151
|
Pyruvate-depleting conditions induce biofilm dispersion and enhance the efficacy of antibiotics in killing biofilms in vitro and in vivo. Sci Rep 2019; 9:3763. [PMID: 30842579 PMCID: PMC6403282 DOI: 10.1038/s41598-019-40378-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/14/2019] [Indexed: 01/09/2023] Open
Abstract
The formation of biofilms is a developmental process initiated by planktonic cells transitioning to the surface, which comes full circle when cells disperse from the biofilm and transition to the planktonic mode of growth. Considering that pyruvate has been previously demonstrated to be required for the formation of P. aeruginosa biofilms, we asked whether pyruvate likewise contributes to the maintenance of the biofilm structure, with depletion of pyruvate resulting in dispersion. Here, we demonstrate that the enzymatic depletion of pyruvate coincided with the dispersion of established biofilms by S. aureus and laboratory and clinical P. aeruginosa isolates. The dispersion response was dependent on pyruvate fermentation pathway components but independent of proteins previously described to contribute to P. aeruginosa biofilm dispersion. Using porcine second-degree burn wounds infected with P. aeruginosa biofilm cells, we furthermore demonstrated that pyruvate depletion resulted in a reduction of biofilm biomass in vivo. Pyruvate-depleting conditions enhanced the efficacy of tobramycin killing of the resident wound biofilms by up to 5-logs. Our findings strongly suggest the management of pyruvate availability to be a promising strategy to combat biofilm-related infections by two principal pathogens associated with wound and cystic fibrosis lung infections.
Collapse
|
152
|
Waldron EJ, Snyder D, Fernandez NL, Sileo E, Inoyama D, Freundlich JS, Waters CM, Cooper VS, Neiditch MB. Structural basis of DSF recognition by its receptor RpfR and its regulatory interaction with the DSF synthase RpfF. PLoS Biol 2019; 17:e3000123. [PMID: 30716063 PMCID: PMC6361424 DOI: 10.1371/journal.pbio.3000123] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/10/2019] [Indexed: 01/07/2023] Open
Abstract
The diffusible signal factors (DSFs) are a family of quorum-sensing autoinducers (AIs) produced and detected by numerous gram-negative bacteria. The DSF family AIs are fatty acids, differing in their acyl chain length, branching, and substitution but having in common a cis-2 double bond that is required for their activity. In both human and plant pathogens, DSFs regulate diverse phenotypes, including virulence factor expression, antibiotic resistance, and biofilm dispersal. Despite their widespread relevance to both human health and agriculture, the molecular basis of DSF recognition by their cellular receptors remained a mystery. Here, we report the first structure-function studies of the DSF receptor regulation of pathogenicity factor R (RpfR). We present the X-ray crystal structure of the RpfR DSF-binding domain in complex with the Burkholderia DSF (BDSF), which to our knowledge is the first structure of a DSF receptor in complex with its AI. To begin to understand the mechanistic role of the BDSF-RpfR contacts observed in the biologically important complex, we have also determined the X-ray crystal structure of the RpfR DSF-binding domain in complex with the inactive, saturated isomer of BDSF, dodecanoic acid (C12:0). In addition to these ligand-receptor complex structures, we report the discovery of a previously overlooked RpfR domain and show that it binds to and negatively regulates the DSF synthase regulation of pathogenicity factor F (RpfF). We have named this RpfR region the RpfF interaction (FI) domain, and we have determined its X-ray crystal structure alone and in complex with RpfF. These X-ray crystal structures, together with extensive complementary in vivo and in vitro functional studies, reveal the molecular basis of DSF recognition and the importance of the cis-2 double bond to DSF function. Finally, we show that throughout cellular growth, the production of BDSF by RpfF is post-translationally controlled by the RpfR N-terminal FI domain, affecting the cellular concentration of the bacterial second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Thus, in addition to describing the molecular basis for the binding and specificity of a DSF for its receptor, we describe a receptor-synthase interaction regulating bacterial quorum-sensing signaling and second messenger signal transduction.
Collapse
Affiliation(s)
- Evan J. Waldron
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey, United States of America
| | - Daniel Snyder
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nicolas L. Fernandez
- Department of Microbiology and Molecular Genetics and the BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
| | - Emily Sileo
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Daigo Inoyama
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey, United States of America
| | - Joel S. Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey, United States of America
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics and the BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Matthew B. Neiditch
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
153
|
Diab AA, Cao XQ, Chen H, Song K, Zhou L, Chen B, He YW. BDSF Is the Predominant In-Planta Quorum-Sensing Signal Used During Xanthomonas campestris Infection and Pathogenesis in Chinese Cabbage. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:240-254. [PMID: 30570452 DOI: 10.1094/mpmi-07-18-0197-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Xanthomonas campestris pv. campestris uses the diffusible signal factor (DSF) family of quorum-sensing (QS) signals to coordinate virulence and adaptation. DSF family signals have been well-characterized using laboratory-based cell cultures. The in-planta QS signal used during X. campestris pv. campestris infection remains unclear. To achieve this goal, we first mimic in-planta X. campestris pv. campestris growth conditions by supplementing the previously developed XYS medium with cabbage hydrolysate and found that the dominant signal produced in these conditions was BDSF. Secondly, by using XYS medium supplemented with diverse plant-derived compounds, we examined the effects of diverse plant-derived compounds on the biosynthesis of DSF family signals. Several compounds were found to promote biosynthesis of BDSF. Finally, using an X. campestris pv. campestris ΔrpfB-Chinese cabbage infection model and an ultra-performance liquid chromatographic-time of flight-mass spectrometry-based assay, BDSF was found to comprise >70% of the DSF family signals present in infected cabbage tissue. BDSF at a concentration of 2.0 μM induced both protease activity and engXCA expression. This is the first report to directly show that BDSF is the predominant in-planta QS signal used during X. campestris pv. campestris infection. It provides a better understanding of the molecular interactions between X. campestris pv. campestris and its cruciferous hosts and also provides the logical target for designing strategies to counteract BDSF signaling and, thus, infection. Further studies are needed to get an exact idea about the DSF production dynamics of the wild-type strain inside the plant.
Collapse
Affiliation(s)
- Abdelgader Abdeen Diab
- 1 State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; and
| | - Xue-Qiang Cao
- 1 State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; and
| | - Hui Chen
- 1 State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; and
| | - Kai Song
- 1 State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; and
| | - Lian Zhou
- 2 Zhiyuan Innovation Research Centre, Student Innovation Centre, Zhiyuan College, Shanghai Jiao Tong University
| | - Bo Chen
- 1 State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; and
| | - Ya-Wen He
- 1 State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; and
| |
Collapse
|
154
|
Cheng Y, Yam JKH, Cai Z, Ding Y, Zhang LH, Deng Y, Yang L. Population dynamics and transcriptomic responses of Pseudomonas aeruginosa in a complex laboratory microbial community. NPJ Biofilms Microbiomes 2019; 5:1. [PMID: 30675369 PMCID: PMC6334633 DOI: 10.1038/s41522-018-0076-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 12/13/2018] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa tends to be among the dominant species in multi-species bacterial consortia in diverse environments. To understand P. aeruginosa's physiology and interactions with co-existing bacterial species in different conditions, we established physiologically reproducible 18 species communities, and found that P. aeruginosa dominated in mixed-species biofilm communities but not in planktonic communities. P. aeruginosa's H1 type VI secretion system was highly induced in mixed-species biofilm consortia, compared with its monospecies biofilm, which was further demonstrated to play a key role in P. aeruginosa's enhanced fitness over other bacterial species. In addition, the type IV pili and Psl exopolysaccharide were required for P. aeruginosa to compete with other bacterial species in the biofilm community. Our study showed that the physiology of P. aeruginosa is strongly affected by interspecies interactions, and both biofilm determinants and type VI secretion system contribute to higher P. aeruginosa's fitness over other species in complex biofilm communities.
Collapse
Affiliation(s)
- Yingying Cheng
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore 637551
| | - Joey Kuok Hoong Yam
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore 637551
| | - Zhao Cai
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore 637551
| | - Yichen Ding
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore 637551
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China 510642
| | - Yinyue Deng
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, South China Agricultural University, Guangzhou, China 510642
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore 637551
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore 637551
- School of Medicine, Southern University of Science and Technology, Shenzhen, China 518055
| |
Collapse
|
155
|
Woods PW, Haynes ZM, Mina EG, Marques CNH. Maintenance of S. aureus in Co-culture With P. aeruginosa While Growing as Biofilms. Front Microbiol 2019; 9:3291. [PMID: 30687276 PMCID: PMC6333908 DOI: 10.3389/fmicb.2018.03291] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022] Open
Abstract
Bacterial biofilms are found in various environmental niches and are mostly comprised by two or more bacterial species. One such example, are the mixed species bacterial biofilms found in chronic lung infections of cystic fibrosis (CF) patients, which include the Staphylococcus aureus and Pseudomonas aeruginosa bacterial species. S. aureus is one of the CF lung initial colonizers and is assumed to be abrogated when P. aeruginosa becomes established, eliminating its involvement as the infection evolves. Common models used in research do not mimic the actual progression of the mixed species biofilms thus, in this work we developed an in vitro model, where S. aureus biofilms establish prior to the introduction of P. aeruginosa, simulating a state that is phenotypically more similar to the one found in CF lungs. Overall our results demonstrate that S. aureus is not outcompeted, and that timing of inoculation and bacterial concentration affect the final bacterial ratio and quorum sensing related gene expression during the dual species biofilm development.
Collapse
Affiliation(s)
- Paul W Woods
- Department of Biological Sciences, Binghamton University, Binghamton, NY, United States.,Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, United States
| | - Zane M Haynes
- Department of Biological Sciences, Binghamton University, Binghamton, NY, United States.,Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, United States
| | - Elin G Mina
- Department of Biological Sciences, Binghamton University, Binghamton, NY, United States.,Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, United States
| | - Cláudia N H Marques
- Department of Biological Sciences, Binghamton University, Binghamton, NY, United States.,Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
156
|
Černáková L, Light C, Salehi B, Rogel-Castillo C, Victoriano M, Martorell M, Sharifi-Rad J, Martins N, Rodrigues CF. Novel Therapies for Biofilm-Based Candida spp. Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1214:93-123. [DOI: 10.1007/5584_2019_400] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
157
|
Regulation of Biofilm Aging and Dispersal in Bacillus subtilis by the Alternative Sigma Factor SigB. J Bacteriol 2018; 201:JB.00473-18. [PMID: 30396900 DOI: 10.1128/jb.00473-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/25/2018] [Indexed: 11/20/2022] Open
Abstract
Bacterial biofilms are important in natural settings, biotechnology, and medicine. However, regulation of biofilm development and its persistence in different niches is complex and only partially understood. One key step during the biofilm life cycle is dispersal, when motile cells abandon the mature biofilm to spread out and colonize new niches. Here, we show that in the model bacterium Bacillus subtilis the general stress transcription factor SigB is essential for halting detrimental overgrowth of mature biofilm and for triggering dispersal when nutrients become limited. Specifically, SigB-deficient biofilms were larger than wild-type biofilms but exhibited accelerated cell death, significantly greater sensitivity to different stresses, and reduced dispersal. Interestingly, the signal detected by SigB to limit biofilm growth was transduced through the RsbP-dependent metabolic arm of the SigB regulatory cascade, which in turn positively controlled expression of SinR, the master regulator of biofilm formation and cell motility. This novel SigB-SinR regulatory circuit might be important in controlling the fitness of biofilms (either beneficial or harmful) in diverse environments.IMPORTANCE Biofilms are crucial for bacterial survival, adaptation, and dissemination in natural, industrial, and medical systems. Sessile cells embedded in the self-produced extracellular matrix of the biofilm benefit from a division of labor and are protected from environmental insults. However, as the biofilm ages, cells become stressed because of overcrowding, starvation, and accumulation of waste products. How does the sessile biofilm community sense and respond to stressful conditions? Here, we show that in Bacillus subtilis, the transcription factors SigB and SinR control whether cells remain in or leave a biofilm when metabolic conditions become unfavorable. This novel SigB-SinR regulatory circuit might be important for controlling the fitness of biofilms (either beneficial or harmful) in diverse environments.
Collapse
|
158
|
Bidossi A, De Grandi R, Toscano M, Bottagisio M, De Vecchi E, Gelardi M, Drago L. Probiotics Streptococcus salivarius 24SMB and Streptococcus oralis 89a interfere with biofilm formation of pathogens of the upper respiratory tract. BMC Infect Dis 2018; 18:653. [PMID: 30545317 PMCID: PMC6292094 DOI: 10.1186/s12879-018-3576-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/30/2018] [Indexed: 01/20/2023] Open
Abstract
Background Infections of the ears, paranasal sinuses, nose and throat are very common and represent a serious issue for the healthcare system. Bacterial biofilms have been linked to upper respiratory tract infections and antibiotic resistance, raising serious concerns regarding the therapeutic management of such infections. In this context, novel strategies able to fight biofilms may be therapeutically beneficial and offer a valid alternative to conventional antimicrobials. Biofilms consist of mixed microbial communities, which interact with other species in the surroundings and communicate through signaling molecules. These interactions may result in antagonistic effects, which can be exploited in the fight against infections in a sort of “bacteria therapy”. Streptococcus salivarius and Streptococcus oralis are α-hemolytic streptococci isolated from the human pharynx of healthy individuals. Several studies on otitis-prone children demonstrated that their intranasal administration is safe and well tolerated and is able to reduce the risk of acute otitis media. The aim of this research is to assess S. salivarius 24SMB and S. oralis 89a for the ability to interfere with biofilm of typical upper respiratory tract pathogens. Methods To investigate if soluble substances secreted by the two streptococci could inhibit biofilm development of the selected pathogenic strains, co-cultures were performed with the use of transwell inserts. Mixed-species biofilms were also produced, in order to evaluate if the inhibition of biofilm formation might require direct contact. Biofilm production was investigated by means of a spectrophotometric assay and by confocal laser scanning microscopy. Results We observed that S. salivarius 24SMB and S. oralis 89a are able to inhibit the biofilm formation capacity of selected pathogens and even to disperse their pre-formed biofilms. Diffusible molecules secreted by the two streptococci and lowered pH of the medium revealed to be implied in the mechanisms of anti-biofilm activity. Conclusions S. salivarius 24SMB and S. oralis 89a possess desirable characteristics as probiotic for the treatment and prevention of infections of the upper airways. However, the nature of the inhibition appear to be multifactorial and additional studies are required to get further insights. Electronic supplementary material The online version of this article (10.1186/s12879-018-3576-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessandro Bidossi
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | - Roberta De Grandi
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | - Marco Toscano
- Department of Biomedical Sciences for Health, Laboratory of Clinical Microbiology, University of Milan, Milan, Italy
| | - Marta Bottagisio
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | - Elena De Vecchi
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | - Matteo Gelardi
- Department of Basic Medical Science, Otolaryngology Unit, Neuroscience and Sensory Organs, University of Bari Aldo Moro, Bari, Italy
| | - Lorenzo Drago
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Orthopedic Institute Galeazzi, Milan, Italy. .,Department of Biomedical Sciences for Health, Laboratory of Clinical Microbiology, University of Milan, Milan, Italy.
| |
Collapse
|
159
|
Liu L, Li T, Peng CT, Sun CZ, Li CC, Xiao QJ, He LH, Wang NY, Song YJ, Zhu YB, Li H, Kang M, Tang H, Xiong X, Bao R. Structural characterization of a Δ 3, Δ 2-enoyl-CoA isomerase from Pseudomonas aeruginosa: implications for its involvement in unsaturated fatty acid metabolism. J Biomol Struct Dyn 2018; 37:2695-2702. [PMID: 30052139 DOI: 10.1080/07391102.2018.1495102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gene PA4980 from Pseudomonas aeruginosa encodes a putative enoyl-coenzyme A hydratase/isomerase that is associated with the function of the biofilm dispersion-inducing signal molecule cis-2-decenoic acid. To elucidate the role of PA4980 in cis-2-decenoic acid biosynthesis, we reported the crystal structure of its protein product at 2.39 Å. The structural analysis and substrate binding prediction suggest that it acts as a monofunctional enoyl-coenzyme A isomerase, implicating an alternative pathway of the cis-2-decenoic acid synthesis.
Collapse
Affiliation(s)
- Li Liu
- a Department of Dermatology , Affiliated Hospital, Southwest Medical University , Luzhou , China.,b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China
| | - Tao Li
- b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China
| | - Cui-Ting Peng
- b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China
| | - Chang-Zhen Sun
- e Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital , Southwest Medical University , Luzhou , China
| | - Chang-Cheng Li
- b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China
| | - Qing-Jie Xiao
- b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China
| | - Li-Hui He
- b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China
| | - Ning-Yu Wang
- c School of Life Science and Engineering , Southwest Jiaotong University , Chengdu , P.R. China
| | - Ying-Jie Song
- b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China
| | - Yi-Bo Zhu
- b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China
| | - Hong Li
- b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China
| | - Mei Kang
- b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China
| | - Hong Tang
- b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China
| | - Xia Xiong
- a Department of Dermatology , Affiliated Hospital, Southwest Medical University , Luzhou , China
| | - Rui Bao
- b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China.,d State Key Laboratory of Biotherapy and Cancer Center and Healthy Food Evaluation Research Center , Sichuan University , Chengdu , P.R. China
| |
Collapse
|
160
|
Control of Biofilm Formation in Healthcare: Recent Advances Exploiting Quorum-Sensing Interference Strategies and Multidrug Efflux Pump Inhibitors. MATERIALS 2018; 11:ma11091676. [PMID: 30201944 PMCID: PMC6163278 DOI: 10.3390/ma11091676] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/18/2018] [Accepted: 09/07/2018] [Indexed: 12/28/2022]
Abstract
Biofilm formation in healthcare is an issue of considerable concern, as it results in increased morbidity and mortality, imposing a significant financial burden on the healthcare system. Biofilms are highly resistant to conventional antimicrobial therapies and lead to persistent infections. Hence, there is a high demand for novel strategies other than conventional antibiotic therapies to control biofilm-based infections. There are two approaches which have been employed so far to control biofilm formation in healthcare settings: one is the development of biofilm inhibitors based on the understanding of the molecular mechanism of biofilm formation, and the other is to modify the biomaterials which are used in medical devices to prevent biofilm formation. This review will focus on the recent advances in anti-biofilm approaches by interrupting the quorum-sensing cellular communication system and the multidrug efflux pumps which play an important role in biofilm formation. Research efforts directed towards these promising strategies could eventually lead to the development of better anti-biofilm therapies than the conventional treatments.
Collapse
|
161
|
Horspool AM, Schertzer JW. Reciprocal cross-species induction of outer membrane vesicle biogenesis via secreted factors. Sci Rep 2018; 8:9873. [PMID: 29959355 PMCID: PMC6026191 DOI: 10.1038/s41598-018-28042-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 06/14/2018] [Indexed: 11/09/2022] Open
Abstract
Delivery of cargo to target cells is fundamental to bacterial competitiveness. One important but poorly understood system, ubiquitous among Gram-negative organisms, involves packaging cargo into outer membrane vesicles (OMVs). These biological nanoparticles are involved in processes ranging from toxin delivery to cell-cell communication. Despite this, we know comparatively little about how OMVs are formed. Building upon the discovery that the Pseudomonas Quinolone Signal (PQS) stimulates OMV biogenesis in Pseudomonas aeruginosa, we proposed a model where PQS interacts with the outer membrane to induce curvature and ultimately OMV formation. Though this model is well supported in P. aeruginosa, it remained unclear whether other organisms produce similar compounds. Here we describe the development of a tightly controlled experimental system to test the interaction of bacterially-produced factors with target cells. Using this system, we show that multiple species respond to PQS by increasing OMV formation, that PQS accumulates in the induced vesicles, and that other bacteria secrete OMV-promoting factors. Analysis of induced vesicles indicates that recipient-mediated mechanisms exist to control vesicle size and that relatedness to the producer organism can dictate susceptibility to OMV-inducing compounds. This work provides evidence that small molecule induced OMV biogenesis is a widely conserved process and that cross-talk between systems may influence OMV production in neighboring bacteria.
Collapse
Affiliation(s)
- Alexander M Horspool
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Jeffrey W Schertzer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA.
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA.
| |
Collapse
|
162
|
Hu X, Huang YY, Wang Y, Wang X, Hamblin MR. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Front Microbiol 2018; 9:1299. [PMID: 29997579 PMCID: PMC6030385 DOI: 10.3389/fmicb.2018.01299] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Biofilm describes a microbially-derived sessile community in which microbial cells are firmly attached to the substratum and embedded in extracellular polymeric matrix. Microbial biofilms account for up to 80% of all bacterial and fungal infections in humans. Biofilm-associated pathogens are particularly resistant to antibiotic treatment, and thus novel antibiofilm approaches needed to be developed. Antimicrobial Photodynamic therapy (aPDT) had been recently proposed to combat clinically relevant biofilms such as dental biofilms, ventilator associated pneumonia, chronic wound infections, oral candidiasis, and chronic rhinosinusitis. aPDT uses non-toxic dyes called photosensitizers (PS), which can be excited by harmless visible light to produce reactive oxygen species (ROS). aPDT is a multi-stage process including topical PS administration, light irradiation, and interaction of the excited state with ambient oxygen. Numerous in vitro and in vivo aPDT studies have demonstrated biofilm-eradication or substantial reduction. ROS are produced upon photo-activation and attack adjacent targets, including proteins, lipids, and nucleic acids present within the biofilm matrix, on the cell surface and inside the microbial cells. Damage to non-specific targets leads to the destruction of both planktonic cells and biofilms. The review aims to summarize the progress of aPDT in destroying biofilms and the mechanisms mediated by ROS. Finally, a brief section provides suggestions for future research.
Collapse
Affiliation(s)
- Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
| | - Ying-Ying Huang
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
| | - Yuguang Wang
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Michael R. Hamblin
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
| |
Collapse
|
163
|
Kim YG, Lee JH, Raorane CJ, Oh ST, Park JG, Lee J. Herring Oil and Omega Fatty Acids Inhibit Staphylococcus aureus Biofilm Formation and Virulence. Front Microbiol 2018; 9:1241. [PMID: 29963020 PMCID: PMC6014104 DOI: 10.3389/fmicb.2018.01241] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/23/2018] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus aureus is notorious for its ability to become resistant to antibiotics and biofilms play a critical role in antibiotic tolerance. S. aureus is also capable of secreting several exotoxins associated with the pathogenesis of sepsis and pneumonia. Thus, the objectives of the study were to examine S. aureus biofilm formation in vitro, and the effects of herring oil and its main components, omega fatty acids [cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) and cis-5,8,11,14,17-eicosapentaenoic acid (EPA)], on virulence factor production and transcriptional changes in S. aureus. Herring oil decreased biofilm formation by two S. aureus strains. GC-MS analysis revealed the presence of several polyunsaturated fatty acids in herring oil, and of these, two omega-3 fatty acids, DHA and EPA, significantly inhibited S. aureus biofilm formation. In addition, herring oil, DHA, and EPA at 20 μg/ml significantly decreased the hemolytic effect of S. aureus on human red blood cells, and when pre-treated to S. aureus, the bacterium was more easily killed by human whole blood. Transcriptional analysis showed that herring oil, DHA, and EPA repressed the expression of the α-hemolysin hla gene. Furthermore, in a Caenorhabditis elegans nematode model, all three prolonged nematode survival in the presence of S. aureus. These findings suggest that herring oil, DHA, and EPA are potentially useful for controlling persistent S. aureus infection.
Collapse
Affiliation(s)
- Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Chaitany J Raorane
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Seong T Oh
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Jae G Park
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang, South Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
164
|
De Vincenti L, Glasenapp Y, Cattò C, Villa F, Cappitelli F, Papenbrock J. Hindering the formation and promoting the dispersion of medical biofilms: non-lethal effects of seagrass extracts. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:168. [PMID: 29843708 PMCID: PMC5975390 DOI: 10.1186/s12906-018-2232-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 05/15/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Biofilms have great significance in healthcare-associated infections owing to their inherent tolerance and resistance to antimicrobial therapies. New approaches to prevent and treat unwanted biofilms are urgently required. To this end, three seagrass species (Enhalus acoroides, Halophila ovalis and Halodule pinifolia) collected in Vietnam and in India were investigated for their effects in mediating non-lethal interactions on sessile bacterial (Escherichia coli) and fungal (Candida albicans) cultures. The present study was focused on anti-biofilm activities of seagrass extracts, without killing cells. METHODS Methanolic extracts were characterized, and major compounds were identified by MS/MS analysis. The antibiofilm properties of the seagrass extracts were tested at sub-lethal concentrations by using microtiter plate adhesion assay. The performance of the most promising extract was further investigated in elegant bioreactors to reproduce mature biofilms both at the solid/liquid and the solid/air interfaces. Dispersion and bioluminescent assays were carried out to decipher the mode of action of the bioactive extract. RESULTS It was shown that up to 100 ppm of crude extracts did not adversely affect microbial growth, nor do they act as a carbon and energy source for the selected microorganisms. Seagrass extracts appear to be more effective in deterring microbial adhesion on hydrophobic surfaces than on hydrophilic. The results revealed that non-lethal concentrations of E. acoroides leaf extract: i) reduce bacterial and fungal coverage by 60.9 and 73.9%, respectively; ii) affect bacterial biofilm maturation and promote dispersion, up to 70%, in fungal biofilm; iii) increase luminescence in Vibrio harveyi by 25.8%. The characterization of methanolic extracts showed the unique profile of the E. acoroides leaf extract. CONCLUSIONS E. acoroides leaf extract proved to be the most promising extract among those tested. Indeed, the selected non-lethal concentrations of E. acoroides leaf extract were found to exert an antibiofilm effect on C. albicans and E. coli biofilm in the first phase of biofilm genesis, opening up the possibility of developing preventive strategies to hinder the adhesion of microbial cells to surfaces. The leaf extract also affected the dispersion and maturation steps in C. albicans and E. coli respectively, suggesting an important role in cell signaling processes.
Collapse
Affiliation(s)
- Luca De Vincenti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Yvana Glasenapp
- Institute of Botany, Leibniz University Hannover, Herrenhäuserstr. 2, D-30419 Hannover, Germany
| | - Cristina Cattò
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Federica Villa
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Francesca Cappitelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, Herrenhäuserstr. 2, D-30419 Hannover, Germany
| |
Collapse
|
165
|
Churchward CP, Alany RG, Snyder LAS. Alternative antimicrobials: the properties of fatty acids and monoglycerides. Crit Rev Microbiol 2018; 44:561-570. [PMID: 29733249 DOI: 10.1080/1040841x.2018.1467875] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
With the rising antibiotic resistance of many bacterial species, alternative treatments are necessary to combat infectious diseases. The World Health Organization and the US Centres for Disease Control and Prevention have warned that some infections, such as those from Neisseria gonorrhoeae, may be untreatable within a few years. One avenue of exploration is the use of antimicrobial fatty acids and their derivatives for therapeutic prevention or treatment of bacterial infections. Several studies have explored the activity of fatty acids and their derivatives, including monoglycerides against a variety of bacterial species. These are reviewed here, assessing the antimicrobial properties that have been demonstrated and the feasibility of therapeutic applications.
Collapse
Affiliation(s)
- Colin P Churchward
- a School of Life Sciences, Pharmacy, and Chemistry , Kingston University , Kingston upon Thames , UK
| | - Raid G Alany
- a School of Life Sciences, Pharmacy, and Chemistry , Kingston University , Kingston upon Thames , UK
| | - Lori A S Snyder
- a School of Life Sciences, Pharmacy, and Chemistry , Kingston University , Kingston upon Thames , UK
| |
Collapse
|
166
|
Manner S, Fallarero A. Screening of Natural Product Derivatives Identifies Two Structurally Related Flavonoids as Potent Quorum Sensing Inhibitors against Gram-Negative Bacteria. Int J Mol Sci 2018; 19:ijms19051346. [PMID: 29751512 PMCID: PMC5983823 DOI: 10.3390/ijms19051346] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 01/14/2023] Open
Abstract
Owing to the failure of conventional antibiotics in biofilm control, alternative approaches are urgently needed. Inhibition of quorum sensing (QS) represents an attractive target since it is involved in several processes essential for biofilm formation. In this study, a compound library of natural product derivatives (n = 3040) was screened for anti-quorum sensing activity using Chromobacterium violaceum as reporter bacteria. Screening assays, based on QS-mediated violacein production and viability, were performed in parallel to identify non-bactericidal QS inhibitors (QSIs). Nine highly active QSIs were identified, while 328 compounds were classified as moderately actives and 2062 compounds as inactives. Re-testing of the highly actives at a lower concentration against C. violaceum, complemented by a literature search, led to the identification of two flavonoid derivatives as the most potent QSIs, and their impact on biofilm maturation in Escherichia coli and Pseudomonas aeruginosa was further investigated. Finally, effects of these leads on swimming and swarming motility of P. aeruginosa were quantified. The identified flavonoids affected all the studied QS-related functions at micromolar concentrations. These compounds can serve as starting points for further optimization and development of more potent QSIs as adjunctive agents used with antibiotics in the treatment of biofilms.
Collapse
Affiliation(s)
- Suvi Manner
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, FI-20520 Turku, Finland.
| | - Adyary Fallarero
- Pharmaceutical Design and Discovery (PharmDD), Pharmaceutical Biology, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, FI-00014 Helsinki, Finland.
| |
Collapse
|
167
|
Oh HS, Lee CH. Origin and evolution of quorum quenching technology for biofouling control in MBRs for wastewater treatment. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
168
|
Blanchette KA, Wenke JC. Current therapies in treatment and prevention of fracture wound biofilms: why a multifaceted approach is essential for resolving persistent infections. J Bone Jt Infect 2018; 3:50-67. [PMID: 29761067 PMCID: PMC5949568 DOI: 10.7150/jbji.23423] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/16/2018] [Indexed: 12/13/2022] Open
Abstract
Traumatic orthopedic injuries, particularly extremity wounds, are a significant cause of morbidity. Despite prophylactic antibiotic treatment and surgical intervention, persistent infectious complications can and do occur. Persistent bacterial infections are often caused by biofilms, communities of antibiotic tolerant bacteria encased within a matrix. The structural and metabolic differences in this mode of growth make treatment difficult. Herein, we describe both established and novel, experimental treatments targeted at various stages of wound healing that are specifically aimed at reducing and eliminating biofilm bacteria. Importantly, the highly tolerant nature of these bacterial communities suggests that most singular approaches could be circumvented and a multifaceted, combinatorial approach will be the most effective strategy for treating these complicated infections.
Collapse
Affiliation(s)
| | - Joseph C Wenke
- US Army Institute of Surgical Research, Ft Sam Houston, TX
| |
Collapse
|
169
|
Liu L, Li T, Cheng XJ, Peng CT, Li CC, He LH, Ju SM, Wang NY, Ye TH, Lian M, Xiao QJ, Song YJ, Zhu YB, Yu LT, Wang ZL, Bao R. Structural and functional studies on Pseudomonas aeruginosa DspI: implications for its role in DSF biosynthesis. Sci Rep 2018; 8:3928. [PMID: 29500457 PMCID: PMC5834635 DOI: 10.1038/s41598-018-22300-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/15/2018] [Indexed: 02/05/2023] Open
Abstract
DspI, a putative enoyl-coenzyme A (CoA) hydratase/isomerase, was proposed to be involved in the synthesis of cis-2-decenoic acid (CDA), a quorum sensing (QS) signal molecule in the pathogen Pseudomonas aeruginosa (P. aeruginosa). The present study provided a structural basis for the dehydration reaction mechanism of DspI during CDA synthesis. Structural analysis reveals that Glu126, Glu146, Cys127, Cys131 and Cys154 are important for its enzymatic function. Moreover, we show that the deletion of dspI results in a remarkable decreased in the pyoverdine production, flagella-dependent swarming motility, and biofilm dispersion as well as attenuated virulence in P. aeruginosa PA14. This study thus unravels the mechanism of DspI in diffusible signal factor (DSF) CDA biosynthesis, providing vital information for developing inhibitors that interfere with DSF associated pathogenicity in P. aeruginosa.
Collapse
Affiliation(s)
- Li Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, Southwest Medical University, affiliated hospital, Luzhou, China
| | - Tao Li
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Xing-Jun Cheng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Cui-Ting Peng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Cheng Li
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li-Hui He
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Si-Min Ju
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ning-Yu Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Ting-Hong Ye
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Lian
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Qing-Jie Xiao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ying-Jie Song
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Bo Zhu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Luo-Ting Yu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhen-Ling Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
| | - Rui Bao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
170
|
Oh HS, Constancias F, Ramasamy C, Tang PYP, Yee MO, Fane AG, McDougald D, Rice SA. Biofouling control in reverse osmosis by nitric oxide treatment and its impact on the bacterial community. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
171
|
Metabolomic analysis of low and high biofilm-forming Helicobacter pylori strains. Sci Rep 2018; 8:1409. [PMID: 29362474 PMCID: PMC5780479 DOI: 10.1038/s41598-018-19697-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
The biofilm-forming-capability of Helicobacter pylori has been suggested to be among factors influencing treatment outcome. However, H. pylori exhibit strain-to-strain differences in biofilm-forming-capability. Metabolomics enables the inference of spatial and temporal changes of metabolic activities during biofilm formation. Our study seeks to examine the differences in metabolome of low and high biofilm-formers using the metabolomic approach. Eight H. pylori clinical strains with different biofilm-forming-capability were chosen for metabolomic analysis. Bacterial metabolites were extracted using Bligh and Dyer method and analyzed by Liquid Chromatography/Quadrupole Time-of-Flight mass spectrometry. The data was processed and analyzed using the MassHunter Qualitative Analysis and the Mass Profiler Professional programs. Based on global metabolomic profiles, low and high biofilm-formers presented as two distinctly different groups. Interestingly, low-biofilm-formers produced more metabolites than high-biofilm-formers. Further analysis was performed to identify metabolites that differed significantly (p-value < 0.005) between low and high biofilm-formers. These metabolites include major categories of lipids and metabolites involve in prostaglandin and folate metabolism. Our findings suggest that biofilm formation in H. pylori is complex and probably driven by the bacterium’ endogenous metabolism. Understanding the underlying metabolic differences between low and high biofilm-formers may enhance our current understanding of pathogenesis, extragastric survival and transmission of H. pylori infections.
Collapse
|
172
|
Abstract
One common feature of biofilm development is the active dispersal of cells from the mature biofilm, which completes the biofilm life cycle and allows for the subsequent colonization of new habitats. Dispersal is likely to be critical for species survival and appears to be a precisely regulated process that involves a complex network of genes and signal transduction systems. Sophisticated molecular mechanisms control the transition of sessile biofilm cells into dispersal cells and their coordinated detachment and release in the bulk liquid. Dispersal cells appear to be specialized and exhibit a unique phenotype different from biofilm or planktonic bacteria. Further, the dispersal population is characterized by a high level of heterogeneity, reminiscent of, but distinct from, that in the biofilm, which could potentially allow for improved colonization under various environmental conditions. Here we review recent advances in characterizing the molecular mechanisms that regulate biofilm dispersal events and the impact of dispersal in a broader ecological context. Several strategies that exploit the mechanisms controlling biofilm dispersal to develop as applications for biofilm control are also presented.
Collapse
|
173
|
Thornhill SG, McLean RJC. Use of Whole-Cell Bioassays for Screening Quorum Signaling, Quorum Interference, and Biofilm Dispersion. Methods Mol Biol 2018; 1673:3-24. [PMID: 29130160 DOI: 10.1007/978-1-4939-7309-5_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In most bacteria, a global level of regulation, termed quorum sensing (QS), exists involving intercellular communication via the production and response to cell density-dependent signal molecules. QS has been associated with a number of important features in bacteria including virulence regulation and biofilm formation. Consequently, there is considerable interest in understanding, detecting, and inhibiting QS. N-acylated homoserine lactones (AHLs) are used as extracellular QS signals by a variety of Gram-negative bacteria. Chromobacterium violaceum, commonly found in soil and water, produces the characteristic purple pigment violacein, regulated by AHL-mediated QS. Based on this readily observed pigmentation phenotype, C. violaceum strains can be used to detect various aspects of AHL-mediated QS activity. In another commonly used bioassay organism, Agrobacterium tumefaciens, QS can be detected by the use of a reporter gene such as lacZ. Here, we describe several commonly used approaches incorporating C. violaceum and A. tumefaciens that can be used to detect AHL and QS inhibitors. Due to the inherent low susceptibility of biofilm bacteria to antimicrobial agents, biofilm dispersion, whereby bacteria reenter the planktonic community, is another increasingly important area of research. At least one signal, distinct from traditional QS, has been identified and there are a variety of other environmental factors that also trigger dispersion. We describe a microtiter-based experimental strategy whereby potential biofilm dispersion compounds can be screened.
Collapse
Affiliation(s)
- Starla G Thornhill
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Robert J C McLean
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA.
| |
Collapse
|
174
|
Nagraj AK, Gokhale D. Bacterial Biofilm Degradation Using Extracellular Enzymes Produced by <i>Penicillium janthinellum</i> EU2D-21 under Submerged Fermentation. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/aim.2018.89046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
175
|
Adegoke AA, Stenström TA, Okoh AI. Stenotrophomonas maltophilia as an Emerging Ubiquitous Pathogen: Looking Beyond Contemporary Antibiotic Therapy. Front Microbiol 2017; 8:2276. [PMID: 29250041 PMCID: PMC5714879 DOI: 10.3389/fmicb.2017.02276] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
Stenotrophomonas maltophilia is a commensal and an emerging pathogen earlier noted in broad-spectrum life threatening infections among the vulnerable, but more recently as a pathogen in immunocompetent individuals. The bacteria are consistently being implicated in necrotizing otitis, cutaneous infections including soft tissue infection and keratitis, endocarditis, meningitis, acute respiratory tract infection (RTI), bacteraemia (with/without hematological malignancies), tropical pyomyositis, cystic fibrosis, septic arthritis, among others. S. maltophilia is also an environmental bacteria occurring in water, rhizospheres, as part of the animals' microflora, in foods, and several other microbiota. This review highlights clinical reports on S. maltophilia both as an opportunistic and as true pathogen. Also, biofilm formation as well as quorum sensing, extracellular enzymes, flagella, pili/fimbriae, small colony variant, other virulence or virulence-associated factors, the antibiotic resistance factors, and their implications are considered. Low outer membrane permeability, natural MDR efflux systems, and/or resistance genes, resistance mechanisms like the production of two inducible chromosomally encoded β-lactamases, and lack of carefully compiled patient history are factors that pose great challenges to the S. maltophilia control arsenals. The fluoroquinolone, some tetracycline derivatives and trimethoprim-sulphamethaxole (TMP-SMX) were reported as effective antibiotics with good therapeutic outcome. However, TMP-SMX resistance and allergies to sulfa together with high toxicity of fluoroquinolone are notable setbacks. S. maltophilia's production and sustenance of biofilm by quorum sensing enhance their virulence, resistance to antibiotics and gene transfer, making quorum quenching an imperative step in Stenotrophomonas control. Incorporating several other proven approaches like bioengineered bacteriophage therapy, Epigallocatechin-3-gallate (EGCG), essential oil, nanoemulsions, and use of cationic compounds are promising alternatives which can be incorporated in Stenotrophomonas control arsenal.
Collapse
Affiliation(s)
- Anthony A Adegoke
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa.,Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa.,SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Thor A Stenström
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa.,SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
176
|
Susceptibility of Pseudomonas aeruginosa Dispersed Cells to Antimicrobial Agents Is Dependent on the Dispersion Cue and Class of the Antimicrobial Agent Used. Antimicrob Agents Chemother 2017; 61:AAC.00846-17. [PMID: 28971863 DOI: 10.1128/aac.00846-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/24/2017] [Indexed: 12/22/2022] Open
Abstract
The biofilm life cycle is characterized by the transition of planktonic cells exhibiting high susceptibly to antimicrobial agents to a biofilm mode of growth characterized by high tolerance to antimicrobials, followed by dispersion of cells from the biofilm back into the environment. Dispersed cells, however, are not identical to planktonic cells but have been characterized as having a unique transitionary phenotype relative to biofilm and planktonic cells, with dispersed cells attaching in a manner similar to exponential-phase cells, but demonstrating gene expression patterns that are distinct from both exponential and stationary-phase planktonic cells. This raised the question whether dispersed cells are as susceptible as planktonic cells and whether the dispersion inducer or the antibiotic class affects the drug susceptibility of dispersed cells. Dispersed cells obtained in response to dispersion cues glutamate and nitric oxide (NO) were thus exposed to tobramycin and colistin. Although NO-induced dispersed cells were as susceptible to colistin and tobramycin as exponential-phase planktonic cells, glutamate-induced dispersed cells were susceptible to tobramycin but resistant to colistin. The difference in colistin susceptibility was independent of cellular c-di-GMP levels, with modulation of c-di-GMP failing to induce dispersion. Instead, drug susceptibility was inversely correlated with LPS modification system and the biofilm-specific transcriptional regulator BrlR. The susceptibility phenotype of glutamate-induced dispersed cells to colistin was found to be reversible, with dispersed cells being rendered as susceptible to colistin within 2 h postdispersion, though additional time was required for dispersed cells to display expression of genes indicative of exponential growth.
Collapse
|
177
|
Krzyżek P, Gościniak G. A proposed role for diffusible signal factors in the biofilm formation and morphological transformation of Helicobacter pylori. TURKISH JOURNAL OF GASTROENTEROLOGY 2017; 29:7-13. [PMID: 29082887 DOI: 10.5152/tjg.2017.17349] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Due to the increasing resistance of Helicobacter pylori to antibiotics, there is a growing need for new strategies for the effective eradication of this pathogen. The inhibition of quorum-sensing activity in most microorganisms leads to a decrease in virulence. A different reaction is observed in H. pylori, as interfering with the production of autoinducer-2 initiates biofilm formation and increases the survival of these bacteria. Therefore, it is believed that there is an alternative way to control the physiological changes of H. pylori exposed to environmental stress. In this article, we present the compounds probably involved in the modulation of H. pylori virulence. Diffusible signal factors (DSFs) are fatty acid signal molecules involved in communication between microbes. DSFs are likely to stimulate H. Pylori transition into a sedentary state that correlates with bacterial transformation into a more resistant coccoid form and initiates biofilm formation. Biofilm is a structure that plays a crucial role in protecting against adverse environmental factors (low pH, oxidative stress, action of immune system) and limiting the effective concentration of antimicrobial substances. This article has suggested and characterized the existence of an alternative DSF-mediated cell-cell signaling of H. pylori, which controls autoaggregative behaviors, biofilm formation, and the transition of microorganisms into the coccoid form.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Wroclaw Medical University, Wroclaw, Poland
| | - Grażyna Gościniak
- Department of Microbiology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
178
|
Eder AE, Munir SA, Hobby CR, Anderson DM, Herndon JL, Siv AW, Symes SJK, Giles DK. Exogenous polyunsaturated fatty acids (PUFAs) alter phospholipid composition, membrane permeability, biofilm formation and motility in Acinetobacter baumannii. MICROBIOLOGY-SGM 2017; 163:1626-1636. [PMID: 29058654 DOI: 10.1099/mic.0.000556] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acinetobacter baumannii is a ubiquitous multidrug-resistant bacteria that is found on a variety of surfaces, including skin, hair and soil. During the past decade, A. baumannii has emerged as a significant cause of nosocomial infections in the United States. Recent studies have highlighted the ability of some bacteria to utilize a wide variety of fatty acids as a membrane remodelling strategy. Considering this, we hypothesized that fatty acids may have an effect on the emerging pathogen A. baumannii. Thin-layer chromatography indicated structural alterations to major phospholipids. Liquid chromatography/mass spectrometry confirmed the assimilation of numerous exogenous polyunsaturated fatty acids (PUFAs) into the phospholipid species of A. baumannii. The incorporation of fatty acids affected several bacterial phenotypes, including membrane permeability, biofilm formation, surface motility and antimicrobial peptide resistance.
Collapse
Affiliation(s)
- Adrianna E Eder
- Department of Biology, Geology and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Saba A Munir
- Department of Biology, Geology and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Chelsea R Hobby
- Department of Biology, Geology and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Derek M Anderson
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Joshua L Herndon
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Andrew W Siv
- Department of Biology, Geology and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Steven J K Symes
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - David K Giles
- Department of Biology, Geology and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| |
Collapse
|
179
|
Supercritical fluid extracts of Moringa oleifera and their unsaturated fatty acid components inhibit biofilm formation by Staphylococcus aureus. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.04.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
180
|
Antibiofilm agents: A new perspective for antimicrobial strategy. J Microbiol 2017; 55:753-766. [PMID: 28956348 DOI: 10.1007/s12275-017-7274-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 02/08/2023]
Abstract
Biofilms are complex microbial architectures that attach to surfaces and encase microorganisms in a matrix composed of self-produced hydrated extracellular polymeric substances (EPSs). In biofilms, microorganisms become much more resistant to antimicrobial treatments, harsh environmental conditions, and host immunity. Biofilm formation by microbial pathogens greatly enhances survival in hosts and causes chronic infections that result in persistent inflammation and tissue damages. Currently, it is believed over 80% of chronic infectious diseases are mediated by biofilms, and it is known that conventional antibiotic medications are inadequate at eradicating these biofilm-mediated infections. This situation demands new strategies for biofilm-associated infections, and currently, researchers focus on the development of antibiofilm agents that are specific to biofilms, but are nontoxic, because it is believed that this prevents the development of drug resistance. Here, we review the most promising antibiofilm agents undergoing intensive research and development.
Collapse
|
181
|
Hu D, Li H, Wang B, Ye Z, Lei W, Jia F, Jin Q, Ren KF, Ji J. Surface-Adaptive Gold Nanoparticles with Effective Adherence and Enhanced Photothermal Ablation of Methicillin-Resistant Staphylococcus aureus Biofilm. ACS NANO 2017; 11:9330-9339. [PMID: 28806528 DOI: 10.1021/acsnano.7b04731] [Citation(s) in RCA: 373] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Biofilms that contribute to the persistent bacterial infections pose serious threats to global public health, mainly due to their resistance to antibiotics penetration and escaping innate immune attacks by phagocytes. Here, we report a kind of surface-adaptive gold nanoparticles (AuNPs) exhibiting (1) a self-adaptive target to the acidic microenvironment of biofilm, (2) an enhanced photothermal ablation of methicillin-resistant Staphylococcus aureus (MRSA) biofilm under near-infrared (NIR) light irradiation, and (3) no damage to the healthy tissues around the biofilm. Originally, AuNPs were readily prepared by surface modification with pH-responsive mixed charged zwitterionic self-assembled monolayers consisting of weak electrolytic 11-mercaptoundecanoic acid (HS-C10-COOH) and strong electrolytic (10-mercaptodecyl)trimethylammonium bromide (HS-C10-N4). The mixed charged zwitterion-modified AuNPs showed fast pH-responsive transition from negative charge to positive charge, which enabled the AuNPs to disperse well in healthy tissues (pH ∼7.4), while quickly presenting strong adherence to negatively charged bacteria surfaces in MRSA biofilm (pH ∼5.5). Simultaneous AuNP aggregation within the MRSA biofilm enhanced the photothermal ablation of MRSA biofilm under NIR light irradiation. The surrounding healthy tissues showed no damage because the dispersed AuNPs had no photothermal effect under NIR light. In view of the above advantages as well as the straightforward preparation, AuNPs developed in this work may find potential applications as a useful antibacterial agent in the areas of healthcare.
Collapse
Affiliation(s)
- Dengfeng Hu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Huan Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University , Wenzhou 325027, China
| | - Zi Ye
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University , Wenzhou 325027, China
| | - Wenxi Lei
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| |
Collapse
|
182
|
Biofilms: Survival and defense strategy for pathogens. Int J Med Microbiol 2017; 307:481-489. [PMID: 28950999 DOI: 10.1016/j.ijmm.2017.09.016] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 01/20/2023] Open
Abstract
Studies on biofilm related infections are gaining prominence owing to their involvement in majority of clinical infections. Biofilm, considered as a generic mechanism for survival used by pathogenic as well as non-pathogenic microorganisms, involves surface attachment and growth of heterogeneous cells encapsulated within a matrix. The matrix provides ecological niche where partnership of cells endows a community like behaviour that not only enables the cohort to survive local microenvironment stress but also channelizes them to evolve, disseminate and cause resurgence of infections. In this mini-review we highlight the mechanisms used by microbes to develop and sustain biofilms, including the influence of the microbiota. Several strategies to target biofilms have been validated on certain groups of microorganisms and these basically target different stages in the life cycle of biofilm, however comprehensive methods to target microbial biofilms are relatively unknown. In the backdrop of recent reports suggesting that biofilms can harbour multiple species of organisms, we need to relook and devise newer strategies against biofilms. Effective anti-biofilm strategies cannot be confined to a single methodology that can disrupt one pathway but should simultaneously target the various routes adopted by the microorganisms for survival within their ecosystem. An overview of the currently available drugs, their mode of action, genomic targets and translational therapies against biofilm related infection are discussed.
Collapse
|
183
|
Ford CA, Cassat JE. Advances in the local and targeted delivery of anti-infective agents for management of osteomyelitis. Expert Rev Anti Infect Ther 2017; 15:851-860. [PMID: 28837368 DOI: 10.1080/14787210.2017.1372192] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Osteomyelitis, a common and debilitating invasive infection of bone, is a frequent complication following orthopedic surgery and causes pathologic destruction of skeletal tissues. Bone destruction during osteomyelitis results in necrotic tissue, which is poorly penetrated by antibiotics and can serve as a nidus for relapsing infection. Osteomyelitis therefore frequently necessitates surgical debridement procedures, which provide a unique opportunity for targeted delivery of antimicrobial and adjunctive therapies. Areas covered: Following surgical debridement, tissue voids require implanted materials to facilitate the healing process. Antibiotic-loaded, non-biodegradable implants have been the standard of care. However, a new generation of biodegradable, osteoconductive materials are being developed. Additionally, in the face of widespread antimicrobial resistance, alternative therapies to traditional antibiotic regimens are being investigated, including bone targeting compounds, antimicrobial surface modifications of orthopedic implants, and anti-virulence strategies. Expert commentary: Recent advances in biodegradable drug delivery scaffolds make this technology an attractive alternative to traditional techniques for orthopedic infection that require secondary operations for removal. Advances in novel treatment methods are expanding the arsenal of viable antimicrobial treatment strategies in the face of widespread drug resistance. Despite a need for large scale clinical investigations, these strategies offer hope for future treatment of this difficult invasive disease.
Collapse
Affiliation(s)
- Caleb A Ford
- a Department of Biomedical Engineering , Vanderbilt University School of Engineering, Vanderbilt University School of Medicine , Nashville , TN , USA
| | - James E Cassat
- b Departments of Pediatrics, Pathology, Microbiology, and Immunology, and Biomedical Engineering , Vanderbilt University Medical Center , Nashville , TN , USA
| |
Collapse
|
184
|
Interkingdom signaling in plant-microbe interactions. SCIENCE CHINA-LIFE SCIENCES 2017; 60:785-796. [PMID: 28755299 DOI: 10.1007/s11427-017-9092-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/04/2017] [Indexed: 12/18/2022]
Abstract
The widespread communications between prokaryotes and eukaryotes via signaling molecules are believed to affect gene expression in both partners. During the communication process, the contacted organisms produce and release small molecules that establish communication channels between two kingdoms-this procedure is known as interkingdom signaling. Interkingdom communications are widespread between pathogenic or beneficial bacteria and their host plants, with diversified outcomes depending on the specific chemical-triggered signaling pathways. Deciphering the signals or language of this interkingdom communication and uncovering the underlying mechanisms are major current challenges in this field. It is evident that diverse signaling molecules can be produced or derived from bacteria and plants, and researchers have sought to identify these signals and explore the mechanisms of the signaling pathways. The results of such studies will lead to the development of strategies to improve plant disease resistance through controlling interkingdom signals, rather than directly killing the pathogenic bacteria. Also, the identification of signals produced by beneficial bacteria will be useful for agricultural applications. In this review, we summarize the recent progress of cross-kingdom interactions between plant and bacteria, and how LuxR-family transcription factors in plant associated bacterial quorum sensing system are involved in the interkingdom signaling.
Collapse
|
185
|
Prevention of Ophthalmia Neonatorum Caused by Neisseria gonorrhoeae Using a Fatty Acid-Based Formulation. mBio 2017; 8:mBio.00534-17. [PMID: 28743809 PMCID: PMC5527305 DOI: 10.1128/mbio.00534-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Ophthalmia neonatorum, also called neonatal conjunctivitis, acquired during delivery can occur in the first 28 days of life. Commonly caused by the bacterial pathogen Neisseria gonorrhoeae, infection can lead to corneal scarring, perforation of the eye, and blindness. One approach that can be taken to prevent the disease is the use of an ophthalmic prophylaxis, which kills the bacteria on the surface of the eye shortly after birth. Current prophylaxes are based on antibiotic ointments. However, N. gonorrhoeae is resistant to many antibiotics and alternative treatments must be developed before the condition becomes untreatable. This study focused on developing a fatty acid-based prophylaxis. For this, 37 fatty acids or fatty acid derivatives were screened in vitro for fast antigonococcal activity. Seven candidates were identified as bactericidal at 1 mM. These seven were subjected to irritation testing using three separate methods: the bovine corneal opacity and permeability (BCOP) test; the hen’s egg test—chorioallantoic membrane (HET-CAM); and the red blood cell (RBC) lysis assay. The candidates were also tested in artificial tear fluid to determine whether they were effective in this environment. Four of the candidates remained effective. Among these, two lead candidates, monocaprin and myristoleic acid, displayed the best potential as active compounds in the development of a fatty acid-based prophylaxis for prevention of ophthalmia neonatorum. Ophthalmia neonatorum is a painful bacterial infection of the eye in newborns. A common cause is Neisseria gonorrhoeae, which has the potential to cause severe damage to the eye and blindness. This study was designed to identify new and unconventional drug candidates that could be used in an eye ointment to prevent the development of this disease. The drugs that were tested were fatty acid-based compounds. The potential candidates were screened for their ability to kill bacteria in tear fluid without causing damage to the eye. This study identified seven candidates that are fast acting and nonirritating, with two strong candidates for potential use in the eye. Further development and testing are now required to formulate an eye treatment incorporating these drugs to prevent ophthalmia neonatorum.
Collapse
|
186
|
Understanding the fundamental mechanisms of biofilms development and dispersal: BIAM (Biofilm Intensity and Architecture Measurement), a new tool for studying biofilms as a function of their architecture and fluorescence intensity. J Microbiol Methods 2017; 140:47-57. [PMID: 28679111 DOI: 10.1016/j.mimet.2017.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 01/08/2023]
Abstract
Confocal laser scanning microscopy (CLSM) is one of the most relevant technologies for studying biofilms in situ. Several tools have been developed to investigate and quantify the architecture of biofilms. However, an approach to quantify correctly the evolution of intensity of a fluorescent signal as a function of the structural parameters of a biofilm is still lacking. Here we present a tool developed in the ImageJ open source software that can be used to extract both structural and fluorescence intensity from CLSM data: BIAM (Biofilm Intensity and Architecture Measurement). This is of utmost significance when studying the fundamental mechanisms of biofilm growth, differentiation and development or when aiming to understand the effect of external molecules on biofilm phenotypes. In order to provide an example of the potential of such a tool in this study we focused on biofilm dispersion. cis-2-Decenoic acid (CDA) is a molecule known to induce biofilm dispersion of multiple bacterial species. The mechanisms by which CDA induces dispersion are still poorly understood. To investigate the effects of CDA on biofilms, we used a reporter strain of Escherichia coli (E. coli) that expresses the GFPmut2 protein under control of the rrnBP1 promoter. Experiments were done in flow cells and image acquisition was made with CLSM. Analysis carried out using the new tool, BIAM, indicates that CDA affects the fluorescence intensity of the biofilm structures as well as biofilm architectures. Indeed, our results demonstrate that CDA removes more than 35% of biofilm biovolume and suggest that it results in an increase of the biofilm's mean fluorescence intensity (MFI) by more than 26% compared to the control biofilm in the absence of CDA.
Collapse
|
187
|
Phosphatidylcholine Coatings Deliver Local Antimicrobials and Reduce Infection in a Murine Model: A Preliminary Study. Clin Orthop Relat Res 2017; 475:1847-1853. [PMID: 28050817 PMCID: PMC5449318 DOI: 10.1007/s11999-016-5211-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Phosphatidylcholine coatings have been shown to elute antibiotics for several days. A recently developed biofilm inhibitor, cis-2-decenoic acid (C2DA), has been shown to exhibit synergistic activity with several common antibiotics. This study aims to evaluate the effectiveness of C2DA and amikacin dual drug delivery from a phosphatidylcholine coating. QUESTIONS/PURPOSES (1) What are the in vitro elution profiles of amikacin and C2DA from phosphatidylcholine-coated coupons in incubated phosphate-buffered saline? (2) Does the presence of C2DA in eluate samples lower the amount of amikacin needed for bacterial inhibition in overnight bacterial turbidity assays? (3) Does addition of amikacin and C2DA result in decreased colony-forming units (CFUs) on wire implants and bone when compared with phosphatidylcholine coatings alone in a mouse model of periprosthetic joint infection? METHODS Effects of loading concentrations were assessed during 7-day in vitro elution studies for coatings containing all mixtures of 0%, 5%, 15%, and 25% wt of amikacin and C2DA (n = 4) through quantitative high-performance liquid chromatography concentration determination and plotting concentration eluted over time. Antimicrobial activity was assessed by overnight turbidity testing of elution study samples against Staphylococcus aureus or Pseudomonas aeruginosa. In vivo efficacy was assessed using phosphatidylcholine-coated wire implants in a murine (mouse) model of infection (n = 3). Wire implants were coated with phosphatidylcholine containing no antimicrobials, amikacin alone, C2DA alone, or amikacin and C2DA and then inserted into the intramedullary femur of each mouse and inoculated with S aureus. The number of viable bacterial colonies on the implant surface and in the surrounding bone was determined after 1 week with the goal of achieving complete bacterial clearance. Total viable CFU count and proportion of samples achieving complete clearance were compared between groups. RESULTS Elution samples showed a burst response of amikacin and C2DA for 1 to 2 days with C2DA release continuing at low levels through Day 4. All tested eluate samples inhibited P aeruginosa. Samples from coatings containing 25% amikacin or 15% amikacin and any amount of C2DA were able to inhibit S aureus formation, but all coatings with 5% amikacin or 15% amikacin but no C2DA were not inhibitory. All in vivo treatment groups achieved complete bacterial clearance on the wire implant, and the C2DA alone and amikacin alone coatings cleared all CFUs in bone (pin: phosphatidylcholine only one of three; amikacin three of three, C2DA three of three, amikacin + C2DA three of three, p = 0.04 [Fisher's exact test]; bone: coating only: zero of three; amikacin: three of three; C2DA; three of three; C2DA + amikacin: one of three; p = 0.03 [Fisher's exact test]). CONCLUSIONS Phosphatidylcholine coatings elute antimicrobials in vitro under infinite sink conditions for up to 4 days in phosphate-buffered saline and were able to reduce bacterial colonies in a preliminary in vivo model. Turbidity testing with eluate samples containing varying amounts of C2DA and amikacin agrees with previous studies showing synergy between them. CLINICAL RELEVANCE Used as an adjunctive to systemic therapy, C2DA-loaded phosphatidylcholine coatings have potential value as a prophylactic infection prevention measure. Future studies may include different antibiotics, animal studies with larger sample sizes and more controls, and advanced coating delivery methods.
Collapse
|
188
|
Yao J, Rock CO. Exogenous fatty acid metabolism in bacteria. Biochimie 2017; 141:30-39. [PMID: 28668270 DOI: 10.1016/j.biochi.2017.06.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/26/2017] [Indexed: 10/19/2022]
Abstract
Bacterial type II fatty acid synthesis (FASII) is a target for novel antibiotic development. All bacteria encode for mechanisms to incorporate exogenous fatty acids, and some bacteria can use exogenous fatty acids to bypass FASII inhibition. Bacteria encode three different mechanisms for activating exogenous fatty acids for incorporation into phospholipid synthesis. Exogenous fatty acids are converted into acyl-CoA in Gammaproteobacteria such as E. coli. Acyl-CoA molecules constitute a separate pool from endogenously synthesized acyl-ACP. Acyl-CoA can be used for phospholipid synthesis or broken down by β-oxidation, but cannot be used for lipopolysaccharide synthesis. Exogenous fatty acids are converted into acyl-ACP in some Gram-negative bacteria. The resulting acyl-ACP undergoes the same fates as endogenously synthesized acyl-ACP. Exogenous fatty acids are converted into acyl-phosphates in Gram-positive bacteria, and can be used for phospholipid synthesis or become acyl-ACP. Only the order Lactobacillales can use exogenous fatty acids to bypass FASII inhibition. FASII shuts down completely in presence of exogenous fatty acids in Lactobacillales, allowing Lactobacillales to synthesize phospholipids entirely from exogenous fatty acids. Inhibition of FASII cannot be bypassed in other bacteria because FASII is only partially down-regulated in presence of exogenous fatty acid or FASII is required to synthesize essential metabolites such as β-hydroxyacyl-ACP. Certain selective pressures such as FASII inhibition or growth in biofilms can select for naturally occurring one step mutations that attenuate endogenous fatty acid synthesis. Although attempts have been made to estimate the natural prevalence of these mutants, culture-independent metagenomic methods would provide a better estimate.
Collapse
Affiliation(s)
- Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
189
|
Social odours covary with bacterial community in the anal secretions of wild meerkats. Sci Rep 2017; 7:3240. [PMID: 28607369 PMCID: PMC5468246 DOI: 10.1038/s41598-017-03356-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
The fermentation hypothesis for animal signalling posits that bacteria dwelling in an animal’s scent glands metabolize the glands’ primary products into odorous compounds used by the host to communicate with conspecifics. There is, however, little evidence of the predicted covariation between an animal’s olfactory cues and its glandular bacterial communities. Using gas chromatography-mass spectrometry, we first identified the volatile compounds present in ‘pure’ versus ‘mixed’ anal-gland secretions (‘paste’) of adult meerkats (Suricata suricatta) living in the wild. Low-molecular-weight chemicals that likely derive from bacterial metabolism were more prominent in mixed than pure secretions. Focusing thereafter on mixed secretions, we showed that chemical composition varied by sex and was more similar between members of the same group than between members of different groups. Subsequently, using next-generation sequencing, we identified the bacterial assemblages present in meerkat paste and documented relationships between these assemblages and the host’s sex, social status and group membership. Lastly, we found significant covariation between the volatile compounds and bacterial assemblages in meerkat paste, particularly in males. Together, these results are consistent with a role for bacteria in the production of sex- and group-specific scents, and with the evolution of mutualism between meerkats and their glandular microbiota.
Collapse
|
190
|
Guilhen C, Forestier C, Balestrino D. Biofilm dispersal: multiple elaborate strategies for dissemination of bacteria with unique properties. Mol Microbiol 2017; 105:188-210. [PMID: 28422332 DOI: 10.1111/mmi.13698] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2017] [Indexed: 01/22/2023]
Abstract
In most environments, microorganisms evolve in a sessile mode of growth, designated as biofilm, which is characterized by cells embedded in a self-produced extracellular matrix. Although a biofilm is commonly described as a "cozy house" where resident bacteria are protected from aggression, bacteria are able to break their biofilm bonds and escape to colonize new environments. This regulated process is observed in a wide variety of species; it is referred to as biofilm dispersal, and is triggered in response to various environmental and biological signals. The first part of this review reports the main regulatory mechanisms and effectors involved in biofilm dispersal. There is some evidence that dispersal is a necessary step between the persistence of bacteria inside biofilm and their dissemination. In the second part, an overview of the main methods used so far to study the dispersal process and to harvest dispersed bacteria was provided. Then focus was on the properties of the biofilm-dispersed bacteria and the fundamental role of the dispersal process in pathogen dissemination within a host organism. In light of the current body of knowledge, it was suggested that dispersal acts as a potent means of disseminating bacteria with enhanced colonization properties in the surrounding environment.
Collapse
Affiliation(s)
- Cyril Guilhen
- Laboratoire Microorganismes : Génome et Environnement, UMR CNRS 6023, Université Clermont Auvergne, Clermont Ferrand, F-63001, France
| | - Christiane Forestier
- Laboratoire Microorganismes : Génome et Environnement, UMR CNRS 6023, Université Clermont Auvergne, Clermont Ferrand, F-63001, France
| | - Damien Balestrino
- Laboratoire Microorganismes : Génome et Environnement, UMR CNRS 6023, Université Clermont Auvergne, Clermont Ferrand, F-63001, France
| |
Collapse
|
191
|
Tørring T, Shames SR, Cho W, Roy CR, Crawford JM. Acyl Histidines: New N-Acyl Amides from Legionella pneumophila. Chembiochem 2017; 18:638-646. [PMID: 28116768 PMCID: PMC5546091 DOI: 10.1002/cbic.201600618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 11/11/2022]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, is a Gram-negative gammaproteobacterial pathogen that infects and intracellularly replicates in human macrophages and a variety of protozoa. L. pneumophila encodes an orphan biosynthetic gene cluster (BGC) that contains isocyanide-associated biosynthetic genes and is upregulated during infection. Because isocyanide-functionalized metabolites are known to harbor invertebrate innate immunosuppressive activities in bacterial pathogen-insect interactions, we used pathway-targeted molecular networking and tetrazine-based chemoseletive ligation chemistry to characterize the metabolites from the orphan pathway in L. pneumophila. We also assessed their intracellular growth contributions in an amoeba and in murine bone-marrow-derived macrophages. Unexpectedly, two distinct groups of aromatic amino acid-derived metabolites were identified from the pathway, including a known tyrosine-derived isocyanide and a family of new N-acyl-l-histidine metabolites.
Collapse
Affiliation(s)
- Thomas Tørring
- Interdiscplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Stephanie R Shames
- Department of Microbial Pathogenesis, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Wooyoung Cho
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06511, USA
- Chemical Biology Institute, Yale University, 600 West Campus Drive, West Haven, CT, 06516, USA
| | - Craig R Roy
- Department of Microbial Pathogenesis, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Jason M Crawford
- Department of Microbial Pathogenesis, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06511, USA
- Chemical Biology Institute, Yale University, 600 West Campus Drive, West Haven, CT, 06516, USA
| |
Collapse
|
192
|
Hotterbeekx A, Kumar-Singh S, Goossens H, Malhotra-Kumar S. In vivo and In vitro Interactions between Pseudomonas aeruginosa and Staphylococcus spp. Front Cell Infect Microbiol 2017; 7:106. [PMID: 28421166 PMCID: PMC5376567 DOI: 10.3389/fcimb.2017.00106] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/16/2017] [Indexed: 01/04/2023] Open
Abstract
The significance of polymicrobial infections is increasingly being recognized especially in a biofilm context wherein multiple bacterial species—including both potential pathogens and members of the commensal flora—communicate, cooperate, and compete with each other. Two important bacterial pathogens that have developed a complex network of evasion, counter-inhibition, and subjugation in their battle for space and nutrients are Pseudomonas aeruginosa and Staphylococcus aureus. Their strain- and environment-specific interactions, for instance in the cystic fibrosis lung or in wound infections, show severe competition that is generally linked to worse patient outcomes. For instance, the extracellular factors secreted by P. aeruginosa have been shown to subjugate S. aureus to persist as small colony variants (SCVs). On the other hand, data also exist where S. aureus inhibits biofilm formation by P. aeruginosa but also protects the pathogen by inhibiting its phagocytosis. Interestingly, such interspecies interactions differ between the planktonic and biofilm phenotype, with the extracellular matrix components of the latter likely being a key, and largely underexplored, influence. This review attempts to understand the complex relationship between P. aeruginosa and Staphylococcus spp., focusing on S. aureus, that not only is interesting from the bacterial evolution point of view, but also has important consequences for our understanding of the disease pathogenesis for better patient management.
Collapse
Affiliation(s)
- An Hotterbeekx
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of AntwerpWilrijk, Belgium
| | - Samir Kumar-Singh
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of AntwerpWilrijk, Belgium.,Molecular Pathology Group, Cell Biology and Histology, University of AntwerpWilrijk, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of AntwerpWilrijk, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of AntwerpWilrijk, Belgium
| |
Collapse
|
193
|
Approaches to Dispersing Medical Biofilms. Microorganisms 2017; 5:microorganisms5020015. [PMID: 28368320 PMCID: PMC5488086 DOI: 10.3390/microorganisms5020015] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/22/2017] [Accepted: 03/31/2017] [Indexed: 02/07/2023] Open
Abstract
Biofilm-associated infections pose a complex problem to the medical community, in that residence within the protection of a biofilm affords pathogens greatly increased tolerances to antibiotics and antimicrobials, as well as protection from the host immune response. This results in highly recalcitrant, chronic infections and high rates of morbidity and mortality. Since as much as 80% of human bacterial infections are biofilm-associated, many researchers have begun investigating therapies that specifically target the biofilm architecture, thereby dispersing the microbial cells into their more vulnerable, planktonic mode of life. This review addresses the current state of research into medical biofilm dispersal. We focus on three major classes of dispersal agents: enzymes (including proteases, deoxyribonucleases, and glycoside hydrolases), antibiofilm peptides, and dispersal molecules (including dispersal signals, anti-matrix molecules, and sequestration molecules). Throughout our discussion, we provide detailed lists and summaries of some of the most prominent and extensively researched dispersal agents that have shown promise against the biofilms of clinically relevant pathogens, and we catalog which specific microorganisms they have been shown to be effective against. Lastly, we discuss some of the main hurdles to development of biofilm dispersal agents, and contemplate what needs to be done to overcome them.
Collapse
|
194
|
Zhou L, Zhang LH, Cámara M, He YW. The DSF Family of Quorum Sensing Signals: Diversity, Biosynthesis, and Turnover. Trends Microbiol 2017; 25:293-303. [DOI: 10.1016/j.tim.2016.11.013] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/09/2016] [Accepted: 11/22/2016] [Indexed: 01/18/2023]
|
195
|
Omar A, Wright JB, Schultz G, Burrell R, Nadworny P. Microbial Biofilms and Chronic Wounds. Microorganisms 2017; 5:microorganisms5010009. [PMID: 28272369 PMCID: PMC5374386 DOI: 10.3390/microorganisms5010009] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/04/2017] [Indexed: 12/14/2022] Open
Abstract
Background is provided on biofilms, including their formation, tolerance mechanisms, structure, and morphology within the context of chronic wounds. The features of biofilms in chronic wounds are discussed in detail, as is the impact of biofilm on wound chronicity. Difficulties associated with the use of standard susceptibility tests (minimum inhibitory concentrations or MICs) to determine appropriate treatment regimens for, or develop new treatments for use in, chronic wounds are discussed, with alternate test methods specific to biofilms being recommended. Animal models appropriate for evaluating biofilm treatments are also described. Current and potential future therapies for treatment of biofilm-containing chronic wounds, including probiotic therapy, virulence attenuation, biofilm phenotype expression attenuation, immune response suppression, and aggressive debridement combined with antimicrobial dressings, are described.
Collapse
Affiliation(s)
- Amin Omar
- Innovotech Inc., Suite 101, 2011 94 Street, Edmonton, Alberta T6N 1H1, Canada.
| | - J Barry Wright
- Harkynn Consulting, P.O. Box 104, Albertville, Saskatchewan S0J 0A0, Canada.
| | - Gregory Schultz
- Department of Obstetrics and Gynecology, Institute for Wound Research, University of Florida, 1600 South West Archer Road, Room M337F, Gainesville, FL 32610-0294, USA.
| | - Robert Burrell
- Department of Biomedical Engineering, Faculties of Engineering and Medicine & Dentistry, 1101 Research Transition Facility, University of Alberta, Edmonton, Alberta T6G 2G6, Canada.
| | - Patricia Nadworny
- Innovotech Inc., Suite 101, 2011 94 Street, Edmonton, Alberta T6N 1H1, Canada.
| |
Collapse
|
196
|
Use of Fibonacci numbers in lipidomics - Enumerating various classes of fatty acids. Sci Rep 2017; 7:39821. [PMID: 28071669 PMCID: PMC5223158 DOI: 10.1038/srep39821] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022] Open
Abstract
In lipid biochemistry, a fundamental question is how the potential number of fatty acids increases with their chain length. Here, we show that it grows according to the famous Fibonacci numbers when cis/trans isomerism is neglected. Since the ratio of two consecutive Fibonacci numbers tends to the Golden section, 1.618, organisms can increase fatty acid variability approximately by that factor per carbon atom invested. Moreover, we show that, under consideration of cis/trans isomerism and/or of modification by hydroxy and/or oxo groups, diversity can be described by generalized Fibonacci numbers (e.g. Pell numbers). For the sake of easy comprehension, we deliberately build the proof on the recursive definitions of these number series. Our results should be of interest for mass spectrometry, combinatorial chemistry, synthetic biology, patent applications, use of fatty acids as biomarkers and the theory of evolution. The recursive definition of Fibonacci numbers paves the way to construct all structural formulas of fatty acids in an automated way.
Collapse
|
197
|
Zhao X, Zhao F, Wang J, Zhong N. Biofilm formation and control strategies of foodborne pathogens: food safety perspectives. RSC Adv 2017. [DOI: 10.1039/c7ra02497e] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Foodborne pathogens are the main factors behind foodborne diseases and food poisoning and thus pose a great threat to food safety.
Collapse
Affiliation(s)
- Xihong Zhao
- Research Center for Environmental Ecology and Engineering
- Key Laboratory for Green Chemical Process of Ministry of Education
- Key Laboratory for Hubei Novel Reactor & Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
| | - Fenghuan Zhao
- Research Center for Environmental Ecology and Engineering
- Key Laboratory for Green Chemical Process of Ministry of Education
- Key Laboratory for Hubei Novel Reactor & Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
| | - Jun Wang
- College of Food Science and Engineering
- Qingdao Agricultural University
- Qingdao
- P. R. China
| | - Nanjing Zhong
- School of Food Science
- Guangdong Pharmaceutical University
- Zhongshan 528458
- P. R. China
| |
Collapse
|
198
|
Edmiston CE, McBain AJ, Kiernan M, Leaper DJ. A narrative review of microbial biofilm in postoperative surgical site infections: clinical presentation and treatment. J Wound Care 2016; 25:693-702. [DOI: 10.12968/jowc.2016.25.12.693] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- C. E. Edmiston
- Emeritus Professor of Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, US
| | - A. J. McBain
- Professor of Microbiology, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - M. Kiernan
- Visiting Clinical Fellow, Richard Wells Research Centre, University of West London, UK
| | - D. J. Leaper
- Emeritus Professor of Surgery, University of Newcastle upon Tyne, UK
| |
Collapse
|
199
|
Bhattacharjee A, Nusca TD, Hochbaum AI. Rhamnolipids Mediate an Interspecies Biofilm Dispersal Signaling Pathway. ACS Chem Biol 2016; 11:3068-3076. [PMID: 27623227 DOI: 10.1021/acschembio.6b00750] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial biofilms are problematic in natural and anthropogenic environments, and they confer protective properties on their constituent cells, making them difficult to treat with conventional antibiotics. Antibiofilm strategies, therefore, represent a promising direction of research for treating biofilm infections. Natural autodispersal and interspecies dispersal signaling pathways provide insight into cell-cell communication mechanisms, species dynamics in mixed communities, and potential targets for infection therapies. Here, we describe a novel interspecies dispersal signaling pathway between Pseudomonas aeruginosa and Escherichia coli. E. coli biofilms disperse in response to compounds in P. aeruginosa culture supernatant. Two components of the P. aeruginosa Las and Rhl quorum sensing systems, N-(3-oxo-dodecanoyl) homoserine lactone (3oxoC12HSL) and rhamnolipids, are found to act cooperatively to disperse E. coli biofilms. Our results indicate that rhamnolipids do not affect growth, biofilm development, or dispersal in E. coli but instead complement 3oxoC12HSL signaling by inducing selective permeability of the E. coli membrane. The increased target cell permeability is consistent with rhamnolipid-mediated removal of lipopolysaccharide from E. coli membranes and appears to selectively increase the permeability of lipophilic acyl homoserine lactones. This work suggests that rhamnolipids play a critical role in P. aeruginosa-E. coli interspecies signaling. Rhamnolipids and other biosurfactants may have similar effects in other intra- and interspecies chemical signaling pathways.
Collapse
Affiliation(s)
- Arunima Bhattacharjee
- Department
of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697, United States
| | - Tyler D. Nusca
- Department
of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697, United States
| | - Allon I. Hochbaum
- Department
of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
200
|
Ding Q, Tan KS. The Danger Signal Extracellular ATP Is an Inducer of Fusobacterium nucleatum Biofilm Dispersal. Front Cell Infect Microbiol 2016; 6:155. [PMID: 27909688 PMCID: PMC5112537 DOI: 10.3389/fcimb.2016.00155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/02/2016] [Indexed: 01/15/2023] Open
Abstract
Plaque biofilm is the primary etiological agent of periodontal disease. Biofilm formation progresses through multiple developmental stages beginning with bacterial attachment to a surface, followed by development of microcolonies and finally detachment and dispersal from a mature biofilm as free planktonic bacteria. Tissue damage arising from inflammatory response to biofilm is one of the hallmark features of periodontal disease. A consequence of tissue damage is the release of ATP from within the cell into the extracellular space. Extracellular ATP (eATP) is an example of a danger associated molecular pattern (DAMP) employed by mammalian cells to elicit inflammatory and damage healing responses. Although, the roles of eATP as a signaling molecule in multi-cellular organisms have been relatively well studied, exogenous ATP also influences bacteria biofilm formation. Since plaque biofilms are continuously exposed to various stresses including exposure to the host damage factors such as eATP, we hypothesized that eATP, in addition to eliciting inflammation could potentially influence the biofilm lifecycle of periodontal associated bacteria. We found that eATP rather than nutritional factors or oxidative stress induced dispersal of Fusobacterium nucleatum, an organism associated with periodontal disease. eATP induced biofilm dispersal through chelating metal ions present in biofilm. Dispersed F. nucleatum biofilm, regardless of natural or induced dispersal by exogenous ATP, were more adhesive and invasive compared to planktonic or biofilm counterparts, and correspondingly activated significantly more pro-inflammatory cytokine production in infected periodontal fibroblasts. Dispersed F. nucleatum also showed higher expression of fadA, a virulence factor implicated in adhesion and invasion, compared to planktonic or biofilm bacteria. This study revealed for the first time that periodontal bacterium is capable of co-opting eATP, a host danger signaling molecule to detach from biofilms. Our results further showed that dispersed F. nucleatum possessed distinct virulence characteristics compared to their biofilm and planktonic counterparts.
Collapse
Affiliation(s)
- Qinfeng Ding
- Faculty of Dentistry, National University of Singapore Singapore, Singapore
| | - Kai Soo Tan
- Faculty of Dentistry, National University of Singapore Singapore, Singapore
| |
Collapse
|