151
|
Ha DG, Merritt JH, Hampton TH, Hodgkinson JT, Janecek M, Spring DR, Welch M, O'Toole GA. 2-Heptyl-4-quinolone, a precursor of the Pseudomonas quinolone signal molecule, modulates swarming motility in Pseudomonas aeruginosa. J Bacteriol 2011; 193:6770-80. [PMID: 21965567 PMCID: PMC3232867 DOI: 10.1128/jb.05929-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/20/2011] [Indexed: 01/13/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen capable of group behaviors, including biofilm formation and swarming motility. These group behaviors are regulated by both the intracellular signaling molecule c-di-GMP and acylhomoserine lactone quorum-sensing systems. Here, we show that the Pseudomonas quinolone signal (PQS) system also contributes to the regulation of swarming motility. Specifically, our data indicate that 2-heptyl-4-quinolone (HHQ), a precursor of PQS, likely induces the production of the phenazine-1-carboxylic acid (PCA), which in turn acts via an as-yet-unknown downstream mechanism to repress swarming motility. We show that this HHQ- and PCA-dependent swarming repression is apparently independent of changes in global levels of c-di-GMP, suggesting complex regulation of this group behavior.
Collapse
Affiliation(s)
- Dae-Gon Ha
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, New Hampshire 03755
| | - Judith H. Merritt
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, New Hampshire 03755
| | - Thomas H. Hampton
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, New Hampshire 03755
| | - James T. Hodgkinson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Matej Janecek
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David R. Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - George A. O'Toole
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, New Hampshire 03755
| |
Collapse
|
152
|
Morris JD, Hewitt JL, Wolfe LG, Kamatkar NG, Chapman SM, Diener JM, Courtney AJ, Leevy WM, Shrout JD. Imaging and analysis of Pseudomonas aeruginosa swarming and rhamnolipid production. Appl Environ Microbiol 2011; 77:8310-7. [PMID: 21984238 PMCID: PMC3233055 DOI: 10.1128/aem.06644-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/22/2011] [Indexed: 11/20/2022] Open
Abstract
Many bacteria spread over surfaces by "swarming" in groups. A problem for scientists who study swarming is the acquisition of statistically significant data that distinguish two observations or detail the temporal patterns and two-dimensional heterogeneities that occur. It is currently difficult to quantify differences between observed swarm phenotypes. Here, we present a method for acquisition of temporal surface motility data using time-lapse fluorescence and bioluminescence imaging. We specifically demonstrate three applications of our technique with the bacterium Pseudomonas aeruginosa. First, we quantify the temporal distribution of P. aeruginosa cells tagged with green fluorescent protein (GFP) and the surfactant rhamnolipid stained with the lipid dye Nile red. Second, we distinguish swarming of P. aeruginosa and Salmonella enterica serovar Typhimurium in a coswarming experiment. Lastly, we quantify differences in swarming and rhamnolipid production of several P. aeruginosa strains. While the best swarming strains produced the most rhamnolipid on surfaces, planktonic culture rhamnolipid production did not correlate with surface growth rhamnolipid production.
Collapse
Affiliation(s)
- Joshua D. Morris
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Jessica L. Hewitt
- Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Lawrence G. Wolfe
- Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
- NSF International, Ann Arbor, Michigan 48105
| | - Nachiket G. Kamatkar
- Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Sarah M. Chapman
- Freimann Life Science Center, University of Notre Dame, Notre Dame, Indiana 46556
| | - Justin M. Diener
- Freimann Life Science Center, University of Notre Dame, Notre Dame, Indiana 46556
| | - Andrew J. Courtney
- Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - W. Matthew Leevy
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
- Notre Dame Integrated Imaging Facility, University of Notre Dame, Notre Dame, Indiana 46556
| | - Joshua D. Shrout
- Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
153
|
Moscoso JA, Mikkelsen H, Heeb S, Williams P, Filloux A. The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ Microbiol 2011; 13:3128-38. [PMID: 21955777 DOI: 10.1111/j.1462-2920.2011.02595.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Acute bacterial infections are associated with motility and cytotoxicity via the type III secretion system (T3SS), while chronic infections are linked to biofilm formation and reduced virulence. In Pseudomonas aeruginosa, the transition between motility and sessility involves regulatory networks including the RetS/GacS sensors, as well as the second messenger c-di-GMP. The RetS/GacS signalling cascade converges on small RNAs, RsmY and RsmZ, which control a range of functions via RsmA. A retS mutation induces biofilm formation, and high levels of c-di-GMP produce a similar response. In this study, we connect RetS and c-di-GMP pathways by showing that the retS mutant displays high levels of c-di-GMP. Furthermore, a retS mutation leads to repression of the T3SS, but also upregulates the type VI secretion system (T6SS), which is associated with chronic infections. Strikingly, production of the T3SS and T6SS can be switched by artificially modulating c-di-GMP levels. We show that the diguanylate cyclase WspR is specifically involved in the T3SS/T6SS switch and that RsmY and RsmZ are required for the c-di-GMP-dependent response. These results provide a firm link between the RetS/GacS and the c-di-GMP pathways, which coordinate bacterial lifestyles, as well as secretion systems that determine the infection strategy of P. aeruginosa.
Collapse
Affiliation(s)
- Joana A Moscoso
- Imperial College London, Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection, South Kensington Campus, Flowers Building, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
154
|
SagS contributes to the motile-sessile switch and acts in concert with BfiSR to enable Pseudomonas aeruginosa biofilm formation. J Bacteriol 2011; 193:6614-28. [PMID: 21949078 DOI: 10.1128/jb.00305-11] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The interaction of Pseudomonas aeruginosa with surfaces has been described as a two-stage process requiring distinct signaling events and the reciprocal modulation of small RNAs (sRNAs). However, little is known regarding the relationship between sRNA-modulating pathways active under planktonic or surface-associated growth conditions. Here, we demonstrate that SagS (PA2824), the cognate sensor of HptB, links sRNA-modulating activities via the Gac/HptB/Rsm system postattachment to the signal transduction network BfiSR, previously demonstrated to be required for the development of P. aeruginosa. Consistent with the role of SagS in the GacA-dependent HtpB signaling pathway, inactivation of sagS resulted in hyperattachment, an HptB-dependent increase in rsmYZ, increased Psl polysaccharide production, and increased virulence. Moreover, sagS inactivation rescued attachment but abrogated biofilm formation by the ΔgacA and ΔhptB mutant strains. The ΔsagS strain was impaired in biofilm formation at a stage similar to that of the previously described two-component system BfiSR. Expression of bfiR but not bfiS restored ΔsagS biofilm formation independently of rsmYZ. We demonstrate that SagS interacts directly with BfiS and only indirectly with BfiR, with the direct and specific interaction between these two membrane-bound sensors resulting in the modulation of the phosphorylation state of BfiS in a growth-mode-dependent manner. SagS plays an important role in P. aeruginosa virulence in a manner opposite to that of BfiS. Our findings indicate that SagS acts as a switch by linking the GacA-dependent sensory system under planktonic conditions to the suppression of sRNAs postattachment and to BfiSR, required for the development of P. aeruginosa biofilms, in a sequential and stage-specific manner.
Collapse
|
155
|
Khan W, Bernier SP, Kuchma SL, Hammond JH, Hasan F, O'Toole GA. Aminoglycoside resistance of Pseudomonas aeruginosa biofilms modulated by extracellular polysaccharide. Int Microbiol 2011; 13:207-12. [PMID: 21404215 DOI: 10.2436/20.1501.01.127] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that produces sessile communities known as biofilms that are highly resistant to antibiotic treatment. Limited information is available on the exact role of various components of the matrix in biofilm-associated antibiotic resistance. Here we show that the presence of extracellular polysaccharide reduced the extent of biofilm-associated antibiotic resistance for one class of antibiotics. Minimal bactericidal concentration (MBC) for planktonic and biofilm cells of P. aeruginosa PA14 was measured using a 96 well microtiter plate assay. The MBC of biofilm-grown ΔpelA mutant, which does not produce the Pel polysaccharide, was 4-fold higher for tobramycin and gentamicin, and unchanged for ΔbifA mutant, which overproduces Pel, when compared to the wild type. Biofilms of pelA mutants in two clinical isolates of P. aeruginosa showed 4- and 8-fold higher MBC for tobramycin as compared to wild type. There was no difference in the biofilm resistance of any of these strains when tested with fluoroquinolones. This work forms a basis for future studies revealing the mechanisms of biofilm-associated antibiotic resistance to aminoglycoside antibiotics by P. aeruginosa.
Collapse
Affiliation(s)
- Wajiha Khan
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03775, USA
| | | | | | | | | | | |
Collapse
|
156
|
Bernier SP, Ha DG, Khan W, Merritt JH, O’Toole GA. Modulation of Pseudomonas aeruginosa surface-associated group behaviors by individual amino acids through c-di-GMP signaling. Res Microbiol 2011; 162:680-8. [PMID: 21554951 PMCID: PMC3716369 DOI: 10.1016/j.resmic.2011.04.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 04/06/2011] [Indexed: 11/19/2022]
Abstract
To colonize the cystic fibrosis lung, Pseudomonas aeruginosa establishes sessile communities referred to as biofilms. Although the signaling molecule c-di-GMP governs the transition from motile to sessile growth, the environmental signal(s) required to modulate biofilm formation remain unclear. Using relevant in vivo concentrations of the 19 amino acids previously identified in cystic fibrosis sputum, we demonstrated that arginine, ornithine, isoleucine, leucine, valine, phenylalanine and tyrosine robustly promoted biofilm formation in vitro. Among the seven biofilm-promoting amino acids, only arginine also completely repressed the ability of P. aeruginosa to swarm over semi-solid surfaces, suggesting that arginine may be an environmental cue favoring a sessile lifestyle. Mutating two documented diguanylate cyclases required for biofilm formation (SadC and RoeA) reduced biofilm formation and restored swarming motility on arginine-containing medium. Growth on arginine increased the intracellular levels of c-di-GMP, and this increase was dependent on the SadC and RoeA diguanylate cyclases. Strains mutated in sadC, roeA or both also showed a reduction in biofilm formation when grown with the other biofilm-promoting amino acids. Taken together, these results suggest that amino acids can modulate biofilm formation and swarming motility, at least in part, by controlling the intracellular levels of c-di-GMP.
Collapse
Affiliation(s)
- Steve P. Bernier
- Department of Microbiology & Immunology, Dartmouth Medical School, North College St., Hanover, NH 03755, USA
| | - Dae-Gon Ha
- Department of Microbiology & Immunology, Dartmouth Medical School, North College St., Hanover, NH 03755, USA
| | - Wajiha Khan
- Department of Microbiology & Immunology, Dartmouth Medical School, North College St., Hanover, NH 03755, USA
- Microbiology Research Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Judith H. Merritt
- Department of Microbiology & Immunology, Dartmouth Medical School, North College St., Hanover, NH 03755, USA
| | - George A. O’Toole
- Department of Microbiology & Immunology, Dartmouth Medical School, North College St., Hanover, NH 03755, USA
| |
Collapse
|
157
|
Influence of Pseudomonas aeruginosa pvdQ gene on altering antibiotic susceptibility under swarming conditions. Curr Microbiol 2011; 63:377-86. [PMID: 21833667 DOI: 10.1007/s00284-011-9979-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 06/24/2011] [Indexed: 10/17/2022]
Abstract
In Pseudomonas aeruginosa PAO1, the pvdQ gene has been shown to have at least two functions. It encodes the acylase enzyme and hydrolyzes 3-oxo-C12-HSL, the key signaling molecule of quorum sensing system. In addition, pvdQ is involved in swarming motility. It is required for up-regulated during swarming motility, which is triggered by high cell densities. As high-density bacterial populations also display elevated antibiotic resistance, studies have demonstrated that swarm-cell differentiation in P. aeruginosa promotes increased resistance to various antibiotics. PvdQ acts as a signal during swarm-cell differentiation, and thus may play a role in P. aeruginosa antibiotic resistance. The aim of this study is to examine whether pvdQ was involved in modifying antibiotic susceptibility during swarming conditions, and to investigate the mechanism by which this occurred. We constructed the PAO1pMEpvdQ strain, which overproduced PvdQ. PAO1pMEpvdQ promotes swarming motility, while PAO1ΔpvdQ abolishes swarming motility. In addition, both PAO1 and PAO1pMEpvdQ acquired resistance to ceftazidime, ciprofloxacin, meropenem, polymyxin B, and gentamicin, though PAO1pMEpvdQ exhibited a two to eightfold increase in antibiotic resistance compared to PAO1. These results indicate that pvdQ plays an important role in elevating antibiotic resistance via swarm-cell differentiation and possibly other mechanisms as well. We analyzed outer membrane permeability. Our data also suggest that pvdQ decreases P. aeruginosa outer membrane permeability, thereby elevating antibiotic resistance under swarming conditions. Our results suggest new approaches for reducing P. aeruginosa resistance.
Collapse
|
158
|
Yousef-Coronado F, Soriano MI, Yang L, Molin S, Espinosa-Urgel M. Selection of hyperadherent mutants in Pseudomonas putida biofilms. Microbiology (Reading) 2011; 157:2257-2265. [DOI: 10.1099/mic.0.047787-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A number of genetic determinants required for bacterial colonization of solid surfaces and biofilm formation have been identified in different micro-organisms. There are fewer accounts of mutations that favour the transition to a sessile mode of life. Here we report the isolation of random transposon Pseudomonas putida KT2440 mutants showing increased biofilm formation, and the detailed characterization of one of them. This mutant exhibits a complex phenotype, including altered colony morphology, increased production of extracellular polymeric substances and enhanced swarming motility, along with the formation of denser and more complex biofilms than the parental strain. Sequence analysis revealed that the pleiotropic phenotype exhibited by the mutant resulted from the accumulation of two mutations: a transposon insertion, which disrupted a predicted outer membrane lipoprotein, and a point mutation in lapG, a gene involved in the turnover of the large adhesin LapA. The contribution of each alteration to the phenotype and the possibility that prolonged sessile growth results in the selection of hyperadherent mutants are discussed.
Collapse
Affiliation(s)
- Fátima Yousef-Coronado
- Center for Systems Microbiology, Technical University of Denmark, Lyngby, Denmark
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - María Isabel Soriano
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Liang Yang
- Center for Systems Microbiology, Technical University of Denmark, Lyngby, Denmark
| | - Søren Molin
- Center for Systems Microbiology, Technical University of Denmark, Lyngby, Denmark
| | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
159
|
Systematic analysis of diguanylate cyclases that promote biofilm formation by Pseudomonas fluorescens Pf0-1. J Bacteriol 2011; 193:4685-98. [PMID: 21764921 DOI: 10.1128/jb.05483-11] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cyclic di-GMP (c-di-GMP) is a broadly conserved, intracellular second-messenger molecule that regulates biofilm formation by many bacteria. The synthesis of c-di-GMP is catalyzed by diguanylate cyclases (DGCs) containing the GGDEF domain, while its degradation is achieved through the phosphodiesterase activities of EAL and HD-GYP domains. c-di-GMP controls biofilm formation by Pseudomonas fluorescens Pf0-1 by promoting the cell surface localization of a large adhesive protein, LapA. LapA localization is regulated posttranslationally by a c-di-GMP effector system consisting of LapD and LapG, which senses cytoplasmic c-di-GMP and modifies the LapA protein in the outer membrane. Despite the apparent requirement for c-di-GMP for biofilm formation by P. fluorescens Pf0-1, no DGCs from this strain have been characterized to date. In this study, we undertook a systematic mutagenesis of 30 predicted DGCs and found that mutations in just 4 cause reductions in biofilm formation by P. fluorescens Pf0-1 under the conditions tested. These DGCs were characterized genetically and biochemically to corroborate the hypothesis that they function to produce c-di-GMP in vivo. The effects of DGC gene mutations on phenotypes associated with biofilm formation were analyzed. One DGC preferentially affects LapA localization, another DGC mainly controls swimming motility, while a third DGC affects both LapA and motility. Our data support the conclusion that different c-di-GMP-regulated outputs can be specifically controlled by distinct DGCs.
Collapse
|
160
|
Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ, Wong GCL, Parsek MR. The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 2011; 7:e1001264. [PMID: 21298031 PMCID: PMC3029257 DOI: 10.1371/journal.ppat.1001264] [Citation(s) in RCA: 353] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 12/28/2010] [Indexed: 11/18/2022] Open
Abstract
Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for biofilm studies and produces three extracellular polysaccharides that have been implicated in biofilm development, alginate, Psl and Pel. Significant work has been conducted on the roles of alginate and Psl in biofilm development, however we know little regarding Pel. In this study, we demonstrate that Pel can serve two functions in biofilms. Using a novel assay involving optical tweezers, we demonstrate that Pel is crucial for maintaining cell-to-cell interactions in a PA14 biofilm, serving as a primary structural scaffold for the community. Deletion of pelB resulted in a severe biofilm deficiency. Interestingly, this effect is strain-specific. Loss of Pel production in the laboratory strain PAO1 resulted in no difference in attachment or biofilm development; instead Psl proved to be the primary structural polysaccharide for biofilm maturity. Furthermore, we demonstrate that Pel plays a second role by enhancing resistance to aminoglycoside antibiotics. This protection occurs only in biofilm populations. We show that expression of the pel gene cluster and PelF protein levels are enhanced during biofilm growth compared to liquid cultures. Thus, we propose that Pel is capable of playing both a structural and a protective role in P. aeruginosa biofilms. Most bacteria live within biofilm communities, which are a complex population of microorganisms that attach to surfaces and produce copious amounts of extracellular matrix material. Exopolysaccharides are a key feature of the extracellular matrix and are found in many forms, ranging from structurally simple linear homopolymers to structurally complex branched heteropolymers. Exopolysaccharides carry out a wide range of functions involving adherence to surfaces and other cells, structural support and protection against host and environmental stress. The goal of our study was to examine the functional importance of polysaccharide production in the model biofilm organism, Pseudomonas aeruginosa. Using a deletion and over expression strategy, we characterized the function of one polysaccharide, Pel, and demonstrated that this polysaccharide has two roles, a structural role and a protective role, against an important class of antibiotics, aminioglycosides.
Collapse
Affiliation(s)
- Kelly M. Colvin
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Vernita D. Gordon
- Department of Physics, University of Texas, Austin, Austin, Texas, United States of America
| | - Keiji Murakami
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Bradley R. Borlee
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Daniel J. Wozniak
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
| | - Gerard C. L. Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Matthew R. Parsek
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
161
|
|
162
|
The sensor kinase CbrA is a global regulator that modulates metabolism, virulence, and antibiotic resistance in Pseudomonas aeruginosa. J Bacteriol 2010; 193:918-31. [PMID: 21169488 DOI: 10.1128/jb.00911-10] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that possesses a large arsenal of virulence factors enabling the pathogen to cause serious infections in immunocompromised patients, burn victims, and cystic fibrosis patients. CbrA is a sensor kinase that has previously been implied to play a role with its cognate response regulator CbrB in the metabolic regulation of carbon and nitrogen utilization in P. aeruginosa. Here it is demonstrated that CbrA and CbrB play an important role in various virulence and virulence-related processes of the bacteria, including swarming, biofilm formation, cytotoxicity, and antibiotic resistance. The cbrA deletion mutant was completely unable to swarm while exhibiting an increase in biofilm formation, supporting the inverse regulation of swarming and biofilm formation in P. aeruginosa. The cbrA mutant also exhibited increased cytotoxicity to human lung epithelial cells as early as 4 and 6 h postinfection. Furthermore, the cbrA mutant demonstrated increased resistance toward a variety of clinically important antibiotics, including polymyxin B, ciprofloxacin, and tobramycin. Microarray analysis revealed that under swarming conditions, CbrA regulated the expression of many genes, including phoPQ, pmrAB, arnBCADTEF, dnaK, and pvdQ, consistent with the antibiotic resistance and swarming impairment phenotypes of the cbrA mutant. Phenotypic and real-time quantitative PCR (RT-qPCR) analyses of a PA14 cbrB mutant suggested that CbrA may be modulating swarming, biofilm formation, and cytotoxicity via CbrB and that the CrcZ small RNA is likely downstream of this two-component regulator. However, as CbrB did not have a resistance phenotype, CbrA likely modulates antibiotic resistance in a manner independent of CbrB.
Collapse
|
163
|
Guttenplan SB, Blair KM, Kearns DB. The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation. PLoS Genet 2010; 6:e1001243. [PMID: 21170308 PMCID: PMC3000366 DOI: 10.1371/journal.pgen.1001243] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/08/2010] [Indexed: 11/24/2022] Open
Abstract
Many bacteria inhibit motility concomitant with the synthesis of an extracellular polysaccharide matrix and the formation of biofilm aggregates. In Bacillus subtilis biofilms, motility is inhibited by EpsE, which acts as a clutch on the flagella rotor to inhibit motility, and which is encoded within the 15 gene eps operon required for EPS production. EpsE shows sequence similarity to the glycosyltransferase family of enzymes, and we demonstrate that the conserved active site motif is required for EPS biosynthesis. We also screen for residues specifically required for either clutch or enzymatic activity and demonstrate that the two functions are genetically separable. Finally, we show that, whereas EPS synthesis activity is dominant for biofilm formation, both functions of EpsE synergize to stabilize cell aggregates and relieve selective pressure to abolish motility by genetic mutation. Thus, the transition from motility to biofilm formation may be governed by a single bifunctional enzyme. Bacteria form persistent and antibiotic-resistant cell aggregates known as biofilms. Biofilms can form in environmental settings on plant and animal tissues, in industrial settings on pipes and the hulls of ships, and in clinical settings on catheters and medical devices. Biofilms are characterized by two features: the cells within the aggregates are non-motile, and they produce an extracellular polysaccharide (EPS) matrix. We have found a bifunctional enzyme EpsE that contributes to both features of biofilm formation in Bacillus subtilis. EpsE interacts with the flagella rotor to inhibit motility and also cooperates with other enzymes to synthesize the EPS matrix. Thus, the transition from motility to biofilm formation may be governed by a single bifunctional protein. In the past decade, research on biofilms has been focused on biofilm eradication. Understanding how cells transition into the biofilm state may provide additional approaches of preventing the formation of a biofilm in the first place.
Collapse
Affiliation(s)
- Sarah B. Guttenplan
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Kris M. Blair
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
164
|
Barahona E, Navazo A, Yousef-Coronado F, Aguirre de Cárcer D, Martínez-Granero F, Espinosa-Urgel M, Martín M, Rivilla R. Efficient rhizosphere colonization by Pseudomonas fluorescens f113 mutants unable to form biofilms on abiotic surfaces. Environ Microbiol 2010; 12:3185-95. [DOI: 10.1111/j.1462-2920.2010.02291.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
165
|
Modulation of Pseudomonas aeruginosa biofilm dispersal by a cyclic-Di-GMP phosphodiesterase with a putative hypoxia-sensing domain. Appl Environ Microbiol 2010; 76:8160-73. [PMID: 20971871 DOI: 10.1128/aem.01233-10] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa encodes many enzymes that are potentially associated with the synthesis or degradation of the widely conserved second messenger cyclic-di-GMP (c-di-GMP). In this study, we show that mutation of rbdA, which encodes a fusion protein consisting of PAS-PAC-GGDEF-EAL multidomains, results in decreased biofilm dispersal. RbdA contains a highly conserved GGDEF domain and EAL domain, which are involved in the synthesis and degradation of c-di-GMP, respectively. However, in vivo and in vitro analyses show that the full-length RbdA protein only displays phosphodiesterase activity, causing c-di-GMP degradation. Further analysis reveals that the GGDEF domain of RbdA plays a role in activating the phosphodiesterase activity of the EAL domain in the presence of GTP. Moreover, we show that deletion of the PAS domain or substitution of the key residues implicated in sensing low-oxygen stress abrogates the functionality of RbdA. Subsequent study showed that RbdA is involved in positive regulation of bacterial motility and production of rhamnolipids, which are associated with biofilm dispersal, and in negative regulation of production of exopolysaccharides, which are required for biofilm formation. These data indicate that the c-di-GMP-degrading regulatory protein RbdA promotes biofilm dispersal through its two-pronged effects on biofilm development, i.e., downregulating biofilm formation and upregulating production of the factors associated with biofilm dispersal.
Collapse
|
166
|
Tremblay J, Déziel E. Gene expression in Pseudomonas aeruginosa swarming motility. BMC Genomics 2010; 11:587. [PMID: 20961425 PMCID: PMC3091734 DOI: 10.1186/1471-2164-11-587] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 10/20/2010] [Indexed: 12/25/2022] Open
Abstract
Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14). Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center). Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to swarm center cells, tendril tip populations of a swarming colony displays general down-regulation of genes associated with virulence and up-regulation of genes involved in energy metabolism. These results allow us to propose a model where tendril tip cells function as «scouts» whose main purpose is to rapidly spread on uncolonized surfaces while swarm center population are in a state allowing a permanent settlement of the colonized area (biofilm-like).
Collapse
Affiliation(s)
- Julien Tremblay
- INRS-Institut Armand-Frappier, Laval (Québec), H7V 1B7, Canada
| | | |
Collapse
|
167
|
Merritt JH, Ha DG, Cowles KN, Lu W, Morales DK, Rabinowitz J, Gitai Z, O’Toole GA. Specific control of Pseudomonas aeruginosa surface-associated behaviors by two c-di-GMP diguanylate cyclases. mBio 2010; 1:e00183-10. [PMID: 20978535 PMCID: PMC2957078 DOI: 10.1128/mbio.00183-10] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/17/2010] [Indexed: 01/15/2023] Open
Abstract
The signaling nucleotide cyclic diguanylate (c-di-GMP) regulates the transition between motile and sessile growth in a wide range of bacteria. Understanding how microbes control c-di-GMP metabolism to activate specific pathways is complicated by the apparent multifold redundancy of enzymes that synthesize and degrade this dinucleotide, and several models have been proposed to explain how bacteria coordinate the actions of these many enzymes. Here we report the identification of a diguanylate cyclase (DGC), RoeA, of Pseudomonas aeruginosa that promotes the production of extracellular polysaccharide (EPS) and contributes to biofilm formation, that is, the transition from planktonic to surface-dwelling cells. Our studies reveal that RoeA and the previously described DGC SadC make distinct contributions to biofilm formation, controlling polysaccharide production and flagellar motility, respectively. Measurement of total cellular levels of c-di-GMP in ∆roeA and ∆sadC mutants in two different genetic backgrounds revealed no correlation between levels of c-di-GMP and the observed phenotypic output with regard to swarming motility and EPS production. Our data strongly argue against a model wherein changes in total levels of c-di-GMP can account for the specific surface-related phenotypes of P. aeruginosa.
Collapse
Affiliation(s)
- Judith H. Merritt
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, New Hampshire, USA
| | - Dae-Gon Ha
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, New Hampshire, USA
| | - Kimberly N. Cowles
- Princeton University, Department of Molecular Biology, Princeton, New Jersey, USA; and
| | - Wenyun Lu
- Princeton University, Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton, New Jersey, USA
| | - Diana K. Morales
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, New Hampshire, USA
| | - Joshua Rabinowitz
- Princeton University, Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton, New Jersey, USA
| | - Zemer Gitai
- Princeton University, Department of Molecular Biology, Princeton, New Jersey, USA; and
| | - George A. O’Toole
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, New Hampshire, USA
| |
Collapse
|
168
|
Abstract
Serratia marcescens has long been recognized as an important opportunistic pathogen, but the underlying pathogenesis mechanism is not completely clear. Here, we report a key pathogenesis pathway in S. marcescens comprising the RssAB two-component system and its downstream elements, FlhDC and the dominant virulence factor hemolysin ShlBA. Expression of shlBA is under the positive control of FlhDC, which is repressed by RssAB signaling. At 37°C, functional RssAB inhibits swarming, represses hemolysin production, and promotes S. marcescens biofilm formation. In comparison, when rssBA is deleted, S. marcescens displays aberrant multicellularity favoring motile swarming with unbridled hemolysin production. Cellular and animal infection models further demonstrate that loss of rssBA transforms this opportunistic pathogen into hypervirulent phenotypes, leading to extensive inflammatory responses coupled with destructive and systemic infection. Hemolysin production is essential in this context. Collectively, a major virulence regulatory pathway is identified in S. marcescens.
Collapse
|
169
|
Harmsen M, Yang L, Pamp SJ, Tolker-Nielsen T. An update onPseudomonas aeruginosabiofilm formation, tolerance, and dispersal. ACTA ACUST UNITED AC 2010; 59:253-68. [DOI: 10.1111/j.1574-695x.2010.00690.x] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
170
|
The Pseudomonas aeruginosa exopolysaccharide Psl facilitates surface adherence and NF-kappaB activation in A549 cells. mBio 2010; 1. [PMID: 20802825 PMCID: PMC2925078 DOI: 10.1128/mbio.00140-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 06/01/2010] [Indexed: 11/20/2022] Open
Abstract
In order for the opportunistic Gram-negative pathogen Pseudomonas aeruginosa to cause an airway infection, the pathogen interacts with epithelial cells and the overlying mucous layer. We examined the contribution of the biofilm polysaccharide Psl to epithelial cell adherence and the impact of Psl on proinflammatory signaling by flagellin. Psl has been implicated in the initial attachment of P. aeruginosa to biotic and abiotic surfaces, but its direct role in pathogenesis has not been evaluated (L. Ma, K. D. Jackson, R. M. Landry, M. R. Parsek, and D. J. Wozniak, J. Bacteriol. 188:8213–8221, 2006). Using an NF-κB luciferase reporter system in the human epithelial cell line A549, we show that both Psl and flagellin are necessary for full activation of NF-κB and production of the interleukin 8 (IL-8) chemokine. We demonstrate that Psl does not directly stimulate NF-κB activity, but indirectly as a result of increasing contact between bacterial cells and epithelial cells, it facilitates flagellin-mediated proinflammatory signaling. We confirm differential adherence of Psl and/or flagellin mutants by scanning electron microscopy and identify Psl-dependent membrane structures that may participate in adherence. Although we hypothesized that Psl would protect P. aeruginosa from recognition by the epithelial cell line A549, we instead observed a positive role for Psl in flagellin-mediated NF-κB activation, likely as a result of increasing contact between bacterial cells and epithelial cells. Pseudomonas aeruginosa is the predominant airway pathogen causing morbidity and mortality in individuals affected by the genetic disease cystic fibrosis. P. aeruginosa can also cause severe pneumonia, burn wound infections, and sepsis, making its overall impact on human health significant. The attachment of P. aeruginosa to host tissues, often leading to recalcitrant biofilm infections, and inflammation induced by flagellin are both important mechanisms of virulence. We explored the role of the biofilm polysaccharide Psl in the pathogenesis of P. aeruginosa and found that Psl is required for surface adherence to A549 epithelial cells, and as an adhesin, it facilitates flagellin-mediated NF-κB activation. This work was done to better understand the initial events of infection and revealed that a biofilm polysaccharide contributes to inflammation in a novel manner.
Collapse
|
171
|
Role of MrkJ, a phosphodiesterase, in type 3 fimbrial expression and biofilm formation in Klebsiella pneumoniae. J Bacteriol 2010; 192:3944-50. [PMID: 20511505 DOI: 10.1128/jb.00304-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen that has been shown to adhere to human extracellular matrices using the type 3 fimbriae. Introduction of plasmids carrying genes known to alter intracellular cyclic-di-GMP pools in Vibrio parahaemolyticus revealed that these genes also altered type 3 fimbrial surface expression in K. pneumoniae. Immediately adjacent to the type 3 fimbrial gene cluster is a gene, mrkJ, that is related to a family of bacterial genes encoding phosphodiesterases. We identify here a role for MrkJ, a functional phosphodiesterase exhibiting homology to EAL domain-containing proteins, in controlling type 3 fimbria production and biofilm formation in K. pneumoniae. Deletion of mrkJ resulted in an increase in type 3 fimbria production and biofilm formation as a result of the accumulation of intracellular cyclic-di-GMP. This gene was shown to encode a functional phosphodiesterase via restoration of motility in a V. parahaemolyticus strain previously shown to accumulate cyclic-di-GMP and in vitro using phosphodiesterase activity assays. The effect of the mrkJ mutation on type 3 fimbrial expression was shown to be at the level of mrkA gene transcription by using quantitative reverse transcription-PCR. These results reveal a previously unknown role for cyclic-di-GMP in type 3 fimbrial production.
Collapse
|
172
|
Rosenau F, Isenhardt S, Gdynia A, Tielker D, Schmidt E, Tielen P, Schobert M, Jahn D, Wilhelm S, Jaeger KE. Lipase LipC affects motility, biofilm formation and rhamnolipid production in Pseudomonas aeruginosa. FEMS Microbiol Lett 2010; 309:25-34. [PMID: 20546309 DOI: 10.1111/j.1574-6968.2010.02017.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Pseudomonas aeruginosa produces and secretes several lipolytic enzymes, among them the lipases LipA and LipC. LipA is encoded within the lipA/lipH operon, together with its cognate foldase LipH, which was also found to be required for the functional expression of LipC. At present, the physiological function of LipC is unknown. We have cloned a synthetic operon consisting of the lipC structural gene and the foldase gene lipH obtained from the lipA/lipH operon and have constructed, in parallel, a lipC-deficient P. aeruginosa mutant. Inactivation of the lipC gene significantly impaired type IV pilus-dependent twitching and swarming motility, but also the flagella-mediated swimming motility of P. aeruginosa. Moreover, for the lipC mutant, we observed a significant decrease in the amount of extracellular rhamnolipids. Also, the P. aeruginosa lipC mutant showed a significantly altered biofilm architecture. Proteome analysis revealed the accumulation of the response regulator protein PhoP in the lipC mutant.
Collapse
Affiliation(s)
- Frank Rosenau
- Institute for Molecular Enzyme Technology, Research Centre Juelich, Heinrich-Heine-University Duesseldorf, Juelich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Hassett DJ, Korfhagen TR, Irvin RT, Schurr MJ, Sauer K, Lau GW, Sutton MD, Yu H, Hoiby N. Pseudomonas aeruginosa biofilm infections in cystic fibrosis: insights into pathogenic processes and treatment strategies. Expert Opin Ther Targets 2010; 14:117-30. [PMID: 20055712 DOI: 10.1517/14728220903454988] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
IMPORTANCE OF THE FIELD CF airway mucus can be infected by opportunistic microorganisms, notably Pseudomonas aeruginosa. Once organisms are established as biofilms, even the most potent antibiotics have little effect on their viability, especially during late-stage chronic infections. Better understanding of the mechanisms used by P. aeruginosa to circumvent host defenses and therapeutic intervention strategies is critical for advancing novel treatment strategies. AREAS COVERED IN THIS REVIEW Inflammatory injury in CF lung, role of neutrophils in pathogenesis, P. aeruginosa biofilms, mucoidy and its relationship with poor airway oxygenation, mechanisms by which P. aeruginosa biofilms in the CF airway can be killed. WHAT THE READER WILL GAIN An understanding of the processes that P. aeruginosa undergoes during CF airway disease and clues to better treat such infections in future. TAKE HOME MESSAGE The course of CF airway disease is a process involving host and microbial factors that often dictate frequency of pulmonary exacerbations, thus affecting the overall course. In the past decade significant discoveries have been made regarding the pathogenic processes used by P. aeruginosa to bypass the immune system. Many new and exciting features of P. aeruginosa now illuminate weaknesses in the organism that may render it susceptible to inexpensive compounds that force its own destruction.
Collapse
Affiliation(s)
- Daniel J Hassett
- University of Cincinnati College of Medicine, Department of Molecular Genetics, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Cyclic-di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa: the pilY1 gene and its impact on surface-associated behaviors. J Bacteriol 2010; 192:2950-64. [PMID: 20233936 DOI: 10.1128/jb.01642-09] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular signaling molecule cyclic-di-GMP (c-di-GMP) has been shown to influence surface-associated behaviors of Pseudomonas aeruginosa, including biofilm formation and swarming motility. Previously, we reported a role for the bifA gene in the inverse regulation of biofilm formation and swarming motility. The bifA gene encodes a c-di-GMP-degrading phosphodiesterase (PDE), and the Delta bifA mutant exhibits increased cellular pools of c-di-GMP, forms hyperbiofilms, and is unable to swarm. In this study, we isolated suppressors of the Delta bifA swarming defect. Strains with mutations in the pilY1 gene, but not in the pilin subunit pilA gene, show robust suppression of the swarming defect of the Delta bifA mutant, as well as its hyperbiofilm phenotype. Despite the ability of the pilY1 mutation to suppress all the c-di-GMP-related phenotypes, the global pools of c-di-GMP are not detectably altered in the Delta bifA Delta pilY1 mutant relative to the Delta bifA single mutant. We also show that enhanced expression of the pilY1 gene inhibits swarming motility, and we identify residues in the putative VWA domain of PilY1 that are important for this phenotype. Furthermore, swarming repression by PilY1 specifically requires the diguanylate cyclase (DGC) SadC, and epistasis analysis indicates that PilY1 functions upstream of SadC. Our data indicate that PilY1 participates in multiple surface behaviors of P. aeruginosa, and we propose that PilY1 may act via regulation of SadC DGC activity but independently of altering global c-di-GMP levels.
Collapse
|
175
|
Malone JG, Jaeger T, Spangler C, Ritz D, Spang A, Arrieumerlou C, Kaever V, Landmann R, Jenal U. YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa. PLoS Pathog 2010; 6:e1000804. [PMID: 20300602 PMCID: PMC2837407 DOI: 10.1371/journal.ppat.1000804] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 02/03/2010] [Indexed: 11/29/2022] Open
Abstract
During long-term cystic fibrosis lung infections, Pseudomonas aeruginosa undergoes genetic adaptation resulting in progressively increased persistence and the generation of adaptive colony morphotypes. This includes small colony variants (SCVs), auto-aggregative, hyper-adherent cells whose appearance correlates with poor lung function and persistence of infection. The SCV morphotype is strongly linked to elevated levels of cyclic-di-GMP, a ubiquitous bacterial second messenger that regulates the transition between motile and sessile, cooperative lifestyles. A genetic screen in PA01 for SCV-related loci identified the yfiBNR operon, encoding a tripartite signaling module that regulates c-di-GMP levels in P. aeruginosa. Subsequent analysis determined that YfiN is a membrane-integral diguanylate cyclase whose activity is tightly controlled by YfiR, a small periplasmic protein, and the OmpA/Pal-like outer-membrane lipoprotein YfiB. Exopolysaccharide synthesis was identified as the principal downstream target for YfiBNR, with increased production of Pel and Psl exopolysaccharides responsible for many characteristic SCV behaviors. An yfi-dependent SCV was isolated from the sputum of a CF patient. Consequently, the effect of the SCV morphology on persistence of infection was analyzed in vitro and in vivo using the YfiN-mediated SCV as a representative strain. The SCV strain exhibited strong, exopolysaccharide-dependent resistance to nematode scavenging and macrophage phagocytosis. Furthermore, the SCV strain effectively persisted over many weeks in mouse infection models, despite exhibiting a marked fitness disadvantage in vitro. Exposure to sub-inhibitory concentrations of antibiotics significantly decreased both the number of suppressors arising, and the relative fitness disadvantage of the SCV mutant in vitro, suggesting that the SCV persistence phenotype may play a more important role during antimicrobial chemotherapy. This study establishes YfiBNR as an important player in P. aeruginosa persistence, and implicates a central role for c-di-GMP, and by extension the SCV phenotype in chronic infections. During long-term chronic infections of cystic fibrosis patients, Pseudomonas aeruginosa adapts to the lung environment, generating various different morphotypes including small colony variants (SCVs), small, strongly adherent colonies whose appearance correlates with persistence of infection. The SCV morphology is strongly associated with increased levels of the signaling molecule cyclic di-GMP. In this study we investigated the connection between cyclic di-GMP, SCV and persistence of infection. Following a genetic screen for mutants that displayed SCV morphologies, we identified and characterized the YfiBNR system. YfiN is a membrane-bound cyclic di-GMP producing enzyme, whose activity is tightly controlled by YfiR and YfiB. Cyclic di-GMP produced by YfiN boosts exopolysaccharide synthesis, generating an SCV morphotype upon YfiR-mediated release of YfiN repression. The resulting YfiN-mediated SCV morphotype is highly resistant to macrophage phagocytosis in vitro, suggesting a role for the SCV phenotype in immune system evasion. Consistent with this, YfiN de-repression increased the persistence of P. aeruginosa in long-term infections in a mouse model. The observation that the addition of antibiotics decreased the number of suppressors, and the relative fitness disadvantage of the YfiN-mediated SCV morphotype in liquid culture, suggested that SCV-mediated persistence might be favored during antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Jacob G. Malone
- Biozentrum, University of Basel, Basel, Switzerland
- * E-mail: (JGM); (UJ)
| | - Tina Jaeger
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Daniel Ritz
- Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Anne Spang
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Volkhard Kaever
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Regine Landmann
- Department of Biomedicine, University Hospital, Basel, Switzerland
| | - Urs Jenal
- Biozentrum, University of Basel, Basel, Switzerland
- * E-mail: (JGM); (UJ)
| |
Collapse
|
176
|
Flagellated but not hyperfimbriated Salmonella enterica serovar Typhimurium attaches to and forms biofilms on cholesterol-coated surfaces. J Bacteriol 2010; 192:2981-90. [PMID: 20118264 DOI: 10.1128/jb.01620-09] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The asymptomatic, chronic carrier state of Salmonella enterica serovar Typhi occurs in the bile-rich gallbladder and is frequently associated with the presence of cholesterol gallstones. We have previously demonstrated that salmonellae form biofilms on human gallstones and cholesterol-coated surfaces in vitro and that bile-induced biofilm formation on cholesterol gallstones promotes gallbladder colonization and maintenance of the carrier state. Random transposon mutants of S. enterica serovar Typhimurium were screened for impaired adherence to and biofilm formation on cholesterol-coated Eppendorf tubes but not on glass and plastic surfaces. We identified 49 mutants with this phenotype. The results indicate that genes involved in flagellum biosynthesis and structure primarily mediated attachment to cholesterol. Subsequent analysis suggested that the presence of the flagellar filament enhanced binding and biofilm formation in the presence of bile, while flagellar motility and expression of type 1 fimbriae were unimportant. Purified Salmonella flagellar proteins used in a modified enzyme-linked immunosorbent assay (ELISA) showed that FliC was the critical subunit mediating binding to cholesterol. These studies provide a better understanding of early events during biofilm development, specifically how salmonellae bind to cholesterol, and suggest a target for therapies that may alleviate biofilm formation on cholesterol gallstones and the chronic carrier state.
Collapse
|
177
|
Murray TS, Ledizet M, Kazmierczak BI. Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates. J Med Microbiol 2010; 59:511-520. [PMID: 20093376 DOI: 10.1099/jmm.0.017715-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen capable of acutely infecting or persistently colonizing susceptible hosts. P. aeruginosa colonizes surfaces in vitro by either biofilm formation or swarming motility. The choice of behaviour is influenced by the physical properties of the surface and specific nutrient availability, and subject to regulatory networks that also govern type 2 and type 3 protein secretion. Biofilm formation by clinical isolates has been well-studied. However, the swarming behaviour of human isolates has not been extensively analysed. We collected isolates from 237 hospitalized patients without cystic fibrosis and analysed motility and secretion phenotypes of each isolate. We found biofilm formation and swarming to be negatively associated, while swarming was positively associated with the secretion of both proteases and type 3 exoenzymes. Most isolates were capable of type 3 secretion and biofilm formation, even though these traits are considered to favour distinct modes of pathogenesis. Our data demonstrate that while clinical isolates display diverse motility, biofilm and secretion phenotypes, many of the predicted relationships between swarming motility and other phenotypes observed in laboratory strains also hold true for bacteria isolated from human patients.
Collapse
Affiliation(s)
- Thomas S Murray
- Department of Pediatrics and Laboratory Medicine (Infectious Diseases and Clinical Microbiology), Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Barbara I Kazmierczak
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Medicine (Infectious Diseases), Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
178
|
The Pseudomonas aeruginosa magnesium transporter MgtE inhibits transcription of the type III secretion system. Infect Immun 2009; 78:1239-49. [PMID: 20028803 DOI: 10.1128/iai.00865-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes life-long pneumonia in individuals with cystic fibrosis (CF). These long-term infections are maintained by bacterial biofilm formation in the CF lung. We have recently developed a model of P. aeruginosa biofilm formation on cultured CF airway epithelial cells. Using this model, we discovered that mutation of a putative magnesium transporter gene, called mgtE, led to increased cytotoxicity of P. aeruginosa toward epithelial cells. This altered toxicity appeared to be dependent upon expression of the type III secretion system (T3SS). In this study, we found that mutation of mgtE results in increased T3SS gene transcription. Through epistasis analyses, we discovered that MgtE influences the ExsE-ExsC-ExsD-ExsA gene regulatory system of T3SS by either directly or indirectly inhibiting ExsA activity. While variations in calcium levels modulate T3SS gene expression in P. aeruginosa, we found that addition of exogenous magnesium did not inhibit T3SS activity. Furthermore, mgtE variants that were defective for magnesium transport could still complement the cytotoxicity effect. Thus, the magnesium transport function of MgtE does not fully explain the regulatory effects of MgtE on cytotoxicity. Overall, our results indicate that MgtE modulates expression of T3SS genes.
Collapse
|
179
|
Petrova OE, Sauer K. A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development. PLoS Pathog 2009; 5:e1000668. [PMID: 19936057 PMCID: PMC2774163 DOI: 10.1371/journal.ppat.1000668] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 10/27/2009] [Indexed: 12/24/2022] Open
Abstract
The important human pathogen Pseudomonas aeruginosa has been linked to numerous biofilm-related chronic infections. Here, we demonstrate that biofilm formation following the transition to the surface attached lifestyle is regulated by three previously undescribed two-component systems: BfiSR (PA4196-4197) harboring an RpoD-like domain, an OmpR-like BfmSR (PA4101-4102), and MifSR (PA5511-5512) belonging to the family of NtrC-like transcriptional regulators. These two-component systems become sequentially phosphorylated during biofilm formation. Inactivation of bfiS, bfmR, and mifR arrested biofilm formation at the transition to the irreversible attachment, maturation-1 and -2 stages, respectively, as indicated by analyses of biofilm architecture, and protein and phosphoprotein patterns. Moreover, discontinuation of bfiS, bfmR, and mifR expression in established biofilms resulted in the collapse of biofilms to an earlier developmental stage, indicating a requirement for these regulatory systems for the development and maintenance of normal biofilm architecture. Interestingly, inactivation did not affect planktonic growth, motility, polysaccharide production, or initial attachment. Further, we demonstrate the interdependency of this two-component systems network with GacS (PA0928), which was found to play a dual role in biofilm formation. This work describes a novel signal transduction network regulating committed biofilm developmental steps following attachment, in which phosphorelays and two sigma factor-dependent response regulators appear to be key components of the regulatory machinery that coordinates gene expression during P. aeruginosa biofilm development in response to environmental cues. Biofilms are complex communities of microorganisms encased in a matrix and attached to surfaces. It is well recognized that biofilm cells differ from their free swimming counterparts with respect to gene expression, protein production, and resistance to antibiotics and the human immune system. However, little is known about the underlying regulatory events that lead to the formation of biofilms, the primary cause of many chronic and persistent human infections. By mapping the phosphoproteome over the course of P. aeruginosa biofilm development, we identified three novel two-component regulatory systems that were required for the development and maturation of P. aeruginosa biofilms. Activation (phosphorylation) of these three regulatory systems occurred in a sequential manner and inactivation arrested biofilm formation at three distinct developmental stages. Discontinuation of bfiS, bfmR, or mifR expression after biofilms had already matured resulted in disaggregation/collapse of biofilms. Furthermore, this regulatory cascade appears to be linked via BfiS-dependent GacS-phosphorylation to the previously identified LadS/RetS/GacAS/RsmA network that reciprocally regulates virulence and surface attachment. Our data thus indicate the existence of a previously unidentified regulatory program of biofilm development once P. aeruginosa cells have committed to a surface associated lifestyle, and may provide new targets for controlling the programmed differentiation process of biofilm formation.
Collapse
Affiliation(s)
- Olga E. Petrova
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
- * E-mail:
| |
Collapse
|
180
|
Schirmer T, Jenal U. Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 2009; 7:724-35. [PMID: 19756011 DOI: 10.1038/nrmicro2203] [Citation(s) in RCA: 384] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) is a ubiquitous second messenger that regulates cell surface-associated traits in bacteria. Components of this regulatory network include GGDEF and EAL domain-containing proteins that determine the cellular concentrations of c-di-GMP by mediating its synthesis and degradation, respectively. Crystal structure analyses in combination with functional studies have revealed the catalytic mechanisms and regulatory principles involved. Downstream, c-di-GMP is recognized by PilZ domain-containing receptors that can undergo large-scale domain rearrangements on ligand binding. Here, we review recent data on the structure and functional properties of the protein families that are involved in c-di-GMP signalling and discuss the mechanistic implications.
Collapse
Affiliation(s)
- Tilman Schirmer
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
181
|
Paenibacillus dendritiformis bacterial colony growth depends on surfactant but not on bacterial motion. J Bacteriol 2009; 191:5758-64. [PMID: 19617369 DOI: 10.1128/jb.00660-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most research on growing bacterial colonies on agar plates has concerned the effect of genetic or morphotype variation. Some studies have indicated that there is a correlation between microscopic bacterial motion and macroscopic colonial expansion, especially for swarming strains, but no measurements have been obtained for a single strain to relate the microscopic scale to the macroscopic scale. We examined here a single strain (Paenibacillus dendritiformis type T; tip splitting) to determine both the macroscopic growth of colonies and the microscopic bacterial motion within the colonies. Our multiscale measurements for a variety of growth conditions revealed that motion on the microscopic scale and colonial growth are largely independent. Instead, the growth of the colony is strongly affected by the availability of a surfactant that reduces surface tension.
Collapse
|
182
|
Swarming of Pseudomonas aeruginosa is controlled by a broad spectrum of transcriptional regulators, including MetR. J Bacteriol 2009; 191:5592-602. [PMID: 19592586 DOI: 10.1128/jb.00157-09] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa exhibits swarming motility on semisolid surfaces (0.5 to 0.7% agar). Swarming is a more than just a form of locomotion and represents a complex adaptation resulting in changes in virulence gene expression and antibiotic resistance. In this study, we used a comprehensive P. aeruginosa PA14 transposon mutant library to investigate how the complex swarming adaptation process is regulated. A total of 233 P. aeruginosa PA14 transposon mutants were verified to have alterations in swarming motility. The swarming-associated genes functioned not only in flagellar or type IV pilus biosynthesis but also in processes as diverse as transport, secretion, and metabolism. Thirty-three swarming-deficient and two hyperswarming mutants had transposon insertions in transcriptional regulator genes, including genes encoding two-component sensors and response regulators; 27 of these insertions were newly identified. Of the 25 regulatory mutants whose swarming motility was highly impaired (79 to 97%), only 1 (a PA1458 mutant) had a major defect in swimming, suggesting that this regulator might influence flagellar synthesis or function. Twitching motility, which requires type IV pili, was strongly affected in only two regulatory mutants (pilH and PA2571 mutants) and was moderately affected in three other mutants (algR, ntrB, and nosR mutants). Microarray analyses were performed to compare the gene expression profile of a swarming-deficient PA3587 mutant to that of the wild-type PA14 strain under swarming conditions. PA3587 showed 63% homology to metR, which encodes a regulator of methionine biosynthesis in Escherichia coli. The observed dysregulation in the metR mutant of nine different genes required for swarming motility provided a possible explanation for the swarming-deficient phenotype of this mutant.
Collapse
|
183
|
Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 2009; 73:310-47. [PMID: 19487730 PMCID: PMC2698413 DOI: 10.1128/mmbr.00041-08] [Citation(s) in RCA: 621] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Biofilms are communities of microorganisms that live attached to surfaces. Biofilm formation has received much attention in the last decade, as it has become clear that virtually all types of bacteria can form biofilms and that this may be the preferred mode of bacterial existence in nature. Our current understanding of biofilm formation is based on numerous studies of myriad bacterial species. Here, we review a portion of this large body of work including the environmental signals and signaling pathways that regulate biofilm formation, the components of the biofilm matrix, and the mechanisms and regulation of biofilm dispersal.
Collapse
Affiliation(s)
- Ece Karatan
- Department of Biology, Appalachian State University, Boone, NC 28608, USA.
| | | |
Collapse
|
184
|
Ueda A, Wood TK. Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog 2009; 5:e1000483. [PMID: 19543378 PMCID: PMC2691606 DOI: 10.1371/journal.ppat.1000483] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 05/22/2009] [Indexed: 11/19/2022] Open
Abstract
With the opportunistic pathogen Pseudomonas aeruginosa, quorum sensing based on homoserine lactones was found to influence biofilm formation. Here we discern a mechanism by which quorum sensing controls biofilm formation by screening 5850 transposon mutants of P. aeruginosa PA14 for altered biofilm formation. This screen identified the PA3885 mutant, which had 147-fold more biofilm than the wild-type strain. Loss of PA3885 decreased swimming, abolished swarming, and increased attachment, although this did not affect production of rhamnolipids. The PA3885 mutant also had a wrinkly colony phenotype, formed pronounced pellicles, had substantially more aggregation, and had 28-fold more exopolysaccharide production. Expression of PA3885 in trans reduced biofilm formation and abolished aggregation. Whole transcriptome analysis showed that loss of PA3885 activated expression of the pel locus, an operon that encodes for the synthesis of extracellular matrix polysaccharide. Genetic screening identified that loss of PelABDEG and the PA1120 protein (which contains a GGDEF-motif) suppressed the phenotypes of the PA3885 mutant, suggesting that the function of the PA3885 protein is to regulate 3,5-cyclic diguanylic acid (c-di-GMP) concentrations as a phosphatase since c-di-GMP enhances biofilm formation by activating PelD, and c-di-GMP inhibits swarming. Loss of PA3885 protein increased cellular c-di-GMP concentrations; hence, PA3885 protein is a negative regulator of c-di-GMP production. Purified PA3885 protein has phosphatase activity against phosphotyrosine peptides and is translocated to the periplasm. Las-mediated quorum sensing positively regulates expression of the PA3885 gene. These results show that the PA3885 protein responds to AHL signals and likely dephosphorylates PA1120, which leads to reduced c-di-GMP production. This inhibits matrix exopolysaccharide formation, which leads to reduced biofilm formation; hence, we provide a mechanism for quorum sensing control of biofilm formation through the pel locus and suggest PA3885 should be named TpbA for tyrosine phosphatase related to biofilm formation and PA1120 should be TpbB.
Collapse
Affiliation(s)
- Akihiro Ueda
- Artie McFerrin Department of Chemical Engineering, Texas A & M University, College Station, Texas, United States of America
| | - Thomas K. Wood
- Artie McFerrin Department of Chemical Engineering, Texas A & M University, College Station, Texas, United States of America
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
- Zachry Department of Civil Engineering, Texas A & M University, College Station, Texas, United States of America
| |
Collapse
|
185
|
Genetic reductionist approach for dissecting individual roles of GGDEF proteins within the c-di-GMP signaling network in Salmonella. Proc Natl Acad Sci U S A 2009; 106:7997-8002. [PMID: 19416883 DOI: 10.1073/pnas.0812573106] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacteria have developed an exclusive signal transduction system involving multiple diguanylate cyclase and phosphodiesterase domain-containing proteins (GGDEF and EAL/HD-GYP, respectively) that modulate the levels of the same diffusible molecule, 3'-5'-cyclic diguanylic acid (c-di-GMP), to transmit signals and obtain specific cellular responses. Current knowledge about c-di-GMP signaling has been inferred mainly from the analysis of recombinant bacteria that either lack or overproduce individual members of the pathway, without addressing potential compensatory effects or interferences between them. Here, we dissected c-di-GMP signaling by constructing a Salmonella strain lacking all GGDEF-domain proteins and then producing derivatives, each restoring 1 protein. Our analysis showed that most GGDEF proteins are constitutively expressed and that their expression levels are not interdependent. Complete deletion of genes encoding GGDEF-domain proteins abrogated virulence, motility, long-term survival, and cellulose and fimbriae synthesis. Separate restoration revealed that 4 proteins from Salmonella and 1 from Yersinia pestis exclusively restored cellulose synthesis in a c-di-GMP-dependent manner, indicating that c-di-GMP produced by different GGDEF proteins can activate the same target. However, the restored strain containing the STM4551-encoding gene recovered all other phenotypes by means of gene expression modulation independently of c-di-GMP. Specifically, fimbriae synthesis and virulence were recovered through regulation of csgD and the plasmid-encoded spvAB mRNA levels, respectively. This study provides evidence that the regulation of the GGDEF-domain proteins network occurs at 2 levels: a level that strictly requires c-di-GMP to control enzymatic activities directly, restricted to cellulose synthesis in our experimental conditions, and another that involves gene regulation for which c-di-GMP synthesis can be dispensable.
Collapse
|
186
|
Navazo A, Barahona E, Redondo-Nieto M, Martínez-Granero F, Rivilla R, Martín M. Three independent signalling pathways repress motility in Pseudomonas fluorescens F113. Microb Biotechnol 2009; 2:489-98. [PMID: 21255280 PMCID: PMC3815909 DOI: 10.1111/j.1751-7915.2009.00103.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Motility is one of the most important traits for rhizosphere colonization by pseudomonads. Despite this importance, motility is severely repressed in the rhizosphere‐colonizing strain Pseudomonas fluorescens F113. This bacterium is unable to swarm under laboratory conditions and produce relatively small swimming haloes. However, phenotypic variants with the ability to swarm and producing swimming haloes up to 300% larger than the wild‐type strain, arise during rhizosphere colonization. These variants harbour mutations in the genes encoding the GacA/GacS two‐component system and in other genes. In order to identify genes and pathways implicated in motility repression, we have used generalized mutagenesis with transposons. Analysis of the mutants has shown that besides the Gac system, the Wsp system and the sadB gene, which have been previously implicated in cyclic di‐GMP turnover, are implicated in motility repression: mutants in the gacS, sadB or wspR genes can swarm and produce swimming haloes larger than the wild‐type strain. Epistasis analysis has shown that the pathways defined by each of these genes are independent, because double and triple mutants show an additive phenotype. Furthermore, GacS, SadB and WspR act at different levels. Expression of the fleQ gene, encoding the master regulator of flagella synthesis is higher in the gacS‐ and sadB‐ backgrounds than in the wild‐type strain and this differential expression is reflected by a higher secretion of the flagellin protein FliC. Conversely, no differences in fleQ expression or FliC secretion were observed between the wild‐type strain and the wspR‐ mutant.
Collapse
Affiliation(s)
- Ana Navazo
- Departamento de Biología. Universidad Autónoma de Madrid. c/Darwin, 2, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
187
|
Tremblay J, Déziel E. Improving the reproducibility of Pseudomonas aeruginosa swarming motility assays. J Basic Microbiol 2009; 48:509-15. [PMID: 18785657 DOI: 10.1002/jobm.200800030] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Swarming motility is a rapid and coordinated migration of a bacterial population across a semi-solid surface. This multicellular phenomenon is getting increasing attention as it is suspected to be related to biofilm development of Pseudomonas aeruginosa. Published swarm plate preparation protocols differ greatly from one study to another and no reproducible and standardized protocols have been proposed to accurately study this phenomenon. We report here a rapid and highly reproducible swarm plate protocol for P. aeruginosa and show how different key parameters affect this type of motility (i.e. agar %, drying time under laminar flow, incubation temperature and pH). Results reported here will help to standardize swarming motility assays and develop effective swarm plate protocols for other bacterial species.
Collapse
|
188
|
LapD is a bis-(3',5')-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. Proc Natl Acad Sci U S A 2009; 106:3461-6. [PMID: 19218451 DOI: 10.1073/pnas.0808933106] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The second messenger cyclic dimeric GMP (c-di-GMP) regulates surface attachment and biofilm formation by many bacteria. For Pseudomonas fluorescens Pf0-1, c-di-GMP impacts the secretion and localization of the adhesin LapA, which is absolutely required for stable surface attachment and biofilm formation by this bacterium. In this study we characterize LapD, a unique c-di-GMP effector protein that controls biofilm formation by communicating intracellular c-di-GMP levels to the membrane-localized attachment machinery via its periplasmic domain. LapD contains degenerate and enzymatically inactive diguanylate cyclase and c-di-GMP phosphodiesterase (EAL) domains and binds to c-di-GMP through a degenerate EAL domain. We present evidence that LapD utilizes an inside-out signaling mechanism: binding c-di-GMP in the cytoplasm and communicating this signal to the periplasm via its periplasmic domain. Furthermore, we show that LapD serves as the c-di-GMP receptor connecting environmental modulation of intracellular c-di-GMP levels by inorganic phosphate to regulation of LapA localization and thus surface commitment by P. fluorescens.
Collapse
|
189
|
Gottig N, Garavaglia BS, Garofalo CG, Orellano EG, Ottado J. A filamentous hemagglutinin-like protein of Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker, is involved in bacterial virulence. PLoS One 2009; 4:e4358. [PMID: 19194503 PMCID: PMC2632755 DOI: 10.1371/journal.pone.0004358] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 12/29/2008] [Indexed: 11/19/2022] Open
Abstract
Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker has a number of protein secretion systems and among them, at least one type V protein secretion system belonging to the two-partner secretion pathway. This system is mainly associated to the translocation of large proteins such as adhesins to the outer membrane of several pathogens. Xanthomonas axonopodis pv. citri possess a filamentous hemagglutinin-like protein in close vicinity to its putative transporter protein, XacFhaB and XacFhaC, respectively. Expression analysis indicated that XacFhaB was induced in planta during plant-pathogen interaction. By mutation analysis of XacFhaB and XacFhaC genes we determined that XacFhaB is involved in virulence both in epiphytic and wound inoculations, displaying more dispersed and fewer canker lesions. Unexpectedly, the XacFhaC mutant in the transporter protein produced an intermediate virulence phenotype resembling wild type infection, suggesting that XacFhaB could be secreted by another partner different from XacFhaC. Moreover, XacFhaB mutants showed a general lack of adhesion and were affected in leaf surface attachment and biofilm formation. In agreement with the in planta phenotype, adhesin lacking cells moved faster in swarming plates. Since no hyperflagellation phenotype was observed in this bacteria, the faster movement may be attributed to the lack of cell-to-cell aggregation. Moreover, XacFhaB mutants secreted more exopolysaccharide that in turn may facilitate its motility. Our results suggest that this hemagglutinin-like protein is required for tissue colonization being mainly involved in surface attachment and biofilm formation, and that plant tissue attachment and cell-to-cell aggregation are dependent on the coordinated action of adhesin molecules and exopolysaccharides.
Collapse
Affiliation(s)
- Natalia Gottig
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Betiana S. Garavaglia
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Cecilia G. Garofalo
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Elena G. Orellano
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jorgelina Ottado
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail:
| |
Collapse
|
190
|
Hay ID, Remminghorst U, Rehm BHA. MucR, a novel membrane-associated regulator of alginate biosynthesis in Pseudomonas aeruginosa. Appl Environ Microbiol 2009; 75:1110-20. [PMID: 19088322 PMCID: PMC2643583 DOI: 10.1128/aem.02416-08] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 12/09/2008] [Indexed: 01/06/2023] Open
Abstract
Alginate biosynthesis by Pseudomonas aeruginosa was shown to be regulated by the intracellular second messenger bis-(3'-5')-cyclic-dimeric-GMP (c-di-GMP), and binding of c-di-GMP to the membrane protein Alg44 was required for alginate production. In this study, PA1727, a c-di-GMP-synthesizing enzyme was functionally analyzed and identified to be involved in regulation of alginate production. Deletion of the PA1727 gene in the mucoid alginate-overproducing P. aeruginosa strain PDO300 resulted in a nonmucoid phenotype and an about 38-fold decrease in alginate production; thus, this gene is designated mucR. The mucoid alginate-overproducing phenotype was restored by introducing the mucR gene into the isogenic DeltamucR mutant. Moreover, transfer of the MucR-encoding plasmid into strain PDO300 led to an about sevenfold increase in alginate production, wrinkly colony morphology, increased pellicle formation, auto-aggregation, and the formation of highly structured biofilms as well as the inhibition of swarming motility. Outer membrane protein profile analysis showed that overproduction of MucR mediates a strong reduction in the copy number of FliC (flagellin), required for flagellum-mediated motility. Translational reporter enzyme fusions with LacZ and PhoA suggested that MucR is located in the cytoplasmic membrane with a cytosolic C terminus. Deletion of the proposed C-terminal GGDEF domain abolished MucR function. MucR was purified and identified using tryptic peptide fingerprinting and matrix-assisted laser desorption ionization-time of flight mass spectrometry. Overall, experimental evidence was provided suggesting that MucR specifically regulates alginate biosynthesis by activation of alginate production through generation of a localized c-di-GMP pool in the vicinity of Alg44.
Collapse
Affiliation(s)
- Iain D Hay
- Institute of Molecular Biosciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | |
Collapse
|
191
|
Monds RD, O'Toole GA. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 2009; 17:73-87. [PMID: 19162483 DOI: 10.1016/j.tim.2008.11.001] [Citation(s) in RCA: 362] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 11/07/2008] [Accepted: 11/07/2008] [Indexed: 12/28/2022]
Abstract
For the past ten years, the developmental model of microbial biofilm formation has served as the major conceptual framework for biofilm research; however, the paradigmatic value of this model has begun to be challenged by the research community. Here, we critically evaluate recent data to determine whether biofilm formation satisfies the criteria requisite of a developmental system. We contend that the developmental model of biofilm formation must be approached as a model in need of further validation, rather than utilized as a platform on which to base empirical research and scientific inference. With this in mind, we explore the experimental approaches required to further our understanding of the biofilm phenotype, highlighting evolutionary and ecological approaches as a natural complement to rigorous mechanistic studies into the causal basis of biofilm formation. Finally, we discuss a second model of biofilm formation that serves as a counterpoint to our discussion of the developmental model. Our hope is that this article will provide a platform for discussion about the conceptual underpinnings of biofilm formation and the impact of such frameworks on shaping the questions we ask, and the answers we uncover, during our research into these microbial communities.
Collapse
Affiliation(s)
- Russell D Monds
- Bio-X Program, Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
192
|
Pattern formation in Pseudomonas aeruginosa biofilms. Curr Opin Microbiol 2008; 11:560-6. [DOI: 10.1016/j.mib.2008.09.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 09/22/2008] [Accepted: 09/22/2008] [Indexed: 12/23/2022]
|
193
|
Kumar M, Chatterji D. Cyclic di-GMP: a second messenger required for long-term survival, but not for biofilm formation, in Mycobacterium smegmatis. MICROBIOLOGY-SGM 2008; 154:2942-2955. [PMID: 18832301 DOI: 10.1099/mic.0.2008/017806-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cyclic di-GMP (c-di-GMP) plays an important role in bacterial adaptation to enable survival in changing environments. It orchestrates various pathways involved in biofilm formation, changes in the cell surface, host colonization and virulence. In this article, we report the presence of c-di-GMP in Mycobacterium smegmatis, and its role in the long-term survival of the organism. M. smegmatis has a single bifunctional protein with both GGDEF and EAL domains, which show diguanylate cyclase (DGC) and phosphodiesterase (PDE)-A activity, respectively, in vitro. We named this protein MSDGC-1. Deletion of the gene encoding MSDGC-1 did not affect growth and biofilm formation in M. smegmatis, but long-term survival under conditions of nutritional starvation was affected. Most of the proteins that contain GGDEF and EAL domains have been demonstrated to have either DGC or PDE-A activity. To gain further insight into the regulation of the protein, we cloned the individual domains, and tested their respective activities. MSDGC-1, the full-length protein, is required for activity, as its GGDEF and EAL domains are inactive when separated.
Collapse
Affiliation(s)
- Manish Kumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
194
|
Verstraeten N, Braeken K, Debkumari B, Fauvart M, Fransaer J, Vermant J, Michiels J. Living on a surface: swarming and biofilm formation. Trends Microbiol 2008; 16:496-506. [PMID: 18775660 DOI: 10.1016/j.tim.2008.07.004] [Citation(s) in RCA: 329] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/16/2008] [Accepted: 07/28/2008] [Indexed: 10/21/2022]
Abstract
Swarming is the fastest known bacterial mode of surface translocation and enables the rapid colonization of a nutrient-rich environment and host tissues. This complex multicellular behavior requires the integration of chemical and physical signals, which leads to the physiological and morphological differentiation of the bacteria into swarmer cells. Here, we provide a review of recent advances in the study of the regulatory pathways that lead to swarming behavior of different model bacteria. It has now become clear that many of these pathways also affect the formation of biofilms, surface-attached bacterial colonies. Decision-making between rapidly colonizing a surface and biofilm formation is central to bacterial survival among competitors. In the second part of this article, we review recent developments in the understanding of the transition between motile and sessile lifestyles of bacteria.
Collapse
Affiliation(s)
- Natalie Verstraeten
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | | | | | | | | | | | | |
Collapse
|
195
|
Effect of flagellar mutations on Yersinia enterocolitica biofilm formation. Appl Environ Microbiol 2008; 74:5466-74. [PMID: 18606789 DOI: 10.1128/aem.00222-08] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia enterocolitica biovar 1B is one of a number of strains pathogenic to humans in the genus Yersinia. It has three different type III secretion systems, Ysc, Ysa, and the flagella. In this study, the effect of flagella on biofilm formation was evaluated. In a panel of 31 mutant Y. enterocolitica strains, we observed that mutations that abolish the structure or rotation of the flagella greatly reduce biofilm formation when the bacteria are grown under static conditions. These results were further evaluated by assessing biofilm formation under continuous culture using a flow cell chamber. The results confirmed the important contribution of flagella to the initiation of biofilm production but indicated that there are differences in the progression of biofilm development between static growth and flow conditions. Our results suggest that flagella play a critical role in biofilm formation in Y. enterocolitica.
Collapse
|
196
|
Maddula VSRK, Pierson EA, Pierson LS. Altering the ratio of phenazines in Pseudomonas chlororaphis (aureofaciens) strain 30-84: effects on biofilm formation and pathogen inhibition. J Bacteriol 2008; 190:2759-66. [PMID: 18263718 PMCID: PMC2293254 DOI: 10.1128/jb.01587-07] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Accepted: 02/01/2008] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas chlororaphis strain 30-84 is a plant-beneficial bacterium that is able to control take-all disease of wheat caused by the fungal pathogen Gaeumannomyces graminis var. tritici. The production of phenazines (PZs) by strain 30-84 is the primary mechanism of pathogen inhibition and contributes to the persistence of strain 30-84 in the rhizosphere. PZ production is regulated in part by the PhzR/PhzI quorum-sensing (QS) system. Previous flow cell analyses demonstrated that QS and PZs are involved in biofilm formation in P. chlororaphis (V. S. R. K. Maddula, Z. Zhang, E. A. Pierson, and L. S. Pierson III, Microb. Ecol. 52:289-301, 2006). P. chlororaphis produces mainly two PZs, phenazine-1-carboxylic acid (PCA) and 2-hydroxy-PCA (2-OH-PCA). In the present study, we examined the effect of altering the ratio of PZs produced by P. chlororaphis on biofilm formation and pathogen inhibition. As part of this study, we generated derivatives of strain 30-84 that produced only PCA or overproduced 2-OH-PCA. Using flow cell assays, we found that these PZ-altered derivatives of strain 30-84 differed from the wild type in initial attachment, mature biofilm architecture, and dispersal from biofilms. For example, increased 2-OH-PCA production promoted initial attachment and altered the three-dimensional structure of the mature biofilm relative to the wild type. Additionally, both alterations promoted thicker biofilm development and lowered dispersal rates compared to the wild type. The PZ-altered derivatives of strain 30-84 also differed in their ability to inhibit the fungal pathogen G. graminis var. tritici. Loss of 2-OH-PCA resulted in a significant reduction in the inhibition of G. graminis var. tritici. Our findings suggest that alterations in the ratios of antibiotic secondary metabolites synthesized by an organism may have complex and wide-ranging effects on its biology.
Collapse
Affiliation(s)
- V S R K Maddula
- Department of Plant Sciences, Division of Plant Pathology & Microbiology, The University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
197
|
Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella. J Bacteriol 2007; 190:2700-8. [PMID: 18065549 DOI: 10.1128/jb.01620-07] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa exhibits swarming motility on 0.5 to 1% agar plates in the presence of specific carbon and nitrogen sources. We have found that PAO1 double mutants expressing neither flagella nor type IV pili (fliC pilA) display sliding motility under the same conditions. Sliding motility was inhibited when type IV pilus expression was restored; like swarming motility, it also decreased in the absence of rhamnolipid surfactant production. Transposon insertions in gacA and gacS increased sliding motility and restored tendril formation to spreading colonies, while transposon insertions in retS abolished motility. These changes in motility were not accompanied by detectable changes in rhamnolipid surfactant production or by the appearance of bacterial surface structures that might power sliding motility. We propose that P. aeruginosa requires flagella during swarming to overcome adhesive interactions mediated by type IV pili. The apparent dependence of sliding motility on environmental cues and regulatory pathways that also affect swarming motility suggests that both forms of motility are influenced by similar cohesive factors that restrict translocation, as well as by dispersive factors that facilitate spreading. Studies of sliding motility may be particularly well-suited for identifying factors other than pili and flagella that affect community behaviors of P. aeruginosa.
Collapse
|
198
|
Cyclic dimeric GMP signaling and regulation of surface-associated developmental programs. J Bacteriol 2007; 190:781-3. [PMID: 18065536 DOI: 10.1128/jb.01852-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
199
|
Get the message out: cyclic-Di-GMP regulates multiple levels of flagellum-based motility. J Bacteriol 2007; 190:463-75. [PMID: 17993515 DOI: 10.1128/jb.01418-07] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
200
|
Vibrio parahaemolyticus ScrC modulates cyclic dimeric GMP regulation of gene expression relevant to growth on surfaces. J Bacteriol 2007; 190:851-60. [PMID: 17993539 DOI: 10.1128/jb.01462-07] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In Vibrio parahaemolyticus, scrC participates in controlling the decision to be a highly mobile swarmer cell or a more adhesive, biofilm-proficient cell type. scrC mutants display decreased swarming motility over surfaces and enhanced capsular polysaccharide production. ScrC is a cytoplasmic membrane protein that contains both GGDEF and EAL conserved protein domains. These domains have been shown in many organisms to respectively control the formation and degradation of the small signaling nucleotide cyclic dimeric GMP (c-di-GMP). The scrC gene is part of the three-gene scrABC operon. Here we report that this operon influences the cellular nucleotide pool and that c-di-GMP levels inversely modulate lateral flagellar and capsular polysaccharide gene expression. High concentrations of this nucleotide prevent swarming and promote adhesiveness. Further, we demonstrate that ScrC has intrinsic diguanylate cyclase and phosphodiesterase activities, and these activities are controlled by ScrAB. Specifically, ScrC acts to form c-di-GMP in the absence of ScrA and ScrB; whereas ScrC acts to degrade c-di-GMP in the presence of ScrA and ScrB. The scrABC operon is specifically induced by growth on a surface, and the analysis of mutant phenotypes supports a model in which the phosphodiesterase activity of ScrC plays a dominant role during surface translocation and in biofilms.
Collapse
|