACHN-tst cell (P≥0.05). In addition, transfection by pcDNA3.1 (+)-tst could increase ACHN cell apoptosis level (P<0.0001) compared to the pcDNA3.1 (+) group; but no significant effect was observed on normal cells. CONCLUSION It is suggested that lncRNA LINC00847, discovered in this study, could provide a new landscape for researches aimed to determine relationship between functional lncRNA and RCC pathways. pcDNA3.1 (+)-tst was found to increase apoptosis in the transfected cells.
Collapse
Affiliation(s)
- Maryam Safarpour-Dehkordi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohammad-Saied Jami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles (UCLA), USA
| |
Collapse
|
179
|
Pérez VKC, Costa GMD, Guimarães AS, Heinemann MB, Lage AP, Dorneles EMS. Relationship between virulence factors and antimicrobial resistance in Staphylococcus aureus from bovine mastitis. J Glob Antimicrob Resist 2020; 22:792-802. [PMID: 32603906 DOI: 10.1016/j.jgar.2020.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 05/10/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES This review summarizes the literature on the role of virulence and antimicrobial resistance genes of Staphylococcus aureus in bovine mastitis, focusing on the association between these characteristics and their implications for public and animal health. CONCLUSIONS There is the possibility of antimicrobial resistance gene exchange among different bacteria, which is of serious concern in livestock husbandry, as well as in the treatment of human staphylococcal infections.
Collapse
Affiliation(s)
- Verónica Karen Castro Pérez
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras 37200-000, Minas Gerais, Brazil
| | - Geraldo Márcio da Costa
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras 37200-000, Minas Gerais, Brazil
| | - Alessandro Sá Guimarães
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Gado de Leite, Juiz de Fora 36038-330, Minas Gerais, Brazil
| | - Marcos Bryan Heinemann
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Andrey Pereira Lage
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Elaine Maria Seles Dorneles
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras 37200-000, Minas Gerais, Brazil.
| |
Collapse
|
180
|
Suzuki Y, Ono HK, Shimojima Y, Kubota H, Kato R, Kakuda T, Hirose S, Hu DL, Nakane A, Takai S, Sadamasu K. A novel staphylococcal enterotoxin SE02 involved in a staphylococcal food poisoning outbreak that occurred in Tokyo in 2004. Food Microbiol 2020; 92:103588. [PMID: 32950172 DOI: 10.1016/j.fm.2020.103588] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 05/22/2020] [Accepted: 06/24/2020] [Indexed: 02/04/2023]
Abstract
Staphylococcal enterotoxins (SEs) are extracellular proteins, produced mainly by Staphylococcus aureus, which cause staphylococcal food poisoning (SFP) when ingested. Here, a novel SE was identified from two strains, which were identified as the causative microbes of the SFP outbreak that occurred in Tokyo in 2004. Both strains harbored the SEA gene, but its production was lower than that of other SEA-producing SFP isolates. Whole-genome sequencing analysis demonstrated that both strains harbored a SE-like gene besides sea. Phylogenetic analysis revealed that the amino acid sequence deduced from the SE-like gene belonged to the SEB group. Therefore, this gene was presumed to be a novel SE gene and termed "SE02." The stability of SE02 against heating and proteolytic digestions was a little different from that of SEA. SE02 has both superantigenic and emetic bioactivities. Namely, SE02 activated mouse splenocytes and exhibited emetic activity in the common marmoset. SE02 mRNA was highly expressed in both isolates during the exponential phase of cultivation. In addition, SE02 protein was produced at 20 °C and 25 °C, which reflects the actual situation of SFP. SE02 appears to be a novel emetic toxin that was likely the causative toxin in combination with SEA in the SFP outbreak.
Collapse
Affiliation(s)
- Yasunori Suzuki
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan; Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunin-cho 3-24-1, Shinjuku, Tokyo, 169-0073, Japan.
| | - Hisaya K Ono
- Laboratory of Zoonoses, Kitasato University School of Veterinary Medicine, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Yukako Shimojima
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunin-cho 3-24-1, Shinjuku, Tokyo, 169-0073, Japan
| | - Hiroaki Kubota
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunin-cho 3-24-1, Shinjuku, Tokyo, 169-0073, Japan
| | - Rei Kato
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunin-cho 3-24-1, Shinjuku, Tokyo, 169-0073, Japan
| | - Tsutomu Kakuda
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Shouhei Hirose
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Zaifu-cho 5, Hirosaki, Aomori, 036-8562, Japan
| | - Dong-Liang Hu
- Laboratory of Zoonoses, Kitasato University School of Veterinary Medicine, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Zaifu-cho 5, Hirosaki, Aomori, 036-8562, Japan; Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Zaifu-cho 5, Hirosaki, Aomori, 036-8562, Japan
| | - Shinji Takai
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunin-cho 3-24-1, Shinjuku, Tokyo, 169-0073, Japan
| |
Collapse
|
181
|
Sharma A, Singh P, Sarmah BK, Nandi SP. Quorum sensing: its role in microbial social networking. Res Microbiol 2020; 171:159-164. [PMID: 32592751 DOI: 10.1016/j.resmic.2020.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
Abstract
Twentieth century observed a huge paradigm shift in the field of sociobiology, which moved from social intelligence of animals to microbes. Quorum Sensing Molecules (QSMs) are the small chemical molecules, which establish the mode of communication among microbes, and is called Quorum Sensing (QS). These molecules are crucial for determining the decisions of large groups of cells, which is a density-dependent process. Thus, this mechanism draws a very thin line between bacteria that are actually prokaryotes and clustered bacteria mimicking eukaryotes. This review discusses about the designs of microbial communication networks, and the role of QS in plant-microbe interaction.
Collapse
Affiliation(s)
- Angkita Sharma
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India.
| | - Pooja Singh
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India.
| | - Bidyut Kr Sarmah
- DBT-AAU Centre, Assam Agricultural University, Jorhat, 785013, Assam, India.
| | - Shoma Paul Nandi
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India.
| |
Collapse
|
182
|
Transcriptional regulation of virulence factors Hla and phenol-soluble modulins α by AraC-type regulator Rbf in Staphylococcus aureus. Int J Med Microbiol 2020; 310:151436. [PMID: 32654771 DOI: 10.1016/j.ijmm.2020.151436] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/25/2020] [Accepted: 06/14/2020] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is a gram-positive pathogenic bacterium and is capable of secreting numerous toxins interfering directly with the host to cause acute infections. Rbf, a transcriptional regulator of AraC/XylS family, has been reported to promote biofilm formation in polysaccharide intercellular adhesion (PIA) mediated manner to cause chronic infections. In this study, we revealed the new virulence-mediated role of Rbf that can negatively regulate the hemolytic activity. Furthermore, Rbf can specifically bind to the hla and psmα promoters to repress their expression, resulting in significantly decreased production of phenol-soluble modulins α (PSMα) and alpha-toxin. Accordingly, the rbf mutant strain exhibited the increased pathogenicity compared to the wild-type (WT) strain in a mouse subcutaneous abscess model, representing a type of acute infection by S. aureus. Collectively, our results provide a novel insight into the virulence regulation and acute infections mediated by Rbf in S. aureus.
Collapse
|
183
|
Vijayakumar K, Bharathidasan V, Manigandan V, Jeyapragash D. Quebrachitol inhibits biofilm formation and virulence production against methicillin-resistant Staphylococcus aureus. Microb Pathog 2020; 149:104286. [PMID: 32502632 DOI: 10.1016/j.micpath.2020.104286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/12/2020] [Accepted: 05/26/2020] [Indexed: 01/30/2023]
Abstract
The present study evaluated the quebrachitol (QBC) antibiofilm and antivirulence potential against methicillin-resistant Staphylococcus aureus (MRSA). QBC inhibited MRSA biofilm formation at concentration dependent manner without affecting the bacterial growth. Then, QBC biofilm efficacy was confirmed with light and confocal laser scanning microscopy analysis. QBC treatment significantly inhibited the biofilm formation on stainless steel, titanium and silicone surfaces. Besides, QBC treatment significantly reduced the MRSA virulence productions such as lipase and hemolysis. Moreover, it reduced MRSA survival rate in the presence of hydrogen peroxide. QBC treatment inhibited the MRSA adherence on hydrophobic, hydrophilic, collagen coating and fibrinogen coating surfaces. As well as it significantly reduced the autolysin and bacterial aggregation progress. The real-time PCR analysis revealed the ability of QBC downregulated the virulence genes expression including global regulator sarA, agr and polysaccharide intracellular adhesion (PIA) encode ica. The cumulative results of the present study suggest that QBC as a potential agent to combat against MRSA pathogenesis.
Collapse
Affiliation(s)
- Karuppiah Vijayakumar
- Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India.
| | - Veeraiyan Bharathidasan
- Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| | - Vajravelu Manigandan
- Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| | - Danaraj Jeyapragash
- Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| |
Collapse
|
184
|
Song Y, Xu M, Li Y, Li Y, Gu W, Halimu G, Fu X, Zhang H, Zhang C. An iRGD peptide fused superantigen mutant induced tumor-targeting and T lymphocyte infiltrating in cancer immunotherapy. Int J Pharm 2020; 586:119498. [PMID: 32505575 DOI: 10.1016/j.ijpharm.2020.119498] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/07/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022]
Abstract
Solid tumors are intrinsically resistant to immunotherapy because of the major challenges including the immunosuppression and poor penetration of drugs and lymphocytes into solid tumors due to the complicated tumor microenvironment (TME). Our previous study has created a novel superantigen mutant ST-4 to efficiently active the T lymphocytes and alleviate immune suppression. In the present study, to accumulate ST-4 into the TME, we constructed a recombinant protein, ST-4-iRGD, by fusing ST-4 to a tumor-homing peptide, iRGD. We hypothesized that ST-4-iRGD could internalize into the TME through iRGD-mediated tumor targeting and tumor tissue penetrating to activate the regional immunoreaction. The results of in vitro studies showed that ST-4-iRGD achieved improved tumor targeting and cytotoxicity in mouse B16F10 melanoma cells. The iRGD-mediated tumor tissue penetration was further confirmed by imaging and immunofluorescence studies in vivo, wherein higher distribution of ST-4-iRGD was observed in the mouse 4T1 breast tumor model. Moreover, ST-4-iRGD exhibited enhanced anti-solid tumor characteristics and induced improved lymphocyte infiltration in the B16F10 and 4T1 models. In conclusion, using iRGD to facilitate better dissemination of the therapeutic agent ST-4 throughout a solid tumor mass is feasible, and ST-4-iRGD may be a potential candidate for efficient cancer immunotherapy in the future.
Collapse
Affiliation(s)
- Yubo Song
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, 72 WenHua Road, Shenyang 110016, PR China
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, 72 WenHua Road, Shenyang 110016, PR China.
| | - Yongqiang Li
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, 72 WenHua Road, Shenyang 110016, PR China
| | - Yansheng Li
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, 72 WenHua Road, Shenyang 110016, PR China
| | - Wu Gu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, 72 WenHua Road, Shenyang 110016, PR China
| | - Gulinare Halimu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, 72 WenHua Road, Shenyang 110016, PR China
| | - Xuanhe Fu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, 72 WenHua Road, Shenyang 110016, PR China
| | - Huiwen Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, 72 WenHua Road, Shenyang 110016, PR China
| | - Chenggang Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, 72 WenHua Road, Shenyang 110016, PR China
| |
Collapse
|
185
|
Houri H, Samadpanah M, Tayebi Z, Norouzzadeh R, Malekabad ES, Dadashi AR. Investigating the toxin profiles and clinically relevant antibiotic resistance genes among Staphylococcus aureus isolates using multiplex-PCR assay in Tehran, Iran. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
186
|
Goudarzi M, Razeghi M, Hashemi A, Pouriran R, Dadashi M, Tayebi Z. Genetic analysis of toxic shock syndrome toxin (TST) positive Staphylococcus aureus strains isolated from wound infections in Tehran hospitals, Iran. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
187
|
Abstract
In the 1980s, menstrual toxic shock syndrome (mTSS) became a household topic, particularly among mothers and their daughters. The research performed at the time, and for the first time, exposed the American public as well as the biomedical community, in a major way, to understanding disease progression and investigation. Those studies led to the identification of the cause, Staphylococcus aureus and the pyrogenic toxin superantigen TSS toxin 1 (TSST-1), and many of the risk factors, for example, tampon use. Those studies in turn led to TSS warning labels on the outside and inside of tampon boxes and, as important, uniform standards worldwide of tampon absorbency labeling. This review addresses our understanding of the development and conclusions related to mTSS and risk factors. We leave the final message that even though mTSS is not commonly in the news today, cases continue to occur. Additionally, S. aureus strains cycle in human populations in roughly 10-year intervals, possibly dependent on immune status. TSST-1-producing S. aureus bacteria appear to be reemerging, suggesting that physician awareness of this emergence and mTSS history should be heightened.
Collapse
|
188
|
Shang Y, Wang X, Chen Z, Lyu Z, Lin Z, Zheng J, Wu Y, Deng Q, Yu Z, Zhang Y, Qu D. Staphylococcus aureus PhoU Homologs Regulate Persister Formation and Virulence. Front Microbiol 2020; 11:865. [PMID: 32670206 PMCID: PMC7326077 DOI: 10.3389/fmicb.2020.00865] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
PhoU homologs are one of the determinant factors in the regulation of persister formation and phosphate metabolism in many bacterial species; however, the functions of PhoU homologs exhibit species-specific characteristics. The pathogenesis of Staphylococcus aureus is closely correlated with persister formation and virulence factors. The functions of two PhoU homologs, PhoU1 and PhoU2, in S. aureus are unclear yet. In this study, single- and double-deletion mutants of phoU1 and phoU2 were generated in strain USA500 2395. The ΔphoU1 or ΔphoU2 mutants displayed a change in persister formation and virulence compared to the parent strain; the persisters to vancomycin and levofloxacin were decreased at least 1,000-fold, and the number of intracellular bacteria surviving in the A549 cells for 24 h decreased to 82 or 85%. The α-hemolysin expression and activity were increased in the ΔphoU2 mutants. Transcriptome analysis revealed that 573 or 285 genes were differentially expressed by at least 2.0-fold in the ΔphoU1 or ΔphoU2 mutant vs. the wild type. Genes involved in carbon and pyruvate metabolism were up-regulated, and virulence genes and virulence regulatory genes were down-regulated, including type VII secretion system, serine protease, leukocidin, global regulator (sarA, rot), and the two-component signal transduction system (saeS). Correspondingly, the deletion of the phoU1 or phoU2 resulted in increased levels of intracellular pyruvate and ATP. Deletion of the phoU2, but not the phoU1, resulted in the up-regulation of inorganic phosphate transport genes and increased levels of intracellular inorganic polyphosphate. In conclusion, both PhoU1 and PhoU2 in S. aureus regulate virulence by the down-regulation of multiple virulence factors (type VII secretion system, serine protease, and leucocidin) and the persister generation by hyperactive carbon metabolism accompanied by increasing intracellular ATP. The results in S. aureus are different from what we have previously found in Staphylococcus epidermis, where only PhoU2 regulates biofilm and persister formation. The different functions of PhoU homologs between the two species of Staphylococcus warrant further investigation.
Collapse
Affiliation(s)
- Yongpeng Shang
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaofei Wang
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhong Chen
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhihui Lyu
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhiwei Lin
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
189
|
Virulence Characteristics of mecA-Positive Multidrug-Resistant Clinical Coagulase-Negative Staphylococci. Microorganisms 2020; 8:microorganisms8050659. [PMID: 32369929 PMCID: PMC7284987 DOI: 10.3390/microorganisms8050659] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) are an important group of opportunistic pathogenic microorganisms that cause infections in hospital settings and are generally resistant to many antimicrobial agents. We report on phenotypic and genotypic virulence characteristics of a select group of clinical, mecA-positive (encoding penicillin-binding protein 2a) CoNS isolates. All CoNS were resistant to two or more antimicrobials with S. epidermidis strain 214EP, showing resistance to fifteen of the sixteen antimicrobial agents tested. Aminoglycoside-resistance genes were the ones most commonly detected. The presence of megaplasmids containing both horizontal gene transfer and antimicrobial resistance genetic determinants indicates that CoNS may disseminate antibiotic resistance to other bacteria. Staphylococcus sciuri species produced six virulence enzymes, including a DNase, gelatinase, lipase, phosphatase, and protease that are suspected to degrade tissues into nutrients for bacterial growth and contribute to the pathogenicity of CoNS. The PCR assay for the detection of biofilm-associated genes found the eno (encoding laminin-binding protein) gene in all isolates. Measurement of their biofilm-forming ability and Spearman’s rank correlation coefficient analyses revealed that the results of crystal violet (CV) and extracellular polymeric substances (EPS) assays were significantly correlated (ρ = 0.9153, P = 3.612e-12). The presence of virulence factors, biofilm-formation capability, extracellular enzymes, multidrug resistance, and gene transfer markers in mecA-positive CoNS clinical strains used in this study makes them powerful opportunistic pathogens. The study also warrants a careful evaluation of nosocomial infections caused by CoNS and may be useful in studying the mechanism of virulence and factors associated with their pathogenicity in vivo and developing effective strategies for mitigation.
Collapse
|
190
|
Zhou P, Chen J, Li HH, Sun J, Gao SX, Zheng QW, Wei L, Jiang CY, Guan JC. Exposure of pregnant rats to staphylococcal enterotoxin B attenuates the response of increased Tregs to re-exposure to SEB in the thymus of adult offspring. Microb Pathog 2020; 145:104225. [PMID: 32353581 DOI: 10.1016/j.micpath.2020.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/06/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022]
Abstract
Regulatory T cells (Tregs) play an essential role during homeostasis and tolerance of the immune system. Based on our previous study that exposure of pregnant rats to staphylococcal enterotoxin B (SEB) can alter the percentage of CD4/CD8 subsets in the thymus of the offspring, in this study, we focus on the influence of exposure of pregnant rats to SEB on number, function and response of Tregs in the thymus of the offspring. Pregnant rats at gestational day of 16 were intravenously injected with 15 μg SEB and the thymuses of the neonatal and adult offspring were harvested for this study. We found that exposure of pregnant rats to SEB could significantly increase the absolute number of Tregs and the FoxP3 expression level in the thymus of not only neonatal but also adult offspring. Re-exposure of adult offspring to SEB remarkably reduced the suppressive capacity of Tregs to CD4+ T cells and the expression levels of TGF-β and IL-10 in the thymus, but had no effect on production of IL-4 and IFN-γ. Furthermore, it also notedly decreased the absolute number of Tregs and the FoxP3 expression level. These data suggest that prenatal exposure of pregnant rats to SEB attenuates the response of increased Tregs to re-exposure to SEB in the thymus of adult offspring.
Collapse
Affiliation(s)
- Ping Zhou
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China; Department of Microbiology, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Jie Chen
- Department of Cardiology, Jiande Branch, Second Affiliated Hospital, Zhejiang University School of Medicine, Jiande, 311600, PR China
| | - Hui-Hui Li
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Jing Sun
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Shu-Xian Gao
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China; Department of Microbiology, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Qing-Wei Zheng
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Li Wei
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Cheng-Yi Jiang
- Department of Otolaryngology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233033, PR China
| | - Jun-Chang Guan
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China; Department of Microbiology, Bengbu Medical College, Bengbu, Anhui, 233030, PR China.
| |
Collapse
|
191
|
Fan E, Peng J, Shi Y, Ouyang H, Xu Z, Fu Z. Quantification of live Gram-positive bacteria via employing artificial antibacterial peptide-coated magnetic spheres as isolation carriers. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
192
|
Khateb H, Klös G, Meyer RL, Sutherland DS. Development of a Label-Free LSPR-Apta Sensor for Staphylococcus aureus Detection. ACS APPLIED BIO MATERIALS 2020; 3:3066-3077. [DOI: 10.1021/acsabm.0c00110] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Heba Khateb
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Gunnar Klös
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Rikke L. Meyer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Duncan S. Sutherland
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
193
|
Effect of (-)-Epigallocatechin Gallate to Staphylococcal Enterotoxin A on Toxin Activity. Molecules 2020; 25:molecules25081867. [PMID: 32316678 PMCID: PMC7221706 DOI: 10.3390/molecules25081867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 01/16/2023] Open
Abstract
Staphylococcal enterotoxin A (SEA) functions both as superantigens that stimulate non-specific T cell proliferation as well as potent gastrointestinal toxins. We previously reported that (-)-epigallocatechin gallate (EGCG) binds to SEA. Therefore, the ability of EGCG to inhibit SEA toxin activity was examined. As a result, EGCG significantly decreased SEA-induced expression and production of interferon gamma (IFN-γ). In addition, EGCG inhibited SEA-induced spleen cell proliferation. To investigate the role of the galloyl group in EGCG on SEA cytotoxicity in more detail, the effect of the binding of a hydroxyl group at position 3 of the galloyl group in EGCG to SEA on SEA cytotoxicity was examined using two methylated EGCG. SEA cytotoxicity was significantly controlled in both (-)-3''-Me-EGCG and (-)-4''-Me-EGCG. These results suggest that EGCG inhibits toxic activity via direct interaction with SEA or without any interaction with SEA. The binding affinity between SEA and EGCG under in vivo conditions was examined using a model solution. Although after treatment under acidic and alkaline conditions, the presence of protein and the digestive tract model solution, EGCG still interacted with SEA. Our studies are the first to demonstrate the effect of the binding of EGCG to SEA on toxin activity.
Collapse
|
194
|
Liu Y, Song Z, Ge S, Zhang J, Xu L, Yang F, Lu D, Luo P, Gu J, Zou Q, Zeng H. Determining the immunological characteristics of a novel human monoclonal antibody developed against staphylococcal enterotoxin B. Hum Vaccin Immunother 2020; 16:1708-1718. [PMID: 32275466 DOI: 10.1080/21645515.2020.1744362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Staphylococci are the main cause of nosocomial infections globally. The exotoxin staphylococcal enterotoxin B (SEB) produced by methicillin-resistant Staphylococcus aureus is a major cause of pathology after a staphylococcal infection. We previously isolated an anti-SEB human monoclonal antibody designated as M0313. Here we further characterize this antibody in vitro and in vivo. Immunoblotting analysis and ELISA results indicated that M0313 accurately recognized and bound to SEB. Its binding affinity to native SEB was measured at the low nM level. M0313 effectively inhibited SEB from inducing mouse splenic lymphocyte and human peripheral blood mononuclear cell proliferation and cytokine release in cell culture. M0313 also neutralized SEB toxicity in BALB/c female mice. Most importantly, M0313 promoted the survival of mice treated with SEB-expressing bacteria. In-vivo imaging revealed that M0313 treatment significantly reduced the replication of SEB-expressing bacteria in mice. The neutralization capacity of M0313 correlated with its ability to block SEB from binding to major histocompatibility complex II and T-cell receptor by binding to the SEB residues 85-102 and 90-92. Thus, the monoclonal antibody M0313 may be developed into a therapeutic agent.
Collapse
Affiliation(s)
- Yuanyuan Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Zhen Song
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China.,Clinical Laboratory Department, Army 954th Hospital, General Hospital of Tibet Military Region , Tibet, PR China
| | - Shuang Ge
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Limin Xu
- Research and Development Department, Chengdu Olymvax Biotechnology Co., Ltd ., Chengdu, Sichuan, PR China
| | - Feng Yang
- Research and Development Department, Chengdu Olymvax Biotechnology Co., Ltd ., Chengdu, Sichuan, PR China
| | - Dongshui Lu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Jiang Gu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| |
Collapse
|
195
|
Vaughn JM, Abdi RD, Gillespie BE, Kerro Dego O. Genetic diversity and virulence characteristics of Staphylococcus aureus isolates from cases of bovine mastitis. Microb Pathog 2020; 144:104171. [PMID: 32224210 DOI: 10.1016/j.micpath.2020.104171] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is one of the major bacterial mastitis pathogens with significant effects on animal and human health. Some studies showed that S. aureus strains that infect different host species are genetically distinct, although most strains can infect a wide range of host species. However, there are no clearly defined clonal patterns of S. aureus strains that are known to infect a specific host. The objectives of this study were to evaluate the clonal diversity and virulence characteristics of S. aureus isolates from cases of bovine mastitis. Bacteriological tests were conducted on milk samples from cases of bovine mastitis from 11 dairy farms including some milk samples from unknown farms in Eastern Tennessee. Overall, a total of 111 S. aureus were isolated and identified, and further evaluated for their genetic diversity by pulsed-field gel electrophoresis (PFGE) and virulence characteristics by PCR. Genotypic virulence factors including staphylococcal enterotoxins, and toxic shock syndrome toxin 1 (tsst-1) were tested by PCR. In addition, the association among several known virulence factors of these isolates based on our current and previous studies in our lab were evaluated. Previously generated data that were included in the analysis of association among virulence factors were the presence of biofilm production associated genes in the ica operon such as icaA, icaD and icaAB, and phenotypic virulence characteristics such as hemolysis on blood agar, slime production and resistance or susceptibility to ten commonly used antimicrobials in dairy farms. The PFGE results showed the presence of 16 PFGE types (designated A - P) throughout farms, of which three pulsotypes, I, M and O were the most frequently isolated PFGE types from most farms. The PFGE type M was the most prevalent of all 16 PFGE types, with 64 isolates being present among nine farms. The PCR results of enterotoxin genes showed that out of the total 111 tested 84 (75.7%) were negative whereas 13 (11.7%), 2 (1.8%), 3 (2.7%), 1 (0.9%) and 8 (7.2%) were positive for seb, seb and sec, sec, see, and tsst-1, respectively. All 111 isolates were negative for sea and sej. Results of the evaluation of I, M and O strains adhesion to and invasion into mammary epithelial cells showed that the total count of each strain of bacteria adhered to and invaded into mammary epithelial cell line (MAC-T cells) was not significantly different (P > 0.05). This may be an indication that there is no significant difference in their ability to establish early host-pathogen interaction and colonization of the host. There were no statistically significant associations among PFGE types and other known virulence factors of these strains. However, PFGE types O and M tend to cluster with β-hemolysin, absence of enterotoxins and susceptibility to antimicrobials. In conclusion, there was not any association between pulsotype and genotypic and phenotypic virulence factors. S. aureus isolates from cases of bovine mastitis had diverse genotypes that possessed variable virulence factors.
Collapse
Affiliation(s)
- Jacqueline M Vaughn
- The University of Tennessee, Department of Animal Science, Knoxville, TN, 37996, USA
| | - Reta Duguma Abdi
- The University of Tennessee, Department of Animal Science, Knoxville, TN, 37996, USA; Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Greenvale, NY, 11548, USA
| | | | - Oudessa Kerro Dego
- The University of Tennessee, Department of Animal Science, Knoxville, TN, 37996, USA.
| |
Collapse
|
196
|
Kitadokoro K, Tanaka M, Hikima T, Okuno Y, Yamamoto M, Kamitani S. Crystal structure of pathogenic Staphylococcus aureus lipase complex with the anti-obesity drug orlistat. Sci Rep 2020; 10:5469. [PMID: 32214208 PMCID: PMC7096528 DOI: 10.1038/s41598-020-62427-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/11/2020] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus lipase (SAL), a triacylglycerol esterase, is an important virulence factor and may be a therapeutic target for infectious diseases. Herein, we determined the 3D structure of native SAL, the mutated S116A inactive form, and the inhibitor complex using the anti-obesity drug orlistat to aid in drug development. The determined crystal structures showed a typical α/β hydrolase motif with a dimeric form. Fatty acids bound near the active site in native SAL and inactive S116A mutant structures. We found that orlistat potently inhibits SAL activity, and it covalently bound to the catalytic Ser116 residue. This is the first report detailing orlistat–lipase binding. It provides structure-based information on the production of potent anti-SAL drugs and lipase inhibitors. These results also indicated that orlistat can be repositioned to treat bacterial diseases.
Collapse
Affiliation(s)
- Kengo Kitadokoro
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Hashigami-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| | - Mutsumi Tanaka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Hashigami-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Takaaki Hikima
- SR Life Science Instrumentation Team, Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1, Koto, Sayo-cho, Sayo-gun, Hyogo, 679-6148, Japan
| | - Yukiko Okuno
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masaki Yamamoto
- SR Life Science Instrumentation Team, Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1, Koto, Sayo-cho, Sayo-gun, Hyogo, 679-6148, Japan
| | - Shigeki Kamitani
- Graduate School of Comprehensive Rehabilitation, College of Health and Human Sciences, Osaka Prefecture University, 3-7-30 Habikino, Habikino, 583-8555, Osaka, Japan
| |
Collapse
|
197
|
Atypical Presentation of Methicillin-Susceptible Staphylococcus aureus Infection in a Dengue-Positive Patient: A Case Report with Virulence Genes Analysis. Pathogens 2020; 9:pathogens9030190. [PMID: 32150854 PMCID: PMC7157556 DOI: 10.3390/pathogens9030190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/26/2022] Open
Abstract
Concurrent bacteraemia in patients with dengue fever is rarely reported. We report a case of a patient who initially presented with symptoms typical of dengue fever but later succumbed to septic shock caused by hypervirulent methicillin-susceptible Staphylococcus aureus (MSSA). A 50-year-old female patient with hypertension and diabetes mellitus presented with typical symptoms of dengue fever. Upon investigation, the patient reported having prolonged fever for four days prior to hospitalization. Within 24 hours post-admission, the patient developed pneumonia and refractory shock, and ultimately succumbed to multiple-organs failure. Microbiological examination of the blood culture retrieved a pan susceptible MSSA strain. Genomic sequence analyses of the MSSA strain identified genes encoding staphylococcal superantigens (enterotoxin staphylococcal enterotoxin C 3 (SEC3) and enterotoxin-like staphylococcal enterotoxins-like toxin L (SElL)) that have been associated with toxic shock syndrome in human hosts. Genes encoding important toxins (Panton-Valentine leukocidins, alpha-haemolysin, protein A) involved in the development of staphylococcal pneumonia were also present in the MSSA genome. Staphylococcus aureus co-infections in dengue are uncommon but could be exceptionally fatal if caused by a toxin-producing strain. Clinicians should be aware of the risks and signs of sepsis in dengue fever, thus allowing early diagnosis and starting of antibiotic treatment in time to lower the mortality and morbidity rates.
Collapse
|
198
|
Abstract
Peritoneal dialysis has a high acceptance rate in Latin America, thus the knowledge concerning complication patterns is of great relevance. This work reviews Latin American data on peritonitis, the most serious complication of peritoneal dialysis. The incidence of peritonitis has been reduced over time, concomitantly with the incorporation of safer exchange systems and the use of prophylactic measurements. Today, rates lower than 1 episode per 24 patient-months are commonly reported. Furthermore, changes in causative organisms have been observed, with predominance of Staphylococcus aureus up through the mid-1990s, as well as increases in coagulase-negative staphylococcus and participation of gram negatives. However, the prevalence of S. aureus is still high, due possibly to climatic conditions and the elevated prevalence of carriers. Resolution rate varies from 55% to 78%, transfer to hemodialysis from 10.9% to 15.4%, and death in 3% to 9.9% of cases. Outcome is worse in S. aureus episodes compared to those with coagulase-negative staphylococcus, despite the higher percentage of oxacillin-resistant strains among the former. In general, despite socioeconomic or climatic conditions, our results are similar to those in developed countries, perhaps as a consequence of technological improvements and/or center expertise.
Collapse
Affiliation(s)
- Pasqual Barretti
- Department of Internal Medicine,
University Hospital, Botucatu School of Medicine, UNESP, São Paulo
| | - Kleyton A. Bastos
- Department of Medicine, Federal
University of Sergipe, Sergipe, Brazil
| | - Jorge Dominguez
- Dialysis and Transplantation Service,
Miguel Perez Carreño Hospital, Caracas, Venezuela
| | - Jacqueline C.T. Caramori
- Department of Internal Medicine,
University Hospital, Botucatu School of Medicine, UNESP, São Paulo
| |
Collapse
|
199
|
Machado V, Pardo L, Cuello D, Giudice G, Luna PC, Varela G, Camou T, Schelotto F. Presence of genes encoding enterotoxins in Staphylococcus aureus isolates recovered from food, food establishment surfaces and cases of foodborne diseases. Rev Inst Med Trop Sao Paulo 2020; 62:e5. [PMID: 32049256 PMCID: PMC7014549 DOI: 10.1590/s1678-9946202062005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/06/2019] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to describe the microbiological characteristics and profile of genes encoding enterotoxins in 95 Staphylococcus aureus isolates obtained between April 2011 and December 2014 from foodstuffs, persons and surfaces of retail food stores. After microbiological identification and antimicrobial susceptibility testing, polymerase chain reactions (PCR) were performed, targeting sea, seb, sec, sed and see genes that code for classical enterotoxins (ET) A-E, and three additional genes: seg , seh and sei , coding for so-called "new enterotoxins" G, H and I. The isolates were characterized by Pulsed Field Gel Electrophoresis (PFGE), and five selected isolates were further analyzed through Multi Locus Sequence Typing (MLST). It is noteworthy that 54.7% of the examined isolates harbored one or more of the investigated ET gene types. Most positive isolates carried more than one ET gene up to five types; seg was the most frequent ET gene, followed by sei. Five enterotoxin-coding isolates also coded for some antimicrobial resistance genes. Two of them, and four additional non-enterotoxic isolates carried erm genes expressing inducible clindamycin resistance. PFGE-types were numerous and diverse, even among enterotoxin-coding strains, because most isolates did not belong to known foodborne outbreaks and the sampling period was long. MLST profiles were also varied, and a new ST 3840 was described within this species. ST 88 and ST 72 enterotoxin-coding isolates have been identified in other regions in association with foodborne outbreaks. This manuscript reports the first systematic investigation of enterotoxin genes in S. aureus isolates obtained from foodstuffs and infected people in Uruguay.
Collapse
Affiliation(s)
- Virginia Machado
- Universidad de la República, Facultad de Medicina, Instituto de Higiene, Departamento de Bacteriología y Virología, Montevideo, Uruguay
| | - Lorena Pardo
- Universidad de la República, Facultad de Medicina, Instituto de Higiene, Departamento de Bacteriología y Virología, Montevideo, Uruguay
| | - Dianna Cuello
- Universidad de la República, Facultad de Medicina, Instituto de Higiene, Departamento de Bacteriología y Virología, Montevideo, Uruguay
| | - Guillermina Giudice
- Universidad de la República, Facultad de Medicina, Instituto de Higiene, Departamento de Bacteriología y Virología, Montevideo, Uruguay
| | - Patricia Correa Luna
- Universidad de la República, Facultad de Medicina, Instituto de Higiene, Departamento de Bacteriología y Virología, Montevideo, Uruguay
| | - Gustavo Varela
- Universidad de la República, Facultad de Medicina, Instituto de Higiene, Departamento de Bacteriología y Virología, Montevideo, Uruguay
| | - Teresa Camou
- Departamento de Laboratorios de Salud Pública, Montevideo, Uruguay
| | - Felipe Schelotto
- Universidad de la República, Facultad de Medicina, Instituto de Higiene, Departamento de Bacteriología y Virología, Montevideo, Uruguay
| |
Collapse
|
200
|
Jiang X, Yan X, Gu S, Yang Y, Zhao L, He X, Chen H, Ge J, Liu D. Biosurfactants of Lactobacillus helveticus for biodiversity inhibit the biofilm formation of Staphylococcus aureus and cell invasion. Future Microbiol 2020; 14:1133-1146. [PMID: 31512521 DOI: 10.2217/fmb-2018-0354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: This study aimed to evaluate the differences of biosurfactants produced by two Lactobacillus helveticus strains against the biofilm formation of Staphylococcus aureus in vitro and in vivo. Materials & methods: Scanning electron microscopy, Real time-quantitative PCR (RT-qPCR) and cell assay were used to analyze the inhibiting effect of biosurfactants against biofilm formation. Results & conclusion: Results showed that the biosurfactants have anti-adhesive and inhibiting effects on biofilm formation in vivo and in vitro. The biofilm-formative genes and autoinducer-2 signaling regulated these characteristics, and the biosurfactant L. helveticus 27170 is better than that of 27058. Host cell adhesion and invasion results indicated that the biosurfactants L. helveticus prevented the S. aureus invading the host cell, which may be a new strategy to eliminate biofilms.
Collapse
Affiliation(s)
- Xinpeng Jiang
- Heilongjiang Key Laboratory for Animal Disease Control & Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.,Key Laboratory of Combining Farming & Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Xin Yan
- Heilongjiang Key Laboratory for Animal Disease Control & Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Shanshan Gu
- Heilongjiang Key Laboratory for Animal Disease Control & Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yan Yang
- Heilongjiang Key Laboratory for Animal Disease Control & Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Lili Zhao
- Heilongjiang Provincial Key Laboratory of Laboratory Animal & Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xinmiao He
- Key Laboratory of Combining Farming & Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Hongyan Chen
- Heilongjiang Provincial Key Laboratory of Laboratory Animal & Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Junwei Ge
- Heilongjiang Key Laboratory for Animal Disease Control & Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Di Liu
- Key Laboratory of Combining Farming & Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| |
Collapse
|